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Abstract


This article describes a new system for induction of oblique decision trees. This system,
OC1, combines deterministic hill-climbing with two forms of randomization to �nd a good
oblique split (in the form of a hyperplane) at each node of a decision tree. Oblique decision
tree methods are tuned especially for domains in which the attributes are numeric, although
they can be adapted to symbolic or mixed symbolic/numeric attributes. We present ex-
tensive empirical studies, using both real and arti�cial data, that analyze OC1's ability to
construct oblique trees that are smaller and more accurate than their axis-parallel coun-
terparts. We also examine the bene�ts of randomization for the construction of oblique
decision trees.


1. Introduction


Current data collection technology provides a unique challenge and opportunity for auto-
mated machine learning techniques. The advent of major scienti�c projects such as the
Human Genome Project, the Hubble Space Telescope, and the human brain mapping ini-
tiative are generating enormous amounts of data on a daily basis. These streams of data
require automated methods to analyze, �lter, and classify them before presenting them in
digested form to a domain scientist. Decision trees are a particularly useful tool in this con-
text because they perform classi�cation by a sequence of simple, easy-to-understand tests
whose semantics is intuitively clear to domain experts. Decision trees have been used for
classi�cation and other tasks since the 1960s (Moret, 1982; Safavin & Landgrebe, 1991). In
the 1980's, Breiman et al.'s book on classi�cation and regression trees (CART) and Quin-
lan's work on ID3 (Quinlan, 1983, 1986) provided the foundations for what has become a
large body of research on one of the central techniques of experimental machine learning.


Many variants of decision tree (DT) algorithms have been introduced in the last decade.
Much of this work has concentrated on decision trees in which each node checks the value
of a single attribute (Breiman, Friedman, Olshen, & Stone, 1984; Quinlan, 1986, 1993a).
Quinlan initially proposed decision trees for classi�cation in domains with symbolic-valued
attributes (1986), and later extended them to numeric domains (1987). When the attributes
are numeric, the tests have the form xi > k, where xi is one of the attributes of an example
and k is a constant. This class of decision trees may be called axis-parallel, because the tests
at each node are equivalent to axis-parallel hyperplanes in the attribute space. An example
of such a decision tree is given in Figure 1, which shows both a tree and the partitioning it
creates in a 2-D attribute space.
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Figure 1: The left side of the �gure shows a simple axis-parallel tree that uses two attributes.
The right side shows the partitioning that this tree creates in the attribute space.


Researchers have also studied decision trees in which the test at a node uses boolean
combinations of attributes (Pagallo, 1990; Pagallo & Haussler, 1990; Sahami, 1993) and
linear combinations of attributes (see Section 2). Di�erent methods for measuring the
goodness of decision tree nodes, as well as techniques for pruning a tree to reduce over�tting
and increase accuracy have also been explored, and will be discussed in later sections.


In this paper, we examine decision trees that test a linear combination of the attributes
at each internal node. More precisely, let an example take the form X = x1; x2; : : : ; xd; Cj


where Cj is a class label and the xi's are real-valued attributes.1 The test at each node will
then have the form:


dX


i=1


aixi + ad+1 > 0 (1)


where a1; : : : ; ad+1 are real-valued coe�cients. Because these tests are equivalent to hy-
perplanes at an oblique orientation to the axes, we call this class of decision trees oblique
decision trees. (Trees of this form have also been called \multivariate" (Brodley & Utgo�,
1994). We prefer the term \oblique" because \multivariate" includes non-linear combina-
tions of the variables, i.e., curved surfaces. Our trees contain only linear tests.) It is clear
that these are simply a more general form of axis-parallel trees, since by setting ai = 0
for all coe�cients but one, the test in Eq. 1 becomes the familiar univariate test. Note
that oblique decision trees produce polygonal (polyhedral) partitionings of the attribute
space, while axis-parallel trees produce partitionings in the form of hyper-rectangles that
are parallel to the feature axes.


It should be intuitively clear that when the underlying concept is de�ned by a polyg-
onal space partitioning, it is preferable to use oblique decision trees for classi�cation. For
example, there exist many domains in which one or two oblique hyperplanes will be the
best model to use for classi�cation. In such domains, axis-parallel methods will have to ap-


1. The constraint that x1; : : : ; xd are real-valued does not necessarily restrict oblique decision trees to
numeric domains. Several researchers have studied the problem of converting symbolic (unordered)
domains to numeric (ordered) domains and vice versa; e.g., (Breiman et al., 1984; Hampson & Volper,
1986; Utgo� & Brodley, 1990; Van de Merckt, 1992, 1993). To keep the discussion simple, however, we
will assume that all attributes have numeric values.
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Figure 2: The left side shows a simple 2-D domain in which two oblique hyperplanes de�ne
the classes. The right side shows an approximation of the sort that an axis-parallel
decision tree would have to create to model this domain.


proximate the correct model with a staircase-like structure, while an oblique tree-building
method could capture it with a tree that was both smaller and more accurate.2 Figure 2
gives an illustration.


Breiman et al. �rst suggested a method for inducing oblique decision trees in 1984. How-
ever, there has been very little further research on such trees until relatively recently (Utgo�
& Brodley, 1990; Heath, Kasif, & Salzberg, 1993b; Murthy, Kasif, Salzberg, & Beigel, 1993;
Brodley & Utgo�, 1994). A comparison of existing approaches is given in more detail in
Section 2. The purpose of this study is to review the strengths and weaknesses of existing
methods, to design a system that combines some of the strengths and overcomes the weak-
nesses, and to evaluate that system empirically and analytically. The main contributions
and conclusions of our study are as follows:


� We have developed a new, randomized algorithm for inducing oblique decision trees
from examples. This algorithm extends the original 1984 work of Breiman et al.
Randomization helps signi�cantly in learning many concepts.


� Our algorithm is fully implemented as an oblique decision tree induction system and
is available over the Internet. The code can be retrieved from Online Appendix 1 of
this paper (or by anonymous ftp from ftp://ftp.cs.jhu.edu/pub/oc1/oc1.tar.Z).


� The randomized hill-climbing algorithm used in OC1 is more e�cient than other
existing randomized oblique decision tree methods (described below). In fact, the
current implementation of OC1 guarantees a worst-case running time that is only
O(logn) times greater than the worst-case time for inducing axis-parallel trees (i.e.,
O(dn2 log n) vs. O(dn2)).


� The ability to generate oblique trees often produces very small trees compared to
axis-parallel methods. When the underlying problem requires an oblique split, oblique


2. Note that though a given oblique tree may have fewer leaf nodes than an axis-parallel tree|which is what
we mean by \smaller"|the oblique tree may in some cases be larger in terms of information content,
because of the increased complexity of the tests at each node.
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trees are also more accurate than axis-parallel trees. Allowing a tree-building system
to use both oblique and axis-parallel splits broadens the range of domains for which
the system should be useful.


The remaining sections of the paper follow this outline: the remainder of this section
briey outlines the general paradigm of decision tree induction, and discusses the com-
plexity issues involved in inducing oblique decision trees. Section 2 briey reviews some
existing techniques for oblique DT induction, outlines some limitations of each approach,
and introduces the OC1 system. Section 3 describes the OC1 system in detail. Section 4
describes experiments that (1) compare the performance of OC1 to that of several other
axis-parallel and oblique decision tree induction methods on a range of real-world datasets
and (2) demonstrate empirically that OC1 signi�cantly bene�ts from its randomization
methods. In Section 5, we conclude with some discussion of open problems and directions
for further research.


1.1 Top-Down Induction of Decision Trees


Algorithms for inducing decision trees follow an approach described by Quinlan as top-down
induction of decision trees (1986). This can also be called a greedy divide-and-conquer
method. The basic outline is as follows:


1. Begin with a set of examples called the training set, T . If all examples in T belong
to one class, then halt.


2. Consider all tests that divide T into two or more subsets. Score each test according
to how well it splits up the examples.


3. Choose (\greedily") the test that scores the highest.


4. Divide the examples into subsets and run this procedure recursively on each subset.


Quinlan's original model only considered attributes with symbolic values; in that model,
a test at a node splits an attribute into all of its values. Thus a test on an attribute
with three values will have at most three child nodes, one corresponding to each value.
The algorithm considers all possible tests and chooses the one that optimizes a pre-de�ned
goodness measure. (One could also split symbolic values into two or more subsets of values,
which gives many more choices for how to split the examples.) As we explain next, oblique
decision tree methods cannot consider all tests due to complexity considerations.


1.2 Complexity of Induction of Oblique Decision Trees


One reason for the relatively few papers on the problem of inducing oblique decision trees is
the increased computational complexity of the problem when compared to the axis-parallel
case. There are two important issues that must be addressed. In the context of top-down
decision tree algorithms, we must address the complexity of �nding optimal separating
hyperplanes (decision surfaces) for a given node of a decision tree. An optimal hyperplane
will minimize the impurity measure used; e.g., impurity might be measured by the total
number of examples mis-classi�ed. The second issue is the lower bound on the complexity
of �nding optimal (e.g., smallest size) trees.
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Figure 3: For n points in d dimensions (n � d), there are n � d distinct axis-parallel splits,
while there are 2d �


�
n
d


�
distinct d-dimensional oblique splits. This shows all distinct


oblique and axis-parallel splits for two speci�c points in 2-D.


Let us �rst consider the issue of the complexity of selecting an optimal oblique hyper-
plane for a single node of a tree. In a domain with n training instances, each described using
d real-valued attributes, there are at most 2d �


�n
d


�
distinct d-dimensional oblique splits; i.e.,


hyperplanes3 that divide the training instances uniquely into two nonoverlapping subsets.
This upper bound derives from the observation that every subset of size d from the n points
can de�ne a d-dimensional hyperplane, and each such hyperplane can be rotated slightly
in 2d directions to divide the set of d points in all possible ways. Figure 3 illustrates these
upper limits for two points in two dimensions. For axis-parallel splits, there are only n � d
distinct possibilities, and axis-parallel methods such as C4.5 (Quinlan, 1993a) and CART
(Breiman et al., 1984) can exhaustively search for the best split at each node. The problem
of searching for the best oblique split is therefore much more di�cult than that of searching
for the best axis-parallel split. In fact, the problem is NP-hard.


More precisely, Heath (1992) proved that the following problem is NP-hard: given a
set of labelled examples, �nd the hyperplane that minimizes the number of misclassi�ed
examples both above and below the hyperplane. This result implies that any method
for �nding the optimal oblique split is likely to have exponential cost (assuming P 6= NP ).
Intuitively, the problem is that it is impractical to enumerate all 2d �


�
n
d


�
distinct hyperplanes


and choose the best, as is done in axis-parallel decision trees. However, any non-exhaustive
deterministic algorithm for searching through all these hyperplanes is prone to getting stuck
in local minima.


3. Throughout the paper, we use the terms \split" and \hyperplane" interchangeably to refer to the test
at a node of a decision tree. The �rst usage is standard (Moret, 1982), and refers to the fact that the
test splits the data into two partitions. The second usage refers to the geometric form of the test.
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On the other hand, it is possible to de�ne impurity measures for which the problem
of �nding optimal hyperplanes can be solved in polynomial time. For example, if one
minimizes the sum of distances of mis-classi�ed examples, then the optimal solution can
be found using linear programming methods (if distance is measured along one dimension
only). However, classi�ers are usually judged by how many points they classify correctly,
regardless of how close to the decision boundary a point may lie. Thus most of the standard
measures for computing impurity base their calculation on the discrete number of examples
of each category on either side of the hyperplane. Section 3.3 discusses several commonly
used impurity measures.


Now let us address the second issue, that of the complexity of building a small tree.
It is easy to show that the problem of inducing the smallest axis-parallel decision tree is
NP-hard. This observation follows directly from the work of Hya�l and Rivest (1976). Note
that one can generate the smallest axis-parallel tree that is consistent with the training
set in polynomial time if the number of attributes is a constant. This can be done by
using dynamic programming or branch and bound techniques (see Moret (1982) for several
pointers). But when the tree uses oblique splits, it is not clear, even for a �xed number
of attributes, how to generate an optimal (e.g., smallest) decision tree in polynomial time.
This suggests that the complexity of constructing good oblique trees is greater than that
for axis-parallel trees.


It is also easy to see that the problem of constructing an optimal (e.g., smallest) oblique
decision tree is NP-hard. This conclusion follows from the work of Blum and Rivest (1988).
Their result implies that in d dimensions (i.e., with d attributes) the problem of producing
a 3-node oblique decision tree that is consistent with the training set is NP-complete. More
speci�cally, they show that the following decision problem is NP-complete: given a training
set T with n examples and d Boolean attributes, does there exist a 3-node neural network
consistent with T? From this it is easy to show that the following question is NP-complete:
given a training set T , does there exist a 3-leaf-node oblique decision tree consistent with
T?


As a result of these complexity considerations, we took the pragmatic approach of trying
to generate small trees, but not looking for the smallest tree. The greedy approach used by
OC1 and virtually all other decision tree algorithms implicitly tries to generate small trees.
In addition, it is easy to construct example problems for which the optimal split at a node
will not lead to the best tree; thus our philosophy as embodied in OC1 is to �nd locally
good splits, but not to spend excessive computational e�ort on improving the quality of
these splits.


2. Previous Work on Oblique Decision Tree Induction


Before describing the OC1 algorithm, we will briey discuss some existing oblique DT
induction methods, including CART with linear combinations, Linear Machine Decision
Trees, and Simulated Annealing of Decision Trees. There are also methods that induce
tree-like classi�ers with linear discriminants at each node, most notably methods using
linear programming (Mangasarian, Setiono, & Wolberg, 1990; Bennett & Mangasarian,
1992, 1994a, 1994b). Though these methods can �nd the optimal linear discriminants for
speci�c goodness measures, the size of the linear program grows very fast with the number
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To induce a split at node T of the decision tree:
Normalize values for all d attributes.
L = 0
While (TRUE)


L = L+ 1


Let the current split sL be v � c, where v =
Pd


i=1 aixi.
For i = 1; : : : ; d


For  = -0.25,0,0.25
Search for the � that maximizes the goodness of the split v � �(ai + ) � c.


Let ��,� be the settings that result in highest goodness in these 3 searches.
ai = ai � ��, c = c� ���.


Perturb c to maximize the goodness of sL, keeping a1; : : : ; ad constant.
If jgoodness(sL) - goodness(sL�1)j � � exit while loop.


Eliminate irrelevant attributes in fa1; : : : ; adg using backward elimination.
Convert sL to a split on the un-normalized attributes.
Return the better of sL and the best axis-parallel split as the split for T .


Figure 4: The procedure used by CART with linear combinations (CART-LC) at each node
of a decision tree.


of instances and the number of attributes. There is also some less closely related work on
algorithms to train arti�cial neural networks to build decision tree-like classi�ers (Brent,
1991; Cios & Liu, 1992; Herman & Yeung, 1992).


The �rst oblique decision tree algorithm to be proposed was CART with linear combina-
tions (Breiman et al., 1984, chapter 5). This algorithm, referred to henceforth as CART-LC,
is an important basis for OC1. Figure 4 summarizes (using Breiman et al.'s notation) what
the CART-LC algorithm does at each node in the decision tree. The core idea of the CART-
LC algorithm is how it �nds the value of � that maximizes the goodness of a split. This
idea is also used in OC1, and is explained in detail in Section 3.1.


After describing CART-LC, Breiman et al. point out that there is still much room for
further development of the algorithm. OC1 represents an extension of CART-LC that
includes some signi�cant additions. It addresses the following limitations of CART-LC:


� CART-LC is fully deterministic. There is no built-in mechanism for escaping local
minima, although such minima may be very common for some domains. Figure 5
shows a simple example for which CART-LC gets stuck.


� CART-LC produces only a single tree for a given data set.


� CART-LC sometimes makes adjustments that increase the impurity of a split. This
feature was probably included to allow it to escape some local minima.


� There is no upper bound on the time spent at any node in the decision tree. It halts
when no perturbation changes the impurity more than �, but because impurity may
increase and decrease, the algorithm can spend arbitrarily long time at a node.
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Figure 5: The deterministic perturbation algorithm of CART-LC fails to �nd the correct
split for this data, even when it starts from the location of the best axis-parallel
split. OC1 �nds the correct split using one random jump.


Another oblique decision tree algorithm, one that uses a very di�erent approach from
CART-LC, is the Linear Machine Decision Trees (LMDT) system (Utgo� & Brodley, 1991;
Brodley & Utgo�, 1992), which is a successor to the Perceptron Tree method (Utgo�, 1989;
Utgo� & Brodley, 1990). Each internal node in an LMDT tree is a Linear Machine (Nilsson,
1990). The training algorithm presents examples repeatedly at each node until the linear
machine converges. Because convergence cannot be guaranteed, LMDT uses heuristics to
determine when the node has stabilized. To make the training stable even when the set of
training instances is not linearly separable, a \thermal training" method (Frean, 1990) is
used, similar to simulated annealing.


A third system that creates oblique trees is Simulated Annealing of Decision Trees
(SADT) (Heath et al., 1993b) which, like OC1, uses randomization. SADT uses simulated
annealing (Kirkpatrick, Gelatt, & Vecci, 1983) to �nd good values for the coe�cients of
the hyperplane at each node of a tree. SADT �rst places a hyperplane in a canonical
location, and then iteratively perturbs all the coe�cients by small random amounts. Ini-
tially, when the temperature parameter is high, SADT accepts almost any perturbation of
the hyperplane, regardless of how it changes the goodness score. However, as the system
\cools down," only changes that improve the goodness of the split are likely to be accepted.
Though SADT's use of randomization allows it to e�ectively avoid some local minima, it
compromises on e�ciency. It runs much slower than either CART-LC, LMDT or OC1,
sometimes considering tens of thousands of hyperplanes at a single node before it �nishes
annealing.


Our experiments in Section 4.3 include some results showing how all of these methods
perform on three arti�cial domains.


We next describe a way to combine some of the strengths of the methods just mentioned,
while avoiding some of the problems. Our algorithm, OC1, uses deterministic hill climbing
most of the time, ensuring computational e�ciency. In addition, it uses two kinds of
randomization to avoid local minima. By limiting the number of random choices, the
algorithm is guaranteed to spend only polynomial time at each node in the tree. In addition,
randomization itself has produced several bene�ts: for example, it means that the algorithm
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To �nd a split of a set of examples T :
Find the best axis-parallel split of T . Let I be the impurity of this split.
Repeat R times:


Choose a random hyperplane H.
(For the �rst iteration, initialize H to be the best axis-parallel split.)
Step 1: Until the impurity measure does not improve, do:


Perturb each of the coe�cients of H in sequence.
Step 2: Repeat at most J times:


Choose a random direction and attempt to perturb H in that direction.
If this reduces the impurity of H, go to Step 1.


Let I1 = the impurity of H. If I1 < I, then set I = I1.
Output the split corresponding to I.


Figure 6: Overview of the OC1 algorithm for a single node of a decision tree.


can produce many di�erent trees for the same data set. This o�ers the possibility of a new
family of classi�ers: k-decision-tree algorithms, in which an example is classi�ed by the
majority vote of k trees. Heath et al. (1993a) have shown that k-decision tree methods
(which they call k-DT) will consistently outperform single tree methods if classi�cation
accuracy is the main criterion. Finally, our experiments indicate that OC1 e�ciently �nds
small, accurate decision trees for many di�erent types of classi�cation problems.


3. Oblique Classi�er 1 (OC1)


In this section we discuss details of the oblique decision tree induction system OC1. As
part of this description, we include:


� the method for �nding coe�cients of a hyperplane at each tree node,


� methods for computing the impurity or goodness of a hyperplane,


� a tree pruning strategy, and


� methods for coping with missing and irrelevant attributes.


Section 3.1 focuses on the most complicated of these algorithmic details; i.e. the question of
how to �nd a hyperplane that splits a given set of instances into two reasonably \pure" non-
overlapping subsets. This randomized perturbation algorithm is the main novel contribution
of OC1. Figure 6 summarizes the basic OC1 algorithm, used at each node of a decision
tree. This �gure will be explained further in the following sections.


3.1 Perturbation algorithm


OC1 imposes no restrictions on the orientation of the hyperplanes. However, in order to be
at least as powerful as standard DT methods, it �rst �nds the best axis-parallel (univariate)
split at a node before looking for an oblique split. OC1 uses an oblique split only when it
improves over the best axis-parallel split.4


4. As pointed out in (Breiman et al., 1984, Chapter 5), it does not make sense to use an oblique split when
the number of examples at a node n is less than or almost equal to the number of features d, because the
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The search strategy for the space of possible hyperplanes is de�ned by the procedure
that perturbs the current hyperplane H to a new location. Because there are an exponential
number of distinct ways to partition the examples with a hyperplane, any procedure that
simply enumerates all of them will be unreasonably costly. The two main alternatives
considered in the past have been simulated annealing, used in the SADT system (Heath
et al., 1993b), and deterministic heuristic search, as in CART-LC (Breiman et al., 1984).
OC1 combines these two ideas, using heuristic search until it �nds a local minimum, and
then using a non-deterministic search step to get out of the local minimum. (The non-
deterministic step in OC1 is not simulated annealing, however.)


We will start by explaining how we perturb a hyperplane to split the training set T at
a node of the decision tree. Let n be the number of examples in T , d be the number of
attributes (or dimensions) for each example, and k be the number of categories. Then we
can write Tj = (xj1; xj2; : : : ; xjd; Cj) for the jth example from the training set T , where xji is
the value of attribute i and Cj is the category label. As de�ned in Eq. 1, the equation of the
current hyperplane H at a node of the decision tree is written as


Pd
i=1(aixi)+ad+1 = 0. If we


substitute a point (an example) Tj into the equation for H , we get
Pd


i=1(aixji)+ad+1 = Vj,
where the sign of Vj tells us whether the point Tj is above or below the hyperplane H ;
i.e., if Vj > 0, then Tj is above H . If H splits the training set T perfectly, then all points
belonging to the same category will have the same sign for Vj . i.e., sign(Vi) = sign(Vj) i�
category(Ti) = category(Tj).


OC1 adjusts the coe�cients of H individually, �nding a locally optimal value for one
coe�cient at a time. This key idea was introduced by Breiman et al. It works as follows.
Treat the coe�cient am as a variable, and treat all other coe�cients as constants. Then
Vj can be viewed as a function of am. In particular, the condition that Tj is above H is
equivalent to


Vj > 0


am >
amxjm � Vj


xjm


def
= Uj (2)


assuming that xjm > 0, which we ensure by normalization. Using this de�nition of Uj , the
point Tj is above H if am > Uj , and below otherwise. By plugging all the points from T
into this equation, we will obtain n constraints on the value of am.


The problem then is to �nd a value for am that satis�es as many of these constraints
as possible. (If all the constraints are satis�ed, then we have a perfect split.) This problem
is easy to solve optimally: simply sort all the values Uj , and consider setting am to the
midpoint between each pair of di�erent values. This is illustrated in Figure 7. In the �gure,
the categories are indicated by font size; the larger Ui's belong to one category, and the
smaller to another. For each distinct placement of the coe�cient am, OC1 computes the
impurity of the resulting split; e.g., for the location between U6 and U7 illustrated here, two
examples on the left and one example on the right would be misclassi�ed (see Section 3.3.1
for di�erent ways of computing impurity). As the �gure illustrates, the problem is simply
to �nd the best one-dimensional split of the Us, which requires considering just n�1 values
for am. The value a0m obtained by solving this one-dimensional problem is then considered


data under�ts the concept. By default, OC1 uses only axis-parallel splits at tree nodes at which n < 2d.
The user can vary this threshold.
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Figure 7: Finding the optimal value for a single coe�cient am. Large U's correspond to
examples in one category and small u's to another.


Perturb(H,m)
For j = 1; : : : ; n


Compute Uj (Eq. 2)
Sort U1; : : : ; Un in non-decreasing order.
a0m = best univariate split of the sorted Ujs.
H1 = result of substituting a0m for am in H.
If (impurity(H1) < impurity(H))


f am = a0m ; Pmove = Pstag g
Else if (impurity(H) = impurity(H1))


f am = a0m with probability Pmove


Pmove = Pmove � 0:1 � Pstag g


Figure 8: Perturbation algorithm for a single coe�cient am.


as a replacement for am. Let H1 be the hyperplane obtained by \perturbing" am to a0m. If
H has better (lower) impurity than H1, then H1 is discarded. If H1 has lower impurity, H1


becomes the new location of the hyperplane. If H and H1 have identical impurities, then
H1 replaces H with probability Pstag .


5 Figure 8 contains pseudocode for our perturbation
procedure.


Now that we have a method for locally improving a coe�cient of a hyperplane, we need
to decide which of the d + 1 coe�cients to pick for perturbation. We experimented with
three di�erent methods for choosing which coe�cient to adjust, namely, sequential, best
�rst and random.


Seq: Repeat until none of the coe�cient values is modi�ed in the For loop:
For i = 1 to d, Perturb(H; i)


Best: Repeat until coe�cient m remains unmodi�ed:
m = coe�cient which when perturbed, results in the


maximum improvement of the impurity measure.
Perturb(H;m)


R-50: Repeat a �xed number of times (50 in our experiments):
m = random integer between 1 and d+ 1
Perturb(H;m)


5. The parameter Pstag, denoting \stagnation probability", is the probability that a hyperplane is perturbed
to a location that does not change the impurity measure. To prevent the impurity from remaining
stagnant for a long time, Pstag decreases by a constant amount each time OC1 makes a \stagnant"
perturbation; thus only a constant number of such perturbations will occur at each node. This constant
can be set by the user. Pstag is reset to 1 every time the global impurity measure is improved.
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Our previous experiments (Murthy et al., 1993) indicated that the order of perturbation
of the coe�cients does not a�ect the classi�cation accuracy as much as other parameters,
especially the randomization parameters (see below). Since none of these orders was uni-
formly better than any other, we used sequential (Seq) perturbation for all the experiments
reported in Section 4.


3.2 Randomization


The perturbation algorithm halts when the split reaches a local minimum of the impurity
measure. For OC1's search space, a local minimum occurs when no perturbation of any
single coe�cient of the current hyperplane will decrease the impurity measure. (Of course,
a local minimum may also be a global minimum.) We have implemented two ways of
attempting to escape local minima: perturbing the hyperplane with a random vector, and
re-starting the perturbation algorithm with a di�erent random initial hyperplane.


The technique of perturbing the hyperplane with a random vector works as follows.
When the system reaches a local minimum, it chooses a random vector to add to the
coe�cients of the current hyperplane. It then computes the optimal amount by which the
hyperplane should be perturbed along this random direction. To be more precise, when
a hyperplane H =


Pd
i=1 aixi + ad+1 cannot be improved by deterministic perturbation,


OC1 repeats the following loop J times (where J is a user-speci�ed parameter, set to 5 by
default).


� Choose a random vector R = (r1; r2; : : : ; rd+1).


� Let � be the amount by which we want to perturb H in the direction R. In other
words, let H1 =


Pd
i=1 (ai + �ri)xi + (ad+1 + �rd+1).


� Find the optimal value for �.


� If the hyperplane H1 thus obtained decreases the overall impurity, replace H with H1,
exit this loop and begin the deterministic perturbation algorithm for the individual
coe�cients.


Note that we can treat � as the only variable in the equation for H1. Therefore each of the
n examples in T , if plugged into the equation for H1, imposes a constraint on the value of
�. OC1 therefore can use its coe�cient perturbation method (see Section 3.1) to compute
the best value of �. If J random jumps fail to improve the impurity, OC1 halts and uses
H as the split for the current tree node.


An intuitive way of understanding this random jump is to look at the dual space in which
the algorithm is actually searching. Note that the equation H =


Pd
i=1 aixi + ad+1 de�nes


a space in which the axes are the coe�cients ai rather than the attributes xi. Every point
in this space de�nes a distinct hyperplane in the original formulation. The deterministic
algorithm used in OC1 picks a hyperplane and then adjusts coe�cients one at a time. Thus
in the dual space, OC1 chooses a point and perturbs it by moving it parallel to the axes.
The random vector R represents a random direction in this space. By �nding the best value
for �, OC1 �nds the best distance to adjust the hyperplane in the direction of R.
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Note that this additional perturbation in a random direction does not signi�cantly in-
crease the time complexity of the algorithm (see Appendix A). We found in our experiments
that even a single random jump, when used at a local minimum, proves to be very helpful.
Classi�cation accuracy improved for every one of our data sets when such perturbations
were made. See Section 4.3 for some examples.


The second technique for avoiding local minima is a variation on the idea of performing
multiple local searches. The technique of multiple local searches is a natural extension
to local search, and has been widely mentioned in the optimization literature (see Roth
(1970) for an early example). Because most of the steps of our perturbation algorithm
are deterministic, the initial hyperplane largely determines which local minimum will be
encountered �rst. Perturbing a single initial hyperplane is thus unlikely to lead to the best
split of a given data set. In cases where the random perturbation method fails to escape
from local minima, it may be helpful to simply start afresh with a new initial hyperplane.
We use the word restart to denote one run of the perturbation algorithms, at one node of
the decision tree, using one random initial hyperplane.6 That is, a restart cycles through
and perturbs the coe�cients one at a time and then tries to perturb the hyperplane in a
random direction when the algorithm reaches a local minimum. If this last perturbation
reduces the impurity, the algorithm goes back to perturbing the coe�cients one at a time.
The restart ends when neither the deterministic local search nor the random jump can �nd
a better split. One of the optional parameters to OC1 speci�es how many restarts to use.
If more than one restart is used, then the best hyperplane found thus far is always saved.
In all our experiments, the classi�cation accuracies increased with more than one restart.
Accuracy tended to increase up to a point and then level o� (after about 20{50 restarts,
depending on the domain). Overall, the use of multiple initial hyperplanes substantially
improved the quality of the decision trees found (see Section 4.3 for some examples).


By carefully combining hill-climbing and randomization, OC1 ensures a worst case time
of O(dn2 logn) for inducing a decision tree. See Appendix A for a derivation of this upper
bound.


Best Axis-Parallel Split. It is clear that axis-parallel splits are more suitable for some
data distributions than oblique splits. To take into account such distributions, OC1 com-
putes the best axis-parallel split and an oblique split at each node, and then picks the better
of the two.7 Calculating the best axis-parallel split takes an additional O(dn logn) time,
and so does not increase the asymptotic time complexity of OC1. As a simple variant of
the OC1 system, the user can opt to \switch o�" the oblique perturbations, thus building
an axis-parallel tree on the training data. Section 4.2 empirically demonstrates that this
axis-parallel variant of OC1 compares favorably with existing axis-parallel algorithms.


6. The �rst run through the algorithm at each node always begins at the location of the best axis-parallel
hyperplane; all subsequent restarts begin at random locations.


7. Sometimes a simple axis-parallel split is preferable to an oblique split, even if the oblique split has slightly
lower impurity. The user can specify such a bias as an input parameter to OC1.
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3.3 Other Details


3.3.1 Impurity Measures


OC1 attempts to divide the d-dimensional attribute space into homogeneous regions; i.e.,
regions that contain examples from just one category. The goal of adding new nodes to
a tree is to split up the sample space so as to minimize the \impurity" of the training
set. Some algorithms measure \goodness" instead of impurity, the di�erence being that
goodness values should be maximized while impurity should be minimized. Many di�erent
measures of impurity have been studied (Breiman et al., 1984; Quinlan, 1986; Mingers,
1989b; Buntine & Niblett, 1992; Fayyad & Irani, 1992; Heath et al., 1993b).


The OC1 system is designed to work with a large class of impurity measures. Stated
simply, if the impurity measure uses only the counts of examples belonging to every category
on both sides of a split, then OC1 can use it. (See Murthy and Salzberg (1994) for ways of
mapping other kinds of impurity measures to this class of impurity measures.) The user can
plug in any impurity measure that �ts this description. The OC1 implementation includes
six impurity measures, namely:


1. Information Gain
2. The Gini Index
3. The Twoing Rule
4. Max Minority
5. Sum Minority
6. Sum of Variances


Though all six of the measures have been de�ned elsewhere in the literature, in some
cases we have made slight modi�cations that are de�ned precisely in Appendix B. Our
experiments indicated that, on average, Information Gain, Gini Index and the Twoing Rule
perform better than the other three measures for both axis-parallel and oblique trees. The
Twoing Rule is the current default impurity measure for OC1, and it was used in all of
the experiments reported in Section 4. There are, however, arti�cial data sets for which
Sum Minority and/or Max Minority perform much better than the rest of the measures.
For instance, Sum Minority easily induces the exact tree for the POL data set described in
Section 4.3.1, while all other methods have di�culty �nding the best tree.


Twoing Rule. The Twoing Rule was �rst proposed by Breiman et al. (1984). The value
to be computed is de�ned as:


TwoingValue = (jTLj=n) � (jTRj=n) � (
kX


i=1


jLi=jTLj � Ri=jTRjj)
2


where jTLj (jTRj) is the number of examples on the left (right) of a split at node T , n is
the number of examples at node T , and Li (Ri) is the number of examples in category i on
the left (right) of the split. The TwoingValue is actually a goodness measure rather than
an impurity measure. Therefore OC1 attempts to minimize the reciprocal of this value.


The remaining �ve impurity measures implemented in OC1 are de�ned in Appendix B.
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3.3.2 Pruning


Virtually all decision tree induction systems prune the trees they create in order to avoid
over�tting the data. Many studies have found that judicious pruning results in both smaller
and more accurate classi�ers, for decision trees as well as other types of machine learning
systems (Quinlan, 1987; Niblett, 1986; Cestnik, Kononenko, & Bratko, 1987; Kodrato�
& Manago, 1987; Cohen, 1993; Hassibi & Stork, 1993; Wolpert, 1992; Scha�er, 1993).
For the OC1 system we implemented an existing pruning method, but note that any tree
pruning method will work �ne within OC1. Based on the experimental evaluations of
Mingers (1989a) and other work cited above, we chose Breiman et al.'s Cost Complexity
(CC) pruning (1984) as the default pruning method for OC1. This method, which is also
called Error Complexity or Weakest Link pruning, requires a separate pruning set. The
pruning set can be a randomly chosen subset of the training set, or it can be approximated
using cross validation. OC1 randomly chooses 10% (the default value) of the training data
to use for pruning. In the experiments reported below, we only used this default value.


Briey, the idea behind CC pruning is to create a set of trees of decreasing size from the
original, complete tree. All these trees are used to classify the pruning set, and accuracy is
estimated from that. CC pruning then chooses the smallest tree whose accuracy is within k
standard errors squared of the best accuracy obtained. When the 0-SE rule (k = 0) is used,
the tree with highest accuracy on the pruning set is selected. When k > 0, smaller tree size
is preferred over higher accuracy. For details of Cost Complexity pruning, see Breiman et
al. (1984) or Mingers (1989a).


3.3.3 Irrelevant attributes


Irrelevant attributes pose a signi�cant problem for most machine learning methods (Breiman
et al., 1984; Aha, 1990; Almuallin & Dietterich, 1991; Kira & Rendell, 1992; Salzberg, 1992;
Cardie, 1993; Schlimmer, 1993; Langley & Sage, 1993; Brodley & Utgo�, 1994). Decision
tree algorithms, even axis-parallel ones, can be confused by too many irrelevant attributes.
Because oblique decision trees learn the coe�cients of each attribute at a DT node, one
might hope that the values chosen for each coe�cient would reect the relative importance
of the corresponding attributes. Clearly, though, the process of searching for good coe�cient
values will be much more e�cient when there are fewer attributes; the search space is much
smaller. For this reason, oblique DT induction methods can bene�t substantially by using a
feature selection method (an algorithm that selects a subset of the original attribute set) in
conjunction with the coe�cient learning algorithm (Breiman et al., 1984; Brodley & Utgo�,
1994).


Currently, OC1 does not have a built-in mechanism to select relevant attributes. How-
ever, it is easy to include any of several standard methods (e.g., stepwise forward selection
or stepwise backward selection) or even an ad hoc method to select features before running
the tree-building process. For example, in separate experiments on data from the Hubble
Space Telescope (Salzberg, Chandar, Ford, Murthy, & White, 1994), we used feature selec-
tion methods as a preprocessing step to OC1, and reduced the number of attributes from 20
to 2. The resulting decision trees were both simpler and more accurate. Work is currently
underway to incorporate an e�cient feature selection technique into the OC1 system.
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Regarding missing values, if an example is missing a value for any attribute, OC1 uses
the mean value for that attribute. One can of course use other techniques for handling
missing values, but those were not considered in this study.


4. Experiments


In this section, we present two sets of experiments to support the following two claims.


1. OC1 compares favorably over a variety of real-world domains with several existing
axis-parallel and oblique decision tree induction methods.


2. Randomization, both in the form of multiple local searches and random jumps, im-
proves the quality of decision trees produced by OC1.


The experimental method used for all the experiments is described in Section 4.1. Sec-
tions 4.2 and 4.3 describe experiments corresponding to the above two claims. Each experi-
mental section begins with a description of the data sets, and then presents the experimental
results and discussion.


4.1 Experimental Method


We used �ve-fold cross validation (CV) in all our experiments to estimate classi�cation
accuracy. A k-fold CV experiment consists of the following steps.


1. Randomly divide the data into k equal-sized disjoint partitions.
2. For each partition, build a decision tree using all data outside the partition, and test


the tree on the data in the partition.
3. Sum the number of correct classi�cations of the k trees and divide by the total number


of instances to compute the classi�cation accuracy. Report this accuracy and the
average size of the k trees.


Each entry in Tables 1 and 2 is a result of ten 5-fold CV experiments; i.e., the result of tests
that used 50 decision trees. Each of the ten 5-fold cross validations used a di�erent random
partitioning of the data. Each entry in the tables reports the mean and standard deviation
of the classi�cation accuracy, followed by the mean and standard deviation of the decision
tree size (measured as the number of leaf nodes). Good results should have high values for
accuracy, low values for tree size, and small standard deviations.


In addition to OC1, we also included in the experiments an axis-parallel version of OC1,
which only considers axis-parallel hyperplanes. We call this version, described in Section 3.2,
OC1-AP. In all our experiments, both OC1 and OC1-AP used the Twoing Rule (Section
3.3.1) to measure impurity. Other parameters to OC1 took their default values unless stated
otherwise. (Defaults include the following: number of restarts at each node: 20. Number
of random jumps attempted at each local minimum: 5. Order of coe�cient perturbation:
Sequential. Pruning method: Cost Complexity with the 0-SE rule, using 10% of the training
set exclusively for pruning.)


In our comparison, we used the oblique version of the CART algorithm, CART-LC.
We implemented our own version of CART-LC, following the description in Breiman et
al. (1984, Chapter 5); however, there may be di�erences between our version and other
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versions of this system (note that CART-LC is not freely available). Our implementation
of CART-LC measured impurity with the Twoing Rule and used 0-SE Cost Complexity
pruning with a separate test set, just as OC1 does. We did not include any feature selection
methods in CART-LC or in OC1, and we did not implement normalization. Because the
CART coe�cient perturbation algorithm may alternate inde�nitely between two locations
of a hyperplane (see Section 2), we imposed an arbitrary limit of 100 such perturbations
before forcing the perturbation algorithm to halt.


We also included axis-parallel CART and C4.5 in our comparisons. We used the im-
plementations of these algorithms from the IND 2.1 package (Buntine, 1992). The default
cart0 and c4.5 \styles" de�ned in the package were used, without altering any parameter
settings. The cart0 style uses the Twoing Rule and 0-SE cost complexity pruning with
10-fold cross validation. The pruning method, impurity measure and other defaults of the
c4.5 style are the same as those described in Quinlan (1993a).


4.2 OC1 vs. Other Decision Tree Induction Methods


Table 1 compares the performance of OC1 to three well-known decision tree induction
methods plus OC1-AP on six di�erent real-world data sets. In the next section we will
consider arti�cial data, for which the concept de�nition can be precisely characterized.


4.2.1 Description of Data Sets


Star/Galaxy Discrimination. Two of our data sets came from a large set of astronom-
ical images collected by Odewahn et al. (Odewahn, Stockwell, Pennington, Humphreys, &
Zumach, 1992). In their study, they used these images to train arti�cial neural networks
running the perceptron and back propagation algorithms. The goal was to classify each ex-
ample as either \star" or \galaxy." Each image is characterized by 14 real-valued attributes,
where the attributes were measurements de�ned by astronomers as likely to be relevant for
this task. The objects in the image were divided by Odewahn et al. into \bright" and \dim"
data sets based on the image intensity values, where the dim images are inherently more
di�cult to classify. (Note that the \bright" objects are only bright in relation to others
in this data set. In actuality they are extremely faint, visible only to the most powerful
telescopes.) The bright set contains 2462 objects and the dim set contains 4192 objects.


In addition to the results reported in Table 1, the following results have appeared on
the Star/Galaxy data. Odewahn et al. (1992) reported accuracy of 99.8% accuracy on the
bright objects, and 92.0% on the dim ones, although it should be noted that this study
used a single training and test set partition. Heath (1992) reported 99.0% accuracy on the
bright objects using SADT, with an average tree size of 7.03 leaves. This study also used
a single training and test set. Salzberg (1992) reported accuracies of 98.8% on the bright
objects, and 95.1% on the dim objects, using 1-Nearest Neighbor (1-NN) coupled with a
feature selection method that reduces the number of features.


Breast Cancer Diagnosis. Mangasarian and Bennett have compiled data on the prob-
lem of diagnosing breast cancer to test several new classi�cation methods (Mangasarian
et al., 1990; Bennett & Mangasarian, 1992, 1994a). This data represents a set of patients
with breast cancer, where each patient was characterized by nine numeric attributes plus
the diagnosis of the tumor as benign or malignant. The data set currently has 683 entries
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Algorithm Bright S/G Dim S/G Cancer Iris Housing Diabetes


OC1 98.9�0.2 95.0�0.3 96.2�0.3 94.7�3.1 82.4�0.8 74.4�1.0
4.3�1.0 13.0�8.7 2.8�0.9 3.1�0.2 6.9�3.2 5.4�3.8


CART-LC 98.8�0.2 92.8�0.5 95.3�0.6 93.5�2.9 81.4�1.2 73.7�1.2
3.9�1.3 24.2�8.7 3.5�0.9 3.2�0.3 5.8�3.2 8.0�5.2


OC1-AP 98.1�0.2 94.0�0.2 94.5�0.5 92.7�2.4 81.8�1.0 73.8�1.0
6.9�2.4 29.3�8.8 6.4�1.7 3.2�0.3 8.6�4.5 11.4�7.5


CART-AP 98.5�0.5 94.2�0.7 95.0�1.6 93.8�3.7 82.1�3.5 73.9�3.4
13.9�5.7 30.4�10 11.5�7.2 4.3�1.6 15.1�10 11.5�9.1


C4.5 98.5�0.5 93.3�0.8 95.3�2.0 95.1�3.2 83.2�3.1 71.4�3.3
14.3�2.2 77.9�7.4 9.8�2.2 4.6�0.8 28.2�3.3 56.3�7.9


Table 1: Comparison of OC1 and other decision tree induction methods on six di�erent
data sets. The �rst line for each method gives accuracies, and the second line gives
average tree sizes. The highest accuracy for each domain appears in boldface.


and is available from the UC Irvine machine learning repository (Murphy & Aha, 1994).
Heath et al. (1993b) reported 94.9% accuracy on a subset of this data set (it then had
only 470 instances), with an average decision tree size of 4.6 nodes, using SADT. Salzberg
(1991) reported 96.0% accuracy using 1-NN on the same (smaller) data set. Herman and
Yeung (1992) reported 99.0% accuracy using piece-wise linear classi�cation, again using a
somewhat smaller data set.


Classifying Irises. This is Fisher's famous iris data, which has been extensively studied
in the statistics and machine learning literature. The data consists of 150 examples, where
each example is described by four numeric attributes. There are 50 examples of each of
three di�erent types of iris ower. Weiss and Kapouleas (1989) obtained accuracies of 96.7%
and 96.0% on this data with back propagation and 1-NN, respectively.


Housing Costs in Boston. This data set, also available as a part of the UCI ML repos-
itory, describes housing values in the suburbs of Boston as a function of 12 continuous
attributes and 1 binary attribute (Harrison & Rubinfeld, 1978). The category variable (me-
dian value of owner-occupied homes) is actually continuous, but we discretized it so that
category = 1 if value < $21000, and 2 otherwise. For other uses of this data, see (Belsley,
1980; Quinlan, 1993b).


Diabetes diagnosis. This data catalogs the presence or absence of diabetes among Pima
Indian females, 21 years or older, as a function of eight numeric-valued attributes. The
original source of the data is the National Institute of Diabetes and Digestive and Kidney
Diseases, and it is now available in the UCI repository. Smith et al. (1988) reported 76%
accuracy on this data using their ADAP learning algorithm, using a di�erent experimental
method from that used here.


18







Induction of Oblique Decision Trees


4.2.2 Discussion


The table shows that, for the six data sets considered here, OC1 consistently �nds better
trees than the original oblique CART method. Its accuracy was greater in all six domains,
although the di�erence was signi�cant (more than 2 standard deviations) only for the dim
star/galaxy problem. The average tree sizes were roughly equal for �ve of the six domains,
and for the dim stars and galaxies, OC1 found considerably smaller trees. These di�erences
will be analyzed and quanti�ed further by using arti�cial data, in the following section.


Out of the �ve decision tree induction methods, OC1 has the highest accuracy on four
of the six domains: bright stars, dim stars, cancer diagnosis, and diabetes diagnosis. On the
remaining two domains, OC1 has the second highest accuracy in each case. Not surprisingly,
the oblique methods (OC1 and CART-LC) generally �nd much smaller trees than the axis-
parallel methods. This di�erence can be quite striking for some domains|note, for example,
that OC1 produced a tree with just 13 nodes on average for the dim star/galaxy problem,
while C4.5 produced a tree with 78 nodes, 6 times larger. Of course, in domains for which
an axis-parallel tree is the appropriate representation, axis-parallel methods should compare
well with oblique methods in terms of tree size. In fact, for the Iris data, all the methods
found similar-sized trees.


4.3 Randomization Helps OC1


In our second set of experiments, we examine more closely the e�ect of introducing random-
ized steps into the algorithm for �nding oblique splits. Our experiments demonstrate that
OC1's ability to produce an accurate tree from a set of training data is clearly enhanced
by the two kinds of randomization it uses. More precisely, we use three arti�cial data sets
(for which the underlying concept is known to the experimenters) to show that OC1's per-
formance improves substantially when the deterministic hill climbing is augmented in any
of three ways:


� with multiple restarts from random initial locations,


� with perturbations in random directions at local minima, or


� with both of the above randomization steps.


In order to �nd clear di�erences between algorithms, one needs to know that the concept
underlying the data is indeed di�cult to learn. For simple concepts (say, two linearly
separable classes in 2-D), many di�erent learning algorithms will produce very accurate
classi�ers, and therefore the advantages of randomization may not be detectable. It is
known that many of the commonly-used data sets from the UCI repository are easy to
learn with very simple representations (Holte, 1993); therefore those data sets may not be
ideal for our purposes. Thus we created a number of arti�cial data sets that present di�erent
problems for learning, and for which we know the \correct" concept de�nition. This allows
us to quantify more precisely how the parameters of our algorithm a�ect its performance.


A second purpose of this experiment is to compare OC1's search strategy with that
of two existing oblique decision tree induction systems { LMDT (Brodley & Utgo�, 1992)
and SADT (Heath et al., 1993b). We show that the quality of trees induced by OC1 is as
good as, if not better than, that of the trees induced by these existing systems on three
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arti�cial domains. We also show that OC1 achieves a good balance between amount of
e�ort expended in search and the quality of the tree induced.


Both LMDT and SADT used information gain for this experiment. However, we did
not change OC1's default measure (the Twoing Rule) because we observed, in experiments
not reported here, that OC1 with information gain does not produce signi�cantly di�erent
results. The maximum number of successive, unproductive perturbations allowed at any
node was set at 10000 for SADT. For all other parameters, we used default settings provided
with the systems.


4.3.1 Description of Artificial Data


LS10 The LS10 data set has 2000 instances divided into two categories. Each instance is
described by ten attributes x1,: : : ,x10, whose values are uniformly distributed in the range
[0,1]. The data is linearly separable with a 10-D hyperplane (thus the name LS10) de�ned
by the equation x1 + x2 + x3 + x4 + x5 < x6 + x7 + x8 + x9 + x10. The instances were all
generated randomly and labelled according to which side of this hyperplane they fell on.
Because oblique DT induction methods intuitively should prefer a linear separator if one
exists, it is interesting to compare the various search techniques on this data set where we
know a separator exists. The task is relatively simple for lower dimensions, so we chose
10-dimensional data to make it more di�cult.


POL This data set is shown in Figure 9. It has 2000 instances in two dimensions, again
divided into two categories. The underlying concept is a set of four parallel oblique lines
(thus the name POL), dividing the instances into �ve homogeneous regions. This concept is
more di�cult to learn than a single linear separator, but the minimal-size tree is still quite
small.


RCB RCB stands for \rotated checker board"; this data set has been the subject of
other experiments on hard classi�cation problems for decision trees (Murthy & Salzberg,
1994). The data set, shown in Figure 9, has 2000 instances in 2-D, each belonging to one of
eight categories. This concept is di�cult to learn for any axis-parallel method, for obvious
reasons. It is also quite di�cult for oblique methods, for several reasons. The biggest
problem is that the \correct" root node, as shown in the �gure, does not separate out any
class by itself. Some impurity measures (such as Sum Minority) will fail miserably on this
problem, although others (e.g., the Twoing Rule) work much better. Another problem is
that a deterministic coe�cient perturbation algorithm can get stuck in local minima in
many places on this data set.


Table 2 summarizes the results of this experiment in three smaller tables, one for each
data set. In each smaller table, we compare four variants of OC1 with LMDT and SADT.
The di�erent results for OC1 were obtained by varying both the number of restarts and the
number of random jumps. When random jumps were used, up to twenty random jumps
were tried at each local minimum. As soon as one was found that improved the impurity
of the current hyperplane, the algorithm moved the hyperplane and started running the
deterministic perturbation procedure again. If none of the 20 random jumps improved the
impurity, the search halted and further restarts (if any) were tried. The same training and
test partitions were used for all methods for each cross-validation run (recall that the results
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Figure 9: The POL and RCB data sets


Linearly Separable 10-D (LS10) data


R:J Accuracy Size Hyperplanes


0:0 89.8�1.2 67.0�5.8 2756
0:20 91.5�1.5 55.2�7.0 3824
20:0 95.0�0.6 25.6�2.4 24913
20:20 97.2�0.7 13.9�3.2 30366


LMDT 99.7�0.2 2.2�0.5 9089


SADT 95.2�1.8 15.5�5.7 349067


Parallel Oblique Lines (POL) data


R:J Accuracy Size Hyperplanes


0:0 98.3�0.3 21.6�1.9 164
0:20 99.3�0.2 9.0�1.0 360
20:0 99.1�0.2 14.2�1.1 3230
20:20 99.6�0.1 5.5�0.3 4852


LMDT 89.6�10.2 41.9�19.2 1732


SADT 99.3�0.4 8.4�2.1 85594


Rotated Checker Board (RCB) data


R:J Accuracy Size Hyperplanes


0:0 98.4�0.2 35.5�1.4 573
0:20 99.3�0.3 19.7�0.8 1778
20:0 99.6�0.2 12.0�1.4 6436
20:20 99.8�0.1 8.7�0.4 11634


LMDT 95.7�2.3 70.1�9.6 2451


SADT 97.9�1.1 32.5�4.9 359112


Table 2: The e�ect of randomization in OC1. The �rst column, labelled R:J, shows the
number of restarts (R) followed by the maximum number of random jumps (J)
attempted by OC1 at each local minimum. Results with LMDT and SADT are
included for comparison after the four variants of OC1. Size is average tree size
measured by the number of leaf nodes. The third column shows the average
number of hyperplanes each algorithm considered while building one tree.
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are an average of ten 5-fold CVs). The trees were not pruned for any of the algorithms,
because the data were noise-free and furthermore the emphasis was on search.


Table 2 also includes the number of hyperplanes considered by each algorithm while
building a complete tree. Note that for OC1 and SADT, the number of hyperplanes con-
sidered is generally much larger than the number of perturbations actually made, because
both these algorithms compare newly generated hyperplanes to existing hyperplanes before
adjusting an existing one. Nevertheless, this number is a good estimate of much e�ort
each algorithm expends, because every new hyperplane must be evaluated according to the
impurity measure. For LMDT, the number of hyperplanes considered is identical to the
actual number of perturbations.


4.3.2 Discussion


The OC1 results here are quite clear. The �rst line of each table, labelled 0:0, gives the
accuracies and tree sizes when no randomization is used | this variant is very similar
to the CART-LC algorithm. As we increase the use of randomization, accuracy increases
while tree size decreases, which is exactly the result we had hoped for when we decided to
introduce randomization into the method.


Looking more closely at the tables, we can ask about the e�ect of random jumps alone.
This is illustrated in the second line (0:20) of each table, which attempted up to 20 random
jumps at each local minimum and no restarts. Accuracy increased by 1-2% on each domain,
and tree size decreased dramatically, roughly by a factor of two, in the POL and RCB
domains. Note that because there is no noise in these domains, very high accuracies should
be expected. Thus increases of more than a few percent in accuracy are not possible.


Looking at the third line of each sub-table in Table 2, we see the e�ect of multiple restarts
on OC1. With 20 restarts but no random jumps to escape local minima, the improvement
is even more noticeable for the LS10 data than when random jumps alone were used. For
this data set, accuracy jumped signi�cantly, from 89.8 to 95.0%, while tree size dropped
from 67 to 26 nodes. For the POL and RCB data, the improvements were comparable to
those obtained with random jumps. For the RCB data, tree size dropped by a factor of 3
(from 36 leaf nodes to 12 leaf nodes) while accuracy increased from 98.4 to 99.6%.


The fourth line of each table shows the e�ect of both the randomized steps. Among the
OC1 entries, this line has both the highest accuracies and the smallest trees for all three
data sets, so it is clear that randomization is a big win for these kinds of problems. In
addition, note that the smallest tree for the RCB data should have eight leaf nodes, and
OC1's average trees, without pruning, had just 8.7 leaf nodes. It is clear that for this data
set, which we thought was the most di�cult one, OC1 came very close to �nding the optimal
tree on nearly every run. (Recall that numbers in the table are the average of 10 5-fold
CV experiments; i.e., an average of 50 decision trees.) The LS10 data show how di�cult it
can be to �nd a very simple concept in higher dimensions|the optimal tree there is just a
single hyperplane (two nodes), but OC1 was unable to �nd it with the current parameter
settings.8 The POL data required a minimum of 5 leaf nodes, and OC1 found this minimal-
size tree most of the time, as can be seen from the table. Although not shown in the Table,


8. In a separate experiment, we found that OC1 consistently �nds the linear separator for the LS10 data
when 10 restarts and 200 random jumps are used.
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OC1 using Sum Minority performed better for the POL data than the Twoing Rule or any
other impurity measure; i.e., it found the correct tree using less time.


The results of LMDT and SADT on this data lead to some interesting insights. Not
surprisingly, LMDT does very well on the linearly separable (LS10) data, and does not
require an inordinate amount of search. Clearly, if the data is linearly separable, one should
use a method such as LMDT or linear programming. OC1 and SADT have di�culty �nding
the linear separator, although in our experiments OC1 did eventually �nd it, given su�cient
time.


On the other hand, for both of the non-linearly separable data sets, LMDT produces
much larger trees that are signi�cantly less accurate than those produced by OC1 and
SADT. Even the deterministic variant of OC1 (using zero restarts and zero random jumps)
outperforms LMDT on these problems, with much less search.


Although SADT sometimes produces very accurate trees, its main weakness was the
enormous amount of search time it required, roughly 10-20 times greater than OC1 even
using the 20:20 setting. One explanation of OC1's advantage is its use of directed search, as
opposed to the strictly random search used by simulated annealing. Overall, Table 2 shows
that OC1's use of randomization was quite e�ective for the non-linearly separable data.


It is natural to ask why randomization helps OC1 in the task of inducing decision trees.
Researchers in combinatorial optimization have observed that randomized search usually
succeeds when the search space holds an abundance of good solutions (Gupta, Smolka,
& Bhaskar, 1994). Furthermore, randomization can improve upon deterministic search
when many of the local maxima in a search space lead to poor solutions. In OC1's search
space, a local maximum is a hyperplane that cannot be improved by the deterministic
search procedure, and a \solution" is a complete decision tree. If a signi�cant fraction
of local maxima lead to bad trees, then algorithms that stop at the �rst local maximum
they encounter will perform poorly. Because randomization allows OC1 to consider many
di�erent local maxima, if a modest percentage of these maxima lead to good trees, then it
has a good chance of �nding one of those trees. Our experiments with OC1 thus far indicate
that the space of oblique hyperplanes usually contains numerous local maxima, and that a
substantial percentage of these locally good hyperplanes lead to good decision trees.


5. Conclusions and Future Work


This paper has described OC1, a new system for constructing oblique decision trees. We
have shown experimentally that OC1 can produce good classi�ers for a range of real-world
and arti�cial domains. We have also shown how the use of randomization improves upon
the original algorithm proposed by Breiman et al. (1984), without signi�cantly increasing
the computational cost of the algorithm.


The use of randomization might also be bene�cial for axis-parallel tree methods. Note
that although they do �nd the optimal test (with respect to an impurity measure) for each
node of a tree, the complete tree may not be optimal: as is well known, the problem of
�nding the smallest tree is NP-Complete (Hya�l & Rivest, 1976). Thus even axis-parallel
decision tree methods do not produce \ideal" decision trees. Quinlan has suggested that his
windowing algorithm might be used as a way of introducing randomization into C4.5, even
though the algorithm was designed for another purpose (Quinlan, 1993a). (The windowing
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algorithm selects a random subset of the training data and builds a tree using that.) We
believe that randomization is a powerful tool in the context of decision trees, and our
experiments are just one example of how it might be exploited. We are in the process of
conducting further experiments to quantify more accurately the e�ects of di�erent forms of
randomization.


It should be clear that the ability to produce oblique splits at a node broadens the capa-
bilities of decision tree algorithms, especially as regards domains with numeric attributes.
Of course, axis-parallel splits are simpler, in the sense that the description of the split only
uses one attribute at each node. OC1 uses oblique splits only when their impurity is less
than the impurity of the best axis-parallel split; however, one could easily penalize the
additional complexity of an oblique split further. This remains an open area for further
research. A more general point is that if the domain is best captured by a tree that uses
oblique hyperplanes, it is desirable to have a system that can generate that tree. We have
shown that for some problems, including those used in our experiments, OC1 builds small
decision trees that capture the domain well.


Appendix A. Complexity Analysis of OC1


In the following, we show that OC1 runs e�ciently even in the worst case. For a data
set with n examples (points) and d attributes per example, OC1 uses at most O(dn2 logn)
time. We assume n > d for our analysis.


For the analysis here, we assume the coe�cients of a hyperplane are adjusted in sequen-
tial order (the Seq method described in the paper). The number of restarts at a node will
be r, and the number of random jumps tried will be j. Both r and j are constants, �xed in
advance of running the algorithm.


Initializing the hyperplane to a random position takes just O(d) time. We need to
consider �rst the maximum amount of work OC1 can do before it �nds a new location for
the hyperplane. Then we need to consider how many times it can move the hyperplane.


1. Attempting to perturb the �rst coe�cient (a1) takes O(dn+n logn) time. Computing
Ui's for all the points (equation 2) requires O(dn) time, and sorting the Ui's takes
O(n logn). This gives us O(dn+ n logn) work.


2. If perturbing a1 does not improve things, we try to perturb a2. Computing all the new
Ui's will take just O(n) time because only one term is di�erent for each Ui. Re-sorting
will take O(n logn), so this step takes O(n) + O(n logn) = O(n logn) time.


3. Likewise a3; : : : ; ad will each takeO(n logn) additional time, assuming we still have not
found a better hyperplane after checking each coe�cient. Thus the total time to cycle
through and attempt to perturb all these additional coe�cients is (d�1)�O(n logn) =
O(dn logn).


4. Summing up, the time to cycle through all coe�cients is O(dn logn)+O(dn+n log n) =
O(dn logn).


5. If none of the coe�cients improved the split, then we attempt to make up to j random
jumps. Since j is a constant, we will just consider j = 1 for our analysis. This step
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involves choosing a random vector and running the perturbation algorithm to solve
for �, as explained in Section 3.2. As before, we need to compute a set of Ui's and sort
them, which takes O(dn+n logn) time. Because this amount of time is dominated by
the time to adjust all the coe�cients, the total time so far is still O(dn logn). This is
the most time OC1 can spend at a node before either halting or �nding an improved
hyperplane.


6. Assuming OC1 is using the Sum Minority or Max Minority error measure, it can only
reduce the impurity of the hyperplane n times. This is clear because each improvement
means one more example will be correctly classi�ed by the new hyperplane. Thus the
total amount of work at a node is limited to n � O(dn logn) = O(dn2 log n). (This
analysis extends, with at most linear cost factors, to Information Gain, Gini Index and
Twoing Rule when there are two categories. It will not apply to a measure that, for
example, uses the distances of mis-classi�ed objects to the hyperplane.) In practice,
we have found that the number of improvements per node is much smaller than n.


Assuming that OC1 only adjusts a hyperplane when it improves the impurity measure,
it will do O(dn2 log n) work in the worst case.


However, OC1 allows a certain number of adjustments to the hyperplane that do not
improve the impurity, although it will never accept a change that worsens the impurity.
The number allowed is determined by a constant known as \stagnant-perturbations". Let
this value be s. This works as follows.


Each time OC1 �nds a new hyperplane that improves on the old one, it resets a counter
to zero. It will move the new hyperplane to a di�erent location that has equal impurity at
most s times. After each of these moves it repeats the perturbation algorithm. Whenever
impurity is reduced, it re-starts the counter and again allows s moves to equally good
locations. Thus it is clear that this feature just increases the worst-case complexity of OC1
by a constant factor, s.


Finally, note that the overall cost of OC1 is also O(dn2 logn), i.e., this is an upper
bound on the total running time of OC1 independent of the size of the tree it ends up
creating. (This upper bound applies to Sum Minority and Max Minority; an open question
is whether a similar upper bound can be proven for Information Gain or the Gini Index.)
Thus the worst-case asymptotic complexity of our system is comparable to that of systems
that construct axis-parallel decision trees, which have O(dn2) worst-case complexity. To
sketch the intuition that leads to this bound, let G be the total impurity summed over all
leaves in a partially constructed tree (i.e., the sum of currently misclassi�ed points in the
tree). Now observe that each time we run the perturbation algorithm on any node in the
tree, we either halt or improve G by at least one unit. The worst-case analysis for one node
is realized when the perturbation algorithm is run once for every one of the n examples,
but when this happens, there would no longer be any mis-classi�ed examples and the tree
would be complete.


Appendix B. De�nitions of impurity measures available in OC1


In addition to the Twoing Rule de�ned in the text, OC1 contains built-in de�nitions of �ve
additional impurity measures, de�ned as follows. In each of the following de�nitions, the
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set of examples T at the node about to be split contains n (> 0) instances that belong to
one of k categories. (Initially this set is the entire training set.) A hyperplane H divides T
into two non-overlapping subsets TL and TR (i.e., left and right). Lj and Rj are the number
of instances of category j in TL and TR respectively. All the impurity measures initially
check to see if TL and TR are homogeneous (i.e., all examples belong to the same category),
and if so return minimum (zero) impurity.


Information Gain. This measure of information gained from a particular split was pop-
ularized in the context of decision trees by Quinlan (1986). Quinlan's de�nition makes
information gain a goodness measure; i.e., something to maximize. Because OC1 attempts
to minimize whatever impurity measure it uses, we use the reciprocal of the standard value
of information gain in the OC1 implementation.


Gini Index. The Gini Criterion (or Index) was proposed for decision trees by Breiman et
al. (1984). The Gini Index as originally de�ned measures the probability of misclassi�cation
of a set of instances, rather than the impurity of a split. We implement the following
variation:


GiniL = 1:0�
kX


i=1


(Li=jTLj)
2


GiniR = 1:0�
kX


i=1


(Ri=jTRj)
2


Impurity = (jTLj �GiniL + jTRj �GiniR)=n


where GiniL is the Gini Index on the \left" side of the hyperplane and GiniR is that on the
right.


Max Minority. The measures Max Minority, Sum Minority and Sum Of Variances were
de�ned in the context of decision trees by Heath, Kasif, and Salzberg (1993b).9 Max
Minority has the theoretical advantage that a tree built minimizing this measure will have
depth at most logn. Our experiments indicated that this is not a great advantage in
practice: seldom do other impurity measures produce trees substantially deeper than those
produced with Max Minority. The de�nition is:


MinorityL =
kX


i=1;i6=maxLi


Li


MinorityR =
kX


i=1;i6=maxRi


Ri


Max Minority = max(MinorityL;MinorityR)


9. Sum Of Variances was called Sum of Impurities by Heath et al.
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Sum Minority. This measure is very similar to Max Minority. If MinorityL and Minor-
ityR are de�ned as for the Max Minority measure, then Sum Minority is just the sum of
these two values. This measure is the simplest way of quantifying impurity, as it simply
counts the number of misclassi�ed instances.


Though Sum Minority performs well on some domains, it has some obvious aws. As
one example, consider a domain in which n = 100; d = 1, and k = 2 (i.e., 100 examples, 1
numeric attribute, 2 classes). Suppose that when the examples are sorted according to the
single attribute, the �rst 50 instances belong to category 1, followed by 24 instances of cat-
egory 2, followed by 26 instances of category 1. Then all possible splits for this distribution
have a sum minority of 24. Therefore it is impossible when using Sum Minority to distin-
guish which split is preferable, although splitting at the alternations between categories is
clearly better.


Sum Of Variances. The de�nition of this measure is:


VarianceL =
jTLjX


i=1


(Cat(TLi)�
jTLjX


j=1


Cat(TLj)=jTLj)
2


VarianceR =
jTRjX


i=1


(Cat(TRi
)�


jTRjX


j=1


Cat(TRj
)=jTRj)


2


Sum of Variances = VarianceL + VarianceR


where Cat(Ti) is the category of instance Ti. As this measure is computed using the actual
class labels, it is easy to see that the impurity computed varies depending on how numbers
are assigned to the classes. For instance, if T1 consists of 10 points of category 1 and 3
points of category 2, and if T2 consists of 10 points of category 1 and 3 points of category
5, then the Sum Of Variances values are di�erent for T1 and T2. To avoid this problem,
OC1 uniformly reassigns category numbers according to the frequency of occurrence of each
category at a node before computing the Sum Of Variances.
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