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Abstract


Since its inception, arti�cial intelligence has relied upon a theoretical foundation cen-
tred around perfect rationality as the desired property of intelligent systems. We argue,
as others have done, that this foundation is inadequate because it imposes fundamentally
unsatis�able requirements. As a result, there has arisen a wide gap between theory and
practice in AI, hindering progress in the �eld. We propose instead a property called bounded


optimality. Roughly speaking, an agent is bounded-optimal if its program is a solution to
the constrained optimization problem presented by its architecture and the task environ-
ment. We show how to construct agents with this property for a simple class of machine
architectures in a broad class of real-time environments. We illustrate these results using
a simple model of an automated mail sorting facility. We also de�ne a weaker property,
asymptotic bounded optimality (ABO), that generalizes the notion of optimality in classical
complexity theory. We then construct universal ABO programs, i.e., programs that are
ABO no matter what real-time constraints are applied. Universal ABO programs can be
used as building blocks for more complex systems. We conclude with a discussion of the
prospects for bounded optimality as a theoretical basis for AI, and relate it to similar trends
in philosophy, economics, and game theory.


1. Introduction


Since before the beginning of arti�cial intelligence, philosophers, control theorists and
economists have looked for a satisfactory de�nition of rational behaviour. This is needed to
underpin theories of ethics, inductive learning, reasoning, optimal control, decision-making,


and economic modelling. Doyle (1983) has proposed that AI itself be de�ned as the com-
putational study of rational behaviour|e�ectively equating rational behaviour with intelli-
gence. The role of such de�nitions in AI is to ensure that theory and practice are correctly
aligned. If we de�ne some property P , then we hope to be able to design a system that


provably possesses property P . Theory meets practice when our systems exhibit P in real-
ity. Furthermore, that they exhibit P in reality should be something that we actually care
about. In a sense, the choice of what P to study determines the nature of the �eld.


There are a number of possible choices for P :


� Perfect rationality: the classical notion of rationality in economics and philosophy.
A perfectly rational agent acts at every instant in such a way as to maximize its
expected utility, given the information it has acquired from the environment. Since


action selection requires computation, and computation takes time, perfectly rational
agents do not exist for non-trivial environments.
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� Calculative rationality: the notion of rationality studied in AI. A calculatively rational
agent eventually returns what would have been the rational choice at the beginning of


its deliberation. There exist systems such as inuence diagram evaluators that exhibit


this property for a decision-theoretic de�nition of rational choice, and systems such
as nonlinear planners that exhibit it for a logical de�nition of rational choice. This


is assumed to be an interesting property for a system to exhibit since it constitutes
an \in-principle" capacity to do the right thing. Calculative rationality is of limited
value in practice, because the actual behaviour exhibited by such systems is absurdly
far from being rational; for example, a calculatively rational chess program will choose


the right move, but may take 1050 times too long to do so. As a result, AI system-
builders often ignore theoretical developments, being forced to rely on trial-and-error
engineering to achieve their goals. Even in simple domains such as chess, there is little
theory for designing and analysing high-performance programs.


� Metalevel rationality: a natural response to the problems of calculative rationality.
A metalevel rational system optimizes over the object-level computations to be per-


formed in the service of selecting actions. In other words, for each decision it �nds
the optimal combination of computation-sequence-plus-action, under the constraint
that the action must be selected by the computation. Full metalevel rationality is


seldom useful because the metalevel computations themselves take time, and the met-
alevel decision problem is often more di�cult than the object-level problem. Simple
approximations to metalevel rationality have proved useful in practice|for exam-


ple, metalevel policies that limit lookahead in chess programs|but these engineering


expedients merely serve to illustrate the lack of a theoretical basis for agent design.


� Bounded optimality: a bounded optimal agent behaves as well as possible given its


computational resources. Bounded optimality speci�es optimal programs rather than
optimal actions or optimal computation sequences. Only by the former approach
can we avoid placing constraints on intelligent agents that cannot be met by any


program. Actions and computations are, after all, generated by programs, and it is
over programs that designers have control.


We make three claims:


1. A system that exhibits bounded optimality is desirable in reality.


2. It is possible to construct provably bounded optimal programs.


3. Arti�cial intelligence can be usefully characterized as the study of bounded optimality,


particularly in the context of complex task environments and reasonably powerful


computing devices.


The �rst claim is unlikely to be controversial. This paper supports the second claim in


detail. The third claim may, or may not, stand the test of time.
We begin in section 2 with a necessarily brief discussion of the relationship between


bounded optimality and earlier notions of rationality. We note in particular that some im-


portant distinctions can be missed without precise de�nitions of terms. Thus in section 3 we
provide formal de�nitions of agents, their programs, their behaviour and their rationality.
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Together with formal descriptions of task environments, these elements allow us to prove
that a given agent exhibits bounded optimality. Section 4 examines a class of agent archi-


tectures for which the problem of generating bounded optimal con�gurations is e�ciently


soluble. The solution involves a class of interesting and practically relevant optimization
problems that do not appear to have been addressed in the scheduling literature. We il-


lustrate the results by showing how the throughput of an automated mail-sorting facility
might be improved. Section 5 initiates a discussion of how bounded optimal con�gurations
might be learned from experience in an environment. In section 6, we de�ne a weaker prop-
erty, asymptotic bounded optimality (ABO), that may be more robust and tractable than


the strict version of bounded optimality. In particular, we can construct universal ABO
programs. A program is universally ABO if it is ABO regardless of the speci�c form of
time dependence of the utility function.1 Universal ABO programs can therefore be used as
building blocks for more complex systems. We conclude with an assessment of the prospects


for further development of this approach to arti�cial intelligence.


2. Historical Perspective


The classical idea of perfect rationality, which developed from Aristotle's theories of ethics,
work by Arnauld and others on choice under uncertainty, and Mill's utilitarianism, was put
on a formal footing in decision theory by Ramsey (1931) and vonNeumann and Morgernstern
(1947). It stipulates that a rational agent always act so as to maximize its expected utility.


The expectation is taken according to the agent's own beliefs; thus, perfect rationality does
not require omniscience.


In arti�cial intelligence, the logical de�nition of rationality, known in philosophy as the


\practical syllogism", was put forward by McCarthy (1958), and reiterated strongly by
Newell (1981). Under this de�nition, an agent should take any action that it believes is
guaranteed to achieve any of its goals. If AI can be said to have had a theoretical foun-
dation, then this de�nition of rationality has provided it. McCarthy believed, probably


correctly, that in the early stages of the �eld it was important to concentrate on \epistemo-
logical adequacy" before \heuristic adequacy" | that is, capability in principle rather than


in practice. The methodology that has resulted involves designing programs that exhibit


calculative rationality, and then using various speedup techniques and approximations in
the hope of getting as close as possible to perfect rationality. Our belief, albeit unproven, is
that the simple agent designs that ful�ll the speci�cation of calculative rationality may not
provide good starting points from which to approach bounded optimality. Moreover, a the-


oretical foundation based on calculative rationality cannot provide the necessary guidance
in the search.


It is not clear that AI would have embarked on the quest for calculative rationality had it


not been operating in the halcyon days before formal intractability results were discovered.
One response to the spectre of complexity has been to rule it out of bounds. Levesque and
Brachman (1987) suggest limiting the complexity of the environment so that calculative and
perfect rationality coincide. Doyle and Patil (1991) argue strongly against this position.


1. This usage of the term \universal" derives from its use in the scheduling of randomized algorithms by
Luby, Sinclair and Zuckerman (1993).
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Economists have used perfect rationality as an abstract model of economic entities, for
the purposes of economic forecasting and designing market mechanisms. This makes it


possible to prove theorems about the properties of markets in equilibrium. Unfortunately,


as Simon (1982) pointed out, real economic entities have limited time and limited powers
of deliberation. He proposed the study of bounded rationality, investigating \: : : the shape


of a system in which e�ectiveness in computation is one of the most important weapons
of survival." Simon's work focussed mainly on satis�cing designs, which deliberate until
reaching some solution satisfying a preset \aspiration level." The results have descrip-
tive value for modelling various actual entities and policies, but no general prescriptive


framework for bounded rationality was developed. Although it proved possible to calculate
optimal aspiration levels for certain problems, no structural variation was allowed in the
agent design.


In the theory of games, bounds on the complexity of players have become a topic of


intense interest. For example, it is a troubling fact that defection is the only equilibrium
strategy for unbounded agents playing a �xed number of rounds of the Prisoners' Dilemma
game. Neyman's theorem (Neyman, 1985), recently proved by Papadimitriou and Yan-
nakakis (1994), shows that an essentially cooperative equilibrium exists if each agent is a


�nite automaton with a number of states that is less than exponential in the number of
rounds. This is essentially a bounded optimality result, where the bound is on space rather
than on speed of computation. This type of result is made possible by a shift from the
problem of selecting actions to the problem of selecting programs.


I. J. Good (1971) distinguished between perfect or \type I" rationality, and metalevel
or \type II" rationality. He de�nes this as \the maximization of expected utility taking into
account deliberation costs." Simon (1976) also says: \The global optimization problem is
to �nd the least-cost or best-return decision, net of computational costs." Although type II


rationality seems to be a step in the right direction, it is not entirely clear whether it can be
made precise in a way that respects the desirable intuition that computation is important.
We will try one interpretation, although there may be others.2 The key issue is the space
over which the \maximization" or \optimization" occurs. Both Good and Simon seem to


be referring to the space of possible deliberations associated with a particular decision.
Conceptually, there is an \object-level machine" that executes a sequence of computations
under the control of a \meta-level machine." The outcome of the sequence is the selection of


an external action. An agent exhibits type II rationality if at the end of its deliberation and
subsequent action, its utility is maximized compared to all possible deliberate/act pairs in
which it could have engaged. For example, Good discusses one possible application of type
II rationality in chess programs. In this case, the object-level steps are node expansions in


the game tree, followed by backing up of leaf node evaluations to show the best move. For
simplicity we will assume a per-move time limit. Then a type II rational agent will execute
whichever sequence of node expansions chooses the best move, of all those that �nish before


2. For example, it is conceivable that Good and Simon really intended to refer to �nding an agent design
that minimizes deliberation costs in general. All their discussions, however, seem to be couched in terms
of �nding the right deliberation for each decision. Thus, type II or metalevel rationality coincides with
bounded optimality if the bounded optimal agent is being designed for a single decision in a single


situation.
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the time limit.3 Unfortunately, the computations required in the \metalevel machine" to
select the object-level deliberation may be extremely expensive. Good actually proposes a


fairly simple (and nearly practical) metalevel decision procedure for chess, but it is far from


optimal. It is hard to see how a type II rational agent could justify executing a suboptimal
object-level computation sequence if we limit the scope of the optimization problem to a


single decision. The di�culty can only be resolved by thinking about the design of the
agent program, which generates an unbounded set of possible deliberations in response to
an unbounded set of circumstances that may arise during the life of the agent.


Philosophy has also seen a gradual evolution in the de�nition of rationality. There has
been a shift from consideration of act utilitarianism| the rationality of individual acts | to
rule utilitarianism, or the rationality of general policies for acting. This shift has been caused


by di�culties with individual versus societal rationality, rather than any consideration of
the di�culty of computing rational acts. Some consideration has been given more recently
to the tractability of general moral policies, with a view to making them understandable
and usable by persons of average intelligence (Brandt, 1953). Cherniak (1986) has suggested


a de�nition of \minimal rationality", specifying lower bounds on the reasoning powers of


any rational agent, instead of upper bounds. A philosophical proposal generally consistent
with the notion of bounded optimality can be found in Dennett's \Moral First Aid Manual"
(1986). Dennett explicitly discusses the idea of reaching equilibrium within the space of


decision procedures. He uses as an example the PhD admissions procedure of a philosophy
department. He concludes, as do we, that the best procedure may be neither elegant nor
illuminating. The existence of such a procedure, and the process of reaching it, are the


main points of interest.


Many researchers in AI, some of whose work is discussed below, have worked on the
problem of designing agents with limited computational resources. The 1989 AAAI Sym-


posium on AI and Limited Rationality (Fehling & Russell, 1989) contains an interesting
variety of work on the topic. Much of this work is concerned with metalevel rationality.


Metareasoning | reasoning about reasoning | is an important technique in this area,
since it enables an agent to control its deliberations according to their costs and bene�ts.
Combined with the idea of anytime (Dean & Boddy, 1988) or exible algorithms (Horvitz,
1987), that return better results as time goes by, a simple form of metareasoning allows


an agent to behave well in a real-time environment. A simple example is provided by
iterative-deepening algorithms used in game-playing. Breese and Fehling (1990) apply sim-
ilar ideas to controlling multiple decision procedures. Russell and Wefald (1989) give a


general method for precompiling certain aspects of metareasoning so that a system can e�-
ciently estimate the e�ects of individual computations on its intentions, giving �ne-grained
control of reasoning. These techniques can all be seen as approximating metalevel rational-
ity; they provide useful insights into the general problem of control of reasoning, but there


is no reason to suppose that the approximations used are optimal in any sense.


The intuitive notion of bounded optimality seems to have become current in the AI


community in the mid-1980's. Horvitz (1987) uses the term bounded optimality to refer
to \the optimization of computational utility given a set of assumptions about expected


3. One would imagine that in most cases the move selected will be the same move selected by a Type
I agent, but this is in a sense \accidental" because further deliberation might cause the program to
abandon it.
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problems and constraints in reasoning resources." Russell and Wefald (1991) say that an
agent exhibits bounded optimality for a given task environment \if its program is a solution


to the constrained optimization problem presented by its architecture." Recent work by


Etzioni (1989) and Russell and Zilberstein (1991) can be seen as optimizing over a well-
de�ned set of agent designs, thereby making the notion of bounded optimality more precise.


In the next section, we build a suitable set of general de�nitions from the ground up, so
that we can begin to demonstrate examples of provably bounded optimal agents.


3. Agents, Architectures and Programs


Intuitively, an agent is just a physical entity that we wish to view in terms of its perceptions


and actions. What counts in the �rst instance is what it does, not necessarily what it thinks,
or even whether it thinks at all. This initial refusal to consider further constraints on the
internal workings of the agent (such as that it should reason logically, for example) helps in
three ways: �rst, it allows us to view such \cognitive faculties" as planning and reasoning


as occurring in the service of �nding the right thing to do; second, it makes room for those
among us (Agre & Chapman, 1987; Brooks, 1986) who take the position that systems can
do the right thing without such cognitive faculties; third, it allows more freedom to consider


various speci�cations, boundaries and interconnections of subsystems.


We begin by de�ning agents and environments in terms of the actions and percepts
that they exchange, and the sequence of states they go through. The agent is described
by an agent function from percept sequences to actions. This treatment is fairly standard


(see, e.g., Genesereth & Nilsson, 1987). We then go \inside" the agent to look at the agent
program that generates its actions, and de�ne the \implementation" relationship between
a program and the corresponding agent function. We consider performance measures on
agents, and the problem of designing agents to optimize the performance measure.


3.1 Specifying agents and environments


An agent can be described abstractly as a mapping (the agent function) from percept
sequences to actions. Let O be the set of percepts that the agent can receive at any instant,


and A be the set of possible actions the agent can carry out in the external world. Since


we are interested in the behaviour of the agent over time, we introduce a set of time points
or instants, T. The set T is totally ordered by the < relation with a unique least element.
Without loss of generality, we let T be the set of non-negative integers.


The percept history of an agent is a sequence of percepts indexed by time. We de�ne


the set of percept histories to be OT = fOT : T! Og. The pre�x of a history OT 2 OT


till time t is denoted Ot and is the projection of OT on [0::t]. We can de�ne the set of
percept history pre�xes as Ot = fOt j t 2 T; OT 2 OTg. Similarly, we de�ne the set of


action histories AT = fAT : T ! Ag. The set of action history pre�xes is At, de�ned as
the set of projections At of histories AT 2 AT.


De�nition 1 Agent function: a mapping


f : Ot ! A
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where


AT(t) = f(Ot)


Note that the agent function is an entirely abstract entity, unlike the agent program that
implements it. Note also that the \output" of the agent function for a given percept sequence
may be a null action, for example if the agent is still thinking about what to do. The agent


function speci�es what the agent does at each time step. This is crucial to the distinction
between perfect rationality and calculative rationality.


Agents live in environments. The states of an environment E are drawn from a set X.
The set of possible state trajectories is de�ned asXT = fXT : T! Xg. The agent does not


necessarily have full access to the current state XT(t), but the percept received by the agent
does depend on the current state through the perceptual �ltering function fp. The e�ects
of the agent's actions are represented by the environment's transition function fe, which
speci�es the next state given the current state and the agent's action. An environment is


therefore de�ned as follows:


De�nition 2 Environment E: a set of states X with a distinguished initial state X0, a


transition function fe and a perceptual �lter function fp such that


XT(0) = X0


XT(t+ 1) = fe(A
T(t);XT(t))


OT(t) = fp(X
T(t))


The state history XT is thus determined by the environment and the agent function. We


use the notation e�ects(f;E) to denote the state history generated by an agent function
f operating in an environment E. We will also use the notation [E;At] to denote the


state history generated by applying the action sequence At starting in the initial state of
environment E.


Notice that the environment is discrete and deterministic in this formulation. We can
extend the de�nitions to cover non-deterministic and continuous environments, but at the
cost of additional complexity in the exposition. None of our results depend in a signi�cant
way on discreteness or determinism.


3.2 Specifying agent implementations


We will consider a physical agent as consisting of an architecture and a program. The


architecture is responsible for interfacing between the program and the environment, and
for running the program itself. With each architectureM , we associate a �nite programming
language LM , which is just the set of all programs runnable by the architecture. An agent


program is a program l 2 LM that takes a percept as input and has an internal state drawn
from a set I with initial state i0. (The initial internal state depends on the program l,


but we will usually suppress this argument.) The set of possible internal state histories is
IT = fIT : T! Ig. The pre�x of an internal state history IT 2 IT till time t is denoted It


and is the projection of IT on [0::t].
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De�nition 3 An architecture M is a �xed interpreter for an agent program that runs the


program for a single time step, updating its internal state and generating an action:


M : LM � I�O! I�A


where


hIT(t+ 1); AT(t)i =M(l; IT(t); OT(t))


Thus, the architecture generates a stream of actions according to the dictates of the program.


Because of the physical properties of the architecture, running the program for a single


time step results in the execution of only a �nite number of instructions. The program may
often fail to reach a \decision" in that time step, and as a result the action produced by the


architecture may be null (or the same as the previous action, depending on the program
design).


3.3 Relating agent speci�cations and implementations


We can now relate agent programs to the corresponding agent functions. We will say that an


agent program l running on a machineM implements the agent function Agent(l;M). The
agent function is constructed in the following de�nition by specifying the action sequences
produced by l running on M for all possible percept sequences. Note the importance of the


\Markovian" construction using the internal state of the agent to ensure that actions can
only be based on the past, not the future.


De�nition 4 A program l running on M implements the agent function f = Agent(l;M),
de�ned as follows. For any environment E = (X; fe; fp), f(O


t) = AT(t) where


hIT(t+ 1); AT(t)i = M(l; IT(t); OT(t))


OT(t) = fp(X
T(t))


XT(t+ 1) = fe(A
T(t);XT(t))


XT(0) = X0


IT(0) = i0


Although every program l induces a corresponding agent function Agent(l;M), the


action that follows a given percept is not necessarily the agent's \response" to that percept;
because of the delay incurred by deliberation, it may only reect percepts occurring much


earlier in the sequence. Furthermore, it is not possible to map every agent function to an
implementation l 2 LM . We can de�ne a subset of the set of agent functions f that are


implementable on a given architecture M and language LM :


Feasible(M) = ff j 9l 2 LM ; f = Agent(l;M)g


Feasibility is related to, but clearly distinct from, the notion of computability. Computabil-
ity refers to the existence of a program that eventually returns the output speci�ed by
a function, whereas feasibility refers to the production of the output at the appropriate


point in time. The set of feasible agent functions is therefore much smaller than the set of
computable agent functions.
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3.4 Performance measures for agents


To evaluate an agent's performance in the world, we de�ne a real-valued utility function U


on state histories:


U : XT ! <


The utility function should be seen as external to the agent and its environment. It de�nes
the problem to be solved by the designer of the agent. Some agent designs may incorporate
an explicit representation of the utility function, but this is by no means required. We will
use the term task environment to denote the combination of an environment and a utility


function.
Recall that the agent's actions drive the environment E through a particular sequence


of states in accordance with the function e�ects(f;E). We can de�ne the value of an agent


function f in the environment E as the utility of the state history it generates:


V (f;E) = U(e�ects(f;E))


If the designer has a set E of environments with a probability distribution p over them,


instead of a single environment E, then the value of the agent in E is de�ned as the
expected value over the elements of E. By a slight abuse of notation,


V (f;E) =
X
E2E


p(E)V (f;E)


We can assign a value V (l;M;E) to a program l executed by the architecture M in the
environment E simply by looking at the e�ect of the agent function implemented by the


program:


V (l;M;E) = V (Agent(l;M); E) = U(e�ects(Agent(l;M); E))


As above, we can extend this to a set of possible environments as follows:


V (l;M;E) =
X
E2E


p(E)V (l;M;E)


3.5 Perfect rationality and bounded optimality


As discussed in Section 2, a perfectly rational agent selects the action that maximizes its
expected utility, given the percepts so far. In our framework, this amounts to an agent
function that maximizes V (f;E) over all possible agent functions.


De�nition 5 A perfectly rational agent for a set E of environments has an agent function


fopt such that


fopt = argmaxf(V (f;E))


This de�nition is a persuasive speci�cation of an optimal agent function for a given
set of environments, and underlies several recent projects in intelligent agent design (Dean


& Wellman,1991; Doyle, 1988; Hansson & Mayer, 1989). A direct implementation of this
speci�cation, which ignores the delay incurred by deliberation, does not yield a reasonable
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solution to our problem { the calculation of expected utilities takes time for any real agent.
In terms of our simple formal description of agents introduced above, it is easy to see where


the di�culty has arisen. In designing the agent program, logicists and decision theorists


have concentrated on specifying an optimal agent function fopt in order to guarantee the
selection of the best action history. The function fopt is independent of the architectureM .


Unfortunately, no real program in LM implements this function in a non-trivial environment,
because optimal actions cannot usually be computed before the next percept arrives. That
is, quite frequently, fopt 62 Feasible(M).


Suppose the environment consists of games of chess under tournament rules against some


population of human grandmasters, and suppose M is some standard personal computer.
Then fopt describes an agent that always plays in such a way as to maximize its total
expected points against the opposition, where the maximization is over the moves it makes.
We claim that no possible program can play this way. It is quite possible, using depth-�rst


alpha-beta search to termination, to execute the program that chooses (say) the optimal
minimax move in each situation, but the agent function induced by this program is not the
same as fopt. In particular, it ignores such percepts as the dropping of its ag indicating a


loss on time.
The trouble with the perfect rationality de�nition arose because of unconstrained op-


timization over the space of f 's in the determination of fopt, without regard to feasibility.
(Similarly, metalevel rationality assumes unconstrained optimization over the space of de-


liberations.) To escape this quandary, we propose a machine-dependent standard of ratio-
nality, in which we maximize V over the implementable set of agent functions Feasible(M).
That is, we impose optimality constraints on programs rather than on agent functions or
deliberations.


De�nition 6 A bounded-optimal agent with architecture M for a set E of environments


has an agent program lopt such that


lopt = argmaxl2LMV (l;M;E)


We can see immediately that this speci�cation avoids the most obvious problems with
Type I and Type II rationality. Consider our chess example, and suppose the computer has


a total program memory of 8 megabytes. Then there are 22
26


possible programs that can


be represented in the machine, of which a much smaller number play legal chess. Under


tournament conditions, one or more of these programs will have the best expected perfor-
mance. Each is a suitable candidate for lopt. Thus bounded optimality is, by de�nition, a


feasible speci�cation; moreover, a program that achieves it is highly desirable. We are not
yet ready to announce the identity of lopt for chess on an eight-megabyte PC, so we will
begin with a more restricted problem.


4. Provably Bounded-Optimal Agents


In order to construct a provably bounded optimal agent, we must carry out the following
steps:


� Specify the properties of the environment in which actions will be taken, and the
utility function on the behaviours.
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� Specify a class of machines on which programs are to be run.


� Propose a construction method.


� Prove that the construction method succeeds in building bounded optimal agents.


The methodology is similar to the formal analysis used in the �eld of optimal control, which
studies the design of controllers (agents) for plants (environments). In optimal control
theory, a controller is viewed as an essentially instantaneous implementation of an optimal
agent function. In contrast, we focus on the computation time required by the agent, and


the relation between computation time and the dynamics of the environment.


4.1 Episodic, real-time task environments


In this section, we will consider a restricted class of task environments which we call episodic
environments. In an episodic task environment, the state history generated by the actions of


the agent can be considered as divided into a series of episodes, each of which is terminated
by an action. Let A? � A be a distinguished set of actions that terminate an episode.
The utility of the complete history is given by the sum of the utilities of each episode,


which is determined in turn by the state sequence. After each A 2 A?, the environment
\resets" to a state chosen at random from a stationary probability distribution Pinit. In
order to include the e�ects of the choice of A in the utility of the episode, we notionally
divide the environment state into a \con�guration" part and a \value" part, such that


the con�guration part determines the state transitions while the value part determines the
utility of a state sequence. Actions in A? reset the con�guration part, while their \value"
is recorded in the value part. These restrictions mean that each episode can be treated as
a separate decision problem, and translate into the following property: if agent program l1
has higher expected utility on individual episodes than agent l2, it will have higher expected
utility in the corresponding episodic task environment.


A real-time task environment is one in which the utility of an action depends on the


time at which it is executed. Usually, this dependence will be su�ciently strong to make
calculative rationality an unacceptably bad approximation to perfect rationality.


An automated mail sorter4 provides an illustrative example of an episodic task environ-
ment (see Figure 1). Such a machine scans handwritten or printed addresses (zipcodes) on


mail pieces and dispatches them to appropriate bins. Each episode starts with the arrival of
a new mail piece and terminates with the execution of the physical action recommended by
the sorter: routing of the piece to a speci�c bin. The \con�guration part" of the environ-
ment corresponds to the letter feeder side, which provides a new, randomly selected letter


after the previous letter is sorted. The \value part" of the state corresponds to the state of
the receiving bins, which determines the utility of the process. The aim is to maximize the
accuracy of sorting while minimizing the reject percentage and avoiding jams. A jam occurs


if the current piece is not routed to the appropriate bin, or rejected, before the arrival of
the next piece.


We now provide formal de�nitions for three varieties of real-time task environments:
�xed deadlines, �xed time cost and stochastic deadlines.


4. See (Sackinger et al. 1992; Boser et al. 1992) for details of an actual system. The application was
suggested to us by Bernhard Boser after an early presentation of our work at the 1992 NEC Symposium.
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Figure 1: An automated mail-sorting facility provides a simple example of an episodic,


real-time task environment.


4.1.1 Fixed deadlines


The simplest and most commonly studied kind of real-time task environment contains a


deadline at a known time. In most work on real-time systems, such deadlines are described
informally and systems are built to meet the deadline. Here, we need a formal speci�cation
in order to connect the description of the deadline to the properties of agents running in
deadline task environments. One might think that deadlines are part of the environment


description, but in fact they are mainly realized as constraints on the utility function. One


can see this by considering the opposite of a deadline | the \starter's pistol." The two
are distinguished by di�ering constraints on the utilities of acting before or after a speci�c
time.


De�nition 7 Fixed deadline: The task environment hE;Ui has a �xed deadline at time td
if the following conditions hold.


� Taking an action in A? at any time before the deadline results in the same utility:


U([E;At
1]) = U([E;A


(td�1)
2 �AT1 (t)])


where \�" denotes sequence concatenation, t � td, A
T
1 (t) 2 A?, and A


(t�1)
1 and A


(td�1)
2


contain no action in A?.


� Actions taken after td have no e�ect on utility:


U([E;At
1]) � U([E;At


2]) if U([E;A
td
1 ]) � U([E;Atd


2 ]) and t � td


4.1.2 Fixed time cost


Task environments with approximately �xed time cost are also very common. Examples
include consultations with lawyers, keeping a taxi waiting, or dithering over where to invest


one's money. We can de�ne a task environment with �xed time cost c by comparing the
utilities of actions taken at di�erent times.
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De�nition 8 Fixed time cost: The task environment hE;Ui has a �xed time cost if, for


any action history pre�xes At1
1 and At2


2 satisfying


(1) AT1 (t1) 2 A? and AT2 (t2) = AT1 (t1)


(2) A
(t1�1)
1 and A


(t2�1)
2 contain no action in A?


the utilities di�er by the di�erence in time cost:


U([E;At2
2 ]) = U([E;At1


1 ])� c(t2 � t1)


Strictly speaking, there are no task environments with �xed time cost. Utility values have a
�nite range, so one cannot continue incurring time costs inde�nitely. For reasonably short
times and reasonably small costs, a linear utility penalty is a useful approximation.


4.1.3 Stochastic deadlines


While �xed-deadline and �xed-cost task environments occur frequently in the design of
real-time systems, uncertainty about the time-dependence of the utility function is more


common. It also turns out to be more interesting, as we see below.


A stochastic deadline is represented by uncertainty concerning the time of occurrence of
a �xed deadline. In other words, the agent has a probability distribution pd for the deadline
time td. We assume that the deadline must come eventually, so that


P
t2T pd(t) = 1. We


also de�ne the cumulative deadline distribution Pd.
If the deadline does not occur at a known time, then we need to distinguish between


two cases:


� The agent receives a percept, called a herald (Dean & Boddy, 1988), which announces
an impending deadline. We model this using a distinguished percept Od:


OT(td) = Od


If the agent responds immediately, then it \meets the deadline."


� No such percept is available, in which case the agent is walking blindfolded towards
the utility cli�. By deliberating further, the agent risks missing the deadline but may
improve its decision quality. An example familiar to most readers is that of deciding
whether to publish a paper in its current form, or to embellish it further and risk


being \scooped." We do not treat this case in the current paper.


Formally, the stochastic deadline case is similar to the �xed deadline case, except that td is
drawn from the distribution pd. The utility of executing an action history pre�x At in E is


the expectation of the utilities of that state history pre�x over the possible deadline times.


De�nition 9 Stochastic deadline: A task environment class hE; Ui of �xed-deadline task


environments has a stochastic deadline distributed according to pd if, for any action history


pre�x At,


U([E; At]) =
X
t02T


pd(t
0)U([Et0; A


t])


where hEt0; Ui is a task environment in hE; Ui with a �xed deadline at t0.
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The mail sorter example is well described by a stochastic deadline. The time between
the arrival of mail pieces at the image processing station is distributed according to a density


function pd, which will usually be Poisson.


4.2 Agent programs and agent architecture


We consider simple agent programs for episodic task environments, constructed from ele-
ments of a set R = fr1; : : : ; rng of decision procedures or rules. Each decision procedure
recommends (but does not execute) an action Ai 2 A?, and an agent program is a �xed
sequence of decision procedures. For our purposes, a decision procedure is a black box with


two parameters:


� a run time ti � 0, which is an integer that represents the time taken by the procedure
to compute an action.


� a quality qi � 0, which is a real number. This gives the expected reward resulting
from executing its action Ai at the start of an episode:


qi = U([E;Ai]) (1)


Let MJ denote an agent architecture that executes decision procedures in the language J .


Let tM denote the maximum runtime of the decision procedures that can be accommodated
in M . For example, if the runtime of a feedforward neural network is proportional to its
size, then tM will be the runtime of the largest neural network that �ts in M .


The architecture M executes an agent program s = s1 : : : sm by running each decision


procedure in turn, providing the same input to each as obtained from the initial percept.
When a deadline arrives (at a �xed time td, or heralded by the percept Od), or when
the entire sequence has been completed, the agent selects the action recommended by the


highest-quality procedure it has executed:


M(s; IT(td); O
T(td)) = hi0; action(I


T(td))i


M(s; IT(ts); O
T(ts)) = hi0; action(I


T(ts))i where ts =
P


si2s
ti (2)


M(s; IT(t); Od) = hi0; action(I
T(t))i


where M updates the agent's internal state history IT(t) such that action(IT(t)) is the
action recommended by a completed decision procedure with the highest quality. When
this action is executed, the internal state of the agent is re-initialized to i0. This agent


design works in all three of the task environment categories described above.


Next we derive the value V (s;M;E) of an agent program s in environment E running
on M for the three real-time regimes and show how to construct bounded optimal agents


for these task environments.


4.3 Bounded optimality with �xed deadlines


From Equation 2, we know that the agent picks the action in A? recommended by the
decision procedure r with the highest quality that is executed before the deadline td arrives.
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Let s1 : : : sj be the longest pre�x of the program s such that
Pj


i=1 ti � td. From De�nition 7
and Equation 1, it follows that


V (s;M;E) = Qj (3)


where Qi = maxfq1; : : : ; qig. Given this expression for the value of the agent program, we
can easily show the following:


Theorem 1 Let r� = argmaxri 2R;ti�td qi. The singleton sequence r� is a bounded optimal


program for M in an episodic task environment with a known deadline td.


That is, the best program is the single decision procedure of maximum quality whose runtime
is less than the deadline.


4.4 Bounded optimality with �xed time cost


From Equation 2, we know that the agent picks the action in A? recommended by the best
decision procedure in the sequence, since M runs the entire sequence s = s1 : : : sm when
there is no deadline. From De�nition 8 and Equation 1, we have


V (s;M;E) = Qm � c


mX
i=1


ti (4)


Given this expression for the value of the agent program, we can easily show the following:


Theorem 2 Let r� = argmaxri 2R qi�cti. The singleton sequence r� is a bounded optimal


program for M in an episodic task environment with a �xed time cost c.


That is, the optimal program is the single decision procedure whose quality, net of time


cost, is highest.


4.5 Bounded optimality with stochastic deadlines


With a stochastic deadline distributed according to pd, the value of an agent pro-


gram s = s1 : : : sm is an expectation. From De�nition 9, we can calculate this asP
t2T pd(t)V (s;M;Et), where hEt; Ui is a task environment with a �xed deadline at t. Af-


ter substituting for V (s;M;Et) from Equation 3, this expression simpli�es to a summation,


over the procedures in the sequence, of the probability of interruption after the ith procedure
in the sequence multiplied by the quality of the best completed decision procedure:


V (s) � V (s;M;E) =
mX
i=1


[Pd(
Pi+1


j=1 tj)� Pd(
Pi


j=1 tj)]Qi (5)


where Pd(t) =
R t
�1 pd(t


0)dt0 and Pd(t) = 1 for t �
Pm


i=1 ti.
A simple example serves to illustrate the value function. Consider R = fr1; r2; r3g. The


rule r1 has a quality of 0.2 and needs 2 seconds to run: we will represent this by r1 = (0:2; 2).


The other rules are r2 = (0:5; 5); r3 = (0:7; 7). The deadline distribution function pd is a


uniform distribution over 0 to 10 seconds. The value of the sequence r1r2r3 is


V (r1r2r3) = [:7� :2]:2 + [1� :7]:5 + [1� 1]:7 = :25


A geometric intuition is given by the notion of a performance pro�le, as shown in Fig-
ure 2.
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Figure 2: Performance pro�le for r1r2r3, with pd superimposed.


De�nition 10 Performance pro�le: For a sequence s, the performance pro�le Qs(t) gives


the quality of the action returned if the agent is interrupted at t:


Qs(t) = maxfqi :
iX


j=1


tj � tg


For a uniform deadline density function, the value of a sequence is proportional to the
area under the performance pro�le up to the last possible interrupt time. Note that the


height of the pro�le during the interval of length ti while rule i is running is the quality of
the best of the previous rules.


From De�nition 10, we have the following obvious property:


Lemma 1 The performance pro�le of any sequence is monotonically nondecreasing.


It is also the case that a sequence with higher quality decisions at all times is a better
sequence:


Lemma 2 If 8t Qs1(t) � Qs2(t), then V (s1) � V (s2).


In this case we say that Qs1 dominates Qs2 .
We can use the idea of performance pro�les to establish some useful properties of optimal


sequences.


Lemma 3 There exists an optimal sequence that is sorted in increasing order of q's.


Without Lemma 3, there are
Pn


i=1 i! possible sequences to consider. The ordering con-
straint eliminates all but 2n sequences. It also means that in proofs of properties of se-
quences, we now need consider only ordered sequences. In addition, we can replace Qi in
Equation 5 by qi.


The following lemma establishes that a sequence can always be improved by the addition
of a better rule at the end:


Lemma 4 For every sequence s = s1 : : : sm sorted in increasing order of quality, and single


step z with qz � qsm , V (sz) � V (s).
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Corollary 1 There exists an optimal sequence ending with the highest-quality rule in R.


The following lemma reects the obvious intuition that if one can get a better result in
less time, there's no point spending more time to get a worse result:


Lemma 5 There exists an optimal sequence whose rules are in nondecreasing order of ti.


We now apply these preparatory results to derive algorithms that construct bounded


optimal programs for various deadline distributions.


4.5.1 General distributions


For a general deadline distribution, the dynamic programmingmethod can be used to obtain
an optimal sequence of decision rules in pseudo-polynomial time. We construct an optimal


sequence by using the de�nition of V (s;M;E) in Equation 5. Optimal sequences generated
by the methods are ordered by qi, in accordance with Lemma 3.


We construct the table S(i; t), where each entry in the table is the highest value of
any sequence that ends with rule ri at time t. We assume the rule indices are arranged in
increasing order of quality, and t ranges from the start time 0 to the end time L =


P
ri2R ti.


The update rule is:


S(i; t) = maxk2[0:::i�1][S(k; t� ti) + (qi � qk)[1� Pd(t)]]


with boundary condition


S(i; 0) = 0 for each rule i and S(0; t) = 0 for each time t


From Corollary 1, we can read o� the best sequence from the highest value in row n of the
matrix S.


Theorem 3 The DP algorithm computes an optimal sequence in time O(n2L) where n is


the number of decision procedures in R.


The dependence on L in the time complexity of the DP algorithm means that the algo-
rithm is not polynomial in the input size. Using standard rounding and scaling methods,


however, a fully polynomial approximation scheme can be constructed. Although we do not
have a hardness proof for the problem, John Binder (1994) has shown that if the deadline
distribution is used as a constant-time oracle for �nding values of P (t), any algorithm will
require an exponential number of calls to the oracle in the worst case.


4.5.2 Long uniform distributions


If the deadline is uniformly distributed over a time interval greater than the sum of the
running times of the rules, we will call the distribution a long uniform distribution. Consider
the rule sequence s = s1 : : : sm drawn from the rule setR. With a long uniform distribution,
the probability that the deadline arrives during rule si of the sequence s is independent of


the time at which si starts. This permits a simpler form of Equation 5:


V (s;M;E) =
Pm�1


i=1 Pd(ti+1)qi + qm(1�
Pm


i=1 Pd(ti)) (6)
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To derive an optimal sequence under a long uniform distribution, we obtain a recursive
speci�cation of the value of a sequence as with a 2 R and s = s1 : : : sm being some sequence


in R.


V (as;M;E) = V (s;M;E) + qaPd(t1)� qmPd(ta) (7)


This allows us to de�ne a dynamic programming scheme for calculating an optimal sequence


using a state function S(i; j) denoting the highest value of a rule sequence that starts with
rule i and ends in rule j. From Lemma 3 and Equation 7, the update rule is:


S(i; j) = maxi<k�j[S(k; j) + Pd(tk)qi � Pd(ti)qj] (8)


with boundary condition


S(i; i) = (1� Pd(ti))qi (9)


From Corollary 1, we know that an optimal sequence for the long uniform distribution ends


in rn, the rule with the highest quality in R. Thus, we only need to examine S(i; n); 1 �
i � n. Each entry requires O(n) computation, and there are n entries to compute. Thus,
the optimal sequence for the long uniform case can be calculated in O(n2).


Theorem 4 An optimal sequence of decision procedures for a long uniform deadline dis-


tribution can be determined in O(n2) time where n is the number of decision procedures in


R.


4.5.3 Short uniform distributions


When
Pn


i=1 Pd(ti) > 1, for a uniform deadline distribution Pd, we call it short. This means


that some sequences are longer than the last possible deadline time, and therefore some rules


in those sequences have no possibility of executing before the deadline. For such sequences,
we cannot use Equation 7 to calculate V (s). However, any such sequence can be truncated
by removing all rules that would complete execution after the last possible deadline. The


value of the sequence is una�ected by truncation, and for truncated sequences the use of
Equation 7 is justi�ed. Furthermore, there is an optimal sequence that is a truncated
sequence.


Since the update rule 8 correctly computes S(i; j) for truncated sequences, we can use
it with short uniform distributions provided we add a check to ensure that the sequences
considered are truncated. Unlike the long uniform case, however, the identity of the last rule


in an optimal sequence is unknown, so we need to compute all n2 entries in the S(i; j) table.
Each entry computation takes O(n) time, thus the time to compute an optimal sequence is
O(n3).


Theorem 5 An optimal sequence of decision procedures for a short uniform deadline dis-


tribution can be determined in O(n3) time where n is the number of decision procedures in


R.
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4.5.4 Exponential distributions


For an exponential distribution, Pd(t) = 1�e��t. Exponential distributions allow an optimal
sequence to be computed in polynomial time. Let pi stand for the probability that rule i
is interrupted, assuming it starts at 0. Then pi = Pd(ti) = 1 � e��ti : For the exponential


distribution, V (s;M;E) simpli�es out as:


V (s;M;E) =
m�1X
i=1


h
�i
j=1(1� pj)


i
pi+1qi +


h
�m
j=1(1� pj)


i
qm


This yields a simple recursive speci�cation of the value V (as;M;E) of a sequence that
begins with the rule a:


V (as;M;E) = (1� pa)p1qa + (1� pa)V (s;M;E)


We will use the state function S(i; j) which represents the highest value of any rule sequence
starting with i and ending in j.


S(i; j) = maxi<k�j [(1� pi)pkqi + (1� pi)S(k; j)]


with boundary condition S(i; i) = qi(1 � pi). For any given j, S(i; j) can be calculated in


O(n2). From Corollary 1, we know that there is an optimal sequence whose last element is
the highest-valued rule in R.


Theorem 6 An optimal sequence of decision procedures for an exponentially distributed


stochastic deadline can be determined in O(n2) time where n is the number of decision


procedures in R.


The proof is similar to the long uniform distribution case.


4.6 Simulation results for a mail-sorter


The preceding results provide a set of algorithms for optimizing the construction of an agent


program for a variety of general task environment classes. In this section, we illustrate these
results and the possible gains that can be realized in a speci�c task environment, namely,
a simulated mail-sorter.


First, let us be more precise about the utility function U on episodes. There are four
possible outcomes; the utility of outcome i is ui.


1. The zipcode is successfully read and the letter is sent to the correct bin for delivery.


2. The zipcode is misread and the letter goes to the wrong bin.


3. The letter is sent to the reject bin.


4. The next letter arrives before the recognizer has �nished, and there is a jam. Since


letter arrival is heralded, jams cannot occur with the machine architecture given in
Equation 2.
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Figure 3: (a) Accuracy pro�le (1� e��x), for � = 0:9. (b) Poisson arrival distribution, for
mean � = 9 sec


Without loss of generality, we set u1 = 1:0 and u2 = 0:0. If the probability of a rule


recommending a correct destination bin is pi, then qi = piu1 + (1� pi)u2 = pi. We assume
that u2 � u3, hence there is a threshold probability below which the letter should be sent
to the reject bin instead. We will therefore include in the rule set R a rule rreject that
has zero runtime and recommends rejection. The sequence construction algorithm will then


automatically exclude rules with quality lower than qreject = u3. The overall utility for an
episode is chosen to be a linear combination of the quality of sorting (qi), the probability of
rejection or the rejection rate (given by P (t1), where t1 is the runtime of the �rst non-reject


rule executed), and the speed of sorting (measured by the arrival time mean).


The agent program in (Boser et al. 1992) uses a single neural network on a chip.
We show that under a variety of conditions an optimized sequence of networks can do
signi�cantly better than any single network in terms of throughput or accuracy. We examine


the following experimental conditions:


� We assume that a network that executes in time t has a recognition accuracy p that


depends on t. We consider p = 1�e��t. The particular choice of � is irrelevant because
the scale chosen for t is arbitrary. We choose � = 0:9, for convenience (Figure 3(a)).
We include rreject with qreject = u3 and treject = 0.


� We consider arrival time distributions that are Poisson with varying means. Fig-


ure 3(b) shows three example distributions, for means 1, 5, and 9 seconds.


� We create optimized sequences from sets of 40 networks with execution times taken
at equal intervals from t = 1 to 40.


� We compare


(a) BO sequence: a bounded optimal sequence;


(b) Best singleton: the best single rule;


(c) 50% rule: the rule whose execution time is the mean of the distribution (i.e., it
will complete in 50% of cases);
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Figure 4: Graph showing the achievable utility per second as a function of the average time


per letter, for the four program types. � = 0:9.


(d) 90% rule: the rule whose execution time guarantees that it will complete in 90%
of cases.


In the last three cases, we add rreject as an initial step; the BO sequence will include


it automatically.


� We measure the utility per second as a function of the mean arrival rate (Figure 4).


This shows that there is an optimal setting of the sorting machinery at 6 letters per
minute (inter-arrival time = 10 seconds) for the bounded optimal program, given that
we have �xed � at 0.9.


� Finally, we investigate the e�ect of the variance of the arrival time on the relative


performance of the four program types. For this purpose, we use a uniform distribution
centered around 20 seconds but with di�erent widths to vary the variance without
a�ecting the mean (Figure 5).


We notice several interesting things about these results:


� The policy of choosing a rule with a 90% probability of completion performs poorly
for rapid arrival rates (� � 3), but catches up with the performance of the best single
rule for slower arrival rates (� > 4). This is an artifact of the exponential accuracy


pro�le for any � > 0:5, where the di�erence in quality of the rules with run times
greater than 6 seconds is quite small.


� The policy of choosing a rule with a 50% probability of completion fares as well as


the best single rule for very high arrival rates (� � 2), but rapidly diverges from it
thereafter, performing far worse for arrival time means greater than 5 seconds.
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Figure 5: Graphs showing the utility gain per second as a function of the arrival time


variance, for the four program types for the uniform distribution with a mean of
20 seconds.


� Both the best sequence and the best single rule give their best overall performance
at an arrival rate of around 6 letters per minute. The performance advantage of the


optimal sequence over the best single rule is about 7% at this arrival rate. It should


be noted that this is a signi�cant performance advantage that is obtainable with no
extra computational resources. For slower arrival rates (� � 7), the di�erence between
the performance of the best rule and the best sequence arises from the decreased


rejection rate of the best sequence. With the exponential accuracy pro�le (� � 0:5)
the advantage of running a rule with a shorter completion time ahead of a longer rule
is the ability to reduce the probability of rejecting a letter. For high arrival rates


(inter-arrival times of 1 to 4 seconds), it is useful to have a few short rules instead of
a longer single rule.


� Figure 5 shows that the best sequence performs better than the best single rule as the
variance of the arrival time increases.5 The performance of the optimal sequence also


appears to be largely una�ected by variance. This is exactly the behaviour we expect
to observe | the ability to run a sequence of rules instead of committing to a single
one gives it robustness in the face of increasing variance. Since realistic environments


can involve unexpected demands of many kinds, the possession of a variety of default
behaviours of graded sophistication would seem to be an optimal design choice for a
bounded agent.


5. The performance of the 50% rule is at because the uniform distributions used in this experiment have
�xed mean and are symmetric, so that the 50% rule is always the rule that runs for 20 seconds. The
90% rule changes with the variance, and the curve exhibits some discretization e�ects. These could be
eliminated using a �ner-grained set of rules.
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5. Learning Approximately Bounded-Optimal Programs


The above derivations assume that a suitable rule set R is available ab initio, with correct


qualities qi and runtimes ti, and that the deadline distribution is known. In this section, we
study ways in which some of this information can be learned, and the implications of this
for the bounded optimality of the resulting system. We will concentrate on learning rules


and their qualities, leaving runtimes and deadline distributions for future work.
The basic idea is that the learning algorithms will converge, over time, to a set of


optimal components | the most accurate rules and the most accurate quality estimates for
them. As this happens, the value of the agent constructed from the rules, using the quality


estimates, converges to the value of lopt. Thus there are two sources of suboptimality in the
learned agent:


� The rules in R may not be the best possible rules | they may recommend actions


that are of lower utility than those that would be recommended by some other rules.


� There may be errors in estimating the expected utility of the rule. This can cause the
algorithms given above to construct suboptimal sequences, even if the best rules are
available.


Our notional method for constructing bounded optimal agents (1) learns sets of indi-
vidual decision procedures from episodic interactions, and (2) arranges them in a sequence
using one of the algorithms described earlier so that the performance of an agent using


the sequence is at least as good as that of any other such agent. We assume a parameter-
ized learning algorithm LJ ;k that will be used to learn one rule for each possible runtime
k 2 f1; : : : ; tMg. Since there is never a need to include two rules with the same runtime


in the R, this obviates the need to consider the entire rule language J in the optimization


process.
Our setting places somewhat unusual requirements on the learning algorithm. Like


most learning algorithms, LJ ;k works by observing a collection T of training episodes in E,


including the utility obtained for each episode. We do not, however, make any assumptions


about the form of the correct decision rule. Instead, we make assumptions about the
hypotheses, namely that they come from some �nite language Jk, the set of programs
in J of complexity at most k. This setting has been called the agnostic learning setting by


Kearns, Schapire and Sellie (1992), because no assumptions are made about the environment
at all. It has been shown (Theorems 4 and 5 in Kearns, Schapire and Sellie, 1992) that, for
some languages J , the error in the learned approximation can be bounded to within � of
the best rule in Jk that �ts the examples, with probability 1 � �. The sample size needed


to guarantee these bounds is polynomial in the complexity parameter k, as well as 1
�
and 1


�
.


In addition to constructing the decision procedures, LJ ;k outputs estimates of their
quality qi. Standard Cherno�-Hoe�ding bounds can be used to limit the error in the quality
estimate to be within �q with probability 1��q. The sample size for the estimation of quality


is also polynomial in 1
�q


and 1
�q
.


Thus the error in each agnostically learned rule is bounded to within � of the best rule
in its complexity class with probability 1 � �. The error in the quality estimation of these


rules is bounded by �q with probability 1��q. From these bounds, we can calculate a bound
on the utility de�cit in the agent program that we construct, in comparison to lopt:
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Theorem 7 Assume an architecture MJ that executes sequences of decision procedures in


an agnostically learnable language J whose runtimes range over [1::tM ]. For real time task


environments with �xed time cost, �xed deadline, and stochastic deadline, we can construct


a program l such that


V (lopt;M;E)� V (l;M;E) � �+ 2�q


with probability greater than 1�m(�+ �q), where m is the number of decision procedures in


lopt.


Proof: We prove this theorem for the stochastic deadline regime, where the bounded
optimal program is a sequence of decision procedures. The proofs for the �xed cost and
�xed deadline regimes, where the bounded optimal program is a singleton, follow as a
special case. Let the best decision procedures for E be the set R� = fr1


�; : : : ; rn
�g, and


let lopt = s1
� : : : sm


� be an optimal sequence constructed from R�. Let R = fr1; : : : rng be
the set of decision procedures returned by the learning algorithm. With probability greater
than 1�m�, q�i � qi � � for all i, where qi refers to the true quality of ri. The error in the
estimated quality q̂i of decision procedure ri is also bounded: with probability greater than


1�m�q, jq̂i � qij � �q for all i.
Let s = s1 : : : sm be those rules in R that come from the same runtime classes as the


rules s1
� : : : sm


� in R�. Then, by Equation 5, we have


V (lopt;M;E)� V (s;M;E) � �


because the error in V is a weighted average of the errors in the individual qi. Similarly, we
have


jV̂ (s;M;E)� V (s;M;E)j � �q


Now suppose that the sequence construction algorithm applied to R produces a sequence
l = s1


0


: : : sl
0


. By de�nition, this sequence appears to be optimal according to the estimated
value function V̂ . Hence


V̂ (l;M;E) � V̂ (s;M;E)


As before, we can bound the error on the estimated value:


jV̂ (l;M;E)� V (l;M;E)j � �q


Combining the above inequalities, we have


V (lopt;M;E)� V (l;M;E) � �+ 2�q


2


Although the theorem has practical applications, it is mainly intended as an illustration
of how a learning procedure can converge on a bounded optimal con�guration. With some


additional work, more general error bounds can be derived for the case in which the rule
execution times ti and the real-time utility variation (time cost, �xed deadline, or deadline
distribution) are all estimated from the training episodes. We can also obtain error bounds


for the case in which the rule language J is divided up into a smaller number of coarser
runtime classes, rather than the potentially huge number that we currently use.
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6. Asymptotic Bounded Optimality


The strict notion of bounded optimality may be a useful philosophical landmark from which


to explore arti�cial intelligence, but it may be too strong to allow many interesting, general
results to be obtained. The same observation can be made in ordinary complexity theory:
although absolute e�ciency is the aim, asymptotic e�ciency is the game. That a sorting


algorithm is O(n log n) rather than O(n2) is considered signi�cant, but replacing a \multiply
by 2" by a \shift-left 1 bit" is not considered a real advance. The slack allowed by the
de�nitions of complexity classes is essential in building on earlier results, in obtaining robust
results that are not restricted to speci�c implementations, and in analysing the complexity of


algorithms that use other algorithms as subroutines. In this section, we begin by reviewing
classical complexity. We then propose de�nitions of asymptotic bounded optimality that
have some of the same advantages, and show that classical optimality is a special case of
asymptotic bounded optimality. Lastly, we report on some preliminary investigations into


the use of asymptotic bounded optimality as a theoretical tool in constructing universal
real-time systems.


6.1 Classical complexity


A problem, in the classical sense, is de�ned by a pair of predicates � and  such that output
z is a solution for input x if and only if �(x) and  (x; z) hold. A problem instance is an
input satisfying �, and an algorithm for the problem class always terminates with an output
z satisfying  (x; z) given an input x satisfying �(x). Asymptotic complexity describes the


growth rate of the worst-case runtime of an algorithm as a function of the input size. We


can de�ne this formally as follows. Let Ta(x) be the runtime of algorithm a on input x,
and let T �a (n) be the maximum runtime of a on any input of size n. Then algorithm a has
complexity O(f(n)) if


9k; n0 8n n > n0 ) T �a (n) � kf(n)


Intuitively, a classically optimal algorithm is one that has the lowest possible complexity.


For the purposes of constructing an asymptotic notion of bounded optimality, it will be
useful to have a de�nition of classical optimality that does not mention the complexity
directly. This can be done as follows:


De�nition 11 Classically optimal algorithm: An algorithm a is classically optimal if and


only if


9k; n0 8a
0; n n > n0 ) T �a (n) � kT �a0(n)


To relate classical complexity to our framework, we will need to de�ne the special case of task
environments in which traditional programs are appropriate. In such task environments,
an input is provided to the program as the initial percept, and the utility function on


environment histories obeys the following constraint:


De�nition 12 Classical task environment: hEP ; Ui is a classical task environment for


problem P if


V (l;M;EP ) =


(
u(T (l;M;EP )) if l outputs a correct solution for P


0 otherwise


599







Russell & Subramanian


where T (l;M;EP ) is the running time for l in EP on M , M is a universal Turing machine,


and u is some positive decreasing function.


The notion of a problem class in classical complexity theory thus corresponds to a class of
classical task environments of unbounded complexity. For example, the Traveling Salesper-


son Problem contains instances with arbitrarily large numbers of cities.


6.2 Varieties of asymptotic bounded optimality


The �rst thing we will need is a complexity measure on environments. Let n(E) be a suitable
measure of the complexity of an environment. We will assume the existence of environment


classes that are of unbounded complexity. Then, by analogy with the de�nition of classical
optimality, we can de�ne a worst-case notion of asymptotic bounded optimality (ABO).
Letting V �(l;M; n;E) be the minimum value of V (l;M;E) for all E in E of complexity n,
we have


De�nition 13 Worst-case asymptotic bounded optimality: an agent program l is timewise


(or spacewise) worst-case asymptotically bounded optimal in E on M i�


9k; n0 8l
0; n n > n0 ) V �(l; kM; n;E) � V �(l0;M; n;E)


where kM denotes a version of the machine M speeded up by a factor k (or with k times


more memory).


In English, this means that the program is basically along the right lines if it just needs a


faster (larger) machine to have worst-case behaviour as good as that of any other program
in all environments.


If a probability distribution is associated with the environment class E, then we can use


the expected value V (l;M;E) to de�ne an average-case notion of ABO:


De�nition 14 Average-case asymptotic bounded optimality: an agent program l is timewise


(or spacewise) average-case asymptotically bounded optimal in E on M i�


9k 8l0 V (l; kM;E) � V (l0;M;E)


For both the worst-case and average-case de�nitions of ABO, we would be happy with a
program that was ABO for a nontrivial environment on a nontrivial architectureM , unless
k were enormous.6 In the rest of the paper, we will use the worst-case de�nition of ABO.
Almost identical results can be obtained using the average-case de�nition.


The �rst observation that can be made about ABO programs is that classically optimal
programs are a special case of ABO programs:7


6. The classical de�nitions allow for optimality up to a constant factor k in the runtime of the algorithms.
One might wonder why we chose to use the constant factor to expand the machine capabilities, rather
than to increase the time available to the program. In the context of ordinary complexity theory, the
two alternatives are exactly equivalent, but in the context of general time-dependent utilities, only the
former is appropriate. It would not be possible to simply \let l run k times longer," because the programs
we wish to consider control their own execution time, trading it o� against solution quality. One could
imagine slowing down the entire environment by a factor of k, but this is merely a less realistic version
of what we propose.


7. This connection was suggested by Bart Selman.
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Theorem 8 A program is classically optimal for a given problem P if and only if it is


timewise worst-case ABO for the corresponding classical task environment class hEP ; Ui.


This observation follows directly from De�nitions 11, 12, and 13.


In summary, the notion of ABO will provide the same degree of theoretical robustness
and machine-independence for the study of bounded systems as asymptotic complexity does
for classical programs. Having set up a basic framework, we can now begin to exercise the
de�nitions.


6.3 Universal asymptotic bounded optimality


Asymptotic bounded optimality is de�ned with respect to a speci�c value function V. In
constructing real-time systems, we would prefer a certain degree of independence from the


temporal variation in the value function. We can achieve this by de�ning a family V of value
functions, di�ering only in their temporal variation. By this we mean that the value function
preserves the preference ordering of external actions over time, with all value functions in
the family having the same preference ordering.8


For example, in the �xed-cost regime we can vary the time cost c to generate a family of
value functions; in the stochastic deadline case, we can vary the deadline distribution Pd to
generate another family. Also, since each of the three regimes uses the same quality measure
for actions, then the union of the three corresponding families is also a family. What we will


show is that a single program, which we call a universal program, can be asymptotically
bounded-optimal regardless of which value function is chosen within any particular family.


De�nition 15 Universal asymptotic bounded optimality (UABO): An agent program l is


UABO in environment class E on M for the family of value functions V i� l is ABO in E


on M for every Vi 2 V.


A UABO program must compete with the ABO programs for every individual value function
in the family. A UABO program is therefore a universal real-time solution for a given task.
Do UABO programs exist? If so, how can we construct them?


It turns out that we can use the scheduling construction from (Russell & Zilberstein,


1991) to design UABO programs. This construction was designed to reduce task environ-
ments with unknown interrupt times to the case of known deadlines, and the same insight
applies here. The construction requires the architecture M to provide program concatena-
tion (e.g., the LISP prog construct), a conditional-return construct, and the null program


�. The universal program lU has the form of a concatenation of individual programs of
increasing runtime, with an appropriate termination test after each. It can be written as


lU = [l0 � l1 � � � lj � � �]


where each lj consists of a program and a termination test. The program part in lj is any
program in LM that is ABO in E for a value function Vj that corresponds to a �xed deadline
at td = 2j�, where � is a time increment smaller than the execution time of any non-null


program in LM .


8. The value function must therefore be separable (Russell & Wefald, 1989), since this preservation of rank
order allows a separate time cost to be de�ned. See chapter 9 of (Keeney & Rai�a, 1976) for a thorough
discussion of time-dependent utility.
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Figure 6: Performance pro�les for lU running on 4M , and for lopt running on M


Before proceeding to a statement that lU is indeed UABO, let us look at an example.


Consider the simple, sequential machine architecture described earlier. Suppose we can
select rules from a three-rule set with r1 = (0:2; 2), r2 = (0:5; 5) and r3 = (0:7; 7). Since
the shortest runtime of these rules is 2 seconds, we let � = 1. Then we look at the optimal
programs l0; l1; l2; l3; : : : for the �xed-deadline task environments with td = 1; 2; 4; 8; : : :.


These are:


l0 = �; l1 = r1; l2 = r1; l3 = r3; : : :


Hence the sequence of programs in lU is [�; r1; r1; r3; : : :].


Now consider a task environment class with a value function Vi that speci�es a stochastic
deadline uniformly distributed over the range [0: : : 10]. For this class, lopt = r1r2 is a
bounded optimal sequence.9 It turns out that lU has higher utility than lopt provided it is
run on a machine that is four times faster. We can see this by plotting the two performance


pro�les: QU for lU on 4M and Qopt for lopt onM . QU dominates Qopt, as shown in Figure 6.


To establish that the lU construction yields UABO programs in general, we need to
de�ne a notion of worst-case performance pro�le. Let Q�(t; l;M; n;E) be the minimum


value obtained by interrupting l at t, over all E in E of complexity n. We know that each
lj in lU satis�es the following:


8l0; n n > nj ) V �j (lj; kjM;n;E) � V �j (l
0;M; n;E)


for constants kj, nj . The aim is to prove that


8Vi 2 V 9k; n0 8l
0; n n > n0 ) V �i (lU ; kM; n;E) � V �i (l


0;M; n;E)


Given the de�nition of worst-case performance pro�le, it is fairly easy to show the following


lemma (the proof is essentially identical to the proof of Theorem 1 in Russell and Zilberstein,
1991):


9. Notice that, in our simple model, the output quality of a rule depends only on its execution time and
not on the input complexity. This also means that worst-case and average-case behaviour are the same.
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Figure 7: Throughput and accuracy improvement of lU over liopt, as a function of mean


arrival time, � = 0.2, Poisson arrivals.


Lemma 6 If lU is a universal program in E for V, and li is ABO on M in E for Vi 2 V,
then Q�(t; lU ; kM; n;E) dominates Q�(t; li;M; n;E) for k � 4 maxj kj, n > maxj nj .


This lemma establishes that, for a small constant penalty, we can ignore the speci�c real-
time nature of the task environment in constructing bounded optimal programs. However,


we still need to deal with the issue of termination. It is not possible in general for lU
to terminate at an appropriate time without access to information concerning the time-
dependence of the utility function. For example, in a �xed-time-cost task environment, the
appropriate termination time depends on the value of the time cost c.


For the general case with deterministic time-dependence, we can help out lU by sup-
plying, for each Vi, an \aspiration level" Q�i (ti; li;M; n;E), where ti is the time at which
li acts. lU terminates when it has completed an lj such that qj � Q�i (ti; li;M; n;E). By


construction, this will happen no later than ti because of Lemma 6.


Theorem 9 In task environments with deterministic time-dependence, an lU with a suitable


aspiration level is UABO in E on M .


With deadline heralds, the termination test is somewhat simpler and does not require any
additional input to lU .


Theorem 10 In a task environment with stochastic deadlines, lU is UABO in E on M if


it terminates when the herald arrives.


Returning to the mail-sorting example, it is fairly easy to see that lU (which consists of


a sequence of networks, like the optimal programs for the stochastic deadline case) will be
ABO in the �xed-deadline regime. It is not so obvious that it is also ABO in any particular
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stochastic deadline case | recall that both regimes can be considered as a single family.
We have programmed a constructor function for universal programs, and applied it to the


mail-sorter environment class. Varying the letter arrival distribution gives us di�erent value


functions Vi 2 V. Figure 7 shows that lU (on 4M) has higher throughput and accuracy
than liopt across the entire range of arrival distributions.


Given the existence of UABO programs, it is possible to consider the behaviour of com-


positions thereof. The simplest form of composition is functional composition, in which
the output of one program is used as input by another. More complex, nested composi-
tional structures can be entertained, including loops and conditionals (Zilberstein, 1993).


The main issue in constructing UABO compositions is how to allocate time among the
components. Provided that we can solve the time allocation problem when we know the
total runtime allowed, we can use the same construction technique as used above to gen-
erate composite UABO programs, where optimality is among all possible compositions of


the components. Zilberstein and Russell (1993), show that the allocation problem can be
solved in linear time in the size of the composite system, provided the composition is a tree
of bounded degree.


7. Conclusions And Further Work


We examined three possible formal bases for arti�cial intelligence, and concluded that
bounded optimality provides the most appropriate goal in constructing intelligent systems.


We also noted that similar notions have arisen in philosophy and game theory for more or
less the same reason: the mismatch between classically optimal actions and what we have
called feasible behaviours|those that can be generated by an agent program running on a
computing device of �nite speed and size.


We showed that with careful speci�cation of the task environment and the computing
device one can design provably bounded-optimal agents. We exhibited only very simple
agents, and it is likely that bounded optimality in the strict sense is a di�cult goal to
achieve when a larger space of agent programs is considered. More relaxed notions such


as asymptotic bounded optimality (ABO) may provide more theoretically robust tools for


further progress. In particular, ABO promises to yield useful results on composite agent


designs, allowing us to separate the problem of designing complex ABO agents into a discrete


structural problem and a continuous temporal optimization problem that is tractable in
many cases. Hence, we have reason to be optimistic that arti�cial intelligence can be
usefully characterized as the study of bounded optimality. We may speculate that provided
the computing device is neither too small (so that small changes in speed or size cause


signi�cant changes in the optimal program design) nor too powerful (so that classically
optimal decisions can be computed feasibly), ABO designs should be stable over reasonably
wide variations in machine speed and size and in environmental complexity. The details of
the optimal designs may be rather arcane, and learning processes will play a large part in


their discovery; we expect that the focus of this type of research will be more on questions
of convergence to optimality for various structural classes than on the end result itself.


Perhaps the most important implication, beyond the conceptual foundations of the �eld


itself, is that research on bounded optimality applies, by design, to the practice of arti�cial
intelligence in a way that idealized, in�nite-resource models may not. We have given, by


604







Provably bounded-optimal agents


way of illustrating this de�nition, a bounded optimal agent: the design of a simple system
consisting of sequences of decision procedures that is provably better than any other program


in its class. A theorem that exhibits a bounded optimal design translates, by de�nition,


into an agent whose actual behaviour is desirable.


There appear to be plenty of worthwhile directions in which to continue the exploration
of bounded optimality. From a foundational point of view, one of the most interesting
questions is how the concept applies to agents that can incorporate a learning component.


(Note that in section 5, the learning algorithm was external to the agent.) In such a
case, there will not necessarily be a largely stable bounded optimal con�guration if the
agent program is not large enough; instead, the agent will have to adapt to a shorter-term


horizon and rewrite itself as it becomes obsolete.


With results on the preservation of ABO under composition, we can start to examine
much more interesting architectures than the simple production system studied above. For
example, we can look at optimal search algorithms, where the algorithm is constrained to
apply a metalevel decision procedure at each step to decide which node to expand, if any


(Russell & Wefald, 1989). We can also extend the work on asymptotic bounded optimality
to provide a utility-based analogue to \big-O" notation for describing the performance of
agent designs, including those that are suboptimal.


In the context of computational learning theory, it is obvious that the stationarity
requirement on the environment, which is necessary to satisfy the preconditions of PAC


results, is too restrictive. The fact that the agent learns may have some e�ect on the
distribution of future episodes, and little is known about learning in such cases (Aldous &
Vazirani, 1990). We could also relax the deterministic and episodic requirement to allow
non-immediate rewards, thereby making connections to current research on reinforcement


learning.


The computation scheduling problem we examined is interesting in itself, and does not
appear to have been studied in the operations research or combinatorial optimization liter-
ature. Scheduling algorithms usually deal with physical rather than computational tasks,


hence the objective function usually involves summation of outputs rather than picking the
best. We would like to resolve the formal question of its tractability in the general case, and
also to look at cases in which the solution qualities of individual processes are interdependent
(such as when one can use the results of another). Practical extensions include computation


scheduling for parallel machines or multiple agents, and scheduling combinations of compu-
tational and physical (e.g., job-shop and ow-shop) processes, where objective functions are
a combination of summation and maximization. The latter extension broadens the scope
of applications considerably. An industrial process, such as designing and manufacturing a


car, consists of both computational steps (design, logistics, factory scheduling, inspection
etc.) and physical processes (stamping, assembling, painting etc.). One can easily imagine
many other applications in real-time �nancial, industrial, and military contexts.


It may turn out that bounded optimality is found wanting as a theoretical framework. If


this is the case, we hope that it is refuted in an interesting way, so that a better framework
can be created in the process.
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Appendix: Additional Proofs


This appendix contains formal proofs for three subsidiary lemmata in the main body of the
paper.


Lemma 3 There exists an optimal sequence that is sorted in increasing order of q's.


Proof: Suppose this is not the case, and s is an optimal sequence. Then there must be


two adjacent rules i, i + 1 where qi > qi+1 (see Figure 8). Removal of rule i + 1 yields a
sequence s0 such that Qs0(t) � Qs(t), from Lemma 1 and the fact that ti+2 � ti+1+ti+2. By
Lemma 2, s0 must also be optimal. We can repeat this removal process until s0 is ordered
by qi, proving the theorem by reductio ad absurdum.2


Lemma 4 For every sequence s = s1 : : : sm sorted in increasing order of quality, and single


step z with qz � qsm , V (sz) � V (s).


Proof: We calculate V (sz)� V (s) using Equation 5 and show that it is non-negative:


V (sz)� V (s) = qz[1� Pd((
Pm


j=1 tj) + tz)]� qm[1� Pd((
Pm


j=1 tj) + tz)]


= (qz � qm)[1� Pd((
Pm


j=1 tj) + tz)]


which is non-negative since qz � qm.2


t i+1


qi+2
qi


qi-1


t i


q


t


t i+2


qi+1


Figure 8: Proof for ordering by qi; lower dotted line indicates original pro�le; upper dotted
line indicates pro�le after removal of rule i+ 1.


Lemma 5 There exists an optimal sequence whose rules are in nondecreasing order of ti.


Proof: Suppose this is not the case, and s is an optimal sequence. Then there must be
two adjacent rules i, i + 1 where qi � qi+1 and ti > ti+1 (see Figure 9). Removal of rule i
yields a sequence s0 such that Qs0(t) � Qs(t), from Lemma 1. By Lemma 2, s0 must also be


optimal. We can repeat this removal process until s0 is ordered by ti, proving the theorem
by reductio ad absurdum.2
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Figure 9: Proof for ordering by ti; dotted line indicates pro�le after removal of rule i.
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