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1 Introduction

Since the rise of (personal) computers, the amount of data available to the public and
researchers has been increasing dramatically, potentially giving us access to new insights
and information. This growth has been fueled further by the recent advances of smart-
phones and embedded devices. Together with the amount, the complexity of data to be
analyzed has increased. However these masses of data can also be a burden, as it might
be impossible even for enthusiastic experts to sift through all the available data to find
new insights. Therefore data mining techniques are needed to help analyze large amounts
of data. One particular field of work is Local Pattern Mining, which finds patterns in
data based on learning algorithms or statistical measures. This can be extremely help-
ful for domain experts as it can provide hints to possibly valuable/previously hidden
information in the data, that might be interesting for research (e.g. research on gene
expressions)

There are already many approaches to find and generate such interesting pre-selections.
One of those is Subgroup Discovery (SD) which has recently been generalized into Ex-
ceptional Model Mining (EMM).

1.1 Aim of this thesis

In this thesis we are trying to extend the Correlation Model Class for EMM proposed by
Leman et al. [1] to use non-parametric rank correlation measures and investigate suitable
quality measures. Instead of the standard Pearson correlation coefficient, which can only
measure linear relationships, we will apply rank correlation coeflicients. The theoretical
advantage is, that they measure the extent to which, as one variable increases, the other
variable tends to increase without requiring that increase to be represented by a linear
relationship. In Figure [1.1] we can see that some function could be fitted perfectly on the
data. For such cases we would wish for a correlation measure value of 1 (or -1 depending
if it is monotonically rising or falling), indicating a perfect monotonic function. A rank-
based correlation measure such as Spearman’s correlation fulfills this wish while the
standard Pearson correlation only returns a value of 0.93 indicating a non-perfect linear
relationship.
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Figure 1.1: Comparing Pearson correlation with Spearman’s rank correlation

We perform experiments to see if the theoretical advantages of a non-parametric measure
have an impact in practice, i.e., whether we will find the same, similar or entirely different
subgroups than with the standard correlation model class.

1.2 Structure

In Chapter 2 we describe the concept of Exceptional Model Mining as a generalization of
Subgroup Discovery. Chapter 3 focuses on related work concerning EMM and correlation
measures. In Chapter 4, we present 5 widely used and recognized correlation measures
and choose 3 of them to develop a new Rank Correlation Model Class. Chapter 5 gives
a quick overview on our implementation in RapidMiner. The chosen datasets as well as
the results of our experiments can be found in Chapter 6. Finally, Chapter 7 presents a
conclusion as well as a future outlook.



2 Exceptional Model Mining

2.1 Introduction

Data Mining is the scientific field of computer-aided extraction of useful, interesting
or previously unknown information/patterns from (large) databases. The algorithms
usually found in Data Mining are data-driven, meaning, not the algorithm alone decides
what a good “solution” is, but that the data itself will indicate the direction.

Two different approaches to learning from data are supervised and unsupervised learning.
In unsupervised learning, there is no feedback or labeling of “correct” instances, i.e., we
do not tell the algorithm anything about the data. An unsupervised learning scheme
has to discover the knowledge or hidden structures in the data by itself. In supervised
learning on the other hand, there is some sort of feedback/measure or labeling for the
data available. The algorithm then tries to infer relationships between variables of the
data; or functions that could be used to map new examples.

When applying those approaches we should also keep in mind the differences between two
concepts: local patterns and (global) models. A local pattern describes (small) subsets of
a given dataset (e.g., people who buy milk, also often buy coffee), while a model is fitted
on the whole data to describe some specific relationship (e.g., a regression line fitted on
the age of a person and their income).

2.1.1 Local Pattern Mining

A standard and important task for Data Mining is to identify elements that differ from
the norm, which techniques try to achieve by focusing on outlier detection. Another
approach is Local Pattern Mining (LPM ), where the goal is to find subgroups in the
data. Subgroups are subsets of a dataset, that can be described by some conditions
imposed on the attributes of the dataset.

The availability of descriptions for a subgroup makes them much more usable and in-
teresting as Duivesteijn points out in [2]: “if we tell a pharmaceutical company that five
given persons react badly to a certain type of medication, it is more difficult for them to
act on the information than it would be if we could tell them that the group of smokers
react badly to the medication.” What exactly constitutes a divergence from the norm
can be defined in different ways, as we will see.
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Unsupervised Local Pattern Mining

A traditional example for Local Pattern Mining is Frequent Itemset Mining [3|, which
was originally developed to analyze customer behavior regarding the purchased products.
In this setting a frequent set of products describes how often specific items are bought
together. One could for example find the subgroup of customers of a supermarket, that
simultaneously buy coffee and milk. In LPM we thus have no designated target attribute;
it is an unsupervised method.

2.1.2 Subgroup Discovery

The simplest form of supervised Local Pattern Mining is Subgroup Discovery |4] (SD),
which is concerned with finding interesting or exceptional subgroups (i.e. relations be-
tween properties or variables) in a population with respect to a single target attribute.
The target attribute is the value of interest, meaning we typically try to find subgroups
where the distribution of the target attribute is significantly different from its distribu-
tion in the whole dataset.

In general, the interestingness of a subgroup is determined by a quality measure (e.g.,
distribution of the target attribute), which is defined to measure the difference between
a potentially interesting subgroup and the complement (or the whole dataset).

“Since unusual distributions are more easily achieved in small subsets of the dataset, the
typical quality measure also contains a component indicating the size of the subgroup.
Thus, whether a description is deemed interesting depends on both its exceptionality
and the size of the corresponding subgroup” [2].

Example: in [4], a dataset with four attributes is considered:

e Age = {Less than 25, 25 to 60, More than 60};
e Gender = {M, F};
e Country = {Spain, USA, France, Germany };

e Money = {Poor, Normal, Rich} «+ target variable.

With respect to the target attribute “money”, traditional SD could find the following
rules:

e Ry : (Age = Less than 25 AND Country = Germany)— Money=Rich;
e Ry : (Age = More than 60 AND Gender = F)—Money=Normal.

Here, R; stands for a subgroup of German people less than 25 years old, for which the
probability of being rich is unusually high compared to the rest of the population, and
Ry represents that women of more than 60 years old are more likely to have normal
wealth than the rest of the population.
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2.2 Exceptional Model Mining

2.2.1 Overview

In SD we find subgroups where the target attribute shows an unusual distribution.
However, as already mentioned, we could also think of applying and comparing models
on the data. This leads to a generalization of Subgroup Discovery: Excpetional Model
Mining. With EMM we can find subgroups of the data where multiple target attributes
show an unusual distribution. This is achieved by applying a model (e.g., regression)
on the target attributes and comparing subgroups based on the fitted model - hence
Exceptional Model Mining.

An Exceptional Model Mining Class consists of a fixed model (e.g., regression) and
its model parameters, which vary depending on how the model is fitted on the data
(e.g., slope value for a fitted regression model). We then strive to identify descriptions of
subgroups, for which the model parameters deviate considerably from those of the model
built from the entire or complement dataset. “Formally this is accomplished by using an
exceptionality measure that maps a subgroup (pattern) to a real number corresponding
to its quality (interestingness) based on its model parameters”[5].

2.2.2 Example

A simple example for EMM has been given by the authors of [1]; we consider a simple
linear regression model:

P =a+bS;+ ¢

Where P; is the sales price of a house, S; is the lot size, and e; the random error term.
One could now fit this model to a subgroup of the dataset, for example a group of houses
situated in a desirable location (what makes a location desirable is of course debatable).
We could then perform a statistical test to gauge whether the slopes of the two fitted
models are significantly different.

2.2.3 Comparison

To illustrate the differences of LPM, SD and EMM, we compare them in terms of the
found subgroups/rules. We can then again see that by allowing more than one target
attribute, EMM is simply a generalization of SD.

Unsupervised Local Pattern Mining:
e no target attribute;

e example: find a subgroup of customers of a supermarket, that simultaneously buy
coffee and milk.
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Subgroup Discovery:

e one target attribute;

e example: find a subgroup of smokers, whose lung cancer incidence is above average.
Exceptional Model Mining:

e multiple target attributes;

e example: find a subgroup of inner city houses, for which the correlation between
price of a house and its lot size is substantially weaker than for the average house.

2.2.4 Definitions

We will introduce the definitions necessary to formalize model classes for EMM.

In general we will have a dataset with several attributes from which we pick our target
attributes. The remaining attributes are used for subgroup description.

Definition 1
A dataset Q is a bag of N records r € Q of the form: r = (a1, ..., ak, l1, ..., )

We call the attributes a1, ..., a, the descriptive attributes and attributesly, ..., l,, the target
attributes.

To define a subgroup we first need a way of describing it. In general this is achieved by
using a description language D from which we can build descriptions D.

Definition 2
A description is a function D : (af,...,a;) — {0,1}

A description D covers a record r if and only if D(ai, ...,a};) =1

With the description we indirectly already have a subgroup, as it simply consists of the
records covered by the description.

Definition 3
A subgroup corresponding to a description D is the bag of records Gp C Q that D covers:

Gp={r'eQ|D(d},...a}) =1}

To evaluate a candidate description in a given dataset, we use a quality measure to gauge
how interesting the inferred subgroup is.

Definition 4
A quality measure is a function ¢ : D — R that assigns a unique numeric value to a
description D
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2.2.5 Defining the task/problem

As Duivesteijn [2] remarks: “The goal is to find interesting subgroups of a dataset, for
whatever instantiation of “interesting” the user of EMM cares for, which is intrinsically
subjective. Therefore, any formal definition of the EMM task will only concern a subset
of what we attempt to achieve with EMM.” Nevertheless for a formal discussion it is
necessary to provide a general definition. An attempt of doing so is described in [2]:

Top-g Exceptional Model Mining

Given a dataset {2, a description language D, a quality measure ¢, a positive integer ¢
and a set of constraints C. The Top-q Exceptional Model Mining task delivers the list
{D:,.., Dy} of descriptions in the language D such that:

e V1 <i<yq: D, satisfies all constraints in C
o Vi, j:i<j= o(D;) > p(Dy)
e VD e D\{Dy,...,Dy} : D satisfies all constraints in C = p(D) < ¢(Dy)

Constraints that can be imposed are e.g., a minimum support level, a minimum threshold
for the quality measure or the complexity of the subgroup description.

Comparing subgroups

As already briefly mentioned in Section [2.2.1] a subgroup Gp is only of interest if it differs
in some way from its complement Gg or the whole dataset 2. The question remains, to
which one should it actually be compared? Duivesteijn [2] notes that there is no general
answer to this question. However the choice is not arbitrary, as the real-life problem can
give us some directions for this decision. Suppose we are interested in deviations from
the norm, then we should compare to 2. If we are more interested in finding schisms in
the dataset, a comparison to G% makes more sense, as this implies a partitioning of €.

Sometimes the model class itself can dictate an answer: if learning models from the
data has a nontrivial computational expense, with regards to efficiency we might not
have a free choice, because “when comparing n descriptions to €2, learning n + 1 models
suffices, but when comparing them to Gg, learning 2n models is required”. Furthermore
“a statistically inspired quality measure may require choosing either 2 or Gg, to prevent
violation of mathematical assumptions” [2].
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2.2.6 Basic Approach

For the top-q¢ Exceptional Model Mining task we need:
e a refinement operator that generates possible subgroups;

e an algorithm that traverses the space of possible subgroups (heuristic or exhaus-
tive);

e a model class, defined by a fixed model (e.g., regression) and its model parameters,
which vary depending on how the model is fitted on the data.

Multiple target concepts can be explored by exchanging the model class.

Refining Subgroups

A description is created by conjunctions of basic conditions provided by the chosen
description language D. In our setting these are equalities (=) and inequalities (#,<,>).
Refining a description is achieved by simply adding a new condition to the description.
This can be done by a refinement operator n : D — 2P. Usually n will be a specialization
operator, meaning “that every description D; that is an element of the set n(Dj), is more
specialized that the description Dj itself” [2].

We start with the empty description; a new set is built by looping over the descriptive
attributes a; and the specialization is generated depending on the attribute type.

We can formalize this as follows [2]:
e if @; is binary: add D N (a; = 0) and D N (a; = 1) to n(D);

e if a; is nominal, with values v1,...,v4: add {D N (a; = v;),D N (a; # I/j)}?zl to
n(D);

e if @; is numeric: order the values of a; that are covered by the description D; this
gives us a list of ordered values a(y),...,a¢,) (n =| Gp [). From this list we select
the split points s1, ..., sp—1 letting

i1 s = o))
Then, add {D N (ag < s57),D N (a@) > s5) ?;} to n(D).

However, it should be noted, that these are not the only ways of refining subgroup de-
scriptions. Generating optimal subgroup descriptions is still subject of ongoing research.
Hence more sophisticated approaches are also explored, e.g., by Mampaey et al. [6] who
introduce linear-time algorithms for finding optimal sets for Set-valued conditions (e.g.,
Country € {Spain, France}) and Interval conditions (e.g., Age € [25,60]). However, as
these “algorithms operate by only considering subgroup refinements that lie on a con-
vex hull in ROC space” [6], they are only applicable for concepts that can be described
in ROC space. Thus, this approach does not fit our scenario, where we have multiple
(numeric) targets.
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Algorithm

The procedure is as follows: we select the descriptive attributes to generate subgroup
descriptions. On each level, the best-ranking w patterns, that fulfill the constraints C,
are refined by the specified refinement operator 7 to form the candidates for the next
level. Once a specified level d of search depth is reached, we report the ¢ best-ranked
descriptions.

Algorithm 1 Top-q Exceptional Model Mining

Input: Q, ¢, n, w,d, q,C
Output: resultSet

1: candidateQueue + new Queue

2: resultSet < new PriorityQueue(q);

3: for (int level < 1, level < d, level++) do

4 beam < new PriorityQueue(w);

5 while candidateQueue# @ do

6: seed «+ candidateQueue.dequeue();
T set < n(seed);
8.
9

for all (desc € set) do
quality < ¢(desc);

10: if (desc.satisfiesAll(C)) then

11: resultSet.insert WithPriority (desc,quality);
12: beam.insert WithPriority(desc,quality)

13: while beam # @ do

14: candidateQueue.enqueue(beam.getFrontElement/());

return resultSet;




3 Related Work

3.1 Exceptional Model Mining

Subgroup Discovery is a Data Mining technique that has undergone thorough research.
It has first been introduced by Klosgen 7] and Wrobel [8] and has since then been refined
through new applications and strategies. A broad overview on the history of Subgroup
Discovery, developed algorithms and quality measures has been published by Herrera et
al. [4].

The Exceptional Model Mining framework [1] has been proposed as a generalization of
Subgroup Discovery. Exceptional Model Mining is thus a very recent development. A
thorough introduction, several model classes and quality measures have been given in
[2].

3.1.1 Existing EMM Model Classes

Correlation Model Class

The correlation model class computes Pearson’s Correlation Coefficient between two
attributes for possible subgroups and their complements. A significance test on the dif-
ferences in the coefficient r is used as a quality measure.

Classification Model Class

As a more complex instance, the classification model class allows classifiers, such as
decision trees, support vector machines or ensembles of classifiers, as a basis for measuring
the quality of a subgroup. The goal is to find descriptions for which a classifier learned
from the targets has deviating performance.

This instance of EMM can deliver important indications for data miners when a de-
veloped algorithm works particularly well, or when its performance is not satisfactory.
The knowledge can be incorporated by classification algorithm developers to improve
their algorithms. In |2, Chapter 5] logistic regression has been used to exemplify the
application of the classification model.

10
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Bayesian Network Model Class

The Bayesian network model class allows multiple nominal targets between which a
Bayesian network is then learned. A description is deemed interesting, when the con-
ditional dependence relations between the targets are substantially different from the
description from these relations on the whole dataset. The descriptions are therefore
validated on the interdependencies between the targets, instead of the target values
themselves.

Regression Model Class

The regression as model class seeks descriptions for which (a subset of) the regression
parameter vector 3 significantly deviates from the parameter vector estimated on the
whole dataset.

3.1.2 Search strategies: heuristic or exhaustive?

One can imagine that the space of possible subgroups is potentially large and thus it is
important to consider how this space can be explored. In Section we have already
presented a way of doing so in a heuristic way, where only a subset of all possible
subgroups is actually explored. The advantage is achieved by not just arbitrarily selecting
some of them, but choosing several “good” candidates and refining them further. This
way we can avoid getting stuck in a local optima.

An exhaustive alternative has been developed, using a model class based on Generic
Pattern Trees by Lemmerich et al. [5]. For their GP-Growth algorithm (based on FP-
Growth) a special data structure, called valuation basis, is needed for every model class.
As developing such a valuation basis for rank correlation is beyond the scope of this Bach-
elor thesis, we will leave this for future work. Van Leeuwen [9] has proposed the EMDM
(Exception Maximisation and Description Minimisation) algorithm, another (iterative)
alternative to the beam-search based approach presented in [1]. Along with EMDM, two
additional quality measures (based on KL divergence and KRIMP) are described. How-
ever, the average “description complexities vary from 5 up to 25 conditions” [9]. Resulting
in “more complex subgroups than are typically found” [9], which makes them somewhat
uninspectable.

11
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3.2 Measurements of correlation

A comparison of several correlation measures has been given by Clark [10]. Apart from
Pearson’s » and Spearman’s 7y, he examines three other measures, which promise to
measure relationships beyond linear and monotonic behavior. Examples for datasets
that exhibit such behavior can be seen in Figure [3.1] where Pearson would only be able
to detect paterns 2 and 3, and to some extent 4 and 5.
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Figure 3.1: Collection of datasets with various dependency structures

Hoeffding’s D

Contrary to sample correlation coefficients such as Spearman’s rs, Kendall’s 7, and Pear-
sons’s r, Hoeffding developed a test of independence that can be used to detect a
much broader class of dependence structures beyond monotonic association. Hoeffding’s
statistic, denoted as D, is non-parametric and, similar to Spearman and Kendall, based
on ranks. For two random variables X and Y (with R; and S; denoting the ranks of X;
and Y; respectively) D is defined as:

12
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Definition 5

Q—-2n—-2)R+(n—-2)n—23)S
nn—1)(n—2)(n—3)(n —4)

n

Q= Z(Ri —1)(R; —2)(S; — 1)(S; —2)

=1

R= Zn:(RZ - 2)(Sz - 2)6@
i=1

S = Zci(ci — 1)
=1

¢ = Z O(Xa, Xi)0(Ya,Y:), where ¢p(a,b) = {1 ifa<b
a=1

0 ifa>b

A similar statistic proposed by Blum et al. [12] can be used as a large-sample approxi-
mation for D [13].

Distance Correlation

Distance correlation (dCor) has been introduced by Székely et al. [14] to address the
deficiency of the Pearson correlation coefficient regarding non-linear relationships. It is
based on distance matrices for the X and Y variables and can take values between 0 and
1. According to Clark, a ranked-based version dCor could also be incorporated.

Maximal Information Coefficient

Reshef et al. |15] have developd the Maximal Information Coefficient (MIC'). It is based
on the concepts of Entropy and Mutual Information from information theory. Clark
points out that MIC could be seen as the continuous variable counterpart to mutual
information. Similar to dCor, MIC takes on values between 0 and 1, with zero indicating
independence.

Evaluation

After comparing these alternatives on several non-linear relationships Clark notes, that
“Hoeffding’s D only works in some limited scenarios”. In the experiments D did pick up
some of the non-linear relationships (e.g., a quadratic relationship or a circle pattern)
however, the computed values were relatively small (mean ranging from 0 to 0.1). This
became even worse when noise was added to the data (mean ranging from 0 to 0.02). So
even though it does pick up some non-linear relationships, due to the small values one
cannot get a good sense of the measured dependence.

dCor and MIC performed better at finding various relationships beyond linear ones.
However, when noise is present both become less predictable and the strength of detected
associations can vary strongly. Thus dCor and MIC might provide alternatives to more
classical approaches for picking up a wider variety of relationships, but they are not

13
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perfect either. Some additional problems with MIC are also described by Kinney and
Atwal [16]. Consequently, Clark also concludes that we “still need to be on the lookout
for a measure that is both highly interpretable and possesses all the desirable qualities
we want”.

Other approaches

As pointed out by Clark [10], the development of satisfying general dependence measures
that go beyond simple forms of relationships is still far from finished. Other approaches
therefore have been introduced in recent years. Gretton et al. |[17] developed the Hilbert-
Schmidt Independence Criterion (HSIC'), which is based on an empirical estimate of the
Hilbert-Schmidt norm of the cross-covariance operator. Lopez-Paz et al. [18] proposed
the Randomized Dependence Coefficient (RDC'), which is an estimate of the Hirschfeld-
Gebelein-Rényi Maximum Correlation Coefficient (HGR). HGR was defined by Gebelein
[19] in 1941, however it is not computable and thus represents only an abstract concept.

All of the aforementioned measures have in common that they are mostly recent devel-
opments and as such, further investigation into whether they truly fulfill their promises
is needed. Additionally there is, to our knowledge, not yet a statistical way of comparing
results of these measures on different data samples, thus making it difficult to formulate
a mathematically well-supported quality measure based on them.

14



4 The Rank Correlation Model Class

4.1 Motivation for a new model class

Detecting a correlation between some variables can lead to useful insights. While the
detection alone might not directly explain a potential underlying connection, domain
experts can try to infer and analyze the reasons behind it. Even if there is no clear
explanation, knowing that two things are in some way correlated can be useful. Especially
in medicine, lots of treatments are based on the correlation between their usage and the
healing of some illness.

As briefly highlighted in Section a correlation model class for EMM exists [2}
Chapter 4], which uses Pearson’s standard correlation coefficient as a model to measure
the exceptionality of a subgroup. However, this implies that the data follows a normal
distribution, as experiments have shown that the distribution of r is sensitive to non-
normality [20]. Without the normality assumptions, many statistical tests on r therefore
become meaningless or at least hard to interpret. Considering that normality cannot be
assumed for many real-life examples and datasets, its is questionable if Pearson’s r is then
still a suitable measure. The normality assumption therefore limits (at least theoretically)
the scope of application for this model class. Furthermore, r is easily affected by outliers
and in general only captures linear relationships between targets.

x3 x4

Figure 4.1: Anscombe’s Quartet
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4 The Rank Correlation Model Class

These limitations can very well be illustrated with Anscombe’s quartet [21], displayed in
Figure [.1], which consists of four different datasets with almost identical basic statistical
properties (e.g., all four share the same Pearson coefficient). Francis Anscombe presented
it to emphasize the importance of visualization when analyzing data. All four datasets
have a Person correlation of 0.816. The effect of outliers can be seen very well in sets
3 and 4, two datasets with a clearly different relationship between the two displayed
variables.

Figure 4.2 gives some examples of datasets and their Pearson coefficient, for several
non-linear relationships not captured by r. However, one should keep in mind that rank
correlation does not promise to recognize these relationships either, but can only expand
upon Person’s limitations by additionally capturing general monotonic relationships.

1 0.8 0.4 0 -0.4 -0.8 -1

Figure 4.2: Various datasets and their respective Pearson coefficients

The question therefore is, if we can develop a model class that uses correlation as quality
measure, but has fewer limitations and assumptions on the distribution of the target
data.

Spearman’s 7, [22] or Kendall’s 7 |23] both offer a measurement of the rank correlation,
which can measure whether two targets have a monotonic relationship, thus making them
also capable of capturing some non-linear relationships. Additionally they don’t rely on
assumptions for the distribution of targets. Another measurement of rank correlation is
Goodman and Kruskal’s v [24]. We investigate if there are relevant differences between
these coeflicients, that would make one preferable over to other for a model class based
on rank correlation.

4.2 Standard Correlation Measures

In general, the population correlation coefficient is denoted by p. However, it is never
truly known, and thus many researchers have tried to develop estimators based on a
sample from the population. We present some of the most widely used and established
sample correlation coefficients in the following sections.
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4.2 Standard Correlation Measures

4.2.1 Pearson’s r

Probably the most commonly used method to compute correlation is Pearson’s product-
moment correlation coefficient, often denoted as r.

_ > (wi —2)(yi — )
V2o (@i — )2/ Y (v — 9)?

r

(4.1)

4.2.2 Spearman’s r;

Spearman’s rank correlation coefficient (usually denoted as p but also as rs, we will use
rs to avoid confusion with the population correlation coefficient of a dataset) has been
developed by Charles Spearman [22] and uses the difference between rankings of a pair
x; and y; as a statistic to measure the (rank) correlation.

63, df

—1-
s n(n?—1)

(4.2)

Where d; is the difference between the ranks of x; and y;

If there are no ties present, this is equivalent to computing the Pearson coefficient over
the ranks of the data. With R; and .S; corresponding to the ranks of z; and y; and R
and S describing their respective means, we can thus write:

_ X B-R)(Si-9)
V(R — R (S; - 5)?

(4.3)

s

In the case of ties, Conover [25] suggest using equation Though if the number of
ties is moderate, equation will still function a good approximation and should be
preferred due to its computational simplicity.

4.2.3 Kendall's 7

While Spearman uses the difference of rank in individual pairs, Kendall’s 7, named after
Maurice Kendall [23], defines a statistic based on the agreement (concordances) of ranks
to measure the correlation of a sample, making it less sensitive to outliers.

Definition 6

A pair (x;,v;), (x4,y;) is said to be concordant if (x; < x;) A (yi < yj)

or (z; > xj) N (y; > y;) hold, and discordant if this is not the case. Two observations
are tied if x; = x; and/or y; = y;.
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4 The Rank Correlation Model Class

The total number of pairs that can be constructed for a sample size of n is M = (”) =
n(n — 1)/2. For the following coefficients we define a number of values:

Definition 7

C = number of concordant pairs
D = number of discordant pairs
T, = number of pairs tied only on the z-value
T, = number of pairs tied only on the y-value

Tyy = number of pairs tied both on the z- and y-value

Therefore, we can decompose M as: M = C + D + T, + T, + T,,.

We will see that several correlation measures exist, which make use of the numerator
C-D but differ in the normalizing denominator.

Tau a

T, Tepresents the surplus of concordant pairs over discordant pairs, as a percentage of
all pairs. Because ties are not taken into account, 7, is rarely used.

C—-D
Ta — T (44)

Tau b

Ty is the most widely applied version of Kendall’s measure. In contrast to 7,, it accounts
for ties by normalizing with a term representing the geometric mean between the number
of pairs not tied on the x-value (i.e., C'+ D +T,) and the number not tied on the y-value
(ie., C+D+T,).

C-D
V(IC+D+T,)(C+D+T,)

Th =

(4.5)

Tau c

If applied to asymmetric contingency tables, 7, cannot reach -1 or 1 anymore, making its
interpretation difficult. 7, is an adjustment to this limitation, with &£ being the minimum
of the number of rows and columns.

_ 2k(C - D)

Te = Th—Dn? (4.6)
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4.2 Standard Correlation Measures

4.2.4 Goodman and Kruskal’s v

Gamma represents the surplus of concordant pairs over discordant pairs, as a percentage
of all pairs, ignoring ties.

TTC¥D

4.2.5 Somers’ D

Somers’ D is a modification of 73, developed by Somers [26]. If there are no ties, D is
equal to Goodman and Kruskal’s ~.

Asymmetric

For the asymmetric version only one variable is considered to be independent, while the
other one is considered to be dependent. The asymmetric version of Somers’ D differs
from 73, in that it only adjusts for tied pairs on the independent variable.

C-D
=—— - (X 4.
CiDiT. (X dependent) (4.8)
C—-D
= " Y 4.
Cr D+, (Y dependent) (4.9)

Symmetric

The symmetric version of Somers’ D differs from 7, in that it uses the arithmetic mean
between the number of pairs not tied on the x- and y-value to account for ties, instead
of the geometric mean.

b C—-D
- C+D+ (T, +T,)/2

(4.10)

4.2.6 Comparison
Several measures use the difference in concordant and discordant pairs to gauge cor-

relation, but differ in the way they normalize this statistic. We choose Kendall’s 7, to
represent those measures, as it is the most prevalent and takes ties into account.
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4 The Rank Correlation Model Class

Although it is common to regard the presented rank correlation coefficients as alterna-
tives to Pearson’s coefficient, as we can see by the definitions above, this view has little
mathematical basis. They all measure different types of relationships than the Pearson
product-moment correlation coefficient and we will therefore keep in mind that these
coefficients should rather be seen as measures of a different type of association.

4.3 Rank Correlation as a Quality Measure for EMM

4.3.1 Defining a Quality Measure

In order to define a quality measure we have to answer the question: when is a subgroup
more or less interesting than another?

A simple idea could be the direct comparison of the correlation coefficients for the sub-
group and its complement. The bigger the difference between a subgroup and its comple-
ment, the more interesting it is. However, as indicated in Section [2.1.2] a quality measure
should also consider the support of the subgroup (i.e., the number of records it covers)
to prevent overfitting. As it is usually relatively easy to generate small subgroups with
extreme correlation values (—1,1 or 0) and thus probably also creating extreme differ-
ence values. When we get a big difference in correlation we would also like to know if it
is significant at all. What we want to test is thus :

Hy : p1 = p2 against Hy : p1 # p2

for two groups of data (e.g., a subgroup and its complement).

A standard procedure to test for difference between independent Pearson correlations is
to perform a Fisher z-transformation on both values to make them normally distributed.
Definition 8

Given a Pearson correlation coefficient v, Fisher’s z-transformation is defined as:

z=1ln (%:) = arctanh(r)

The transformed value z is normally distributed with variance var, = ﬁ

We can then treat difference between the transformed values as a random normal vari-
able, with mean zero and variance var,,_,, = ﬁ + n2£3. By comparing it with a
standard normal distribution, a p-value for the difference can the be calculated. Even if
the distribution of the z-score is not strictly normal, it tends to normality rapidly as the

sample size increases for any value of the actual population correlation coefficient [27].

Fieller [28] has tried to transfer this approach for comparisons of Kendall’s 7 and Spear-
man’s rs. His experiments suggested the following variances for the transformed values:

vary, = —}L;Og and var, = —%fij
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4.3 Rank Correlation as a Quality Measure for EMM

Limitations?

A direct limitation for applying this model class stems from the fact that we are using
correlation as a quality measure, where target attributes can only be numeric. Datasets
are thus restricted to have at least two numerical attributes.

Since our test of difference is only applicable to independent datasets, we have to compare
a subgroup with its complement, as comparing with the whole dataset (which includes
the subgroup data) would violate the independence assumption.

A limitation of the Pearson coefficient is that it assumes a bivariate normal distribution
over the two variables to compare. While the other presented correlation measures do not
have this assumption, indirectly it comes into play again when applying the slight mod-
ifications of the Fisher z-transformation presented in [28], because these again assume
a normal distribution of the underlying population. However, Fieller argues, that this
might not be a necessary assumption: “The results [...] can clearly be extended to a much
wider class of parental distributions”. His experiments support that this assumption is
reasonable, but since his test only included datasets having between 10 and 50 samples,
he thus notes for bigger samples that this “is a field in which further investigation would
be of considerable interest” [28, Page 3|. Sadly, to our best knowledge, almost 50 years
later, no further investigation has happened as of today.
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5 Implementation

We choose to implement the (rank) correlation model class for EMM in the popular data
mining platform RapidMiner (http://www.rapidminer.com/). This EMM extension for
RapidMiner is available under: https://bitbucket.org/lennardo/rancor-emn

Apart from the direct implementation of the top-q Exceptional Model Mining algorithm,
important components of the implementation are:

QualityMeasure: an Interface for defining your own quality measure.

EMMCondition: a comparable single condition for our subgroup descriptions, extend-
ing on RapidMiner’s Attribute ValueFilterSingleCondition class.

RefinementOperator: an interface that can be used to define how a subgroup should
be refined.

Subgroup: a class encapsulating all relevant information like the coverage, measure
value and the list of conditions describing a subgroup.

5.1 Computation of Kendall’s tau

A direct computation of the numerator for Kendall’s 7 would require two nested iter-
ations, resulting in a complexity of O(n?). A faster algorithm for computing Kendall’s
7 has been developed in [29]. The approach is built on the concept of merge sort and
has a resulting complexity of O(n - log n). Other efficient ways (but none better than
O(n-log n)) are detailed in [30]. For our implementation we choose Knight’s algorithm.

5.2 RapidMiner Operator

The Operator can be configured via the following parameters:

e first and second target attribute;
e correlation type;

e number of results;

e min and max support level;

e min and max number of conditions defining the subgroups.
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5.2 RapidMiner Operator

@ Parameters @ Context
- PEHI ST By B~

RankCorrelation

first target attribute [PRIJ‘et_num vl
cl exa T D res
res ) == Second target attribute [DER_massJetJet - l
Orve D res
o correlation type [Kendall 'l
number of results [10 l
beam width [40 ]
search depth [3 l
number of bins [10 l

["] Restrict coverage?
[] Minimum measure value?

I:l Restrict number of conditions?

Furthermore the following “expert” parameters are available for users who are familiar
with the underlying algorithm

e beam width;
e search depth;
e number of bins (for refining numeric attributes);

e defining limits for the measure value.
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6 Experiments

6.1 Design

For the experiments several datasets have been used to compare the newly developed
model classes with the standard Pearson Correlation Model Class. We choose to compare
the results of the existing Pearson correlation class, Spearman’s r; and Kendall’s 7.
Goodman/Kruskal’s v was not considered; as shown in Section it is quite similar to
Tp in its interpretation and computation. We therefore have r; and 7, representing two
different standard approaches of calculating rank correlation values.

6.2 Datasets

To test and evaluate the proposed model classes and their different quality measures,
experiments based on datasets like the Iris dataset offered by the UCI repository [31] were
performed. The goal was to investigate differences and to see if the theoretical benefits
had any impact in practice, i.e., if the proposed model classes could find (relevant)
subgroups on additional /fewer underlying concepts.

6.3 Experimental Results

6.3.1 Windsor Housing

The Windsor housing dataset contains 546 samples of houses that were sold in Windsor,
Canada in 1987. Each sample consists of 12 attributes such as the lot size, the prize
it was sold for, number of bathrooms or whether the house was located in a preferable
area.

The experimental results for the Spearman and Pearson measures confirm the experi-
ments performed on the Windsor Housing dataset in |1], as both return the description:

Dy :fob>=2Arec=1ANdrv=1

Which describes a group of 35 houses that have a driveway, a recreation room and at
least two bathrooms. Leman et al. reason that D; might describe “houses in the higher
segments of the market where the price of a house is mostly determined by its location
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6.3 Experimental Results

and facilities. The desirable location may provide a natural limit on the lot size, such
that this is not a factor in the pricing.”

Subgroup ® r n
fb<=2Adrv=1Asty <=2 |0.99993 0.4740 383
bdms >=3 Arec=1Adrv=110.99992 0.118 77
fb>=2Arec=1Adrv=1 0.99989 -0.0894 35

Table 6.1: Housing: top-3 subgroups for Pearson

Subgroup © P n
fb>=2Arec=1Adrv=1 0.9999823 -0.1385 35
thb<=1Adrv=1Aca=0 0.9999821 0.4319 247

fb >=2 Arec =1 A bdms >= 3 | 0.9999781 -0.0932 36

Table 6.2: Housing: top-3 subgroups for Spearman

Subgroup ‘ %) Th n
tb=1Adrv=1 1 0370 341

bdms <=3 Adrv=1Areg=01| 1 0.3329 277
bdms <=3 Adrv=1Aca=0 | 1 0.31993 261

Table 6.3: Housing: top-3 subgroups for Kendall

6.3.2 Contraceptive Method Choice

This dataset is a subset of the 1987 National Indonesia Contraceptive Prevalence Survey.
The dataset contains 1473 samples of married women who were either not pregnant or
did not know if they were at the time of interview.

One assumption could be that women with a higher education are more likely to employ
long term contraception methods than women with a lower education and therefore
also plan their pregnancy resulting in motherhood at an older age. To investigate this
assumption we selected Wife’s age and Number of children ever born as target attributes.

The results from both Pearson and Spearman are similar and describe women with high
education that employ long term contraception methods, thus supporting our assumption
of correlation between education and employed contraception method.

Kendall finds description for groups, where education in both partners is lower. The
correlation between a womens age and the number of children born in those groups
is less then in their complements, confirming our assumption again, but from another
angle.

25



6 Experiments

Subgroup ® r n

Wifes_edu = 4 A Cont_method >= 2 A Media_exp = 0 | 0.99998127 0.6725 398
Wifes_edu = 4 A Cont_method = 2 0.99997633 0.7158 207
Wifes_edu = 4 A Cont_method >= 2 0.99997175 0.6693 402

Table 6.4: Contraception: top-3 subgroups for Pearson

Subgroup % r n

Wifes_edu = 4 A Cont_method >= 2 A Media_exp = 0 0.999999986 0.7236 398
Wifes_edu = 4 A Cont_method >= 2 A Husbands_occu <= 2 | 0.999999983 0.7407 307
Wifes_edu = 4 A Cont_method >= 2 A Husbands_occu >= 1 | 0.999999966 0.7185 402

Table 6.5: Contraception: top-3 subgroups for Spearman

Subgroup © r n
Wifes_edu <= 3 A Std_living >= 3 A Husbands_edu <= 3 0.9999999999999842  0.3371 309
Wifes_edu <= 2 A Std_living >= 3 0.9999999999999442  0.3330 292

Husbands_edu >= 1.0 A Std_living >= 3 A Husbands_edu <= 3 | 0.9999999999999382 0.3485 335

Table 6.6: Contraception: top-3 subgroups for Kendall
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6.3 Experimental Results

6.3.3 lIris

The famous Iris flower dataset (introduced by Fisher [32]), contains 150 samples from
three different species of Iris flowers (Setosa, Versicolor and Virginica). Each sample has
been examined with respect to four quantities: Sepal length, Sepal width, Petal length
and Petal width. Sepal and Petal are characteristic leaves of a flowering plant.

Experiments with the Iris dataset show that descriptions are found, which separate the
data with respect to their class. Pearson and Spearman both find rules that exclude
samples that are classified as setosa, while the Kendall class mirrors this behavior by
returning subgroups consisting only of examples classified as setosa. The following tables
and figures illustrate the experiment with target attributes petallength and sepallength.
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1 2 3 4 5 6 7
petallength
Figure 6.1: Iris dataset
Subgroup %) T n

petalwidth >= 0.5 A sepalwidth >= 2.2 | 0.999999988 0.8183 101
sepalwidth <= 4.1 A petalwidth >= 0.3 | 0.999999557 0.8305 115
sepalwidth >= 2.5 A petalwidth <= 0.3 | 0.999995618 0.2382 40

Table 6.7: Iris: top-3 subgroups for Pearson

Subgroup © 0 n
sepalwidth <= 4.1 A petalwidth >= 0.3 0.999999655 0.8444 115
petalwidth <= 0.3 0.9999931  0.2736 41

petalwidth >= 2.1 A sepalwidth <= 2.8 coverage 4 1 1 4

Table 6.8: Iris: top-3 subgroups for Spearman

27
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Figure 6.2: petalwidth >= 0.5 A sepalwidth >= 2.2
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Figure 6.3: sepalwidth <= 4.1 A petalwidth >= 0.3

Subgroup

¥

petalwidth <= 0.5 A petalwidth >= 0.2 A sepalwidth >= 2.9 | 0.9999999999999996

sepalwidth >= 3.4 A petalwidth <= 2.4 A petalwidth >= 0.2
petalwidth <= 1.7 A sepalwidth >= 3.7 A petalwidth >= 0.1

In this experiment we could observe the same behavior as in the Contraceptive Method
Choice dataset, as here again Pearson and Spearman’s measures report more or less
similar subgroups and relationships, while Kendall’s measure returns subgroups that do

Table 6.9: Iris: top-3 subgroups for Kendall

not observe any relationship as opposed to their complements.
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6.3 Experimental Results

20 30 40
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Iris—setosa Iris—versicolor Iris—virginica

Figure 6.5: Iris: class distribution in the best subgroup (Kendall)

50

10

Iris—setosa Iris—versicolor Iris—virginica

Figure 6.4: Iris: class distribution in the best subgroup (Pearson)

Looking at the distribution of the classes (Figure and , our results agree with
previous experiments on this dataset that found the setosa class to be linearly separable
from virginica and versicolor. Fisher noted e.g., “It will be noticed [...] that there is some
overlap of the distributions of I. virginica and I. versicolor, so that a certain diagnosis
of these two species could not be based solely on these four measurements [...]”|32].
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6 Experiments

6.3.4 Higgs Boson Challenge

The Higgs boson is an elementary particle, that has recently been confirmed by experi-
ments and is considered to be the particle (quantum) that provides other particles with
mass.

The ATLAS experiment at CERN provided simulated data used by physicists as a chal-
lenge to optimize the analysis of the Higgs boson. It contains a set of 250000 simulated
proton collision (so-called events), which are characterized by a set of measured quanti-
ties, such as the energy momentum of the particle or spacial coordinates of the resulting
quarks. All quantities and their respective meanings can be found in the documentation
[33]. The goal of the challenge is to improve classification of events. However, classifi-
cation is not our primary goal and we will more generally explore whether we can find
subgroups in the data, that appear interesting (based on their scatterplots).

For the experiments the attributes “Weight”, “Label” and “Event 1D” were excluded from
the datasets, as they only served classification and identification purposes of the dataset.
We also omitted all derived values (values starting with DER) as they are simply derived
from the also present primitive values and should therefore not contribute significant
knowledge about the relations of the measured quantities. Additionally we imposed a
restriction on the size of the subgroup, allowing only subgroups with a maximum coverage
of 2000. Otherwise the found subgroups were too big and a sensible interpretation of their
respective scatterplots was not possible.

Testing the Cern datasets, we again get results indicating that the Spearman and Pear-
son Correlation Classes will produce similar results. As an example we present the
found subgroups for gauging the relationship between the attributes “PRI_tau_pt” and
“PRI_tau_eta”. The choice here is arbitrary as the drawn conclusion fit any of the exper-
iments we did on different attributes. In Table [6.10] and Table we present the top-3
subgroups found by the Pearson and the Spearman Correlation Model Class, respectively.
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6.3 Experimental Results

PRI_tau_eta
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Figure 6.6: Subgroup corresponding to rule: PRI lep_eta <= -1.99 A
PRI jet_leading_pt >= 134.551

PRI_tau_eta
0
|

600
PRI_tau_pt

Figure 6.7: Cern: complement of the subgroup presented in figure

In Figure we can see a concentration in the lower left corner as opposed to the
structure of the complement in Figure
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6 Experiments

Subgroup %) T n

PRI lep_eta >= 2.0 A PRI jet_leading phi >= 2.497 0.9999999992698  0.2163 817
PRI lep_eta <= -1.99 A PRI jet_leading pt >= 134.551 | 0.9999999962810 -0.2143 784
PRI lep_eta <= -1.99 A PRI jet_all pt >= 215.471 0.9999999883011 -0.2065 795

Table 6.10: Cern: top-3 subgroups for Pearson

Subgroup ® Th n
PRI lep_eta <= -1.99 A PRI jet_all_pt >= 215.471 0.999999991891 -0.2027 795
PRI lep_eta <= -1.99 A PRL jet_leading pt >= 134.551 0.999999991600 -0.2036 784
PRI jet_leading pt <= 117.866 A PRI _lep_eta >= 1.999 A PRI_jet_leading_phi >= 2.499 | 0.999999902459 0.1952 712

Table 6.11: Cern: top-3 subgroups for Spearman

32



7 Conclusions

In this thesis we explored the possibilities of replacing the Person Correlation Model
Class with a Rank Correlation based Model Class to see if this would “improve” the
performance. We therefore chose to examine two of the most popular rank correlation
coefficients.

In the experiments the Spearman Correlation measure performed similar to the Pearson
Correlation measure. We can therefore at least recommend it as an alternative as it seems
to be as strong as Pearson’s correlation in detecting subgroups with linear relationship.
Whether it can find subgroups with relationships beyond linear ones is still unknown.
In our experiments we could not observe any behavior to indicate this, but at least the
mathematical background suggests that it should also capture them.

Not an alternative but a different quality measure can be created with Kendall’s corre-
lation. In the experiments the results for this class somewhat complemented the results
of the two aforementioned measures; Spearman and Pearson return subgroups that have
some sort of linear relationship as opposed to their complements. Kendall’s measure on

the other hand returns subgroups having little or no correlation, while their complements
do.

It might therefore be useful to apply Kendall’s correlation when the subgroups found
with Pearson or Spearman do not show the desired result. In general Kendall seems to
find subgroups that show no real relationship compared to the complement, therefore
more or less filtering those groups, that do not observe any quantifiable relationship.

Another use could simply be to get a different view on the dataset in question, as sug-
gested at the end of Section since Kendall essentially measures different quantities
than Pearson/Spearman.

7.1 Outlook

Possible alternatives to the presented models, that could be investigated in the future,
are the application of more experimental measures like dCor, MIC' or other correla-
tion quantifiers mentioned in Chapter [3| However, for a good quality measure it would
also be necessary to investigate ways to compare these statistics on different subsets
of datasets. Regardless of other measures, the (indirect) assumption of an underlying
normal distribution could be removed by applying the bootstrapping method used for
permutation tests. With this approach the underlying distribution of the applied corre-
lation coefficient is estimated through re-sampling from the dataset a fixed number of
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7 Conclusions

times. This estimation then can be used for a statistical test of difference in the applied
correlation measure. However, as this approach is computationally expensive, it will only
provide an alternative for smaller datasets and is unsatisfactory as a general approach
for correlation-based Exceptional Model Mining.

As mentioned in Section [3.1.2] another direction could be to experiment with an ex-
haustive algorithm. For this approach, a valuation basis for the GP-Growth algorithm,
proposed by Lemmrich et al. [5], could be developed. It would be interesting to see if an
exhaustive approach for these models yields different results.

A slight modification of the implemented version could be derived from a paper written
by Wilcox [34], who examines a new method of computing confidence intervals for the
difference of two Pearson correlation coefficients proposed by Zou [35]. The general idea
is to use Fisher’s z-transformation to compute confidence intervals for the individual
correlations. From those, a confidence interval for p; —p2 can be computed. The described
method might very well be adapted for Spearman’s and Kendall’s correlation, as both
can be Fisher z-transformed. Further investigation here might result in more statistically
backed-up results.
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