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Abstract


Agents in dynamic multi-agent environments must monitor their peers to execute in-


dividual and group plans. A key open question is how much monitoring of other agents'


states is required to be e�ective: The Monitoring Selectivity Problem. We investigate this


question in the context of detecting failures in teams of cooperating agents, via Socially-


Attentive Monitoring, which focuses on monitoring for failures in the social relationships


between the agents. We empirically and analytically explore a family of socially-attentive


teamwork monitoring algorithms in two dynamic, complex, multi-agent domains, under


varying conditions of task distribution and uncertainty. We show that a centralized scheme


using a complex algorithm trades correctness for completeness and requires monitoring all


teammates. In contrast, a simple distributed teamwork monitoring algorithm results in


correct and complete detection of teamwork failures, despite relying on limited, uncertain


knowledge, and monitoring only key agents in a team. In addition, we report on the design


of a socially-attentive monitoring system and demonstrate its generality in monitoring sev-


eral coordination relationships, diagnosing detected failures, and both on-line and o�-line


applications.


1. Introduction


Agents in complex, dynamic, multi-agent environments must be able to detect, diagnose,
and recover from failures at run-time (Toyama & Hager, 1997). For instance, a robot's
grip may be slippery, opponents' behavior may be intentionally di�cult to predict, com-
munications may fail, etc. Examples of such environments include virtual environments for
training (Johnson & Rickel, 1997; Calder, Smith, Courtemanche, Mar, & Ceranowicz, 1993),
high-�delity distributed simulations (Tambe, Johnson, Jones, Koss, Laird, Rosenbloom, &
Schwamb, 1995; Kitano, Tambe, Stone, Veloso, Coradeschi, Osawa, Matsubara, Noda, &
Asada, 1997), and multi-agent robotics (Parker, 1993; Balch, 1998). The �rst key step in
this process is execution-monitoring (Doyle, Atkinson, & Doshi, 1986; Ambros-Ingerson &
Steel, 1988; Cohen, Amant, & Hart, 1992; Reece & Tate, 1994; Atkins, Durfee, & Shin,
1997; Veloso, Pollack, & Cox, 1998).


Monitoring execution in multi-agent settings requires an agent to monitor its peers,
since its own correct execution depends also on the state of its peers (Cohen & Levesque,
1991; Jennings, 1993; Parker, 1993; Jennings, 1995; Grosz & Kraus, 1996; Tambe, 1997).
Monitoring peers is of particular importance in teams, since team-members rely on each
other and work closely together on related tasks:
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� Monitoring allows team-members to coordinate their actions and plans with team-
mates, to help teammates and cooperate without interference. For example, drivers
of cars in a convoy cannot drive without monitoring other cars in the convoy, so as to
not disband the convoy, and to help other drivers if cars break down.


� Monitoring allows team-members to use peers as dynamic information sources, for
learning new information. For instance, if a driver in a convoy sees that the other cars
in front of it suddenly turn to the left, she can infer the existence of an obstacle or
milestone despite not directly seeing it herself.


Previous work has investigated di�erent ways of monitoring in the context of teams of co-
operating agents. For example, theoretical work on SharedPlans (Grosz & Kraus, 1999) has
distinguished between passive monitoring, in which an agent is noti�ed when a proposition
changes (e.g., via communications), and active monitoring, in which an agent actively seeks
to �nd out when a proposition changes (e.g., via observations and inference of unobservable
attributes). Practical implementations have investigated the use of passive monitoring via
communications (Jennings, 1995), active monitoring via plan-recognition (Huber & Dur-
fee, 1995), active implicit monitoring via the environment (Fenster, Kraus, & Rosenschein,
1995), and di�erent combinations of these methods (Parker, 1993; Jennings, 1993; Tambe,
1997; Lesh, Rich, & Sidner, 1999). No approach is clearly superior to another: Passive
monitoring is generally perceived as being less costly than active monitoring, but also less
reliable (Grosz & Kraus, 1999; Huber & Durfee, 1995; Kaminka & Tambe, 1998).


Regardless of the monitoring method, bandwidth and computational limitations prohibit
a monitoring agent from monitoring all other agents to full extent, all the time (Jennings,
1995; Durfee, 1995; Grosz & Kraus, 1996). Thus a key open question is how much monitor-
ing of other agents is required to be e�ective (in teams) (Jennings, 1993; Grosz & Kraus,
1996, 1999). We call this challenging problem the Monitoring Selectivity Problem, i.e., the
problem of selectivity in observing others and inferring their state (based on the obser-
vations) for monitoring. Although it has been raised in the past, only a framework and
minimal constraints for answers were provided (Jennings, 1993; Grosz & Kraus, 1996). For
instance, the theory of SharedPlans requires agents to verify that their intentions do not
con�ict with those of teammates (Grosz & Kraus, 1996). However, the methods by which
such veri�cation can take place are left for further investigation (Grosz & Kraus, 1996, p.
308). Section 8 provides more details on related work.


This paper begins to address the monitoring selectivity problem in teams, by investi-
gating monitoring requirements for e�ective failure detection. We focus our investigation
on detecting failures in the social relationships that ideally hold between agents in a mon-
itored team. We call such monitoring of social relationships socially-attentive monitoring,
to di�erentiate it from other types of monitoring, such as monitoring for failures in the
progress of agents towards their goals. Here, the term social relationship is used to denote a
relation on attributes of multiple agents' states. Socially-attentive monitoring in the convoy
example involves verifying that agents have common destination and heading, that their
beliefs in driving as a convoy are mutual, etc. For instance, if the agents are observed to
head in di�erent directions, they clearly do not have a common heading. This is di�erent
than monitoring whether their chosen (common) heading leads towards their (agreed upon)
destination.
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Monitoring relationships in a team (socially-attentive monitoring) is a critical task in
monitoring team-members. Failures to maintain the team's relationships can often lead
to catastrophic failures on the part of the team, lack of cooperative behavior and lack of
coordination. Such failures are often the result of individual agent failures, such as failures
in an agent's sensors and actuators. Thus socially-attentive monitoring covers a large class
of failures, and promotes robust individual operation.


We explore socially-attentive monitoring algorithms for detecting teamwork failures un-
der various conditions of uncertainty. We analytically show that despite the presence of
uncertainty about the actual state of monitored agents, a centralized active monitoring
scheme can guarantee failure detection that is either sound and incomplete, or complete
and unsound. However, this requires reasoning about multiple hypotheses as to the actual
state of monitored agents, and monitoring all agents in the team. We show that active
distributed teamwork monitoring results in both sound and complete detection capabilities,
despite using a much simpler algorithm. This distributed algorithm: (a) uses only a single,
possibly incorrect hypothesis of the actual state of monitored agents, and (b) involves moni-
toring only key agents in a team, not necessarily all team-members. Using a transformation
on the analytical constructs, we show analogous results for centralized failure-detection in
mutual-exclusion coordination relationships.


We also conduct an empirical investigation of socially-attentive monitoring in teams.
We present an implemented general socially-attentive monitoring framework in which the
expected ideal social relationships that are to be maintained by the agents are compared
to the actual social relationships. Discrepancies are detected as possible failures and diag-
nosed. We apply this framework to two di�erent complex, dynamic, multi-agent domains,
in service of monitoring various social relationships, both on-line and o�-line. Both of these
domains involve multiple interacting agents in collaborative and adversarial settings, with
uncertainties in both perception and action. In one domain, we provide empirical results
for active monitoring which con�rm our analytical results. In another domain we show how
o�-line socially-attentive monitoring can provide quantitative teamwork quality feedback to
a designer. We also provide initial diagnosis procedures for detected failures.


Our focus in these explorations is on practical algorithms that have guarantees on perfor-
mance in real-world applications. The algorithms we present seek to complement the use of
passive communications-based monitoring (which is unreliable in many domains) and explore
the use of unintrusive key-hole plan-recognition as an alternative. However, we do not rule
out the use of communications�we simply seek to provide techniques that can work even
when communications fail. Our analytical guarantees of failure-detection soundness and
completeness hold whether monitoring is done through communications or plan-recognition.


This paper is organized as follows: Section 2 presents motivating examples and back-
ground. Section 3 presents the socially-attentive monitoring framework. Section 4 explores
monitoring selectivity in centralized teamwork monitoring. Section 5 explores monitoring
selectivity in distributed teamwork monitoring. Section 6 demonstrates the generality of our
framework by applying it in an o�-line con�guration. Section 7 presents investigations of ad-
ditional relationship models. Section 8 presents related work, and Section 9 concludes. The
two appendices contain the proofs for theorems presented (Appendix A), and pseudo-code
for the socially-attentive monitoring algorithms (Appendix B).


107







Kaminka and Tambe


2. Motivation and Background


The monitoring selectivity problem this paper addresses�how much monitoring is required
for failure-detection in teams�rose out of growing frustration with the signi�cant software
maintenance e�orts in two of our application domains. In the ModSAF domain, a high-
�delity battle�eld virtual environment (Calder et al., 1993), we have been involved in the
development of synthetic helicopter pilots (Tambe et al., 1995). In the RoboCup soccer
simulation domain (Kitano et al., 1997) we have been involved in developing synthetic soc-
cer players (Marsella, Adibi, Al-Onaizan, Kaminka, Muslea, Tallis, & Tambe, 1999). The
environments in both domains are dynamic and complex, and have many uncertainties:
the behavior of other agents (some of it adversarial, some cooperative), unreliable commu-
nications and sensors, actions which may not execute as intended, etc. Agents in these
environments are therefore presented with countless opportunities for failure despite the
designers' best e�orts.


Some examples may serve to illustrate. The following two examples are actual failures
that occurred in the ModSAF domain. We will use these two to illustrate and explore
socially-attentive monitoring throughout this paper:


Example 1. Here, a team of three helicopter pilot agents were to �y to a speci�ed way-
point (a given position), where one of the team-members, the scout, was to �y forward
towards the enemy, while its teammates (attackers) land and wait for its signal. All of the
agents monitored for the way-point. However, due to an unexpected sensor failure, one of
the attackers failed to sense the way-point. So while the other attacker correctly landed,
the failing attacker continued to �y forward with the scout (see Figure 1 for a screen shot
illustrating this failure).


Example 2. In a di�erent run, after all three agents reached the way-point and detected it,
the scout has gone forward and identi�ed the enemy. It then sent a message to the waiting
attackers to join it and attack the enemy. One of the attackers did not receive the message,
and so it remained behind inde�nitely while the scout and the other attacker continued the
mission alone.


We have collected dozens of similar reports in both the ModSAF and RoboCup domain.
In general, such failures are di�cult to anticipate in design time, due to the huge number of
possible states. The agents therefore easily �nd themselves in novel states which have not
been foreseen by the developer, and the monitoring conditions and communications in place
proved insu�cient: In none of the failure cases reported did the agents involved detect, let
alone correct, their erroneous behavior. Each agent believed the other agents to be acting in
coordination with it, since no communication was received from the other agents to indicate
otherwise. However, the agents were violating the collaboration relationships between them,
as the agents came to disagree on what plan is being executed�a collaboration relationship
failure had occurred. Preliminary empirical results show that upwards of 30% of failures
reported involved relationship violations (relationship failures).


Human observers, however, were typically quick to notice these failures, because of the
clear social misbehavior of the agents in these cases. They were able to infer that a failure
has occurred despite not knowing what exactly happened. For instance, seeing an attacker
continuing to �y ahead despite its teammates' switching to a di�erent plan (which the human
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Scout (ahead) and failing attacker (trailing) Landing attackerEnemy


Figure 1: A plan-view display (the ModSAF domain) illustrating the failure in Example 1.
The thick wavy lines are contour lines.


observers inferred from the fact that one of the teammates, the other attacker, has landed)
is su�cient for an observer to detect that something has gone amiss�without knowing what
the di�erent plan was.


Our analysis showed that the agents were not monitoring each other su�ciently. How-
ever, a naive solution of continuous communications between the agents was clearly imprac-
tical since: (i) the agents are operating in a hostile environment; (ii) the communications
overheads would have been prohibitive; and (iii) in fact, it was the communications equip-
ment itself that broke down in some cases. We therefore sought practical ways to achieve
quick detection of failure, based on the limited ambiguous knowledge that was available to
a monitoring agent.


3. Socially-Attentive Monitoring


We begin with an overview of the general structure of a socially-attentive monitoring sys-
tem, shown in Figure 2. It consists of: (1) a social relationship knowledge-base containing
models of the relationships that should hold among the monitored agents, enabling gen-
eration of expected ideal behavior in terms of relationships (Section 3.1); (2) an agent and
team modeling component, responsible for collecting and representing knowledge about the
monitored agents' actual behavior (Section 3.2); (3) a relationship failure-detection compo-
nent that monitors for violations of relationships among monitored agents by contrasting
the expected and actual behavior (Section 3.3); and (4) a relationship diagnosis component
that veri�es the failures, and provides an explanation for them (Section 3.4). The resulting
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explanation (diagnosis) is then used for recovery, e.g., by a negotiations system (Kraus,
Sycara, & Evenchik, 1998), or a general (re)planner (Ambros-Ingerson & Steel, 1988).


What agent attributes


Monitored Agent


Monitored Agent


Agent/Team Modeling Component


Social Relationships Knowledge-Base


Diagnosis Detections


Failure


Relationship
Relationship Detected


Failure


Actual
Behavior


What agents to monitor,


Diagnosis


Expected
Attribute
Values


Actual Values


Expected Behavior


Socially-Attentive Monitoring System


Communications
Observations,


Figure 2: The general structure of a socially-attentive monitoring system.


3.1 A Knowledge-Base of Relationship Models


We take a relationship among agents to be a relation on their state attributes. A relationship
model thus speci�es how di�erent attributes of an agent's state are related to those of
other agents in a multi-agent system. These attributes can include the beliefs held by the
agents, their goals, plans, actions, etc. For example, many teamwork relationship models
require that team-members have mutual belief in a joint goal (Cohen & Levesque, 1991;
Jennings, 1995). A spatial formation relationship (Parker, 1993; Balch, 1998) speci�es
relative distances, and velocities that are to be maintained by a group of agents (in our
domain, helicopter pilots). Coordination relationships may specify temporal relationships
that are to hold among the actions of two agents, e.g., business contractors (Malone &
Crowston, 1991). All such relationships are social�they explicitly specify how multiple
agents are to act and what they are to believe if they are to maintain the relationships
between them.


The relationship knowledge-base contains models of the relationships that are supposed
to hold in the system, and speci�es the agents that are participating in the relationships. The
knowledge-base guides the agent-modeling component in selecting agents to be monitored,
and what attributes of their state need be represented (for detection and diagnosis). It is
used by the failure detection component to generate expectations which are contrasted with
actual relationships maintained by the agents. And it provides the diagnosis component with
detailed information about how agents' states' attributes are related, to drive the diagnosis
process. Our implementation of socially-attentive monitoring in teams uses four types of
relationships: formations, role-similarity, mutual exclusion, and teamwork.


For teamwork monitoring we use the STEAM (Tambe, 1997) general domain-
independent model of teamwork, which is based on Cohen and Levesque's Joint Intentions
Framework (Levesque, Cohen, & Nunes, 1990; Cohen & Levesque, 1991) and Grosz, Sidner,
and Kraus's SharedPlans (Grosz & Sidner, 1990; Grosz & Kraus, 1996, 1999). However,


110







Robust Agent Teams via Socially-Attentive Monitoring


other teamwork models may be used instead of STEAM. Although STEAM is used by our
pilot and soccer agents to generate collaborative behavior, it is reused here independently
in service of monitoring, i.e., monitored agents are assumed to be a team, and STEAM is
used in monitoring their teamwork. STEAM and other teamwork models (e.g., Cohen &
Levesque, 1991; Jennings, 1995; Rich & Sidner, 1997) require mutual belief by team mem-
bers in their joint goals and plans. This characteristic is used to monitor teamwork in our
system. The other relationship models are used only in a secondary monitoring role. They
will be discussed in greater length in Section 7.


3.2 Knowledge of Monitored Agents and Team


The agent modeling component is responsible for acquiring and maintaining knowledge
about monitored agents. This knowledge is used to construct the actual relations that exist
between agents' states' attributes, which are compared to the ideal expected relations. In this
section, we describe the plan-recognition capabilities of the agent-modeling component in our
implementation and experiments, i.e., the extent of the knowledge that could be maintained
about monitored agents' plans if necessary. Later sections show that in fact limited, possibly
inaccurate, knowledge is su�cient for e�ective failure detection. Thus implementations may
use optimized agent-modeling algorithms rather than these full capabilities. Section 3.4 will
discuss additional agent-modeling capabilities, necessary for diagnosis.


3.2.1 Representation


For monitoring teamwork relationships, we have found that representing agents in terms of
their selected hierarchical reactive plans enables quick monitoring of their state, and also
facilitates further inference of the monitored agents' beliefs, goals, and unobservable actions,
since they capture the agents' decision processes.


In this representation, reactive plans (Firby, 1987; Newell, 1990) form a single decompo-
sition hierarchy (a tree) that represents the alternative controlling processes of each agent.
Each reactive plan in the hierarchy (hereafter referred to simply as a plan) has selection
conditions (also referred to as preconditions) for when it is applicable, and termination con-
ditions which are used to terminate or suspend plans. At each given moment, the agent is
executing a single path (root to a leaf) through the hierarchy. This path is composed of
plans at di�erent levels.


Figure 3 presents a small portion of such a hierarchy, created for the ModSAF domain. In
the case of Example 1, prior to the way-point, each of the agents was executing the path be-
ginning with execute-mission as highest-level plan, through fly-flight-plan, fly-route,
traveling and low-level. Upon reaching the way-point, they were all supposed to switch
from fly-flight-plan and its descendents to wait-at-point. The attackers would then
select just-wait as a child of wait-at-point, while the scout would select scout-forward
and its descendents. Of course, the failing attacker did not detect the way-point and so the
termination conditions for fly-flight-plan and the selection conditions for wait-at-point
were not satis�ed and the failing attacker continued to execute fly-flight-plan and its
descendents.
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Wait at Point


Execute-Mission


Nap of the Earth Contour Low Level Just Wait


Scout Forward


Traveling


Fly Flight Plan (F)  (W) Join Scout (J) Ordered Halt (H)


Fly Route


Figure 3: Portion of Hierarchical Reactive Plan Library for ModSAF Domain (Team plans
are boxed. These are explained in Section 3.3).


3.2.2 Acquisition


From a practical perspective, while the agents may cooperatively report to the monitoring
agent on their own state using communications, it requires communication channels to be
su�ciently fast, reliable and secure. This is unfortunately not possible in many realistic
domains, as our examples demonstrate (Section 2).


Alternatively, a monitor may use plan-recognition to infer the agents' unobservable state
from their observable behavior. This approach is unintrusive and robust in face of communi-
cation failures. Of course, the monitor may still bene�t from focused communications with
the other agents, but would not be critically dependent on them.


To enable plan-recognition using reactive plans (our chosen representation), we have
employed a reactive plan-recognition algorithm called RESL (REal-time Situated Least-
commitments). The key capability required is to allow explicit maintenance of hierarchical
plan hypotheses matching each agent's observed behavior, while pruning of hypotheses which
are deemed incorrect or useless for monitoring purposes. RESL works by expanding the
entire plan-library hierarchy for each modeled agent, and tagging all paths matching the
observed behavior of the agent being modeled (see Appendix B for pseudo-code for the
algorithm). Heuristics and external knowledge may be used to eliminate paths (hypotheses)
which are deemed inappropriate�indeed such heuristics will be explored shortly. RESL's
basic approach is very similar to previous work in reactive plan recognition (Rao, 1994) and
team-tracking (Tambe, 1996), which have been used successfully in the ModSAF domain,
and share many of RESL's properties. However, RESL adds belief-inference capabilities
which are used in the diagnosis process, discussed below (Section 3.4).


Figure 4 gives a simpli�ed presentation of the plan hierarchies for a variation of Example
1, in which all the agents correctly detected the way-point, i.e., no failure has occurred (note
that some plans at intermediate levels have been abstracted out in the �gure). The scout
(Figure 4a) and the two attackers (Figures 4b, 4c) switched from the fly-flight-plan plan
(denoted by F) to the wait-at-point plan (denoted by W). An outside observer using RESL
infers explanations for each agent's behavior by observing the agents. The scout continues


112







Robust Agent Teams via Socially-Attentive Monitoring


to �y ahead, its speed and altitude matching low-level, one of the possible �ight-methods
under both the fly-flight-plan (F) and wait-at-point (W) plans. Thus they are both
tagged as possible hypotheses for the scout's executing plan hierarchy. Similarly, as the
attackers land, RESL recognizes that they are executing the just-wait plan. However,
this plan can be used in service of either the W or the ordered-halt (H) plan�a plan in
which the helicopters are ordered by their headquarters to land immediately. Thus both
H and W are tagged as explanations for each of the attackers' states (at the second level of
the hierarchies). For all agents, RESL identi�es the plan execute-mission as the top-level
plan. In this illustration, the actual executing paths of the agents are marked with �lled
arrows. Other individual modeling hypotheses that match the observed behavior are marked
using dashed arrows. An outside observer, of course, has no way of knowing which of the
possible hypotheses is correct.


Execute Mission Execute Mission


Just-Wait Just-Wait Just-Wait


(a) (b) (c)


Low-Level


Execute Mission 


Wait-at-Point (W) Ordered-Halt (H)Wait-at-Point (W) Fly-Flight-Plan (F)


Low-Level


Wait-at-Point (W)


Just-Wait


Ordered-Halt (H)


Figure 4: Scout (a) and Attackers' (b, c) actual and recognized abbreviated reactive plan
hierarchies.


Once individual modeling hypotheses are acquired for each individual agent (using plan-
recognition in our implementation, but potentially also by communications), the monitoring
agent must combine them to create team-modeling hypotheses as to the state of the team
as a whole. The monitoring agent selects a single individual modeling hypothesis for each
individual agent and combines them into a single team-modeling hypothesis. Several such
team-modeling hypotheses are possible given multiple hypotheses for individual agents. For
instance, in Figure 4, while all team-hypotheses will have execution-mission as the top-
level plan, there are eight di�erent team-hypotheses which can be di�erentiated by their
second-level plan: (W,W,W), (W,W,H), (W,H,W), (W,H,H), (F,W,W), (F,W,H), (F,H,W), (F,H,H). If the
observer is a member of the team, it knows what it is executing itself, but would still have
multiple-hypotheses about its teammates' states. For instance, if the attacker in Figure 4b
is monitoring its teammates, its hypotheses at the second level would be (W,W,W), (W,W,H),
(F,W,W), (F,W,H).


To avoid explicitly representing a combinatorial number of hypotheses, RESL explicitly
maintains all candidate hypotheses for each agent individually, but not all combinations
of individual models as team hypotheses. Instead, these combinations are implicitly repre-
sented. Thus the number of hypotheses explicitly maintained grows linearly in the number
of agents.
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3.3 Relationship Violation Detection


The failure-detection component detects violations of the social relationships that should
hold among agents. This is done by comparing the ideal expected relationships to their
actual maintenance by the agents. For teamwork speci�cally, the relationship model requires
team-members to always agree on which team plan is jointly executed by the team, similarly
to Joint Responsibility (Jennings, 1995), and SharedPlans (Grosz & Kraus, 1996). If this
requirement fails in actuality (i.e., the agents are executing di�erent team plans) then a
teamwork failure has occurred.


The basic teamwork failure detection algorithm is as follows. The monitored agents'
plan-hierarchies are processed in a top-down manner. The detection component uses the
teamwork model to tag speci�c plans as team plans, explicitly representing joint activity by
the team (these plans are boxed in Figures 3, 5 and 4). The team-plans in equal depths
of the hierarchies are used to create team-modeling hypotheses. For each hypothesis, the
plans of di�erent agents are compared to detect disagreements. Any di�erence found is an
indication of failure. If no di�erences are found, or if the comparison reaches individual
plans (non-team, therefore non-boxed in the �gures) no failure is detected. Individual plans,
which may be chosen by an agent individually in service of team plans are not boxed in
these �gures, and are handled using other relationships as discussed in Section 7


For instance, suppose the failing attacker from Example 1 is monitoring the other at-
tacker. Figure 5 shows its view of its own hierarchical plan on the left. The path on the
right represents the state of the other attacker (who has landed). This state has been in-
ferred in this example from observations made by the monitoring attacker (here, we are
assuming that the plan-recognition process has resulted in one correct hypothesis for each
agent. We will discuss more realistic settings below). In Figure 5, the di�erence that would
be detected is marked by the arrow between the two plans at the second level from the top.
While the failing attacker is executing the fly-flight-plan team-plan (on the left), the
other attacker is executing the wait-at-point team-plan (on the right). The disagreement
on which team-plan is to be executed is a failure of teamwork.


Execute Mission


Wait-at-Point


Just-Wait


Fly-Flight-Plan


Fly-Route


Traveling


Low-Level


Execute Mission


Figure 5: Comparing two hierarchical plans. The top-most di�erence is at level 2.
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Detecting disagreements is di�cult with multiple team-modeling hypotheses, since they
may imply contradictory results with respect to failure detection: Some hypotheses may im-
ply that a failure had occurred in the team, while others may not. Unfortunately, this is to
be expected in realistic applications. For instance, Figure 4 (Section 3.2) shows several hy-
potheses that are possible based on the same observations. However, one of the hypotheses,
(W,W,W), implies no failure has occurred�all the agents are in agreement on which team-plan
is executing�while another hypothesis, (F,W,H), implies failures have occurred.


To limit reasoning to only a small number of team hypotheses, while not restricting
failure-detection capabilities, we use a disambiguation heuristic that ranks team-modeling
hypotheses by the level of coherence they represent. This heuristic is provided as an initial
solution. Later sections will examine additional heuristics.


De�nition 1. The coherence level of a multi-agent modeling hypothesis is de�ned as the
ratio of the number of agents modeled to the number of plans contained in the hypothesis.


This de�nition results in a partial ordering of the hypotheses set, from the least coherent
hypothesis (one that assigns each agent a di�erent plan than its team-mates), to the most
coherent hypothesis (that assigns the same plan to all team members). For instance, the
hypothesis (F,W,H) would have the lowest level of coherence, 1, since it implies complete
breakdown of teamwork�every agent is executing a di�erent plan. The hypothesis (W,W,W)
would have a coherence level of 3, the highest level of coherence for the group of three agents,
since they are all assigned the same plan. Ranked between them would be the hypothesis
(W,W,H), with a single teamwork failure (disagreement on W and H) and a coherence level of
3/2.


The detection component selects a single maximally-coherent team-modeling hypothesis
(ties broken randomly). The intuition for using coherence is that failures to agree occur
despite the agents' attempts at teamwork. Thus we expect more agreements than disagree-
ments in the team. The coherence level of a team-hypothesis is inversely related to the
number of teamwork failures implied by the hypothesis. Selecting a maximally-coherent hy-
pothesis therefore corresponds to the minimum-number-of-failures heuristic commonly used
in diagnosis (Hamscher, Console, & de Kleer, 1992).


For the case depicted in Figure 4, the complete detection process may be conceptu-
alized as follows1. Suppose that one of the attackers, whose hierarchy is described in
Figure 4b, is monitoring the team. First, it collects the plan hypotheses at the top of
the hierarchy for each agent (including itself). In this case, they are {execute-mission},
{execute-mission}, {execute-mission}. Only one team-modeling hypothesis can be built
from these: (execute-mission, execute-mission, execute-mission). Since this hypoth-
esis shows no disagreement occurs at this level, the process continues to the second level.
Here, the hypotheses for the �rst agent on the left are {F,W}, for the monitoring second agent
(since it knows its own state) there is only one possibility {W}, and for the third agent {W,H}.
As we saw above, the maximally team-coherent hypothesis is (W,W,W) which is selected. Since
it does not indicate failure, the process continues to the third level. Here the agents are
executing individual plans, and so the comparison process stops. Algorithm 2 in Appendix
B provides greater details about this process.


1. Other implementations may make use of optimized algorithms in which the heuristics are integrated into
the agent-modeling algorithm.
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When sub-teams are introduced, a di�erence between team-plans may be explained by
the agents in question being a part of di�erent sub-teams. Sub-team members still have
to agree between themselves on the joint sub-team plans, but these may di�er from one
sub-team to the next. For now, let us assume that the teams under consideration are simple


teams, as de�ned in De�nition 2. We make this de�nition in service of later analytical results
in which it will appear as a condition. We return to the issue of sub-teams in Section 7.1.


De�nition 2. We say that a team T is simple, if its plan-hierarchy involves no di�erent
team plans which are to be executed by di�erent sub-teams.


Intuitively, the idea is that in a simple team, all members of the team jointly execute
each of the team plans in the hierarchy. This de�nition is somewhat similar to the de�nition
of a ground team in (Kinny, Ljungberg, Rao, Sonenberg, Tidhar, & Werner, 1992), but it
does not allow sub-team members of a team to have a joint plan which is di�erent than that
of other members.


3.4 Relationship Diagnosis


The diagnosis component constructs an explanation for the detected failure, identifying the
failure state and facilitating recovery. The diagnosis is given in terms of a set of agent
belief di�erences (inconsistencies) that explains the failure to maintain the relationship.
The starting point for this process is the detected failure (e.g., the di�erence in team-plans).
The diagnosis process then compares the beliefs of the agents involved to produce a set of
inconsistent beliefs that explain the failure.


Two problems exist in practical applications of this procedure. First, the monitoring
agent is not likely to have access to all of the beliefs held by the monitored agents, since it
is not feasible in practice to communicate all the agents' beliefs to each other. Second, each
agent in a real-world domain may have many beliefs, and many of them will vary among the
agents, though most of them will be irrelevant to the diagnosis. Thus relevant knowledge
may be simply not be accessible, or may be hidden in mountains of irrelevant facts.


To gain knowledge of the beliefs of monitored agents without relying on communications,
the diagnosis process uses a process of belief ascription. The agent-modeling component (us-
ing RESL in our implementation) maintains knowledge about the selection and termination
conditions of recognized plans (hypotheses). For each recognized plan hypothesis, the mod-
eling component infers that any termination conditions for the plan are believed to be false
by the monitored agent (since it has not terminated the plan). We have also found it useful
to use an additional heuristic, and infer that the selection conditions (preconditions) for
any plan which has just begun execution are true. The idea is that when a plan is selected
for execution, its preconditions are likely to hold, at least for a short period of time. This
heuristic involves an explicit assumption on the part of our system that the new plan is
recognized as soon as it begins execution. Designers in other domains will need to verify
that this assumption holds.


For each agent i, the inferred termination and selection conditions make up a set of beliefs
Bi for the agent. For instance, suppose an agent is hypothesized to have just switched from
executing fly-flight-plan to wait-at-point. RESL infers that the agent believes that
the way-point was just detected (a selection condition for wait-at-point). In addition,
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RESL infers that the agent believes that an enemy was not seen, and that no order was
received from base to halt the mission (negated termination conditions of wait-at-point).


To determine the facts that are relevant to the failure, the diagnosis component uses
the teamwork model. The teamwork model dictates which beliefs the agents hold must be
mutually believed by all the agents in the team. Any di�erence that is detected in those
beliefs is a certain failure, as the team members do not agree on issues on which agreement
is mandatory to participation in the team. The teamwork model thus speci�es that the
beliefs contained in the Bi sets should be mutual, and should therefore be consistent:


[


i


Bi 6`?


If an inconsistency is detected, the diagnosis procedure looks for contradictions (disagree-
ments) that would cause the di�erence in team-plan selection. A di�erence in beliefs serves
as the diagnosis, allowing the monitoring agent to initiate a process of recovery, e.g., by
negotiating about the con�icting beliefs (Kraus et al., 1998).


For example, as shown in Section 3.3, the two attackers in Example 1 (Section 2) di�er
in their choice of a team-plan: One attacker is continuing execution of the fly-flight-plan
plan, in which the helicopters �y in formation. The other attacker has detected the way-
point, terminated fly-flight-plan and has switched to wait-at-point, landing immedi-
ately (Figure 5). When the failing attacker monitors its team-mate, it detects a di�erence in
the team-plans (Section 3.3), and the detected di�erence is passed to diagnosis. The failing
attacker makes the following inferences:


1. Fly-flight-plan has three termination conditions: (a) seeing the enemy, (b) detecting
the way-point, or (c) receiving an order to halt. The failing attacker (left hierarchy in
Figure 5) knows its own belief that none of these conditions hold, and thus


B1 = f:WayPoint;:Enemy;:HaltOrderg


2. Wait-at-point has one selection condition: the way-point has been detected. Its
termination condition is that the scout has sent a message to join it, having identi�ed
the enemy's position. The diagnosis component in this case therefore infers that for
the other attacker (right hierarchy in Figure 5)


B2 = fWayPoint;:ScoutMessageReceivedg


Then,


B1 [B2 = f:WayPoint;WayPoint;:Enemy;:ScoutMessageReceived;:HaltOrderg


which is inconsistent. The inconsistency (disagreement between the attackers) is
f:WayPoint;WayPointg, i.e., contradictory beliefs aboutWaypoint. Thus now the failing
attacker knows that its team-mate has seen the way-point. It can choose to quietly adapt
this belief, thereby terminating its own fly-flight-plan and selecting wait-at-point, or
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it may choose other recovery actions, such as negotiating with the other attacker on whether
the way-point has been reached.


We have found these diagnosis procedures to be useful in many of the failures detected
by socially-attentive monitoring (see Section 4 for evaluation and discussion). However,
since this paper focuses on the monitoring selectivity problem in detection, we leave further
investigation of the diagnosis procedures to future work.


4. Monitoring Selectivity in Centralized Teamwork Monitoring


Using the socially-attentive framework of Section 3 we systematically examine all failure
permutations of Examples 1 and 2 (Section 2) under a centralized teamwork monitoring
con�guration, where a single team-member is monitoring the team. We vary the agents
failing (attacker, attacker and scout, etc.) and the role of the monitoring agent (attacker or
scout). We report on the empirical results of detecting and diagnosing failures in all cases.
Using these empirical results as a guide, we explore centralized teamwork monitoring analyt-
ically. We show that even under monitoring uncertainty, centralized teamwork monitoring
can provide either sound or complete detection results (but not both).


As a starting point for our exploration, the monitoring agent uses a single maximally-
coherent team-modeling hypothesis as discussed in Section 3.3. We begin with Example 2.
The normal order of execution is wait-at-point (W), followed by join-scout (J). During
the execution of W, the two attackers land and wait for the scout to visually identify the
enemy's position. Upon identi�cation, the scout sends them a message to join it, which
triggers the selection of the J plan, and the termination of the W plan. When executing J,
the scout hovers at low altitude, waiting for the attackers to join it. Any failures here are
on the part of the attackers (they cannot receive the message) or on the part of the scout (it
cannot send it). These failures arise, for instance, if the radio is broken or team-members
are out of range. When an agent fails, it continues to execute W instead of switching to J.


Table 1 summarizes the permutations of Example 2. The permutation number appear
in the �rst column. The next three columns show the actual plans selected by the three
agents A1, A2 and A3 in each permutation. The second-to-last column shows whether a
relationship failure has occurred in each case, i.e., whether disagreement exists between the
agents. Finally, the last column details the physical conditions in each case. There are �ve
possible failure permutations: In case 1, none of the agents failed. In cases 2 and 3 one
attacker failed. In case 4 the scout failed to send a message or both attackers failed to
receive it. In case 5 the scout does not identify the enemy's position (so no message is sent,
and all three agents continue to execute the W plan). Other permutations are not possible,
since no attacker can switch to the J plan without the scout.


For instance, case 2 in Table 1 corresponds to Example 2. The scout (A3) has detected
the enemy, switched to plan J, and sent a message to the attackers to join it. One attacker
(A2) received the message, switched to plan J, and began �ying towards the scout. However,
the remaining attacker (A1) failed to receive the message, and so it maintains its position,
continuing to execute W and failing to switch to J. Since the agents are no longer in agreement
on which team plan should be jointly executed, a teamwork failure has occurred. Condition
monitors were used in the original failure case to monitor for the scout's message. However
failures in communications resulted in these monitoring conditions to be rendered useless.
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Case Actual Executing Plans Relationship Failure Physical


# Attacker A1 Attacker A2 Scout A3 Occurred? Failure


1 J J J - -


2 W J J + A1 fails to receive


3 J W J + A2 fails to receive


4 W W J + A3's message lost


5 W W W - Enemy not identi�ed


Table 1: All possible failure permutations of the broken radio-link scenario (Example 2).


One key issue is raised by case 5 in Table 1. Here, due to the scout's inability to identify
the enemy's position (perhaps due to failure on the scout's part, perhaps because the enemy
is simply not there), the three helicopter pilots remain in agreement that the enemy has not
been identi�ed. Here, even though clearly the pilots are failing to make progress towards the
task goals (the scout continues to search for the enemy inde�nitely), no relationship failure
is taking place, since the agents are maintaining the teamwork relationship while failing to
make progress. This clearly demonstrates that not all failures are necessarily relationship
failures.


Table 2 presents the results of the scout monitoring its teammates in Example 2, using a
maximally team-coherent hypothesis as the basis for detection. The �rst column again shows
the case number, for reference into Table 1. The next three columns show the scout's (A3's)
hypothesis about what plan each agent is executing according to the maximal coherence
heuristic. The next two columns show whether a failure was detected, and whether it was
diagnosed correctly. The last column shows the detection class (discussed below).


Case A3's Hypothesized Executing Plans Relationship Failure Diagnosis Detection


# Attacker A1 Attacker A2 Scout A3 Detected? Success? Class


1 J J J - n/a True Negative


2 W J J + + True Positive


3 J W J + + True Positive


4 H H J + - True Positive


5 W W W - n/a True Negative


Table 2: Scout's (A3) monitoring results in all permutations of Example 2.


For example, case 2 in Table 2 shows the results of the scout monitoring in the original
failure in Example 2 (Section 2). Using RESL, and selecting a maximally-coherent hypoth-
esis, the scout hypothesizes that the non-moving attacker is executing W (case 2, column 2),
while the moving attacker is executing J (case 2, column 3). The scout of course knows that
its own selected plan J (case 2, column 4). A violation of the teamwork relationship is thus
detected (case 2, column 5), since A1's W is not in agreement with the rest of the team's J.
Furthermore, the diagnosis was successful in identifying the cause for the failure, i.e., the
fact that the enemy's position has been identi�ed by the scout, but no knowledge of this
was passed on to the failing attacker (case 2, column 6).
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The last column of Table 2 shows the detection class of each failure. The detection class
of a case can be one of: true positive, true negative, false positive, and false negative. These
correspond to the following possible monitoring outcomes: A true positive is an outcome
where a relationship failure has actually occurred, and has been detected. A true negative
is where no failure has occurred, and the system correctly reports none is being detected.
A false positive is where no failure has occurred, but the system nevertheless incorrectly
detects one, and a false negative is where a failure has occurred, but the system fails to
detect it. Table 2 shows that in all permutations of Example 2 the teamwork monitoring
techniques did not encounter the problematic false positive or false negative cases.


A closer look at these results hints at a key contribution of this paper in addressing the
monitoring selectivity problem: E�ective failure detection can take place despite the use of
uncertain, limited, knowledge about monitored agents. In case 4 of Table 2, the monitor-
ing agent was able to detect the failure despite being wrong about the state of the agents
involved. The scout believes that the two attackers are executing the H (ordered-halt)
plan, but they are actually executing, W. H is selected when a command is received from
headquarters to halt execution and hover in place. From the scout's perspective, a hov-
ering attacker can therefore be inferred to be executing H or W. Thus two equally-ranked
maximally-coherent hypotheses exist: the two attackers are either both executing W or both
executing H. A random selection was made, and in this case resulted in the wrong hypothe-
sis being selected. Nevertheless, a violation of the teamwork relationships was detected, as
neither H or W agrees with the scout's J.


However, as the last column of case 4 shows (in Table 2), the diagnosis procedures are
sensitive to the selection of the team-modeling hypothesis. The hypothesis used in this case
does not correctly re�ect the true state of the agents, and so despite the scout's success to
detect a failure in this case, the diagnosis procedures fail to provide correct diagnosis (the
diagnosis was successful in the two other failure cases). This phenomenon repeats in other
empirical results we provide below: diagnosis failed whenever the hypothesis chosen was
incorrect, although it was su�cient for detection. We intend to explore ways to improve
the accuracy of the hypotheses in future work, and therefore will not address this issue
in this paper anymore. The failure detection capabilities are a signi�cant improvement in
themselves, since the agents know with certainty that a failure has occurred, even if their
diagnosis of it is incorrect.


Many social and physical failures are successfully captured using the team-coherence
heuristic for monitoring selectivity. In fact, in our permutations of Example 2, no matter
which one of the agents was the monitor, all failures to maintain relationship (i.e., all physical
failures except for one in which the team remains in agreement) were detected reliably,
although sometimes diagnosis failed. This result is especially surprising considering that
only a single agent did the monitoring. Previous monitoring methods (condition monitors
and communications) were unable to detect the failures, despite being used by all three
agents .


Tables 3 and 4 present further empirical results, on the basis of Example 1. Table 3
presents all failure permutations of Example 1 in the same format as Table 1. The normal or-
der of execution of these plans is as follows: All agents jointly execute the fly-flight-plan
(F) plan until they detect the way-point. They then switch to the wait-at-point (W) plan,
in which the two attackers land while the scout continues to �y ahead to identify the enemy.
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The failures here are all on the part of the agents to detect the way-point, and thus to switch
to the W plan.


Case Actual Executing Plans Relationship Failure Physical


# Attacker A1 Attacker A2 Scout A3 Occurred? Failure


1 W W W - -


2 F W W + A1 vision fails


3 W F W + A2 vision fails


4 F F W + A1, A2 vision fails


5 W W F + A3 vision fails


6 F W F + A1, A3 vision fails


7 W F F + A2, A3 vision fails


8 F F F - A1,2,3 vision fails


Table 3: All failure permutations of the undetected way-point scenario (Example 1).


Case A1's Hypothesized Executing Plans Relationship Failure Detection


# Attacker A1 Attacker A2 Scout A3 Detected? Class


1 W W W - True Negative


2 F W F + True Positive


3 W F W + True Positive


4 F F F - False Negative


5 W W W - False Negative


6 F W F + True Positive


7 W F F + True Positive


8 F F F - True Negative


Table 4: Attacker's (A1) monitoring results in all permutations of Example 1.


Table 4 present the monitoring results for all permutations of Example 1. Here the
attacker A1 is monitoring the team using again a maximally team-coherent hypothesis in
detecting failures. The results show that A1 is successful in detecting all teamwork failures
but two (cases 4-5, highlighted in bold face).


These two false outcomes are both false negatives. In both these cases, the monitoring
attacker A1 picked an incorrect hypothesis for the scout, since the scout's actions lead to
ambiguous interpretations. The scout is to �y forward (to scout the enemy) if it detected the
way-point (plan W), but also if it did not (then it would be �ying �in formation��plan F). The
use of the maximal team-coherence heuristic causes A1 to prefer a hypothesis in which the
scout is in agreement with the attackers when in fact it is not. For example, in case 4, the two
attackers have failed to detect the way-point and are executing F. Observing the scout, the
monitoring attacker A1 is not sure whether the scout is executing F or W. However, believing
that the scout is executing F results in a maximally-coherent team-modeling hypothesis (all
the agents are in agreement), while believing that the scout is executing W results in a less


121







Kaminka and Tambe


coherent hypothesis. Thus A1 selects a wrong hypothesis, which in this case fails to detect
the teamwork failure.


The maximal team-coherence heuristic can detect failures despite using incorrect hy-
potheses. Unfortunately, such hypotheses can also lead to false-negatives as we have seen in
Table 4. However, none of our experiments resulted in a false-positive result, i.e., a result
in which the system detected a failure but in reality none had occurred. Thus the heuristic
provided sound results in these cases. We are able to formally prove this property holds in
general when the maximal team-coherence heuristic is used.


First, we address a matter of notation. Let an agent A monitor an agent B, which is
executing some plan P . We denote by M(A;B=P ) the set of agent-modeling hypotheses
that A's agent-modeling component constructs based on B's observable behavior during the
execution of P . In other words, M(A;B=P ) is A's set of all plans that match B's observable
behavior. Note that when A monitors itself, it has direct access to its own state and so
M(A;A=P ) =fPg. Using the modeling notation, we make the following de�nitions which
ground our assumptions about the underlying knowledge used in monitoring:


De�nition 3. Given a monitoring agent A, and a monitored agent B, we say that A's
agent-modeling of agent B is complete if for any plan P that may be executed by B, P 2
M(A;B=P ).


The setM(A;B=P ) will typically include other matching hypotheses besides the correct
hypothesis P, but is guaranteed to include P. Following this de�nition of individual agent-
modeling completeness, we can de�ne group-wide team-modeling completeness:


De�nition 4. Let A be an agent monitoring a team T of agents B1; � � � ; Bn. We say that
A's team-modeling of the team T is complete if A's agent-modeling of each of B1; � � � ; Bn is
complete.


De�nition 4 is critical to guarantee the capabilities we will explore analytically in this
section and the next. It generally holds in our use of RESL in the ModSAF and RoboCup
domains, and we make it explicit here in service of applications of the techniques in other
domains.


Armed with these de�nitions, we now formalize the failure detection capabilities sug-
gested by the empirical evidence in Theorem 1.


Theorem 1. Let a monitoring agent A monitor a simple team T . If A's team-modeling


of T is complete, and A uses a maximally team-coherent hypothesis for detection, then the


teamwork failure detection results are sound.


Proof. We will show that if no failure has occurred, none will be detected, and thus that any
failure that is detected is in fact a failure. Let a1; : : : ; an be the agent members of T . Each
agent ai is executing some plan Pi (1 � i � n). Thus collectively, the group is executing
(P1; : : : ; Pn). If no failure has occurred, then all the agents are executing the same plan P0,
i.e., 8i; Pi = P0. Since A's team-modeling is complete, the correct hypothesis (P0; : : : ; P0)
is going to be in the set of team-modeling hypotheses H. Since it is a maximally team-
coherent hypothesis, either it will be selected, or that a di�erent hypothesis of the same


coherence level will be selected. Any hypothesis with the same coherence level as the correct
one implies no failure is detected. Thus the detection procedure is sound.
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Despite uncertainty in the knowledge used, sound failure-detection can be guaranteed using
the maximal team-coherence heuristic. This is one answer to the monitoring selectivity
problem. However, as we have seen in Table 4, some failures may pass undetected using this
heuristic (i.e., it may result in false-negatives). Detection using maximal team-coherence
may therefore unfortunately be incomplete. We may prefer our monitoring system to be
complete�guaranteed to detect all teamwork failures.


We therefore experimented with the maximal team-incoherence heuristic, the inverse of
the maximal team-coherence heuristic. This heuristic prefers hypotheses that suggest more


failures, rather than less. Table 5 gives the monitoring attacker A1's view of the team,
similar to Table 4, but using a maximally team-incoherent hypothesis. It shows that indeed
using a maximally team-incoherent hypothesis will not lead to the false-negative detections
in cases 4 and 5 (in contrast to these cases in Table 4).


Case A1's Hypothesized Executing Plans Relationship Failure Detection


# Attacker A1 Attacker A2 Scout A3 Detected? Class


1 W H F + False Positive


2 F H W + True Positive


3 W F F + True Positive


4 F F W + True Positive


5 W H F + True Positive


6 F H W + True Positive


7 W F F + True Positive


8 F F W + False Positive


Table 5: Attacker's (A1) monitoring results in all permutations of Example 1, using team-
incoherence.


Guided by these results, we formally show that the team-incoherence heuristic leads to
a detection procedure that is complete.


Theorem 2. Let a monitoring agent A monitor a simple team T . If the A's team-modeling


of T is complete, and A uses a maximally team-incoherent hypothesis for detection, then the


teamwork failure detection results are complete.


Proof. Analogous to that of Theorem 1, the proof is provided in appendix A.


However, these successes are o�set by false positive outcomes in cases 1 and 8 of Table 5. In
these cases, no failures have occurred, but the monitoring system falsely reported detected
failures. In practice, this may lead to costly processing of many false alarms.


Ideally, the detection capabilities should be sound and complete. Unfortunately, we can
show that no coherence-based disambiguation scheme exists that results in both sound and
complete detection. We show in Theorem 3 that to provide sound and complete detection, a
disambiguation method will have to be inconsistent: Given the same set of possible matching
hypotheses, it will have to sometimes rank one hypothesis on top, and sometimes another.


Theorem 3. Let H be a complete team-modeling hypotheses set, modeling a simple team.


There does not exists a disambiguation scheme S that (1) uses coherence alone as the basis
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for disambiguation of H, and (2) is deterministic in its selection, and (3) results in sound
and complete failure detection.


Proof. Let S be a disambiguation scheme that leads to complete and sound detection and
uses only knowledge of the coherence of the hypotheses in selecting a disambiguated hypoth-
esis. Suppose for contradiction that it is deterministic, and thus consistent, in its selection
of an hypothesis out of H, i.e., given H, a set of candidate hypotheses, it applies some
deterministic procedure to choose one hypothesis based on its coherence. Since it does
not use any other knowledge outside of the coherence of the candidate hypotheses, given
the same set of candidates, it will always choose the same hypothesis. Let Am be the
monitoring agent using S. Let B be a monitored agent, whose actions are identical when
executing team plans P1; P2. Thus, Am cannot determine whether B is executing P1 or
P2, M(Am; B=P1) = M(Am; B=P2) = fP1; P2g. If Am and B are both executing P1, Am's
hypotheses set is


H = f(P1; P1); (P1; P2)g


Since S leads to complete and sound detection, it will choose (P1; P1). Now, when Am and
B are executing P1 and P2, respectively, the matching hypothesis set is again H as de�ned
above. But now S must select (P1; P2). Since the same set of candidate hypothesis H was
used in each case, and no other information was supplied, S must be non-deterministic in
its selection of a disambiguated hypothesis, contradicting the assumption.


The empirical and analytical results show that our use of a single disambiguated hypothe-
sis leads to improved, but imperfect, failure-detection results, compared to the monitoring
conditions and communications previously used. The empirical results in Tables 2, 4, and
5 establish the bene�ts of the teamwork monitoring technique: Most physical failures were
detected. However, the analytical results (Theorems 1, 2, 3) show that the results are less
than perfect. The algorithms are either sound or complete, but not both. For complete mon-
itoring, we would require additional procedures that can di�erentiate the true positives from
the false ones, e.g., by focused communication. These procedures are often very expensive.


We can reduce the need for costly veri�cation by letting go of our insistence on a single
hypothesis, focusing instead of maintaining two hypotheses: a maximally-coherent hypoth-
esis and a maximally-incoherent hypothesis. Table 6 shows a portion of the full set of
team-hypotheses available when the attacker A1 is monitoring the team. The total number
of hypotheses presented in the table is 24, with as many as 4 co-existing in a single case,
and thus maintaining a full set of hypotheses would be expensive. However, the two inverse
heuristics�team-coherence and incoherence�represent two extremes of the space of these
hypotheses. If they agree that a failure exists, then a failure actually occurred, since the
team-coherent hypothesis guarantees soundness (Theorem 1). If they agree that no failure
exists, then no failure took place, since the team-incoherent hypothesis guarantees com-
pleteness (Theorem 2). If they disagree (i.e., the team-coherent hypothesis does not imply
a failure, but the team-incoherent hypothesis does), the monitoring system cannot be sure
either way, and must revert back to veri�cation.


This revised detection algorithm o�ers signi�cant computational savings compared to the
single team-incoherent hypothesis approach. It is complete and unsound, but signi�cantly
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Case A1's Hypothesized Executing Plans Relationship Failure Detection


# Attacker A1 Attacker A2 Scout A3 Detected? Class


1 W H F + False Positive


W H W + False Positive


W W F + False Positive


W W W - True Negative


2 F H F + True Positive


F H W + True Positive


F W F + True Positive


F W W + True Positive


3 W F F + True Positive


W F W + True Positive


4 F F W + True Positive


F F F - False Negative


5 W H F + True Positive


W H W + True Positive


W W F + True Positive


W W W - False Negative


6 F H W + True Positive


F H F + True Positive


F W W + True Positive


F W F + True Positive


7 W F F + True Positive


W F W + True Positive


8 F F W + False Positive


F F F - True Negative


Table 6: A portion of the attacker's (A1) monitoring hypotheses and implied results when
no ranking is used to select a single hypothesis for each case.


reduces the need for veri�cation, since at least when the team-coherent hypothesis implies
failures, veri�cation is not necessary. It requires representing only two hypotheses, and is
thus still computationally cheaper than maintaining an exponential number of hypotheses.


For example, using a maximally team-incoherent hypothesis on permutations of Example
1 results in a need to verify in all eight cases as we have seen (5). However, when we combine
such an hypothesis with a maximally team-coherent hypothesis (e.g., as in Table 4), we only
need to verify four (50% ) of the cases. In cases 2, 3, 6, 7 there is agreement between the
two hypotheses that a failure has occurred, and thus no veri�cation is required.


A monitoring agent can therefore address the monitoring selectivity problem by balancing
its resource usage against the guaranteed performance of the monitoring algorithm used.
Either of the simpler single-hypothesis algorithms would utilize only one hypothesis in each
case, with detection capabilities that are guaranteed to be sound or complete, but not both.
In the more complex algorithm, two hypotheses would be reasoned about in each case, and
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the algorithm would be complete and require veri�cation in fewer cases compared to the
simple-hypothesis complete algorithm.


5. Monitoring Selectivity in Distributed Teamwork Monitoring


This section focuses on monitoring selectivity when exploiting a key opportunity for exe-
cution monitoring in multi-agent environments�it is not only the monitored agents that
are distributed, but the monitoring agents can be distributed as well. We begin with the
simple scheme of selecting a single maximally team-coherent hypothesis. Since centralized
teamwork monitoring was successful in addressing all permutations of Example 2, we focus
here on the permutations of Example 1 (Table 3), in which centralized teamwork monitoring
by the attacker resulted in false-negative detections (cases 4-5 in Table 4).


In a distributed teamwork monitoring scheme, not only will a single attacker monitor
its teammates, but the scout (and the other attacker) will also engage in monitoring. Table
7 presents the monitoring results of the same failure permutations, with the scout as the
monitoring agent. We �nd that the scout successfully detects the two failure cases that
the attacker failed to detect, compensating for the attackers' monitoring mistakes. Further-
more, since the scout used the the maximal-coherence heuristic, detection is sound and no
veri�cation is required. The reason for the scout's success is that the attackers' actions in
this case, although ambiguous, do not support any hypothesis that can be matched to the
scout's plan. In other words, regardless of what plan the attackers are executing in these
two cases, it is di�erent that the plan executed by the scout.


Case A3's Hypothesized Executing Plans Relationship Failure Detection


# Attacker A1 Attacker A2 Scout A3 Detected? Class


1 W W W - True Negative


2 F W F + True Positive


3 W F W + True Positive


4 F F W + True Positive


5 H H F + True Positive


6 F H F + True Positive


7 H F F + True Positive


8 F F F - True Negative


Table 7: Scout's (A3) monitoring results in all permutations of Example 1, using team-
coherence.


Thus if all agents engaged in monitoring in permutations of Example 1, detection would
be sound and complete. In all actual failure cases (and only in those) there would at least one
team-member who detects the failure. We attempt to formally de�ne the general conditions
under which this phenomenon holds.


De�nition 5. We say that two team-plans P1; P2, have observably-di�erent roles R1; R2 if
given an agent B who ful�lls the roles R1; R2 in the two plans, resp., any monitoring agent
A (di�erent than B) will have M(A;B=P1) \M(A;B=P2) = ;. We then say that B has
observably-di�erent roles in P1 and P2, and call B a key agent.


126







Robust Agent Teams via Socially-Attentive Monitoring


Intuitively, B is a key agent that has observably di�erent roles in the two plans if a
monitoring agent can di�erentiate between B's behavior in executing P1 and in executing
P2. For instance, both attackers have observably di�erent roles in F (in which they �y) and
W (in which they land). However, they do not have observably di�erent roles in W and H,
both of which require them to land. The scout has observably di�erent roles in W (�ying)
and H (landing).


The key-agent is the basis for the conditions under which a self-monitoring team will
detect a failure with each agent using only team-coherence. We �rst prove a lemma on the
conditions in which a single given agent will detect a failure. We then use this lemma to
prove the conditions under which at least one agent in a given team will detect a failure.


Lemma 1. Suppose a simple team T is self-monitoring (all members of the team monitor


each other) using the maximally team-coherent heuristic (and under the assumption that for


each agent, team-modeling is complete). Let A1; A2 be monitoring agents who are members of


T and are executing P1; P2, respectively. A1 would detect a failure in maintaining teamwork


relationships with an agent A2, if A2 is a key-agent in P1; P2.


Proof. See appendix A.


A1 knows that it is executing P1. If A2 is executing P2, and is a key-agent in P1 and P2,
then A1 is guaranteed to notice that a di�erence exists between itself and A2, since A2 is
acting observably di�erent than it would if it had been executing P1. Note, however, that
A2 may or may not detect this di�erence, since from A2's perspective, A1's behavior may
or may not be explained by P2. A2 will detect a di�erence only if A1's roles in P1 and P2


are also observably-di�erent. However, since A1 has detected the failure, it can now alert
its teammates, diagnose the failure, or choose corrective action.


If we want to guarantee that a teamwork failure will always be detected by at least
one agent, we must make sure that in each possible combination of plans, there has to be
at least one key-agent whose roles are observably di�erent. The lemma shows that other
agents monitoring this agent will notice a failure if one occurs. To this aim, we de�ne an
observably-partitioned set of plans employed by a team.


De�nition 6. A set P of team-plans is said to be observably-partitioned if for any two plans
Pi; Pj 2 P there exists a key-agent Aij . The set of these Aij agents is called the key agents


set of P .


For instance, the set of team-plans our helicopter pilots team has been using in the
examples (Fly-Flight-Plan (F), Wait-at-Point (W), Ordered-Halt (H), and Join-Scout


(J)) is observably-partitioned. The attackers land in W and H, but �y in F and J. The scout
lands in J and H, but �ies in W and F. Table 8 shows which agents have observably di�erent
roles in any two plans in the set. For instance, by �nding the cell at the intersection of the
H row and the W column, we �nd that the scout has observably di�erent roles in these two
plans. Indeed, the scout lands when a command is received to halt execution (H), but �ies
out to scout the enemy's position when executing W. Here, since all agents have observably-
di�erent roles in at least two plans, the key agents set of { W, F, H, J } includes all members
of the team�attackers and scout.
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Fly-Flight-Plan (F) Wait-at-Point (W) Ordered-Halt (H) Join-Scout (J)


F - Attackers Attackers Scout


W Attackers - Scout Scout and Attackers


H Attackers Scout - Attackers


J Scout Scout and Attackers Attackers -


Table 8: Observable partitioning of the helicopter pilot team in ModSAF.


Theorem 4. If a simple team (1) employs an observably-partitioned set of team-plans O,
and all team-members monitor members of the key agents set of O, (2) using complete team-


modeling and (3) maximally team-coherent hypotheses, then the teamwork failure detection


results are sound and complete.


Proof. From theorem 1 we know that detection would be sound. To show that it is complete,
we will prove at least one agent will detect a di�erence between itself and others whenever
team-members are not all executing the same plan (i.e., a failure is occurring). Suppose the
team is currently divided on the team-plans that must be executed, i.e., there are agents
ai; aj in the team that are executing team plans Pi; Pj , respectively, such that Pi 6= Pj .
Thus a failure has occurred. Let K be the key agents set of O. Since the team is observably-
partitioned, for Pi; Pj there exists at least one key agent a1 2 K. There are three cases:
case (i). a1 is executing Pi. In this case any agent executing Pj would detect a di�erence
with a1 and would therefore detect the failure (lemma 1).
case (ii). a1 is executing Pj . In this case any agent executing Pi would detect a di�erence
with a1 and would therefore detect the failure (lemma 1).
case (iii). a1 is executing some other plan Q. Its roles must be observably di�erent in Q
and Pi, or in Q and Pj (or in both), and thus any agent executing Pj and/or Pi would detect
the failure. The case that a1's roles are not observably di�erent in Q and Pi and in Q and
Pj is impossible, since then for a monitoring agent Am


M(Am; a1=Pi) \M(Am; a1=Pj) � fQg 6= ;


Contradicting a1 being a key agent for Pi; Pj .


Since in all three cases, at least one agent would detect a failure where one occurred.
Therefore, failure detection is complete. Since it is also sound as we have seen, detection is
sound and complete.


The theorem shows that distributed teamwork monitoring can result in sound and complete


failure-detection, while using a simple algorithm. Each team-member monitors only the key


agents2, using a maximally team-coherent hypothesis. If it detects a failure, then certainly
one has occurred. If no agent detects a failure, then indeed no failure has occurred.


This simple distributed algorithm, with its attention-focusing features and guaranteed
soundness and completeness contrasts with the more complex centralized algorithm which
we discussed in the previous section (Section 4). The algorithm's e�ectiveness relies on the


2. If the monitoring team-member does not know who the key agents are, but knows they exist, it can
monitor all other team-members. This increases monitoring, but sound and complete failure detection
is still guaranteed.
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condition of an observably-partitioned set of plans, and on the distribution of the monitoring.
A corollary of Theorems 3 and 4 is that if key agents are not available in the distributed
case, failure detection is either sound or complete, but not both. And even when key agents
are available, centralized teamwork monitoring is still not complete and sound.


Fortunately, observable-partitioning is not a di�cult property to design: Teams are very
often composed such that not all agents have the same role in the same plan, and in general,
roles do have observable di�erences between them. For instance, our helicopter pilot team
in the ModSAF domain typically executes a set of plans with this property, as Table 8
demonstrates.


If the team, however, is not observably-partitioned, there may be a case where two agents
are each executing a di�erent plan, but no agent will be able to detect it using the team-
coherence heuristic. The minimal case where this occurs is when two agents, A1 and A2 are
executing plans P1 and P2, respectively, and P1 and P2 are not observably di�erent, such
that


M(A2; A1=P1) \M(A1; A2=P2) = fP1; P2g


This will result in A1 and A2 each believing that the other is in agreement with them. A
check for such a situation can be made a part of the plan design process, marking risky


points in the execution in which detection is either sound or complete (Theorem 3), and
veri�cation (e.g., by communications) can be prescribed pro-actively. Or, the check could
be inserted into the protocol for run-time analysis�the agent would simulate the other's
hypotheses matching their own actions, and detect risky points dynamically.


6. Using Socially-Attentive Monitoring in an O�-Line Con�guration


To further demonstrate the generality of our socially-attentive monitoring framework, this
section examines re-use of teamwork monitoring in domains in which diagnosis and recovery
from every failure are infeasible during execution. Examples of such domains include team
sports, military human team training (Volpe, Cannon-Bowers, & Salas, 1996), and other
multi-agent domains. The dynamic nature of the domain, hard real-time deadlines, and
complexity of the agents involved (e.g., human team members) make diagnosis and recovery
di�cult. Even if a failure can be diagnosed, it is often too late for e�ective recovery. In
such environments, the monitoring agent is often concerned with trends of performance.
This information is important for long-term design evaluation and analysis, and need not
necessarily be calculated on-line. The results of the analysis are meant as feedback to the
agents' designer (coach or supervisor, for humans).


To this end, we are developing an o�-line socially-attentive monitoring system called
Teamore (TEAmwork MOnitoring REview). Teamore currently uses execution traces of
the monitored agents to perform the monitoring, rather than using plan recognition. Thus it
does not need to worry about the uncertainty in plan-recognition, nor about real-time per-
formance. Instead, it knows with certainty each agent's plans during execution. Teamore
accumulates several quantitative measures related to teamwork, including the Average-Time-
to-Agreement measure (ATA, for short), and a measure of the level of agreement in a team.
These build on the failure detection algorithm, but aggregate failures in quantitatively. We
focus here on the ATA measure.
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Teamore de�nes a switch as the time interval beginning at the point where any team-
member (at least one) selects a new team plan for execution by the team, and ending
at the point where the team is again in agreement on the team-plan being executed. In
perfect teamwork, all team-members select a new team-plan jointly, and so always remain
in agreement. In more realistic scenario, some agents will take longer to switch, and so
initially a teamwork failure will occur. The �rst team-member to select a new plan will be
in disagreement with some of its teammates, until either it rejoins them in executing the
original plan, or they join it in selecting the new plan. Such a switch begins with a detected
failure and ends when no more failures are detected.


Figure 6 shows an illustration of a switch. The three agents begin in an initial state of
agreement on joint execution of Plan 1 (�lled line). Agent 1 is the �rst agent to switch to
Plan 2 (dotted line), and is followed by Agent 3, and �nally Agent 2. The switch is the
interval which begins at the instance Agents 1 selected Plan 2, to the time all three agents
regained their agreement (but this time on Plan 2).


Legend:  
Plan 1


Plan 2
Agent 3


Agent 2


Agent 1


Time


A Switch


Figure 6: An illustration of a switch. The three agents switch from plan 1 to plan 2.


Teamore keeps track of the lengths of time in which failures are detected until they
are resolved. The ATA measure is the average switch length (in time �ticks�) per a complete
team run (e.g., a mission in ModSAF, a game in RoboCup). A perfect team would have
all switches of length zero, and therefore an ATA of 0. The worst team would be one that
from the very beginning of their task execution to the very end of it, would not agree on
the team plan being executed. For instance, each RoboCup game lasts for 6000 �ticks�. The
worst possible team would have only one switch during the game, of length 6000. Thus the
ATA scale in RoboCup goes from 0 (perfect) to 6000 (worst).


We used the ATA measure to analyze a series of games of our two RoboCup simulation-
league teams, ISIS'97 and ISIS'98 (Marsella et al., 1999) against a �xed opponent, Andhill'97
(Andou, 1998). In these games, we varied the use of communications by our teams to
evaluate design decisions on the use of communications. In approximately half of the games,
players were allowed to use communications in service of teamwork. In the other half, all
communications between agents were disabled. ISIS'97 played approximately 15 games in
each settings, and ISIS'98 played 30 games in each communication settings.


Table 9 shows the mean ATA values over these games, for two sub-teams (each having
three members) of ISIS'97 and ISIS'98 (ATA values are calculated separately for each sub-
team). The �rst column shows which sub-team the results refer to in each row. The second
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columns shows the mean ATA for each sub-team, when no communications were used. The
third column shows the mean ATA when communications were used. The next column shows
the size of the ATA reduction�the drop in the mean ATA values when communications are
introduced. The last column shows the probability of the null hypothesis in a two-tailed
t-test of the di�erence in the ATA means. This is the probability that the di�erence is due
to chance, thus smaller numbers indicate greater signi�cance.


ISIS Mean ATA Mean ATA ATA t-test prob.
sub-team No comm. Comm. Reduction null-hypothesis


'97 Goalies 32.80 5.79 27.01 7.13e-13


'97 Defenders 57.5 6.81 50.69 .45e-10


'98 Goalies 13.28 3.65 9.63 9.26e-16


'98 Defenders 12.99 3.98 9.01 7.13e-5


Table 9: Average-Time-to-Agreement (ATA) for games against Andhill'97.


Clearly, a very signi�cant di�erence emerges between the communicating and non-
communicating versions of each sub-team. The ATA values indicate that sharing infor-
mation by way of communications signi�cantly decreases the time it takes team-members
to come to agreement on a selected plan. This result agrees with our intuitions about the
role of communications, and in that sense, may not be surprising.


However, the ATA reduction magnitudes indicate that ISIS'98 may be much less sensi-
tive to loss of communications than ISIS'97. The di�erences in ATA values for ISIS'97 are
approximately triple, nearly four times, as great as for ISIS'98. Our explanation for this
phenomenon is that ISIS'98 is composed of players with improved capabilities for monitor-
ing the environment (such that they have better knowledge of the environment). ISIS'98
is therefore not as dependent on communications as are teams, such as ISIS'97, composed
of players with lesser environment monitoring capabilities. ISIS'98 players are better able
to select the correct plan without relying on their teammates. Thus, they would be able
to maintain the same level of performance when communications are not used. In contrast,
ISIS'97 players rely on passing information to and from each other (monitoring each other)
through communications, and so took much longer to establish agreement when communi-
cations were not available.


We can validate the hypothesis suggested by ATA measurements by looking at the overall
team-performance in the games, measured by the score di�erence at the end of the game.
Table 10 shows the mean score di�erence from the same series of games against Andhill'97.
The �rst column lists the communications settings (with or without). The second and
third columns show the mean score-di�erence in the games for ISIS'97 and ISIS'98. The
bottom row summarizes the results of t-tests run on each set of games, to determine the
signi�cance level of the di�erence between the mean score-di�erences. The score-di�erence
results corroborate the ATA results. While the di�erence in mean score-di�erence is indeed
statistically signi�cant in ISIS'97 games, it is not signi�cant in ISIS'98 games. This supports
our explanation that the more situationally aware ISIS'98 is indeed better able to handle
loss of communications than ISIS'97.
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ISIS'97 ISIS'98


Communication Used -3.38 -1.53


Communication Not Used -4.36 -2.13


t-test p/null hypothesis p=0.032 p=0.13


Table 10: ISIS'97 and ISIS'98 mean score di�erence against Andhill'97, with changing com-
munications settings


The general lesson emerging from these experiments is that a trade-o� exists in address-
ing the monitoring selectivity problem. The knowledge that is maintained about teammates
(here, via communications) can be traded, to an extent, with knowledge maintained about
the environment. A designer therefore has a range of alternative capabilities that it can
choose for its agents. Di�erent domains may better facilitate implicit coordination by mon-
itoring the environment, while others require agents to rely on communications or explicit
knowledge of team-members to handle the coordination.


The ATA results support additional conclusions, especially when combined with a general
performance measure such as the score-di�erence. To illustrate, consider the plots of the
actual data from these games. Figure 7 plots all the ATA values for all four variants, for
the Goalies sub-team. The graph plots approximately 60 data-points. We see in Figure
7 that when communications are used, ISIS'97's ATA values are still generally better than
ISIS'98's ATA without communications. Thus, despite its importance, individual situational
awareness is not able to fully compensate for lack of communications.
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Figure 7: ATA values for the Goalies sub-teams in games against Andhill'97.
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Teamore demonstrates the reuse of the teamwork monitoring techniques developed in
earlier sections in an o�-line con�guration. The designer of ISIS'97 should set its agents to
use communications, since those will have signi�cant improvement on the score-di�erence.
In contrast, with or without communications, ISIS'98 players are able to maintain their
collaboration. Thus if communications takes precious resources, it can be relatively safely
eliminated from the ISIS'98 agents' design, and the development e�orts can be directed at
some other components of the agents.


7. Beyond Teamwork


We have presented a general socially-attentive monitoring framework to detect failures in
maintaining agreement on joint team plans. However, e�ective operation in teams often
relies on additional relationships, which we brie�y address in this section.


7.1 A Richer Agreement Model: Agreeing to Disagree


The teamwork model requires joint execution of team plans. In service of such agreed-upon
joint plans, agents may sometimes agree to execute di�erent sub-plans individually, or split
into sub-teams to execute di�erent sub-team plans. Two examples may serve to illustrate.


Example 3. In the ModSAF domain, helicopters engage the enemy by repeatedly following
the following three steps: hiding behind a hill or trees (masking), then popping up (unmask-


ing), then shooting missiles at the enemy, and back to hiding. In some variations of this
plan, they are required to make sure that no two helicopters are shooting at the same time.
Of course, due to limits of communications, helicopters do fail and unmask at the same time.


Example 4. In the RoboCup domain, our 11 players in both ISIS'97 and ISIS'98 (Marsella
et al., 1999) are divided into four sub-teams: mid-�elders, attackers, defenders, and goalies
(the goalie and two close defenders). This division into sub-teams is modeled by the agents
selecting one of four team plans in service of the play team plan (see Figure 8). Mid-�elders
must select the midfield plan, goalies must select the defend-goal plan, etc. Again, ideally
an attacker would never select any other plan but attack, a defender would select no other
plan but defend, etc. However, due to communication failures, players may sometimes
accidently abandon their intended sub-team, and execute a team-plan of another sub-team.


[Win−Game]


[Play] [Interrupt]
...


[Attack] [Defend] [Midfield] [Defend−Goal]


[Simple
Advance]


[Flank
Attack]


Score−goal Pass


[Careful−
defense]


[Simple−goal
defense]


Intercept kick−out Reposition


...


...... ...........


..........


Figure 8: A Portion of the plan-hierarchy used by ISIS RoboCup agents.


In both of these examples, certain di�erences between agents are agreed upon and are a
sign of correct execution, not of failure. Indeed, it is the lack of di�erence in selected plans
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that would indicate failure in these cases. We use the term mutual-exclusion coordination to
refer to these relationships. In Example 3, ideally no two pilots are executing the shooting
plan at the same time. In Example 4, no two members of di�erent sub-teams (e.g., an
attacker and a defender) are executing the same plan in service of play (e.g., defend). As the
examples demonstrate, there is a clear need for monitoring mutual-exclusion coordination.


Our results of previous sections are re-used in service of socially-attentive monitoring of
mutual-exclusion relationships. They require a transformation both in implementation and
theory. The hierarchies are compared in the usual manner, except that failures are signi�ed
by equalities, rather than di�erences. For instance, if an attacker is staying in the team's
own half of the �eld, its teammates may come to suspect that it mistakenly �defected� the
attackers' sub-team and believes itself to be a defender.


The analytical results are inverted as well. The maximal team-coherence heuristic will
now lead to completeness, since it prefers hypotheses that contain equalities among agents,
which are failures in mutual-exclusion coordination. The maximal team-incoherence heuris-
tic will now lead to sound detection, as it prefers hypotheses that imply no equalities have
occurred. These properties can be proven formally.


Theorem 5. Let a monitoring agent A monitor mutual-exclusion relationships in a group


of agents G. If A's modeling of G is complete, and A uses a maximally team-incoherent
hypothesis for detection, then the failure detection results are sound.


Proof. Provided in appendix A.


Theorem 6. Let a monitoring agent A monitor mutual-exclusion relationships in a group


of agents G. If A's modeling of G is complete, and A uses a maximally team-coherent


hypothesis for detection, then the failure detection results are complete.


Proof. Provided in appendix A.


Thus in mutual-exclusion relationships, as in teamwork relationships, guaranteed failure-
detection results may still be provided despite the use of limited, uncertain knowledge
about monitored agents. The centralized teamwork monitoring algorithms can now be eas-
ily transformed for monitoring mutual-exclusion relationships. Unfortunately, the results in
the distributed case (Theorem 4) cannot be so easily transformed, since they rely on the
property of observable-partitioning, which is associated with di�erences, not with equalities.
We leave this issue for future work.


7.2 Monitoring Using Role-Similarity Relationships


This section applies socially-attentive monitoring to role-similarity relationships, for moni-
toring individual performance within teams. In particular, in service of team-plans agents
may select individual sub-plans, which do not necessitate agreement by team-members, but
are constrained by the agents' roles. For instance, in service of executing the team-plan
fly-flight-plan (Figure 3) pilots individually select their own individual plans which set
the velocity and heading within the constraints of the formation and �ight method speci�ed
in the mission.


Role similarity relationships specify the ways in which given individual plans are similar,
and to what extent. Two agents of the same role who are executing dissimilar plans can
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be considered to be in violation of the role-similarity relationships. This enables a socially-
attentive monitoring system to detect failure in role-execution. To monitor individual plans
the agent is executing, it compares its selection with that of other agents of the same role,
similarly to the method we used for teamwork. If the plans are considered similar by the
role-similarity relationship model, no failure is detected. Otherwise, a failure may have
occurred, and the diagnosis component is called to verify it and provide an explanation.


Let us illustrate with a failure from the ModSAF domain which our system was able to
detect using the role-similarity relationship:


Example 5. A team of three helicopters was to take o� from the base and head out on a
mission. However, one of the pilot agents failed to correctly process the mission statement.
It therefore kept its helicopter hovering above the base, while its teammates left to execute
the mission by themselves.


This failures was detected using role-similarity relationship monitoring. The agreed-upon
team-plan was selected by all the agents, and so no problem with teamwork relationship was
detected. This team-plan involved each agent then selecting individual methods of �ight,
which determine altitude and velocity. Here the agents di�ered. The failing helicopter
remained hovering, while its teammates moved forward. Using a role similarity relationship,
the failing helicopter compared its own selected plan to that of its teammate (who shared its
role of a subordinate in the formation), and realized that their plans were dissimilar enough
to announce a possible failure.


Unfortunately, the actual similarity metrics seem to be domain- and task-speci�c, and
thus are not as easy to re-use across domains. Furthermore, detected failures are not nec-
essarily real failures, nor do all detected failures have the same weight. We are currently
investigating ways to address these challenging issues.


8. Related Work


Our investigation of socially-attentive monitoring, and the relationship between knowledge
maintained of agents' states and monitoring e�ectiveness builds on research in di�erent sub-
�elds of multi-agent systems. We address these sub-�elds in this section, and explain how
our investigation is related to existing literature.


8.1 Related Work on Teamwork


Previous work in teamwork has recognized that monitoring other agents is critical to teams.
Past investigations have raised the monitoring selectivity problem, but have not addressed
it in depth. Building upon these investigations, this paper begins to provide some in-depth
answers to this problem.


The theory of SharedPlans (Grosz & Kraus, 1996, 1999) touches on the teamwork moni-
toring selectivity problem in several ways, but provides only some initial answers. First, the
theory requires agents to know that their teammates are capable of carrying out their tasks
in the team. The authors note that agents must communicate enough about their plans
to convince their teammates of their ability to carry out actions (Grosz & Kraus, 1996,
p. 314). Second, the theory requires agents to have mutual-belief in the shared recipe, a
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state that requires agents to reason to in�nite recursion about other agent's beliefs. Un-
fortunately, attainment of mutual belief is undecidable in theory (Halpern & Moses, 1990)
and hence must be approximated in practice (Jennings, 1995; Rich & Sidner, 1997). Such
approximations may still impose strong monitoring requirements. Third, theory introduces
the intention-that construct in service of coordination and helpful behavior, implying mon-
itoring of others' progress to assess the the need for such behavior (Grosz & Kraus, 1996,
Axiom A5-A7). Fourth, SharedPlans requires that intentions of an agent must not con-
�ict (Grosz & Kraus, 1996, Axiom A1), and since some of these intentions (in particular,
intentions-that) may involve the attitudes of other agents, some monitoring of others to
detect and avoid con�icts is implied. The authors point out that while theoretically all such
con�icts can be detected, this is infeasible in practice (Grosz & Kraus, 1996, p. 307). They
suggest that con�ict detection and prevention be investigated in a problem-speci�c manner
within the minimal constraints (i.e., monitoring for capabilities, mutual-belief, progress, lack
of con�icts) provided by the SharedPlans framework (p. 308 and 314).


Joint-Intentions (Levesque et al., 1990; Cohen & Levesque, 1991) requires an agent who
privately comes to believe that a joint-goal is either achieved, unachievable, or irrelevant,
must commit to having the entire team mutually believe it to be the case. As in the theory
of SharedPlans, Joint-Intentions' use of mutual belief can only be approximated in practice,
and imposes strong monitoring requirements. Thus, the monitoring selectivity problem is
raised for practical implementations of Joint-Intentions.


Jennings has hypothesized that two central constructs in cooperative multi-agent coor-
dination are commitments made by the agents, and conventions, rules used to monitor these
commitments (Jennings, 1993). Such conventions are used to decide what information needs
to be monitored about agents, and how it is to be monitored. For instance, a convention may
require an agent to report to its teammates any changes it privately detects with respect
to the attainability of the team goal. Jennings raises the monitoring selectivity problem
and provides an example of speci�c conventions for high- and low-bandwidth situations in
which some knowledge is not communicated to all agents if the bandwidth is not available.
However, Jennings does not explore in-depth the question of how such conventions are se-
lected, and what are the trade-o�s and guarantees associated with the selection of particular
conventions. For instance, there are no guarantees on the e�ects of using the low-bandwidth
convention in the example.


The theoretical investigations described above all raise the monitoring selectivity prob-
lem (implicitly or explicitly). Our work builds upon these to address this problem in depth,
in the context of socially-attentive monitoring in teams. This paper reports on soundness
and/or completeness properties of teamwork relationship failure-detection that can be an-
alytically guaranteed, despite uncertainty in knowledge acquired about monitored agents.
The analytical guarantees are applicable to plan-recognition and communications, and are
corroborated by empirical results.


Building on theoretical work, practical teamwork systems include (Jennings, 1995; Rich
& Sidner, 1997) and (Tambe, 1997). Jennings' investigation of the Joint-Responsibility
teamwork model in GRATE* (Jennings, 1995) builds on Joint-Intentions, and similarly to
our own implementation, requires agents to agree on the team-plans which are to execute.
However, GRATE* is used in industrial settings in which foolproof communications can
be assumed (Jennings, 1995, p. 211), and thus only passive monitoring (via communica-
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tions) is used. Although Jennings provides an evaluation of GRATE*'s performance with
respect to communication delays, no guarantees are provided with respect to failure de-
tection. GRATE* maintains knowledge about other agents through acquaintances models,
which are used to keep track of what team-members' capabilities are (in service of forming
teams). However, the question of how much knowledge should be used in these models is
left unaddressed.


Rich and Sidner investigate COLLAGEN in a collaborative user-interface system, in
which communications are reliable (Rich & Sidner, 1997). However, from a human-usability
perspective, limiting the amount of communications is still desirable. To address this is-
sue, recent empirical work by Lesh, Sidner and Rich (1999) utilizes plan recognition in
COLLAGEN; the focus of that work is on using the collaborative settings to make the
plan-recognition tractable. For instance, ambiguities in plan-recognition may be resolved
by asking the user for clari�cation. Work on COLLAGEN does not investigate how much
knowledge is to be maintained for e�ective collaborative dialogue with the user. In contrast,
we are able to provide guarantees on the failure-detection results of our algorithms. Also,
analysizing the dialogue plans for risky points may allow systems such as COLLAGEN to
decide whether to use communications for clari�cation regardless of plan-recognition ambi-
guity.


STEAM (Tambe, 1997) maintains limited information about the ability of team-members
to carry out their roles. STEAM also allows team-members to reason explicitly about the
cost of communication in deciding whether to communicate or not. Our work signi�cantly
extends these capabilities via plan-recognition, and provides analytically-guaranteed fault-
detection results. Furthermore, our teamwork failure-detection capabilities can be useful to
trigger STEAM's re-planning capabilities.


8.2 Related Work on Coordination


Huber (1995) investigated the use of probabilistic plan-recognition in service of active team-
work monitoring, motivated by the unreliability and costs of passive communications-based
monitoring in military applications. Washington explores observation-based coordination us-
ing Markov Models (Washington, 1998), focusing on making the computations tractable. In
contrast to Huber and Washington, our work focuses on the monitoring selectivity problem.
We showed strengths and limitations of centralized and distributed approaches that guar-
anteed failure-detection results using coherence-based disambiguation of plan-recognition
hypotheses.


Durfee (1995) discusses various methods of reducing the amount of knowledge that agents
need to consider in coordinating with others. The methods discussed involve pruning parts
of the nested models, using communications, using hierarchies and abstractions, etc. While
the focus of this work is on methods by which modeling can be limited, the focus of our
work is on the question of how much modeling is required for guaranteed performance�the
monitoring selectivity problem. We provide analytical guarantees on trade-o�s involved in
using limited knowledge of agents for failure-detection purposes.


Sugawara and Lesser (1998) report on the use of comparative reasoning/analysis tech-
niques in service of learning and specializing coordination rules for a system in which dis-
tributed agents coordinate in diagnosing a faulty network. The investigation is focused on
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optimizing coordination rules to minimize ine�ciency and redundancy in the agent's coor-
dinating messages. Upon detecting sub-optimal coordination (via a fault model), the agents
exchange information on their local views of the system and the problem solving activity,
and construct a global view. They then compare the local view to the global view to �nd
critical values/attributes which were missing from the local view and therefore gave rise to
the sub-optimal performance problem. These values and attributes are used in constructing
situation-speci�c rules that optimize coordination in particular situations. For example,
network diagnosis agents may learn a rule that guides them to choose a coordination strat-
egy in which only one agent performs the diagnosis and shares its result with the rest of
the diagnosis agents. Our work on socially-attentive monitoring similarly uses comparison
between agents views to drive the monitoring process. However, our use of comparison is
a product of the relationship we are monitoring. While Sugawara and Lesser's work can
be viewed as letting the agents incrementally optimize their monitoring requirements, our
results analytically explore the level of monitoring required for e�ective failure-detection, in
di�erent con�gurations. Our teamwork monitoring technique addresses uncertainty in the
acquired information, and does not construct a global view of all attributes the system�as
that would be extremely expensive. Instead, our technique focuses on triggering failure de-
tection via contrasting of plans, then incrementally expanding the search for di�erences in
the diagnosis process.


Robotics literature has also raised the monitoring selectivity problem. Parker (1993)
investigated the monitoring selectivity problem from a di�erent perspective, for a formation-
maintenance task. She empirically examined the e�ects of combining socially-attentive in-
formation (which she referred to as local) and knowledge of the team's goals, and concludes
that the most fault-tolerant strategy is one where the agents monitor each other as well as
progress towards the goals. Kuniyoshi et al. (Kuniyoshi, Rougeaux, Ishii, Kita, Sakane,
& Kakikura, 1994) present a framework for cooperation by observations, in which robots
visually attend to others as a prerequisite to coordination. The framework presents several
standard attentional templates, i.e., who monitors whom. They de�ne a team attentional
structure as one in which all agents monitor each other. Our work focuses on the mon-
itoring selectivity problem within socially-attentive monitoring of teamwork relationships,
and provides analytical as well as empirical results. We treat the attentional templates as
a product of the relationships that hold in the system. Our results show that monitoring in
teams may not necessarily require monitoring all team-members.


8.3 Other Related Work


Horling et al. (Horling, Lesser, Vincent, Bazzan, & Xuan, 1999) present a distributed
diagnosis system for a multi-agent intelligent home environment.The system uses fault-
models to identify failures and ine�ciencies in components, and to guide recovery. Schroeder
and Wagner (1997) proposed a distributed diagnosis technique in which cooperating agents
receive requests for tests and diagnoses, and send responses to other agents. They each
construct a global diagnosis based on the local ones they produce and receive�with the
assumption that no con�icts will occur. Frohlich and Nejdl (1996) investigates a scheme
in which multiple diagnosis agents cooperate via a blackboard architecture in diagnosing a
physical system. The agents may use di�erent diagnosis models or systems, but a centralized
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con�ict-resolution agent is employed to handle any con�icts in diagnoses found. All three
approaches do not address the monitoring selectivity problem.


There are a few social measures related to the ATA. Goldberg and Mataric (1997) in-
vestigate a multi-robot foraging task and measure interference�the amount of time robots
spend avoiding each other. Balch (1998) uses social entropy (Bailey, 1990) to measure be-


havioral diversity in multi-agent tasks of soccer, foraging, and formation-maintenance. Both
investigations focus on characterizing heterogeneity in multi-agent systems and its relation
to performance. In contrast, the focus of our work is on providing useful feedback to the
designer. Possible correlation between task performance and ATA values remains to be
investigated.


9. Conclusions and Future Work


The work presented in this paper is motivated by practical concerns. We have begun our
investigation of the monitoring selectivity problem as a result of our observation that failures
continue to occur despite our agents' use of monitoring conditions and communications.
Analysis of the failures revealed that agents were not su�ciently informed about each other's
state. While the need to monitor one's teammates has been recognized repeatedly in the past
(Jennings, 1993; Grosz & Kraus, 1996; Tambe, 1997), the monitoring selectivity problem�
the question of how much monitoring is required�remained largely unaddressed (Jennings,
1993; Grosz & Kraus, 1996).


We provide key answers to the monitoring selectivity problem. Within the context of
socially-attentive monitoring in teams, we demonstrate that teamwork relationship failures
can be detected e�ectively even with uncertain, limited, knowledge of team-members' states.
We show analytically that centralized active teamwork monitoring provides failure-detection
that is either complete and unsound, or sound and incomplete. However, centralized team-
work monitoring requires multiple hypotheses and monitoring of all team-members. In
contrast, distributed active teamwork monitoring results in complete and sound failure-
detection, despite using a simpler algorithm and monitoring only key agents in a team.


Using an implemented general framework for socially-attentive monitoring, we empiri-
cally validate these results in the ModSAF domain. We also provide initial results in mon-
itoring mutual-exclusion and role-similarity relationships, and initial diagnosis procedures.
We further demonstrate the generality of the framework by applying it in the RoboCup
domain, in which we show how useful quantitative analysis can be generated o�-line. Both
ModSAF and RoboCup are dynamic, complex, multi-agent domains that involve many un-
certainties in perception and action.


We attempted to demonstrate how the results and techniques can be applied in other
domains. We have explicitly pointed out necessary conditions for the theorems to hold,
such as observable-partitioning and team-modeling completeness. The presented diagnosis
algorithm is sensitive to the accuracy of the knowledge used, and may require assuming that
plans can be recognized as soon as they are selected. These conditions should be veri�ed by
the designer in the target application domain. Reactive plans (our chosen representation) are
commonly used in many dynamic multi-agent domains. Our focus on monitoring agreements
on joint plans stems from the centrality of similar notions of agreement in agent and human
teamwork literature (Jennings, 1995; Grosz & Kraus, 1996; Volpe et al., 1996; Tambe, 1997).
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We made several references to additional areas in which we would like to conduct further
investigations. One important topic which we plan to investigate in depth is the strong
requirements of the distributed teamwork monitoring algorithm in terms of observability. In
order to provide its soundness and completeness guarantees, the distributed algorithm relies
on the ability of all team-members to monitor the key agents. We are investigating ways
to relax this requirement while still providing guaranteed results. In addition, the diagnosis
procedures should be extended and formalized, and we would like to investigate ways to
alleviate the sensitivity of these procedures to the choice of team-modeling hypothesis.
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Appendix A. Proofs


Theorem. (# 2, page 123). Let a monitoring agent A monitor a simple team T . If A's
team-modeling of T is complete, and A uses a maximally team-coherent hypothesis for de-


tection, then the teamwork failure detection results are sound.


Proof. We will show that any failure that occurs is detected, and thus that all failures will
be detected. Let a1; : : : ; an be the agent members of T . Each agent ai is executing some
plan Pi (1 � i � n). Thus collectively, the group is executing (P1; : : : ; Pn). If a failure
has occurred, then there are two agents ak; aj ; 1 � j; k � n such that aj is executing plan
Pj and ak is executing plan Pk and Pj 6= Pk. Since A's team-modeling is complete, the
correct hypothesis (P1; : : : ; Pj ; : : : ; Pk; : : : Pn) will in the set of team-modeling hypotheses.
Since A will choose a maximally team-incoherent hypothesis, either it will choose the correct
hypothesis, which is more incoherent than a hypothesis implying no failure has occurred, or
that it will select a hypothesis with greater incoherence hypothesis (or equivalent level). In
any case, a failure would be detected, and the detection procedure is complete.


Lemma. (# 1, page 127). Suppose a simple team T is self-monitoring (all members of


the team monitor each other) using the maximally team-coherent heuristic (and under the
assumption that for each agent, team-modeling is complete). A monitoring agent A1 who is a


member of T and is executing P1 would detect a failure in maintaining teamwork relationships


with an agent A2 (also a member of T ) executing a di�erent plan P2, if A2 has an observably


di�erent role in P1 and P2.


Proof. A1 knows that it is executing P1. Since all members of T monitor each other and
themselves, A1 is monitoring A2, who has an observably di�erent role in P1 and P2. Since A2


is executing P2, and following the observably di�erent role, P1 =2M(A1; A2=P2). Therefore
from the perspective of A1, it cannot be the case that it assigns P1 in any agent-modeling


hypothesis, and therefore any team-modeling hypothesis that A1 has will have A1 executing
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P1, and A2 executing some plan other than P1. In other words, from A1's perspective there is
no team-coherent hypothesis, and so a di�erence would be detected between A1 and A2.


Theorem. (# 5, page 134). Let a monitoring agent A monitor mutual-exclusion relation-
ships in a group of agents G. If A's modeling of G is complete, and A uses a maximally


team-incoherent hypothesis for detection, then the failure detection results are sound.


Proof. We will show that if no failure has occurred, none will be detected, and thus that
any failure that is detected is in fact a failure. Let a1; : : : ; an be the agent members of
G. Each agent ai is executing some plan Pi (1 � i � n). Thus collectively, the group is
executing (P1; : : : ; Pn). If no failure has occurred, then each agent is executing a di�erent
plan (i 6= j ) Pi 6= Pj). Since A's group-modeling is complete, the correct hypothesis is
going to be in the set of group-modeling hypotheses H. Since it is a maximally incoherent
hypothesis, either it will be selected, or that a di�erent hypothesis of the same coherence


level will be selected. Any hypothesis with the same coherence level as the correct one
implies no failure is detected. Thus the detection procedure is sound.


Theorem. (# 6, page 134). Let a monitoring agent A monitor mutual-exclusion relation-


ships in a group of agents G. If A's modeling of G is complete, and A uses a maximally


team-coherent hypothesis for detection, then the failure detection results are complete.


Proof. We will show that any failure that occurs is detected, and thus that the procedure
is complete. Let a1; : : : ; an be the agent members of G. Each agent ai is executing some
plan Pi (1 � i � n). Thus collectively, the group is executing (P1; : : : ; Pn). If a failure
has occurred, then there are two agents ak; aj ; 1 � j; k � n such that aj is executing plan
Pj and ak is executing plan Pk and Pj = Pk. Since A's group-modeling is complete, the
correct hypothesis (P1; : : : ; Pj ; : : : ; Pk; : : : Pn) will in the set of group-modeling hypotheses.
Since A will choose a maximally team-coherent hypothesis, either it will choose the correct
hypothesis, which is more coherent than a hypothesis implying no failure has occurred, or
that it will select a hypothesis with greater coherence hypothesis (or equivalent level). In
any case, a failure would be detected. Therefore, the detection procedure is complete.


Appendix B. Socially-Attentive Monitoring Algorithms


We bring here the algorithms (in pseudo-code) for the RESL plan-recognition algorithm,
the comparison test supporting detection in both simple and non-simple teams, and the
monitoring algorithms for the centralized and distributed cases.


B.1 RESL


RESL works by �rst expanding the complete operator hierarchy for the agents being mod-
eled, tagging all plans as non-matching. All plans' preconditions and termination conditions
are �agged as non-matching as well. All plans' actions are set to be used as expectations
on behavior. After initializing the plan-recognition hierarchy for each monitored agent, ob-
servations of an agent are continuously matched against the actions expected by the plans.
Plans whose expectations match observations are tagged as matching, and these �ags are
propagated along the hierarchy, up and down, so that complete paths through the hierarchy
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are �agged as matching or not. These paths specify the possible matching interpretations of
the observations. In addition, precondition and termination conditions are �agged as true
or not, signifying the inferred appropriate belief by the modeled agents. This process is
described in Algorithm 1.


Algorithm 1 RESL's main loop, matching observation and making inferences for a given
plan-recognition hierarchy (a single agent).


1. Get observations about agent


2. For each plan that has a set of expected observations:


(a) Compare observations to expectations


(b) If succeed, �ag plan as matching successfully, otherwise �ag plan as failing to match


3. For each plan that is �agged as matching successfully


(a) Flag its parents as matching successfully // propagate matching


4. For each plan whose children (all of them) are �agged as failing to match


(a) Flag it as failing to match // propagate non-matching


B.2 Detection of Failure, Centralized and Distributed Teamwork Monitoring


Algorithm 2 shows how comparison of hierarchical plans is carried out. We limit ourselves
here to simple-teams. The algorithm accepts as input two sets of hierarchical plan hypothe-
ses, and their two associated agents (for clarity, the algorithms assume only two agents.
The generalization to n agents is straightforward). The algorithm also accepts a policy �ag,
Policy. An OPTIMISTIC policy causes the algorithm to use maximal team-coherence to
provide sound, but incomplete detection. A PESSIMISTIC policy causes the algorithm to use
maximal team-incoherence to provide complete, but unsound detection.


The set of hierarchical plans are marked hierarchy_1 and hierarchy_2. The two agents
are marked agent_1 and agent_2. The algorithm makes use of the predicate Sub-team,
which is true if the two agents (Agent1, Agent2) belong to di�erent sub-teams at the given
level of the hierarchy (Depth).


With the aid of Algorithm 2, we can now de�ne the centralized and distributed fail-
ure detection algorithms. The centralized teamwork monitoring algorithm (Algorithm 3)
utilizes Algorithm 2 twice, checking for failures with both PESSIMISTIC and OPTIMISTIC


policies. If the results of both policies agree, they are certain. If the results do not agree,
(i.e., the PESSIMISTIC policy causes a failure to be detected, while the OPTIMISTIC policy
causes no failure to be detected), then the monitoring agent cannot be certain that a failure
has taken place, and therefore needs to verify the failure. Algorithm 3 therefore returns
FAILURE, NO_FAILURE, POSSIBLE_FAILURE.


The distributed monitoring algorithm is not given in pseudo-code form, because it is
nothing more than a call to Algorithm 2 with an OPTIMISTIC policy parameter. Its power
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Algorithm 2 Hierarchical comparison of two agents, allowing for sub-teams.


1. Set Depth to 0 // look for top-most di�erence �rst


2. While both plans at depth Depth are team-plans Do


(a) if Policy == OPTIMISTIC


i. then Let Plan_1, Plan_2 be maximally team-coherent plans at level Depth
of hierarchy_1 and hierarchy_2, respectively.


ii. else Let Plan_1, Plan_2 be maximally team-incoherent plans at level Depth
of hierarchy_1 and hierarchy_2, respectively.


(b) If Plan_1 is not equal to Plan_2


i. then return FAILURE


ii. else if bottom of hierarchies reached, return NO_FAILURE, otherwise in-
crease Depth and go to 2.


3. If only one plan is a team-plan, return FAILURE, else return NO_FAILURE.


Algorithm 3 Centralized Teamwork Monitoring, applying both optimistic and pessimistic
views.


1. Let Optimistic_Result = Detect(agent_1, agent_2, hierarchies_1,


hierarchies_2, OPTIMISTIC)


/* algorithm 2 */


2. Let Pessimistic_Result = Detect(agent_1, agent_2, hierarchies_1,


hierarchies_2, PESSIMISTIC)


/* algorithm 2 */


3. if Optimistic_Result == Pessimistic_Result


4. then return Optimistic_Result /* either FAILURE, or NO_FAILURE */


5. else return POSSIBLE_FAILURE
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is derived from the fact that all members of the team are using it to monitor the key agents
of the team.
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