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Abstract


Multiple sequence alignment (MSA) is a ubiquitous problem in computational biology.
Although it is NP -hard to find an optimal solution for an arbitrary number of sequences,
due to the importance of this problem researchers are trying to push the limits of exact
algorithms further. Since MSA can be cast as a classical path finding problem, it is at-
tracting a growing number of AI researchers interested in heuristic search algorithms as a
challenge with actual practical relevance.


In this paper, we first review two previous, complementary lines of research. Based on
Hirschberg’s algorithm, Dynamic Programming needs O(kNk−1) space to store both the
search frontier and the nodes needed to reconstruct the solution path, for k sequences of
length N . Best first search, on the other hand, has the advantage of bounding the search
space that has to be explored using a heuristic. However, it is necessary to maintain all
explored nodes up to the final solution in order to prevent the search from re-expanding
them at higher cost. Earlier approaches to reduce the Closed list are either incompatible
with pruning methods for the Open list, or must retain at least the boundary of the Closed
list.


In this article, we present an algorithm that attempts at combining the respective
advantages; like A∗ it uses a heuristic for pruning the search space, but reduces both
the maximum Open and Closed size to O(kNk−1), as in Dynamic Programming. The
underlying idea is to conduct a series of searches with successively increasing upper bounds,
but using the DP ordering as the key for the Open priority queue. With a suitable choice
of thresholds, in practice, a running time below four times that of A∗ can be expected.


In our experiments we show that our algorithm outperforms one of the currently most
successful algorithms for optimal multiple sequence alignments, Partial Expansion A∗, both
in time and memory. Moreover, we apply a refined heuristic based on optimal alignments
not only of pairs of sequences, but of larger subsets. This idea is not new; however, to
make it practically relevant we show that it is equally important to bound the heuristic
computation appropriately, or the overhead can obliterate any possible gain.


Furthermore, we discuss a number of improvements in time and space efficiency with
regard to practical implementations.


Our algorithm, used in conjunction with higher-dimensional heuristics, is able to cal-
culate for the first time the optimal alignment for almost all of the problems in Reference 1
of the benchmark database BAliBASE .


1. Introduction: Multiple Sequence Alignment


The multiple sequence alignment problem (MSA) in computational biology consists in align-
ing several sequences, e.g. related genes from different organisms, in order to reveal simi-
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larities and differences across the group. Either DNA can be directly compared, and the
underlying alphabet Σ consists of the set {C,G,A,T} for the four standard nucleotide bases
cytosine, guanine, adenine and thymine; or we can compare proteins, in which case Σ
comprises the twenty amino acids.


Roughly speaking, we try to write the sequences one above the other such that the
columns with matching letters are maximized; thereby gaps (denoted here by an additional
letter “ ”) may be inserted into either of them in order to shift the remaining characters into
better corresponding positions. Different letters in the same column can be interpreted as
being caused by point mutations during the course of evolution that substituted one amino
acid by another one; gaps can be seen as insertions or deletions (since the direction of
change is often not known, they are also collectively referred to as indels). Presumably, the
alignment with the fewest mismatches or indels constitutes the biologically most plausible
explanation.


There is a host of applications of MSA within computational biology; e.g., for deter-
mining the evolutionary relationship between species, for detecting functionally active sites
which tend to be preserved best across homologous sequences, and for predicting three-
dimensional protein structure.


Formally, one associates a cost with an alignment and tries to find the (mathematically)
optimal alignment, i.e., that one with minimum cost. When designing a cost function,
computational efficiency and biological meaning have to be taken into account. The most
widely-used definition is the sum-of-pairs cost function. First, we are given a symmetric
(|Σ| + 1)2 matrix containing penalties (scores) for substituting a letter with another one
(or a gap). In the simplest case, this could be one for a mismatch and zero for a match,
but more biologically relevant scores have been developed. Dayhoff, Schwartz, and Orcutt
(1978) have proposed a model of molecular evolution where they estimate the exchange
probabilities of amino acids for different amounts of evolutionary divergence; this gives rise
to the so-called PAM matrices, where PAM250 is generally the most widely used; Jones,
Taylor, and Thornton (1992) refined the statistics based on a larger body of experimental
data. Based on such a substitution matrix, the sum-of-pairs cost of an alignment is defined
as the sum of penalties between all letter pairs in corresponding column positions.


A pairwise alignment can be conveniently depicted as a path between two opposite
corners in a two-dimensional grid (Needleman and Wunsch, 1981): one sequence is placed
on the horizontal axis from left to right, the other one on the vertical axis from top to
bottom. If there is no gap in either string, the path moves diagonally down and right; a gap
in the vertical (horizontal) string is represented as a horizontal (vertical) move right (down),
since a letter is consumed in only one of the strings. The alignment graph is directed and
acyclic, where a (non-border) vertex has incoming edges from the left, top, and top-left
adjacent vertices, and outgoing edges to the right, bottom, and bottom-right vertices.


Pairwise alignment can be readily generalized to the simultaneous alignment of multiple
sequences, by considering higher-dimensional lattices. For example, an alignment of three
sequences can be visualized as a path in a cube. Fig. 1 illustrates an example for the strings
ABCB, BCD, and DB. It also shows the computation of the sum-of-pairs cost, for a hypothetical
substitution matrix. A real example (problem 2trx of BAliBASE , see Sec. 7.3) is given in
Fig. 2.
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Alignment: Substitution matrix:


A B C _ B A B C D _
_ B C D _ A 0 2 4 2 3
_ _ _ D B B 1 3 3 3


C 2 2 3
Cost: 6+7+8+7+7 = 35 D 1 3


_ 0
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Figure 1: Fictitious alignment problem: Column representation, cost matrix, three-
dimensional visualization of the alignment path through the cube.


A number of improvements can be integrated into the sum-of-pairs cost, like associating
weights with sequences, and using different substitution matrices for sequences of varying
evolutionary distance. A major issue in multiple sequence alignment algorithms is their
ability to handle gaps. Gap penalties can be made dependent on the neighbor letters.
Moreover, it has been found (Altschul, 1989) that assigning a fixed score for each indel
sometimes does not produce the biologically most plausible alignment. Since the insertion
of a sequence of x letters is more likely than x separate insertions of a single letter, gap cost
functions have been introduced that depend on the length of a gap. A useful approximation
are affine gap costs, which distinguish between opening and extension of a gap and charge
a+b∗x for a gap of length x, for appropriate a and b. Another frequently used modification
is to waive the penalties for gaps at the beginning or end of a sequence.


Technically, in order to deal with affine gap costs we can no longer identify nodes in the
search graph with lattice vertices, since the cost associated with an edge depends on the
preceding edge in the path. Therefore, it is more suitable to store lattice edges in the priority
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1thx _aeqpvlvyfwaswcgpcqlmsplinlaantysdrlkvvkleidpnpttvkkyk______vegvpal
1grx __mqtvi__fgrsgcpysvrakdlaeklsnerdd_fqyqyvdiraegitkedlqqkagkpvetvp__
1erv agdklvvvdfsatwcgpckmikpffhslsekysn_viflevdvddcqdvasece______vksmptf
2trcP _kvttivvniyedgvrgcdalnssleclaaeypm_vkfckira_sntgagdrfs______sdvlptl


1thx rlvkgeqildstegvis__kdkllsf_ldthln_________
1grx qifvdqqhiggytdfaawvken_____lda____________
1erv qffkkgqkvgefsgan___kek_____leatine__lv____
2trcP lvykggelisnfisvaeqfaedffaadvesflneygllper_


Figure 2: Alignment of problem 2trx of BAliBASE , computed with algorithm settings as
described in Sec. 7.3.
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g = 53


cost(_,C)=3
gap penalty = 4
g = 60


g = 57


cost(A,_)=3
gap penalty = 4
g = 60


cost(A,C)=4
gap penalty = 0


Figure 3: Example of computing path costs with affine gap function; the substitution matrix
of Fig. 1 and a gap opening penalty of 4 is used.


queue, and let the transition costs for u → v, v → w be the sum-of-pairs substitution costs
for using one character from each sequence or a gap, plus the incurred gap penalties for
v → w followed by u → v. This representation was adopted in the program MSA (Gupta,
Kececioglu, & Schaeffer, 1995). Note that the state space in this representation grows by
a factor of 2k. An example of how successor costs are calculated, with the cost matrix of
Fig. 1 and a gap opening penalty of 4, is shown in Fig. 3.


For convenience of terminology in the sequel we will still refer to nodes when dealing
with the search algorithm.
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2. Overview


Wang and Jiang (1994) have shown that the optimal multiple sequence alignment problem is
NP -hard; therefore, we cannot hope to achieve an efficient algorithm for an arbitrary number
of sequences. As a consequence, alignment tools most widely used in practice sacrifice the
sound theoretical basis of exact algorithms, and are heuristic in nature (Chan, Wong, &
Chiu, 1992). A wide variety of techniques has been developed. Progressive methods build
up the alignment gradually, starting with the closest sequences and successively adding
more distant ones. Iterative strategies refine an initial alignment through a sequence of
improvement steps.


Despite their limitation to moderate number of sequences, however, the research into
exact algorithms is still going on, trying to push the practical boundaries further. They still
form the building block of heuristic techniques, and incorporating them into existing tools
could improve them. For example, an algorithm iteratively aligning two groups of sequences
at a time could do this with three or more, to better avoid local minima. Moreover, it is
theoretically important to have the “gold standard” available for evaluation and comparison,
even if not for all problems.


Since MSA can be cast as a minimum-cost path finding problem, it turns out that it is
amenable to heuristic search algorithms developed in the AI community; these are actually
among the currently best approaches. Therefore, while many researchers in this area have
often used puzzles and games in the past to study heuristic search algorithms, recently there
has been a rising interest in MSA as a testbed with practical relevance, e.g., (Korf, 1999;
Korf & Zhang, 2000; Yoshizumi, Miura, & Ishida, 2000; Zhou & Hansen, 2003b); its study
has also led to major improvements of general search techniques.


It should be pointed out that the definition of the MSA problem as given above is not the
only one; it competes with other attempts at formalizing biological meaning, which is often
imprecise or depends on the type of question the biologist investigator is pursuing. E.g., in
this paper we are only concerned with global alignment methods, which find an alignment of
entire sequences. Local methods, in contrast, are geared towards finding maximally similar
partial sequences, possibly ignoring the remainder.


In the next section, we briefly review previous approaches, based on dynamic program-
ming and incorporating lower and upper bounds. In Sec. 4, we describe a new algorithm
that combines and extends some of these ideas, and allows to reduce the storage of Closed
nodes by partially recomputing the solution path at the end (Sec. 5). Moreover, it turns out
that our algorithm’s iterative deepening strategy can be transferred to find a good balance
between the computation of improved heuristics and the main search (Sec. 6), an issue that
has previously been a major obstacle for their practical application. Sec. 7 presents an
experimental comparison with Partial Expansion A∗ (Yoshizumi, Miura, & Ishida, 2000),
one of the currently most successful approaches. We also solve all but two problems of
Reference 1 of the widely used benchmark database BAliBASE (Thompson, Plewniak, &
Poch, 1999). To the best of our knowledge, this has not been achieved previously with an
exact algorithm.
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3. Previous Work


A number of exact algorithms have been developed previously that can compute alignments
of a moderate number of sequences. Some of them are mostly constrained by available
memory, some by the required computation time, and some on both. We can roughly
group them into two categories: those based on the dynamic programming paradigm, which
proceed primarily in breadth-first fashion; and best-first search, utilizing lower and upper
bounds to prune the search space. Some recent research, including our new algorithm
introduced in Sec. 4, attempts to beneficially combine these approaches.


3.1 Dijkstra’s Algorithm and Dynamic Programming


Dijkstra (1959) presented a general algorithm for finding the shortest (resp. minimum cost)
path in a directed graph. It uses a priority queue (heap) to store nodes v together with
the shortest found distance from the start node s (i.e., the top-left corner of the grid) to v
(also called the g-value of v). Starting with only s in the priority queue, in each step, an
edge with the minimum g-value is removed from the priority queue; its expansion consists
in generating all of its successors (vertices to the right and/or below) reachable in one step,
computing their respective g-value by adding the edge cost to the previous g-value, and
inserting them in turn into the priority queue in case this newly found distance is smaller
than their previous g-value. By the time a node is expanded, the g-value is guaranteed to
be the minimal path cost from the start node, g∗(v) = d(s, v). The procedure runs until the
priority queue becomes empty, or the target node t (the bottom-right corner of the grid)
has been reached; its g-value then constitutes the optimal solution cost g∗(t) = d(s, t) of
the alignment problem. In order to trace back the path corresponding to this cost, we move
backwards to the start node choosing predecessors with minimum cost. The nodes can either
be stored in a fixed matrix structure corresponding to the grid, or they can be dynamically
generated; in the latter case, we can explicitly store at each node a backtrack-pointer to
this optimal parent.


For integer edge costs, the priority queue can be implemented as a bucket array pointing
to doubly linked lists (Dial, 1969), so that all operations can be performed in constant time
(To be precise, the DeleteMin-operation also needs a pointer that runs through all different
g-values once; however, we can neglect this in comparison to the number of expansions).
To expand a vertex, at most 2k − 1 successor vertices have to be generated, since we have
the choice of introducing a gap in each sequence. Thus, Dijkstra’s algorithm can solve the
multiple sequence alignment problem in O(2kNk) time and O(Nk) space for k sequences of
length ≤ N .


A means to reduce the number of nodes that have to be stored for path reconstruction
is by associating a counter with each node that maintains the number of children whose
backtrack-pointer refers to them (Gupta et al., 1995). Since each node can be expanded at
most once, after this the number of referring backtrack-pointers can only decrease, namely,
whenever a cheaper path to one of its children is found. If a node’s reference count goes
to zero, whether immediately after its expansion or when it later loses a child, it can
be deleted for good. This way, we only keep nodes in memory that have at least one
descendant currently in the priority queue. Moreover, auxiliary data structures for vertices
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and coordinates are most efficiently stored in tries (prefix trees); they can be equipped with
reference counters as well and be freed accordingly when no longer used by any edge.


The same complexity as for Dijkstra’s algorithm holds for dynamic programming (DP);
it differs from the former one in that it scans the nodes in a fixed order that is known
beforehand (hence, contrary to the name the exploration scheme is actually static). The
exact order of the scan can vary (e.g., row-wise or column-wise), as long as it is compatible
with the topological ordering of the graph (e.g., for two sequences that the cells left, top,
and diagonally top-left have been explored prior to a cell). One particular such ordering is
that of antidiagonals, diagonals running from upper-right to lower-left. The calculation of
the antidiagonal of a node merely amounts to summing up its k coordinates.


Hirschberg (1975) noticed that in order to determine only the cost of the optimal align-
ment g∗(t), it would not be necessary to store the whole matrix; instead, when proceeding
e.g. by rows it suffices to keep track of only k of them at a time, deleting each row as soon
as the next one is completed. This reduces the space requirement by one dimension from
O(Nk) to O(kNk−1). In order to recover the solution path at the end, re-computation of
the lost cell values is needed. A Divide-and-conquer -strategy applies the algorithm twice
to half the grid each, once in forward and once in backward direction, meeting at a fixed
middle row. By adding the corresponding forward and backward distances in this middle
row and finding the minimum, one cell lying on an optimal path can be recovered. This
cell essentially splits the problem into two smaller subproblems, one from the upper left
corner to it, and the other one to the lower right corner; they can be recursively solved
using the same method. In two dimensions, the computation time is at most doubled, and
the overhead reduces even more in higher dimensions.


The FastLSA algorithm (Davidson, 2001) further refines Hirschberg’s algorithm by ex-
ploiting additionally available memory to store more than one node on an optimal path,
thereby reducing the number of re-computations.


3.2 Algorithms Utilizing Bounds


While Dijkstra’s algorithm and dynamic programming can be viewed as variants of breadth-
first search, we achieve best first search if we expand nodes v in the order of an estimate
(lower bound) of the total cost of a path from s to the t passing through v. Rather than using
the g-value as in Dijkstra’s algorithm, we use f(v) := g(v) + h(v) as the heap key, where
h(v) is a lower bound on the cost of an optimal path from v to t. If h is indeed admissible,
then the first solution found is guaranteed to be optimal (Hart, Nilsson, & Raphael, 1968).
This is the classical best-first search algorithm, the A∗ algorithm, well known in the artificial
intelligence community. In this context, the priority queue maintaining the generated nodes
is often also called the Open list, while the nodes that have already been expanded and
removed from it constitute the Closed list. Fig. 4 schematically depicts a snapshot during a
two-dimensional alignment problem, where all nodes with f -value no larger than the current
fmin have been expanded. Since the accuracy of the heuristic decreases with the distance to
the goal, the typical ‘onion-shaped’ distribution results, with the bulk being located closer
to the start node, and tapering out towards higher levels.


The A∗ algorithm can significantly reduce the total number of expanded and generated
nodes; therefore, in higher dimensions it is clearly superior to dynamic programming. How-
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Figure 4: Snapshot during best-first search in pairwise alignment (schematically).


ever, in contrast to the Hirschberg algorithm, it still stores all of the explored nodes in the
Closed list. Apart from keeping track of the solution path, this is necessary to prevent the
search from “leaking back”, in the following sense.


A heuristic h is called consistent if h(x) ≤ h(x′)+c(x, x′), for any node x and its child x′.
A consistent heuristic ensures that (as in the case of Dijkstra’s algorithm) at the time a node
is expanded, its g-value is optimal, and hence it is never expanded again. However, if we try
to delete the Closed nodes, then there can be topologically smaller nodes in Open with a
higher f -value; when those are expanded at a later stage, they can lead to the re-generation
of the node at a non-optimal g-value, since the first instantiation is no longer available for
duplicate checking. In Fig. 4, nodes that might be subject to spurious re-expansion are
marked “X”.


Researchers have tried to avoid these leaks, while retaining the basic A∗ search scheme.
Korf proposed to store a list of forbidden operators with each node, or to place the parents
of a deleted node on Open with f -value infinity (Korf, 1999; Korf & Zhang, 2000). However,
as Zhou and Hansen (2003a) remark, it is hard to combine this algorithm with techniques
for reduction of the Open list, and moreover the storage of operators lets the size of the
nodes grow exponentially with the number of sequences. In their algorithm, they keep
track of the kernel of the Closed list, which is defined as the set of nodes that have only
Closed nodes as parents; otherwise a Closed node is said to be in the boundary. The key
idea is that only the boundary nodes have to be maintained, since they shield the kernel
from re-expansions. Only when the algorithm gets close to the memory limit nodes from
the kernel are deleted; the backtrack pointer of the children is changed to the parents of
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the deleted nodes, which become relay nodes for them. For the final reconstruction of the
optimal solution path, the algorithm is called recursively for each relay node to bridge the
gap of missing edges.


In addition to the Closed list, also the Open list can grow rapidly in sequence alignment
problems. Particularly, since in the original A∗ algorithm the expansion of a node generates
all of its children at once, those whose f -value is larger than the optimal cost g∗(t) are kept
in the heap up to the end, and waste much of the available space.


If an upper bound U on the optimal solution cost g∗(t) is known, then nodes v with
f(v) > U can be pruned right away; this idea is used in several articles (Spouge, 1989; Gupta
et al., 1995). One of the most successful approaches is Yoshizumi et al.’s (2000) Partial
Expansion A∗ (PEA∗). Each node stores an additional value F , which is the minimum
f -value of all of its yet ungenerated children. In each step, only a node with minimum
F -value is expanded, and only those children with f = F are generated. This algorithm
clearly only generates nodes with f value no larger than the optimal cost, which cannot
be avoided altogether. However, the overhead in computation time is considerable: in the
straightforward implementation, if we want to maintain nodes of constant size, generating
one edge requires determining the f -values of all successors, such that for an interior node
which eventually will be fully expanded the computation time is of the order of the square
of the number of successors, which grows as O(2k) with the number of sequences k. As a
remedy, in the paper it is proposed to relax the condition by generating all children with
f ≤ F + C, for some small C.


An alternative general search strategy to A∗ that uses only linear space is iterative
deepening A∗(IDA∗) (Korf, 1985). The basic algorithm conducts a depth-first search up to
a pre-determined threshold for the f -value. During the search, it keeps track of the smallest
f -value of a generated successor that is larger than the threshold. If no solution is found,
this provides an increased threshold to be used in the next search iteration.


Wah and Shang (1995) suggested more liberal schemes for determining the next thresh-
old dynamically in order to minimize the number of recomputations. IDA∗ is most efficient
in tree structured search spaces. However, it is difficult to detect duplicate expansions with-
out additional memory; Therefore, unfortunately it is not applicable in lattice-structured
graphs like in the sequence alignment problem due to the combinatorially explosive number
of paths between any two given nodes.


A different line of research tries to restrict the search space of the breadth-first ap-
proaches by incorporating bounds. Ukkonen (1985) presented an algorithm for the pairwise
alignment problem which is particularly efficient for similar sequences; its computation time
scales as O(dm), where d is the optimal solution cost. First consider the problem of deciding
whether a solution exists whose cost is less than some upper threshold U . We can restrict
the evaluation of the DP matrix to a band of diagonals where the minimum number of
indels required to reach the diagonal, times the minimum indel cost, does not exceed U .
In general, starting with a minimum U value, we can successively double G until the test
returns a solution; the increase of computation time due to the recomputations is then also
bounded by a factor of 2.


Another approach for multiple sequence alignment is to make use of the lower bounds h
from A∗. The key idea is the following: Since all nodes with an f -value lower than g∗(t) have
to be expanded anyway in order to guarantee optimality, we might as well explore them in
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any reasonable order, like that of Dijkstra’s algorithm or DP, if we only knew the optimal
cost. Even slightly higher upper bounds will still help pruning. Spouge (1989) proposed to
bound DP to vertices v where g(v) + h(v) is smaller than an upper bound for g∗(t).


Linear Bounded Diagonal Alignment (LBD-Align) (Davidson, 2001) uses an upper
bound in order to reduce the computation time and memory in solving a pairwise alignment
problem by dynamic programming. The algorithm calculates the DP matrix one antidi-
agonal at a time, starting in the top left corner, and working down towards bottom-right.
While A∗ would have to check the bound in every expansion, LBD-Align only checks the
top and bottom cell of each diagonal. If e.g. the top cell of a diagonal has been pruned, all
the remaining cells in that row can be pruned as well, since they are only reachable through
it; this means that the pruning frontier on the next row can be shifted down by one. Thus,
the pruning overhead can be reduced from a quadratic to a linear amount in terms of the
sequence length.


3.3 Obtaining Heuristic Bounds


Up to now we have assumed lower and upper bounds, without specifying how to derive them.
Obtaining an inaccurate upper bound on g∗(t) is fairly easy, since we can use the cost of any
valid path through the lattice. Better estimates are e.g. available from heuristic linear-time
alignment programs such as FASTA and BLAST (Altschul, Gish, Miller, Myers, & Lipman,
1990), which are a standard method for database searches. Davidson (2001) employed a
local beam search scheme.


Gusfield (1993) proposed an approximation called the star-alignment. Out of all the
sequences to be aligned, one consensus sequence is chosen such that the sum of its pairwise
alignment costs to the rest of the sequences is minimal. Using this “best” sequence as
the center, the other ones are aligned using the “once a gap, always a gap” rule. Gusfield
showed that the cost of the optimal alignment is greater or equal to the cost of this star
alignment, divided by (2 − 2/k).


For use in heuristic estimates, lower bounds on the k-alignment are often based on
optimal alignments of subsets of m < k sequences. In general, for a vertex v in k-space, we
are looking for a lower bound for a path from v to the target corner t. Consider first the
case m = 2. The cost of such a path is, by definition, the sum of its edge costs, where each
edge cost in turn is the sum of all pairwise (replacement or gap) penalties. Each multiple
sequence alignment induces a pairwise alignment for sequences i and j, by simply copying
rows i and j and ignoring columns with a “ ” in both rows. These pairwise alignments can
be visualized as the projection of an alignment onto its faces, cf. Fig. 1.


By interchange of the summation order, the sum-of-pairs cost is the sum of all pairwise
alignment costs of the respective paths projected on a face, each of which cannot be smaller
than the optimal pairwise path cost. Thus, we can construct an admissible heuristic hpair


by computing, for each pairwise alignment and for each cell in a pairwise problem, the
cheapest path cost to the goal node.


The optimal solutions to all pairwise alignment problems needed for the lower bound h
values are usually computed prior to the main search in a preprocessing step (Ikeda & Imai,
1994). To this end, it suffices to apply the ordinary DP procedure; however, since this time
we are interested in the lowest cost of a path from v to t, it runs in backward direction,
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proceeding from the lower right corner to the upper left, expanding all possible parents of
a vertex in each step.


Let U be an upper bound on the cost of an optimal multiple sequence alignment G.
The sum of all optimal alignment costs Lij = d(sij , tij) for pairwise subproblems i, j ∈
{1, . . . , k}, i < j, call it L, is a lower bound on G. Carrillo and Lipman (1988) pointed out
that by the additivity of the sum-of-pairs cost function, any pairwise alignment induced
by the optimal multiple sequence alignment can at most be δ = U − L larger than the
respective optimal pairwise alignment. This bound can be used to restrict the number of
values that have to be computed in the preprocessing stage and have to be stored for the
calculation of the heuristic: for the pair of sequences i, j, only those nodes v are feasible
such that a path from the start node si,j to the goal node ti,j exists with total cost no more
than Li,j + δ. To optimize the storage requirements, we can combine the results of two
searches. First, a forward pass determines for each relevant node v the minimum distance
d(sij , v) from the start node. The subsequent backward pass uses this distance like an ’exact
heuristic’ and stores the distance d(v, tij) from the target node only for those nodes with
d(sij , v) + d(v, tij) ≤ d(s, t) + δ1.


Still, for larger alignment problems the required storage size can be extensive. The
program MSA (Gupta et al., 1995) allows the user to adjust δ to values below the Carrillo-
Lipman bound individually for each pair of sequences. This makes it possible to generate
at least heuristic alignments if time or memory doesn’t allow for the complete solution;
moreover, it can be recorded during the search if the δ-bound was actually reached. In the
negative case, optimality of the found solution is still guaranteed; otherwise, the user can
try to run the program again with slightly increased bounds.


The general idea of precomputing simplified problems and storing the solutions for use as
a heuristic has been explored under the name of pattern databases (Culberson & Schaeffer,
1998). However, these approaches implicitly assume that the computational cost can be
amortized over many search instances to the same target. In contrast, in the case of MSA,
the heuristics are instance-specific, so that we have to strike a balance. We will discuss this
in greater depth in Sec. 6.2.


4. Iterative-Deepening Dynamic Programming


As we have seen, a fixed search order as in dynamic programming can have several advan-
tages over pure best-first selection.


• Since Closed nodes can never be reached more than once during the search, it is safe to
delete useless ones (those that are not part of any shortest path to the current Open


1. A slight technical complication arises for affine gap costs: recall that DP implementations usually charge
the gap opening penalty to the g-value of the edge e starting the gap, while the edge e′ ending the gap
carries no extra penalty at all. However, since the sum of pairs heuristics h is computed in backward
direction, using the same algorithm we would assign the penalty for the same path instead to e′. This
means that the heuristic f = g + h would no longer be guaranteed to be a lower bound, since it
contains the penalty twice. As a remedy, it is necessary to make the computation symmetric by charging
both the beginning and end of a gap with half the cost each. The case of the beginning and end of
the sequences can be handled most conveniently by starting the search from a “dummy” diagonal edge
((−1, . . . ,−1), (0, . . . , 0)), and defining the target edge to be the dummy diagonal edge ((N, . . . , N), (N +
1, . . . , N + 1)), similar to the arrows shown in Fig. 1.
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nodes) and to apply path compression schemes, such as the Hirschberg algorithm.
No sophisticated schemes for avoiding ’back leaks’ are required, such as the above-
mentioned methods of core set maintenance and dummy node insertion into Open.


• Besides the size of the Closed list, the memory requirement of the Open list is de-
termined by the maximum number of nodes that are open simultaneously at any
time while the algorithm is running. When the f -value is used as the key for the
priority queue, the Open list usually contains all nodes with f -values in some range
(fmin, fmin + δ); this set of nodes is generally spread across all over the search space,
since g (and accordingly h = (f − g)) can vary arbitrarily between 0 and fmin + δ. As
opposed to that, if DP proceeds along levels of antidiagonals or rows, at any iteration
at most k levels have to be maintained at the same time, and hence the size of the
Open list can be controlled more effectively. In Fig. 4, the pairwise alignment is par-
titioned into antidiagonals: the maximum number of open nodes in any two adjacent
levels is four, while the total amounts to seventeen2.


• For practical purposes, the running time should not only be measured in terms of the
number of node expansions, but one should also take into account the execution time
needed for an expansion. By arranging the exploration order such that edges with
the same head node (or more generally, those sharing a common coordinate prefix)
are dealt with one after the other, much of the computation can be cached, and edge
generation can be sped up significantly. We will come back to this point in Sec. 6.


The remaining issue of a static exploration scheme consists in adequately bounding the
search space using the h-values. A∗ is known to be minimal in terms of the number of node
expansions. If we knew the cost g∗(t) of a cheapest solution path beforehand, we could
simply proceed level by level of the grid, however only immediately prune generated edges
e whenever f(e) > g∗(t). This would ensure that we only generate those edges that would
have been generated by algorithm A∗, as well. An upper threshold would additionally help
reduce the size of the Closed list, since a node can be pruned if all of its children lie beyond
the threshold; additionally, if this node is the only child of its parent, this can give rise to
a propagating chain of ancestor deletions.


We propose to apply a search scheme that carries out a series of searches with succes-
sively larger thresholds, until a solution is found (or we run out of memory or patience).
The use of such an upper bound parallels that in the IDA∗ algorithm.


The resulting algorithm, which we will refer to as Iterative-Deepening Dynamic Pro-
gramming (IDDP), is sketched in Fig. 5. The outer loop initializes the threshold with a
lower bound (e.g., h(s)), and, unless a solution is found, increases it up to an upper bound.
In the same manner as in the IDA∗ algorithm, in order to make sure that at least one addi-
tional edge is explored in each iteration the threshold has to be increased correspondingly
at least to the minimum cost of a fringe edge that exceeded the previous threshold. This
fringe increment is maintained in the variable minNextThresh, initially estimated as the
upper bound, and repeatedly decreased in the course of the following expansions.


2. Contrary to what the figure might suggest, A∗ can open more than two nodes per level in pairwise
alignments, if the set of nodes no worse than some fmin contains “holes”.
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procedure IDDP(Edge startEdge, Edge targetEdge, int lowerBound, int upperBound)
int thresh = lowerBound
{Outer loop: Iterative deepening phases}
while (thresh ≤ upperBound) do


Heap h = {(startEdge, 0)}
int minNextThresh = upperBound
{Inner loop: Bounded dynamic programming}
while (not h.IsEmpty()) do


Edge e = h.DeleteMin() {Find and remove an edge with minimum level}
if (e == targetEdge) then
{Optimal alignment found}
return TraceBackPath(startEdge, targetEdge)


end if
Expand(e, thresh, minNextThresh)


end while
int threshIncr = ComputeThreshIncr() {Compute search threshold for next iteration, see text}
thresh = max(thresh + threshIncr, minNextThresh)


end while
print(“No alignment with cost at most upperBound found”)


Figure 5: Algorithm Iterative-Deepening Dynamic Programming.


In each step of the inner loop, we select and remove a node from the priority queue
whose level is minimal. As explained later in Sec. 6, it is favorable to break ties according
to the lexicographic order of target nodes. Since the total number of possible levels is
comparatively small and known in advance, the priority queue can be implemented using
an array of linked lists (Dial, 1969); this provides constant time operations for insertion and
deletion.


The expansion of an edge e is partial (Fig. 6). A child edge might already exist from an
earlier expansion of an edge with the same head vertex; we have to test if we can decrease
the g-value. Otherwise, we generate a new edge, if only temporarily for the sake of calculat-
ing its f -value; that is, if its f -value exceeds the search threshold of the current iteration,
its memory is immediately reclaimed. Moreover, in this case the fringe threshold minNext-
Thresh is updated. In a practical implementation, we can prune unnecessary accesses to
partial alignments inside the calculation of the heuristic e.GetH() as soon as as the search
threshold has already been reached.


The relaxation of a child edge within the threshold is performed by the subprocedure
UpdateEdge (cf. Fig. 7). This is similar to the corresponding relaxation step in A∗, updating
the child’s g- and f values, its parent pointers, and inserting it into Open, if not already
contained. However, in contrast to best-first search, it is inserted into the heap according to
the antidiagonal level of its head vertex. Note that in the event that the former parent loses
its last child, propagation of deletions (Fig. 8) can ensure that only those Closed nodes
continue to be stored that belong to some solution path. Edge deletions can also ensue
deletion of dependent vertex and coordinate data structures (not shown in the pseudocode).
The other situation that gives rise to deletions is if immediately after the expansion of a
node no children are pointing back to it (the children might either be reachable more cheaply
from different nodes, or their f -value might exceed the threshold).
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procedure Expand(Edge e, int thresh, int minNextThresh)
for all Edge child ∈ Succ(e) do
{Retrieve child or tentatively generate it if not yet existing, set boolean variable ‘created’
accordingly}
int newG = e.GetG() + GapCost(e, child)


+ child.GetCost()
int newF = newG + child.GetH()
if (newF ≤ thresh and newG < child.GetG()) then
{Shorter path than current best found, estimate within threshold}
child.SetG(newG)
UpdateEdge(e, child, h) {Update search structures}


else if (newF > thresh) then
minNextThresh =


min(minNextThresh, newF)
{Record minimum of pruned edges}
if (created) then


Delete(child) {Make sure only promising edges are stored}
end if


end if
end for
if (e.ref == 0) then


DeleteRec(e) {No promising children could be inserted into the heap}
end if


Figure 6: Edge expansion in IDDP.


procedure UpdateEdge(Edge parent, Edge child, Heap h)
parent.ref++
child.GetBacktrack().ref−−
if (child.GetBacktrack().ref == 0) then


DeleteRec(child.GetBacktrack()) {The former parent has lost its last child and becomes useless}
end if
child.SetBacktrack(parent)
if (not h.Contains(child)) then


h.Insert(child, child.GetHead().GetLevel())
end if


Figure 7: Edge relaxation in IDDP.


The correctness of the algorithm can be shown analogously to the soundness proof of A∗.
If the threshold is smaller than g∗(t), the DP search will terminate without encountering
a solution; otherwise, only nodes are pruned that cannot be part of an optimal path. The
invariant holds that there is always a node in each level which lies on an optimal path and
is in the Open list. Therefore, if the algorithm terminates only when the heap runs empty,
the best found solution will indeed be optimal.


The iterative deepening strategy results in an overhead computation time due to re-
expansions, and we are trying to restrict this overhead as much as possible. More precisely,
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procedure DeleteRec(Edge e)
if (e.GetBacktrack() 6= nil) then


e.GetBacktrack().ref−−
if (e.GetBacktrack().ref == 0) then


DeleteRec(e.GetBacktrack())
end if


end if
Delete(e)


Figure 8: Recursive deletion of edges that are no longer part of any solution path.


procedure TraceBack(Edge startEdge, Edge e)
if (e == startEdge) then


return {End of recursion}
end if
if (e.GetBackTrack().GetTarget() 6= e.GetSource()) then
{Relay node: recursive path reconstruction}
IDDP( e.GetBackTrack(), e, e.GetF(), e.GetF())


end if
OutputEdge(e)
TraceBack(startEdge, e.GetBackTrack())


Figure 9: Divide-and-Conquer solution reconstruction in reverse order.


we want to minimize the ratio
ν =


nIDDP


nA∗
,


where nIDDP and nA∗ denote the number of expansions in IDDP and A∗, respectively. One
way to do so (Wah & Shang, 1995) is to choose a threshold sequence θ1, θ2, . . . such that
the number of expansions ni in stage i satisfies


ni = rni−1,


for some fixed ratio r. If we choose r too small, the number of re-expansions and hence
the computation time will grow rapidly, if we choose it too big, then the threshold of the
last iteration can exceed the optimal solution cost significantly, and we will explore many
irrelevant edges. Suppose that n0r


p < nA∗ ≤ n0r
p+1. Then the algorithm performs p + 1


iterations. In the worst case, the overshoot will be maximal if A∗ finds the optimal solution
just above the previous threshold, nA∗ = n0r


p + 1. The total number of expansions is
n0
∑p+1


i=0 ri = n0
r(rp+1−1)


r−1 , and the ratio ν becomes approximately r2


r−1 . By setting the
derivative of this expression to zero, we find that the optimal value for r is 2; the number
of expansions should double from one search stage to the next. If we achieve doubling, we
will expand at most four times as many nodes as A∗.


Like in Wah and Shang’s (1995) scheme, we dynamically adjust the threshold using run-
time information. Procedure ComputeThreshIncr stores the sequence of expansion numbers
and thresholds from the previous search stages, and then uses curve fitting for extrapolation
(in the first few iterations without sufficient data available, a very small default threshold
is applied). We found that the distribution of nodes n(θ) with f -value smaller or equal to
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threshold θ can be modeled very accurately according to the exponential approach


n(θ) = A ·Bθ.


Consequently, in order to attempt to double the number of expansions, we choose the next
threshold according to


θi+1 = θi +
1


log2 B
.


5. Sparse Representation of Solution Paths


When the search progresses along antidiagonals, we do not have to fear back leaks, and
are free to prune Closed nodes. Similarly as in Zhou and Hansen’s (2003a) work, however,
we only want to delete them lazily and incrementally when being forced by the algorithm
approaching the computer’s memory limit.


When deleting an edge e, the backtrack-pointers of its child edges that refer to it are
redirected to the respective predecessor of e, whose reference count is increased accordingly.
In the resulting sparse solution path representation, backtrack pointers can point to any
optimal ancestors.


After termination of the main search, we trace back the pointers starting with the goal
edge; this is outlined in Procedure TraceBack (Fig. 9), which prints out the solution path
in reverse order. Whenever an edge e points back to an ancestor e′ which is not its direct
parent, we apply an auxiliary search from start edge e′ to goal edge e in order to reconstruct
the missing links of the optimal solution path. The search threshold can now be fixed at the
known solution cost; moreover, the auxiliary search can prune those edges that cannot be
ancestors of e because they have some coordinate greater than the corresponding coordinate
in e. Since also the shortest distance between e and e′ is known, we can stop at the first path
that is found at this cost. To improve the efficiency of the auxiliary search even further,
the heuristic could be recomputed to suit the new target. Therefore, the cost of restoring
the solution path is usually marginal compared to that of the main search.


Which edges are we going to prune, in which order? For simplicity, assume for the
moment that the Closed list consists of a single solution path. According to the Hirschberg
approach, we would keep only one edge, preferably lying near the center of the search
space (e.g., on the longest anti-diagonal), in order to minimize the complexity of the two
auxiliary searches. With additional available space allowing to store three relay edges, we
would divide the search space into four subspaces of about equal size (e.g., additionally
storing the antidiagonals half-way between the middle antidiagonal and the start node resp.
the target node). By extension, in order to incrementally save space under diminishing
resources we would first keep only every other level, then every fourth, and so on, until only
the start edge, the target edge, and one edge half-way on the path would be left.


Since in general the Closed list contains multiple solution paths (more precisely, a tree
of solution paths), we would like to have about the same density of relay edges on each of
them. For the case of k sequences, an edge reaching level l with its head node can originate
with its tail node from level l − 1, . . . , l − k. Thus, not every solution path passes through
each level, and deleting every other level could result in leaving one path completely intact,
while extinguishing another totally. Thus, it is better to consider contiguous bands of k
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procedure SparsifyClosed()
for (int sparse = 1 to blog2 Nc) do


while (UsedMemory() > maxMemory and exists {Edge e ∈ Open | e.GetLastSparse() <
sparse}) do


Edge pred = e.GetBacktrack()
{Trace back solution path}
while (pred 6= nil and e.GetLastSparse() < sparse) do


e.SetLastSparse(sparse) {Mark to avoid repeated trace-back}
if (bpred.GetHead().GetLevel() / kc mod 2sparse 6= 0) then
{pred lies in prunable band: redirect pointer}
e.SetBacktrack(pred.GetBacktrack())
e.GetBacktrack().ref++
pred.ref−−
if (pred.ref == 0) then
{e is the last remaining edge referring to pred}
DeleteRec(pred)


end if
else
{Not in prunable band: continue traversal}
e = e.GetBacktrack()


end if
pred = e.GetBacktrack()


end while
end while


end for


Figure 10: Sparsification of Closed list under restricted memory.


levels each, instead of individual levels. Bands of this size cannot be skipped by any path.
The total number of antidiagonals in an alignment problem of k sequences of length N is
k ·N − 1; thus, we can decrease the density in blog2 Nc steps.


A technical implementation issue concerns the ability to enumerate all edges that ref-
erence some given prunable edge, without explicitly storing them in a list. However, the
reference counting method described above ensures that any Closed edge can be reached by
following a path bottom-up from some edge in Open. The procedure is sketched in Fig. 10.
The variable sparse denotes the interval between level bands that are to be maintained in
memory. In the inner loop, all paths to Open nodes are traversed in backward direction;
for each edge e′ that falls into a prunable band, the pointer of the successor e on the path
is redirected to its respective backtrack pointer. If e was the last edge referencing e′, the
latter one is deleted, and the path traversal continues up to the start edge. When all Open
nodes have been visited and the memory bound is still exceeded, the outer loop tries to
double the number of prunable bands by increasing sparse.


Procedure SparsifyClosed is called regularly during the search, e.g., after each expansion.
However, a naive version as described above would incur a huge overhead in computation
time, particularly when the algorithm’s memory consumption is close to the limit. There-
fore, some optimizations are necessary. First, we avoid tracing back the same solution path
at the same (or lower) sparse interval by recording for each edge the interval when it was
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traversed the last time (initially zero); only for an increased variable sparse there can be
anything left for further pruning. In the worst case, each edge will be inspected blog2 Nc
times. Secondly, it would be very inefficient to actually inspect each Open node in the inner
loop, just to find that its solution path has been traversed previously, at the same or higher
sparse value; however, with an appropriate bookkeeping strategy it is possible to reduce the
time for this search overhead to O(k).


6. Use of Improved Heuristics


As we have seen, the estimator hpair, the sum of optimal pairwise goal distances, gives
a lower bound on the actual path length. However, more powerful heuristics are also
conceivable. While their computation will require more resources, the trade-off can prove
itself worthwhile; the tighter the estimator is, the smaller is the space that the main search
needs to explore.


6.1 Beyond Pairwise Alignments


Kobayashi and Imai (1998) suggested to generalize hpair by considering optimal solutions
for subproblems of size m > 2. They proved that the following heuristics are admissible
and more informed than the pairwise estimate.


• hall,m is the sum of all m-dimensional optimal costs, divided by
( k−2
m−2


)
.


• hone,m splits the sequences into two sets of sizes m and k−m; the heuristic is the sum
of the optimal cost of the first subset, plus that of the second one, plus the sum of all
2-dimensional optimal costs of all pairs of sequences in different subsets. Usually, m
is chosen close to k/2.


These improved heuristics can reduce the main search effort by orders of magnitudes.
However, in contrast to pairwise sub-alignments, time and space resources devoted to com-
pute and store higher-dimensional heuristics are in general no longer negligible compared
to the main search. Kobayashi and Imai (1998) noticed that even for the case m = 3 of
triples of sequences, it can be impractical to compute the entire subheuristic hall,m. As one
reduction, they show that it suffices to restrict oneself to nodes where the path cost does
not exceed the optimal path cost of the subproblem by more than


δ =


(
k − 2
m − 2


)
U −


∑
i1,...,im


d(si1,...,im , ti1,...,im);


this threshold can be seen as a generalization of the Carrillo-Lipman bound. However,
it can still incur excessive overhead in space and computation time for the computation of
the


( k
m


)
lower-dimensional subproblems. A drawback is that it requires an upper bound


U , on whose accuracy also the algorithm’s efficiency hinges. We could improve this bound
by applying more sophisticated heuristic methods, but it seems counterintuitive to spend
more time doing so which we would rather use to calculate the exact solution. In spite of
its advantages for the main search, the expensiveness of the heuristic calculation appears
as a major obstacle.
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McNaughton, Lu, Schaeffer, and Szafron (2002) suggested to partition the heuristic
into (hyper-) cubes using a hierarchical oct-tree data structure; in contrast to “full” cells,
“empty” cells only retain the values at their surface. When the main search tries to use one
of them, its interior values are recomputed on demand. Still, this work assumes that each
node in the entire heuristic is calculated at least once using dynamic programming.


We see one cause of the dilemma in the implicit assumption that a complete computation
is necessary. The bound δ above refers to the worst-case, and can generally include many
more nodes than actually required in the main search. However, since we are only dealing
with the heuristic, we can actually afford to miss some values occasionally; while this might
slow down the main search, it cannot compromise the optimality of the final solution.
Therefore, we propose to generate the heuristics with a much smaller bound δ. Whenever
the attempt to retrieve a value of the m-dimensional subheuristic fails during the main
search, we simply revert to replacing it by the sum of the


(m
2


)
optimal pairwise goal distances


it covers.
We believe that the IDDP algorithm lends itself well to make productive use of higher-


dimensional heuristics. Firstly and most importantly, the strategy of searching to adaptively
increasing thresholds can be transferred to the δ-bound as well; this will be addressed in
more detail in the next section.


Secondly, as far as a practical implementation is concerned, it is important to take into
account not only how a higher-dimensional heuristic affects the number of node expansions,
but also their time complexity. This time is dominated by the number of accesses to sub-
alignments. With k sequences, in the worst case an edge has 2k − 1 successors, leading to
a total of


(2k − 1)


(
k


m


)
evaluations for hall,m. One possible improvement is to enumerate all edges emerging from a
given vertex in lexicographic order, and to store partial sums of heuristics of prefix subsets
of sequences for later re-use. In this way, if we allow for a cache of linear size, the number
of accesses is reduced to


i=k∑
i=m


2i


(
i− 1
m − 1


)
;


correspondingly, for a quadratic cache we only need


i=k∑
i=m


2i


(
i− 2
m − 2


)


evaluations. For instance, in aligning 12 sequences using hall,3, a linear cache reduces the
evaluations to about 37 percent within one expansion.


As mentioned above, in contrast to A∗, IDDP gives us the freedom to choose any
particular expansion order of the edges within a given level. Therefore, when we sort edges
lexicographically according to the target nodes, much of the cached prefix information can
be shared additionally across consecutively expanded edges. The higher the dimension of
the subalignments, the larger are the savings. In our experiments, we experienced speedups
of up to eighty percent in the heuristic evaluation.
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Figure 11: Trade-off between heuristic and main search: Execution times for problem 1tvxA
as a function of heuristic miss ratio.


6.2 Trade-Off between Computation of Heuristic and Main Search


As we have seen, we can control the size of the precomputed sub-alignments by choosing
the bound δ up to which f -values of edges are generated beyond the respective optimal
solution cost. There is obviously a trade-off between the auxiliary and main searches. It
is instructive to consider the heuristic miss ratio r, i.e., the fraction of calculations of
the heuristic h during the main search when a requested entry in a partial MSA has not
been precomputed. The optimum for the main search is achieved if the heuristic has been
computed for every requested edge (r = 0). Going beyond that point will generate an
unnecessarily large heuristic containing many entries that will never be actually used. On
the other hand, we are free to allocate less effort to the heuristic, resulting in r > 0 and
consequently decreasing performance of the main search. Generally, the dependence has
an S-shaped form, as exemplified in Fig. 11 for the case of problem 1tvxA of BAliBASE
(cf. next section). Here, the execution time of one iteration of the main search at a fixed
threshold of 45 above the lower bound is shown, which includes the optimal solution.


Fig. 11 illustrates the overall time trade-off between auxiliary and main search, if we fix
δ at different levels. The minimum total execution time, which is the sum of auxiliary and
main search, is attained at about r = 0.15 (5.86 seconds). The plot for the corresponding
memory usage trade-off has a very similar shape.


Unfortunately, in general we do not know in advance the right amount of auxiliary search.
As mentioned above, choosing δ according to the Carrillo-Lipman bound will ensure that
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Figure 12: Time of the last iteration in the main search for problem 1tvxA as a function of
heuristic miss ratio.


every requested sub-alignment cost will have been precomputed; however, in general we will
considerably overestimate the necessary size of the heuristic.


As a remedy, our algorithm IDDP gives us the opportunity to recompute the heuristic in
each threshold iteration in the main search. In this way, we can adaptively strike a balance
between the two.


When the currently experienced miss rate r rises above some threshold, we can suspend
the current search, recompute the pairwise alignments with an increased threshold δ, and
resume the main search with the improved heuristics.


Like for the main search, we can accurately predict the auxiliary computation time
and space at threshold δ using exponential fitting. Due to the lower dimensionality, it
will generally increase less steeply; however, the constant factor might be higher for the
heuristic, due to the combinatorial number of


( k
m


)
alignment problems to be solved.


A doubling scheme as explained above can bound the overhead to within a constant
factor of the effort in the last iteration. In this way, when also limiting the heuristic
computation time by a fixed fraction of the main search, we can ensure as an expected
upper bound that the overall execution time stays within a constant factor of the search
time that would be required using only the pairwise heuristic.


If we knew the exact relation between δ, r, and the speedup of the main search, an ideal
strategy would double the heuristic whenever the expected computation time is smaller than
the time saved in the main search. However, as illustrated in Fig. 12, this dependence is
more complex than simple exponential growth, it varies with the search depth and specifics
of the problem. Either we would need a more elaborate model of the search space, or the
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algorithm would have to conduct exploratory searches in order to estimate the relation.
We leave this issue to future work, and restrict ourselves here to a simplified, conservative
heuristic: We hypothesize that the main search can be made twice as fast by a heuristic
doubling if the miss rate r rises above 25 percent; in our experiments, we found that this
assumption is almost always true. In this event, since the effective branching factor of the
main search is reduced by the improved heuristic, we also ignore the history of main search
times in the exponential extrapolation procedure for subsequent iterations.


7. Experimental Results


In the following, we compare IDDP to one of the currently most successful approaches,
Partial Expansion A∗. We empirically explore the benefit of higher-dimensional heuristics;
finally, we show its feasibility by means of the benchmark database BAliBASE .


7.1 Comparison to Partial Expansion A∗


For the first series of evaluations, we ran IDDP on the same set of sequences as chosen by
Yoshizumi et al. (2000) (elongation factors EF-TU and EF-1α from various species, with a
high degree of similarity). As in this work, substitution costs were chosen according to the
PAM-250 matrix. The applied heuristic was the sum of optimal pairwise goal distances. The
expansion numbers do not completely match with their results, however, since we applied
the biologically more realistic affine gap costs: gaps of length x were charged 8+8 ·x, except
at the beginning and end of a sequence, where the penalty was 8 · x.


All of the following experiments were run under RedHat Linux 7.3 on an Intel XeonTM


CPU with 3.06 GHz, and main memory of 2 Gigabytes; we used the gcc 2.96 compiler.
The total space consumption of a search algorithm is determined by the peak number of


Open and Closed edges over the entire running time. Table 1 and Fig. 13 give these values
for the series of successively larger sets of input sequences (with the sequences numbered as
defined in Yoshizumi et al., 2000) 1− 4, 1 − 5, . . ., 1 − 12.


With our implementation, the basic A∗ algorithm could be carried out only up to 9
sequences, before exhausting our computer’s main memory.


Confirming the results of Yoshizumi et al. (2000), Partial Expansion requires only about
one percent of this space. Interestingly, during the iteration with the peak in total numbers
of nodes held in memory, no nodes are actually closed except in problem 6. This might
be explained with the high degree of similarity between sequences in this example. Recall
that PEA∗ only closes a node if all of its successors have an f -value of no more than the
optimal solution cost; if the span to the lower bound is small, each node can have at least
one “bad” successor that exceeds this difference.


IDDP reduces the memory requirements further by a factor of about 6. The diagram
also shows the maximum size of the Open list alone. For few sequences, the difference
between the two is dominated by the linear length to store the solution path. As the
problem size increases, however, the proportion of the Closed list of the total memory drops
to about only 12 percent for 12 sequences. The total number of expansions (including all
search stages) is slightly higher than in PEA∗; however, due to optimizations made possible
by the control of the expansion order, the execution time at 12 sequences is reduced by
about a third.
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Num Time Max Max
Exp [sec] Open Open +


Closed


A∗


4 626 0.01 7805 8432
5 1599 0.05 32178 33778
6 3267 0.25 124541 127809
7 10781 1.94 666098 676880
8 116261 49.32 9314734 9430996
9 246955 318.58 35869671 36116627


PEA∗


3 448 0.01 442 442
4 716 0.01 626 626
5 2610 0.05 1598 1598
6 6304 0.33 3328 3331
7 23270 2.63 10874 10874
8 330946 87.24 118277 118277
9 780399 457.98 249279 249279


10 5453418 7203.17 1569815 1569815
11 20887627 62173.78 5620926 5620926
12 36078736 237640.14 9265949 9265949


IDDP
3 496 0.01 4 434
4 1367 0.02 9 443
5 6776 0.14 171 501
6 12770 0.59 414 972
7 26026 2.46 889 1749
8 362779 73.62 13620 19512
9 570898 250.48 21506 30009


10 4419297 4101.96 160240 192395
11 21774869 43708.14 860880 997163
12 36202456 158987.80 1417151 1616480


Table 1: Algorithm comparison for varying number of input sequences (elongation factors
EF-TU and EF-1α).


Since PEA∗ does not prune edges, its maximum space usage is always the total number
of edges with f -value smaller than g∗(t) (call these edges the relevant edges, since they have
to be inspected by each admissible algorithm). In IDDP, on the other hand, the Open list
can only comprise k adjacent levels out of those edges (not counting the possible threshold
overshoot, which would contribute a factor of at most 2). Thus, the improvement of IDDP
over PEA∗ will tend to increase with the overall number of levels (which is the sum of
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Figure 13: Memory requirements for A∗, IDDP, and PEA∗(elongation factors EF-TU and
EF-1α).


all string lengths), divided by the number of sequences; in other words, with the average
sequence length.


Moreover, the ratio depends on how well the heuristic suits the particular problem.
Fig. 14 shows the distribution of all edges with f value smaller or equal to g∗(t), for the
case of 9 of the example sequences. This problem is quite extreme as the bulk of these edges
is concentrated in a small level band between 1050 and 1150. As an example with a more
even distribution, Fig. 15 depicts the situation for problem 1cpt from Reference 1 in the
benchmark set BAliBASE (Thompson et al., 1999) with heuristic hall,3. In this case, the
proportion of the overall 19492675 relevant edges that are maximal among all 4 adjacent
levels amounts to only 0.2 percent. The maximum Open size in IDDP is 7196, while the
total number of edges generated by PEA∗ is 327259, an improvement by about a factor of
45.


7.2 Multidimensional Heuristics


On the same set of sequences, we compared different improved heuristics in order to get an
impression for their respective potential. Specifically, we ran IDDP with heuristics hpair,
hall,3, hall,4, and hone,k/2 at various thresholds δ. Fig. 16 shows the total execution time
for computing the heuristics, and performing the main search. In each case, we manually
selected a value for δ which minimized this time. It can be seen that the times for hone,k/2


lie only a little bit below hpair; For few sequences (less than six), the computation of the
heuristics hall,3 and hall,4 dominates their overall time. With increasing dimensions, how-
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Figure 14: Distribution of relevant edges over levels (elongation factors EF-TU and EF-1α);
compare to the schematic projection in Fig. 4.


ever, this investment starts to yield growing returns, with hall,3 being the fastest algorithm,
requiring only 5 percent of the time of hpair at 12 sequences.


As far as memory is concerned, Fig. 17 reveals that the maximum size of the Open and
Closed list, for the chosen δ values, is very similar for hpair and hone,k/2 on the one hand,
and hall,3 and hall,4 on the other hand.


At 12 sequences, hone,6 saves only about 60 percent of edges, while hall,3 only needs 2.6
percent and hall,4 only 0.4 percent of the space required by the pairwise heuristic. Using
IDDP, we never ran out of main memory; even larger test sets could be aligned, the range
of the shown diagrams was limited by our patience to wait for the results for more than two
days.


Based on the experienced burden of computing the heuristic, Kobayashi and Imai (1998)
concluded that hone,m should be preferred to hall,m. We do not quite agree with this judg-
ment. We see that the heuristic hall,m is able to reduce the search space of the main search
considerably stronger than hone,m, so that it can be more beneficial with an appropriate
amount of heuristic computation.


7.3 The Benchmark Database BAliBASE


BAliBASE (Thompson et al., 1999) is a widely used database of manually-refined multiple
sequence alignments specifically designed for the evaluation and comparison of multiple se-
quence alignment programs. The alignments are classified into 8 reference sets. Reference 1
contains alignments of up to six about equidistant sequences. All the sequences are of sim-
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Figure 15: Distribution of relevant edges over levels, problem 1cpt from BAliBASE .


ilar length; they are grouped into 9 classes, indexed by sequence length and the percentage
of identical amino acids in the same columns. Note that many of these problems are in-
deed much harder than the elongation factor examples from the previous section; despite
consisting of fewer sequences, their dissimilarities are much more pronounced.


We applied our algorithm to Reference 1, with substitution costs according to the PET91
matrix (Jones et al., 1992) and affine gap costs of 9·x+8, except for leading and trailing gaps,
where no gap opening penalty was charged. For all instances, we precomputed the pairwise
sub-alignments up to a fixed bound of 300 above the optimal solution; the optimal solution
was found within this bound in all cases, and the effort is generally marginal compared to
the overall computation. For all problems involving more than three sequences, the heuristic
hall,3 was applied.


Out of the 82 alignment problems in Reference 1, our algorithm could solve all but 2
problems (namely, 1pamA and gal4 ) on our computer. Detailed results are listed in Tables 2
through 10.


Thompson, Plewniak, and Poch (1999) compared a number of widely used heuristic
alignment tools using the so-called SP -score; their software calculates the percentage of
correctly aligned pairs within the biologically significant motifs. They found that all pro-
grams perform about equally well for the sequences with medium and high amino acid
identity; differences only occurred for the case of the more distant sequences with less
than 25 percent identity, the so-called “twilight zone”. Particularly challenging was the
group of short sequences. In this subgroup, the three highest scoring programs are PRRP,
CLUSTALX, and SAGA, with respective median scores of 0.560, 0.687, and 0.529. The
medium score for the alignments found in our experiments amounts to 0.558; hence, it is
about as good as PRRP, and only beaten by CLUSTALX. While we focused in our exper-
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Figure 16: Comparison of execution times (including calculation of heuristics), elongation
factors EF-TU and EF-1α.


iments on algorithmic feasibility rather than on solution quality, it would be worthwhile
to attempt to improve the alignments found by these program using their more refined
penalty functions. CLUSTALX, for example, uses different PAM matrices depending on
the evolutionary distance of sequences; moreover, it assigns weights to sequences (based on
a phylogenetic tree), and gap penalties are made position-specific. All of these improve-
ments can be easily integrated into the basic sum-of-pairs cost function, so that we could
attempt to compute an optimal alignment with respect to these metrics. We leave this line
of research for future work.


Fig. 18 shows the maximum number of edges that have to be stored in Open during the
search, in dependence of the search threshold in the final iteration. For better comparability,
we only included those problems in the diagram that consist of 5 sequences. The logarithmic
scale emphasizes that the growth fits an exponential curve quite well. Roughly speaking, an
increase of the cost threshold by 50 leads to a ten-fold increase in the space requirements.
This relation is similarly applicable to the number of expansions (Fig. 19).


Fig. 20 depicts the proportion between the maximum Open list size and the combined
maximum size of Open and Closed. It is clearly visible that due to the pruning of edges
outside of possible solution paths, the Closed list contributes less and less to the overall
space requirements the more difficult the problems become.


Finally, we estimate the reduction in the size of the Open list compared to all relevant
edges by the ratio of the maximum Open size in the last iteration of IDDP to the total
number of expansions in this stage, which is equal to the number of edges with f -value
less or equal to the threshold. Considering possible overshoot of IDDP, algorithm PEA∗
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Figure 17: Combined maximum size of Open and Closed, for different heuristics (elongation
factors EF-TU and EF-1α).
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Figure 18: Maximum size of Open list, dependent on the final search threshold (BAliBASE ).
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Figure 19: Number of expansions in the final search iteration (BAliBASE ).
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Figure 20: Maximum number of Open edges, divided by combined maximum of Open and
Closed (BAliBASE ).
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Figure 21: Percentage of reduction in Open size (BAliBASE ).


would expand at least half of these nodes. The proportion ranges between 0.5 to 5 percent
(cf. Fig. 21). Its considerable scatter indicates the dependence on individual problem prop-
erties; however, a slight average decrease can be noticed for the more difficult problems.
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8. Conclusion and Discussion


We have presented a new search algorithm for optimal multiple sequence alignment that
combines the effective use of a heuristic bound as in best-first search with the ability of the
dynamic programming approach to reduce the maximum size of the Open and Closed lists
by up to one order of magnitude of the sequence length. The algorithm performs a series
of searches with successively increasing bounds that explore the search space in DP order;
the thresholds are chosen adaptively so that the expected overhead in recomputations is
bounded by a constant factor.


We have demonstrated that the algorithm can outperform one of the currently most
successful algorithms for optimal multiple sequence alignments, Partial Expansion A∗, both
in terms of computation time and memory consumption. Moreover, the iterative-deepening
strategy alleviates the use of partially computed higher-dimensional heuristics. To the best
of our knowledge, the algorithm is the first one that is able to solve standard benchmark
alignment problems in BAliBASE with a biologically realistic cost function including affine
gap costs without end gap penalties. The quality of the alignment is in the range of the
best heuristic programs; while we have concentrated on algorithmic feasibility, we deem it
worthwhile to incorporate their refined cost metrics for better results; we will study this
question in future work.


Recently, we learned about related approaches developed simultaneously and indepen-
dently by Zhou and Hansen (2003b, 2004). SweepA∗ explores a search graph according
to layers in a partial order, but still uses the f -value for selecting nodes within one layer.
Breadth-First Heuristic Search implicitly defines the layers in a graph with uniform costs
according to the breadth-first traversal. Both algorithms incorporate upper bounds on the
optimal solution cost for pruning; however, the idea of adaptive threshold determination to
limit re-expansion overhead to a constant factor is not described. Moreover, they do not
consider the flexible use of additional memory to minimize the divide-and-conquer solution
reconstruction phase.


Although we described our algorithm entirely within the framework of the MSA problem,
it is straightforward to transfer it to any domain in which the state space graph is directed
and acyclic. Natural candidates include applications where such an ordering is imposed by
time or space coordinates, e.g., finding the most likely path in a Markov model.


Two of the BAliBASE benchmark problems could still not be solved by our algorithm
within the computer’s main memory limit. Future work will include the integration of
techniques exploiting secondary memory. We expect that the level-wise exploration scheme
of our algorithm lends itself naturally to external search algorithms, another currently very
active research topic in Artificial Intelligence and theoretical computer science.
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Appendix A


Table 2: Results for BAliBASE Reference 1, group of short sequences with low amino acid
identity. The columns denote: S — number of aligned sequences; δ — upper
bound for precomputing optimal solutions for partial problems in last iteration of
main search; g∗(t) — optimal solution cost; h(s) — lower bound for solution cost,
using heuristics; #Exp — total number of expansions in all iterations of the main
search; #Op — peak number of edges in Open list over the course of the search;
#Op+Cl — peak combined number of edges in either Open or Closed list during
search; #Heu — peak number of sub—alignment edge costs stored as heuristic;
Time: total running time including auxiliary and main search, in seconds; Mem
— peak total memory usage for face alignments, heuristic, and main search, in
KB.


S δ g∗(t) h(s) #Exp #Op #Op+Cl #Heu Time Mem
1aboA 5 57 9006 8898 3413786 104613 176126 1654547 331.029 15568
1idy 5 50 8165 8075 1732008 74865 121404 970933 167.867 10893
1r69 4 20 6215 6183 634844 19938 41719 88802 22.517 3568
1tvxA 4 44 5532 5488 1263849 24226 48633 476622 52.860 5278
1ubi 4 30 7395 7357 1614286 26315 54059 289599 62.133 5448
1wit 5 69 14287 14176 6231378 209061 351582 2442098 578.907 27273
2trx 4 20 7918 7899 63692 3502 5790 127490 4.572 1861


Table 3: Short sequences, medium similarity.


S δ g∗(t) h(s) #Exp #Op #Op+Cl #Heu Time Mem
1aab 4 20 6002 5984 263 12 83 4404 0.572 691
1fjlA 6 20 13673 13625 900 106 155 19573 0.985 1589
1hfh 5 30 16556 16504 137914 4852 8465 70471 14.077 2882
1hpi 4 20 5858 5835 1560 83 164 5269 0.679 656
1csy 5 30 14077 14026 52718 3872 5613 56191 6.165 2252
1pfc 5 30 15341 15277 118543 6477 8905 55887 11.850 2478
1tgxA 4 20 4891 4856 18987 543 1080 5507 1.196 649
1ycc 4 20 8926 8903 54049 1118 2010 77156 3.780 1644
3cyr 4 48 8480 8431 583260 13422 25806 193690 22.592 3076
451c 5 49 11440 11333 1213162 38004 54115 583363 111.675 6529
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Table 4: Short sequences, high similarity.


S δ g∗(t) h(s) #Exp #Op #Op+Cl #Heu Time Mem
1aho 5 20 8251 8187 30200 2255 3074 10971 3.175 1042
1csp 5 20 8434 8427 90 2 78 3528 0.569 784
1dox 4 20 7416 7405 782 50 186 8406 0.652 823
1fkj 5 20 13554 13515 2621 140 222 10925 0.945 1511
1fmb 4 20 7571 7568 172 4 108 1804 0.540 788
1krn 5 20 9752 9747 101 1 87 6244 0.623 1035
1plc 5 20 12177 12152 454 25 103 10641 0.728 1415
2fxb 5 20 6950 6950 88 2 71 1432 0.534 617
2mhr 5 20 14317 14306 256 4 121 7853 0.668 1558
9rnt 5 20 12382 12367 350 19 108 6100 0.695 1250


Table 5: Medium-length sequences, low similarity.


S δ g∗(t) h(s) #Exp #Op #Op+Cl #Heu Time Mem
1bbt3 5 160 30598 30277 902725789 11134608 15739188 23821767 43860.175 927735
1sbp 5 200 42925 42512 2144000052 6839269 11882990 65341855 106907.000 735053
1havA 5 200 31600 31234 2488806444 10891271 16321376 58639851 132576.000 927735
1uky 4 94 18046 17915 179802791 659435 1281339 15233338 7006.560 106184
2hsdA 4 96 21707 21604 65580608 293357 668926 12497761 2646.880 67788
2pia 4 161 22755 22616 97669470 789446 1673807 25718770 4310.030 142318
3grs 4 126 20222 20061 107682032 640391 1396982 24104710 4267.880 130425
kinase 5 200 45985 45520 2446667393 13931051 19688961 32422084 125170.460 927734


Table 6: Medium-length sequences, medium similarity.


S δ g∗(t) h(s) #Exp #Op #Op+Cl #Heu Time Mem
1ad2 4 20 16852 16843 379 16 221 27887 0.959 2186
1aym3 4 20 19007 18978 466536 4801 8914 83634 15.386 3163
1gdoA 4 58 20696 20613 10795040 57110 102615 1265777 363.549 12028
1ldg 4 20 25764 25736 446123 4981 9052 169038 16.115 4484
1mrj 4 20 20790 20751 252601 4067 7380 33942 8.694 2905
1pgtA 4 50 17442 17398 1870204 19200 32476 485947 73.066 5869
1pii 4 20 20837 20825 25256 584 1414 116670 3.089 3338
1ton 5 102 32564 32428 13571887 351174 526102 11549908 1373.180 58704
2cba 5 160 40196 39914 60545205 1037828 1595955 19186631 2904.651 140712
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Table 7: Medium-length sequences, high similarity.


S δ g∗(t) h(s) #Exp #Op #Op+Cl #Heu Time Mem
1amk 5 20 31473 31453 447 7 259 13120 0.825 3366
1ar5A 4 20 15209 15186 3985 128 356 22220 1.066 1755
1ezm 5 20 37396 37381 613 4 324 15751 0.836 3900
1led 4 20 18795 18760 93220 2956 4951 39962 3.761 2564
1ppn 5 20 27203 27159 18517 489 864 20209 2.545 2991
1pysA 4 20 19242 19215 10810 190 801 14344 1.200 2224
1thm 4 20 21470 21460 361 2 293 8090 0.682 2469
1tis 5 20 35444 35395 31996 448 915 42716 4.409 4122
1zin 4 20 16562 16546 771 23 225 6619 0.654 1767
5ptp 5 20 29776 29735 6558 309 539 37883 1.767 3600


Table 8: Long sequences, low similarity.


S δ g∗(t) h(s) #Exp #Op #Op+Cl #Heu Time Mem
1ajsA 4 160 38382 38173 318460012 1126697 2310632 27102589 9827.233 208951
1cpt 4 160 39745 39628 873548 5260 12954 10494564 223.926 32119
1lvl 4 160 43997 43775 537914936 1335670 2706940 37491416 16473.420 255123
1ped 3 50 15351 15207 2566052 7986 27718 0 20.035 4447
2myr 4 200 43414 43084 3740017645 7596730 45488908 118747184 136874.980 927735
4enl 3 50 16146 16011 5169296 9650 30991 0 41.716 5589


Table 9: Long sequences, medium similarity.


S δ g∗(t) h(s) #Exp #Op #Op+Cl #Heu Time Mem
1ac5 4 92 37147 37020 169779871 732333 1513853 18464119 6815.760 124877
1adj 4 20 32815 32785 207072 3106 5145 96176 7.829 4595
1bgl 4 243 78366 78215 188429118 857008 1744149 101816849 8795.000 291618
1dlc 4 106 47430 47337 14993317 65288 126608 12801019 843.402 43158
1eft 4 56 31377 31301 9379999 42620 72502 1476154 334.475 13115
1fieA 4 86 53321 53241 6905957 46779 90937 6040375 348.134 26884
1gowA 4 166 38784 38632 45590739 275256 544800 31318364 2251.190 99537
1pkm 4 89 36356 36256 11197890 75144 140472 5962640 505.778 27244
1sesA 5 58 57670 57557 4755983 96014 136677 3585721 463.962 27452
2ack 5 250 76937 76466 994225856 8077412 12436928 75819994 32965.522 765715
arp 5 143 54939 54696 182635167 1291185 2160263 38368530 15972.000 193364
glg 5 160 74282 74059 9251905 87916 120180 22622910 733.202 72148
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Table 10: Long sequences, high similarity.


S δ g∗(t) h(s) #Exp #Op #Op+Cl #Heu Time Mem
1ad3 4 20 33641 33604 104627 2218 3461 34539 4.196 3968
1gpb 5 54 101296 101231 1232707 62184 98476 2702949 178.610 25698
1gtr 5 60 55242 55133 2037633 54496 91656 1916127 226.791 18050
1lcf 6 160 149249 148854 181810148 3235312 3824010 28614215 15363.051 294688
1rthA 5 128 69296 69133 14891538 71081 105082 24587882 1721.070 70569
1taq 5 250 133723 133321 1693501628 9384718 17298456 145223167 5713.240 1170673
3pmg 4 51 42193 42133 1036943 8511 15540 777639 50.796 8133
actin 5 53 48924 48826 824295 35283 53009 777058 96.147 11198
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