

Journal of Artificial Intelligence Research 23 (2005) 533-585 Submitted 4/04; published 5/05

© 2005 AI Access Foundation. All rights reserved.

Using Memory to Transform Search on the Planning Graph

Terry Zimmerman WIZIM@CS.CMU.EDU
Robotics Institute, Carnegie Mellon University
Pittsburgh, PA 15213-3890

Subbarao Kambhampati RAO@ASU.EDU
Department of Computer Science & Engineering
Arizona State University, Tempe AZ 85287-5406

Abstract
 The Graphplan algorithm for generating optimal make-span plans containing parallel sets of ac-
tions remains one of the most effective ways to generate such plans. However, despite enhance-
ments on a range of fronts, the approach is currently dominated in terms of speed, by state space
planners that employ distance-based heuristics to quickly generate serial plans. We report on a fam-
ily of strategies that employ available memory to construct a search trace so as to learn from various
aspects of Graphplan’s iterative search episodes in order to expedite search in subsequent episodes.
The planning approaches can be partitioned into two classes according to the type and extent of
search experience captured in the trace. The planners using the more aggressive tracing method are
able to avoid much of Graphplan’s redundant search effort, while planners in the second class trade
off this aspect in favor of a much higher degree of freedom than Graphplan in traversing the space
of ‘states’ generated during regression search on the planning graph. The tactic favored by the sec-
ond approach, exploiting the search trace to transform the depth-first, IDA* nature of Graphplan’s
search into an iterative state space view, is shown to be the more powerful. We demonstrate that
distance-based, state space heuristics can be adapted to informed traversal of the search trace used
by the second class of planners and develop an augmentation targeted specifically at planning graph
search. Guided by such a heuristic, the step-optimal version of the planner in this class clearly
dominates even a highly enhanced version of Graphplan. By adopting beam search on the search
trace we then show that virtually optimal parallel plans can be generated at speeds quite competitive
with a modern heuristic state space planner.

1. Introduction

When Graphplan was introduced in 1995 (Blum & Furst, 1995) it became one of the fastest programs
for solving the benchmark planning problems of that time and, by most accounts, constituted a radi-
cally different approach to automated planning. Despite the recent dominance of heuristic state-search
planners over Graphplan-style planners, the Graphplan approach is still one of the most effective ways
to generate the so-called “optimal parallel plans”. State-space planners are drowned by the exponential
branching factors of the search space of parallel plans (the exponential branching is a result of the fact
that the planner needs to consider each subset of non-interfering actions). Over the 8 years since its
introduction, the Graphplan system has been enhanced on numerous fronts, ranging from planning
graph construction efficiencies that reduce both its size and build time by one or more orders of mag-
nitude (Smith & Weld, 1998; Long & Fox, 1999), to search speedup techniques such as variable and
value ordering, dependency-directed backtracking, and explanation based learning (Kambhampati,
2000). In spite of these advances, Graphplan has ceded the lead in planning speed to a variety of heu-
ristic-guided planners (Bonet & Geffner, 1999; Nguyen & Kambhampati, 2000; Gerevini & Serina,
2002). Notably, several of these exploit the planning graph for powerful state-space heuristics, while

ZIMMERMAN & KAMBHAMPATI

 534

eschewing search on the graph itself. Nonetheless, the Graphplan approach remains perhaps the fast-
est in parallel planning mainly because of the way it combines an iterative deepening A* (“IDA*”,
Korf, 1985) search style with a highly efficient CSP-based incremental generation of applicable action
subsets.

We investigate here the use of available memory so as to surmount some of Graphplan’s major
drawbacks, such as redundant search effort and the need to exhaustively search a k-length planning
graph before proceeding to the k+1 length graph. At the same time we wish to retain attractive fea-
tures of Graphplan’s IDA* search such as rapid generation of parallel action steps and the ability to
find step optimal plans. The approach we describe remains rooted in iterative search on the planning
graph but greatly expedites this search by building and maintaining a concise search trace.

Graphplan alternates between two phases; one in which a data structure called a “planning graph”
is incrementally extended, and a backward phase where the planning graph is searched to extract a
valid plan. After the first regression search phase the space explored in any given episode is closely
correlated with that conducted in the preceding episode. The strategy we pursue in this work is to em-
ploy an appropriately designed trace of the search conducted in episode n (which failed to find a solu-
tion) to identify and avoid those aspects of the search that are provably unchanged in episode n+1, and
focus effort on features that may have evolved. We have identified precisely which features are dy-
namic across Graphplan search episodes and construct search traces that capture and exploit these fea-
tures to different degrees. Depending on its design a search trace may provide benefits such as 1)
avoidance of much of Graphplan’s redundant search effort, 2) learning from its iterative search ex-
perience so as to improve its heuristics and the constraints embodied in the planning graph, and 3)
realizing a much higher degree of freedom than Graphplan, in traversing the space of ‘states’ gener-
ated during the regression search process. We will show that the third advantage is particularly key to
search trace effectiveness, as it allows the planner to focus its attention on the most promising areas of
the search space.

The issue of how much memory is the ‘right’ amount to use to boost an algorithm’s performance
cuts across a range of computational approaches from search to the paging process in operating sys-
tems, and Internet browsing to database processing operations. In our investigation we explore sev-
eral alternative search trace based methods that differ markedly in terms of memory demands. We
describe four of these approaches in this paper. Figure 1 depicts the pedigree of this family of search
trace-based planners, as well as the primary impetus leading to the evolution of each system from its
predecessor. The figure also suggests the relative degree to which each planner steps away from the
original IDA* search process underlying Graphplan. The two tracks correspond to two genres of
search trace that we have developed;

• left track: The EGBG planners (Explanation Guided Backward search for Graphplan) employ a
more comprehensive search trace focused on minimizing redundant search.

• right track: The PEGG planners (Pilot Explanation Guided Graphplan) use a more skeletal
trace, incurring more of Graphplan’s redundant search effort in exchange for reduced memory
demands and increased ability to exploit the state space view of the search space.

The EGBG planner (Zimmerman & Kambhampati, 1999) adopts a memory intensive structure for
the search trace as it seeks primarily to minimize redundant consistency-checking across Graphplan’s
search iterations. This proves to be effective in a range of smaller problems but memory constraints

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 535

impede its ability to scale up. Noting that Graphplan’s search process can be viewed as a specialized
form of CSP search (Kambhampati, 2000), we explore some middle ground in terms of memory us-
age by augmenting EGBG with several methods known to be effective as speedup techniques for CSP
problems.

 Our primary interest in these techniques, however, is the impact on memory reduction and we de-
scribe how they accomplish this above and beyond any search speedup benefit they afford. The im-
plemented planner, me-EGBG, markedly outperforms EGBG in speed and capabilities, but a variety
of problems still lie beyond the planner’s reach due to memory constraints.

The search trace structure used by the PEGG track planners trades off minimization of redundant
search in exchange for a much smaller memory footprint. In addition to its greatly reduced memory
demands, the PEGG search trace structure can be exploited for its intrinsic state space view of what is
essentially Graphplan’s CSP-oriented search space. A significant speedup advantage of this approach
over Graphplan and the EGBG track planners derives from its ability to employ the ‘distance-based’
heuristics that power many of the current generation of state-space planners (Bonet & Geffner, 1999;
Nguyen & Kambhampati, 2000; Hoffman, 2001). We adapt these heuristics to the task of identifying
the most promising states to visit in the search trace and implement the approach first in the so-PEGG
planner (‘step-optimal PEGG’, Zimmerman & Kambhampati, 2003). So-PEGG outperforms even a
highly enhanced version of Graphplan by up to two orders of magnitude in terms of speed, and does
so while maintaining the guarantee of finding a step-optimal plan.

Finally we explore adoption of a beam search approach in visiting the state space implicit in the
PEGG-style trace. Here we employ the distance-based heuristics extracted from the planning graph
itself, not only to direct the order in which search trace states are visited, but also to prune and restrict
that space to only the heuristically best set of states, according to a user-specified metric. We show
that the planning graph can be further leveraged to provide a measure of the likelihood that a previ-
ously generated regression state might spawn new search branches at a higher planning graph level.

X Y
Search
Trace

Exploiting Graphplan
Symmetry & Redundancy

PEGG

me-EGBG

EGBG

so-PEGG

Trading off step-optimality for
speedup in all episodes

Leveraging CSP & memory efficiency

Exploiting the
state space view

Figure 1: Applying available memory to step away from the Graphplan search process;
 A family of search trace-based planners

ZIMMERMAN & KAMBHAMPATI

 536

We term this metric ‘flux’ and employ it in an effective filter for states that can be skipped over even
though they might appear promising based on the distance-based heuristic. Implemented in the PEGG
system (Zimmerman & Kambhampati, 2003), this approach to exploiting a search trace produces a
two-fold benefit over our previous approaches; 1) further reduction in search trace memory demands
and 2) effective release from Graphplan’s exhaustive search of the planning graph in all search epi-
sodes. PEGG exhibits speedups ranging to more than 300x over the enhanced version of Graphplan
and is quite competitive with a recent state space planner using similar heuristics. In adopting beam
search PEGG necessarily sacrifices the guarantee of step-optimality but empirical evidence indicates
the secondary heuristics are remarkably effective in ensuring the make-span of solutions produced are
virtually at the optimal.

The fact that these systems successfully employ a search trace at all is noteworthy. In general, the
tactic of adopting a search trace for algorithms that explicitly generate node-states during iterative
search episodes, has been found to be infeasible due to memory demands that are exponential in the
depth of the solution. In Sections 2 and 3 we describe how tight integration of the search trace with
the planning graph permits the EGBG and PEGG planners to largely circumvent this issue. The
planning graph structure itself can be costly to construct, in terms of both memory and time; there are
well-known problems and even domains that are problematic for planners that employ it. (Post-
Graphplan planners that employ the planning graph for some purpose include “STAN”, Long & Fox,
1999, “Blackbox”, Kautz & Selman, 1999, “IPP”, Koehler et al., 1997, “AltAlt”, Nguyen & Kamb-
hampati, 2000, “LPG” Gerevini & Serina, 2002). The planning systems described here share that
memory overhead of course, but interestingly, we have found that search trace memory demands for
the PEGG class of planners have not significantly limited the range of problems they can solve.

The remainder of the paper is organized as follows: Section 2 provides a brief overview of the
planning graph and Graphplan’s search process. The discussion of both its CSP nature and the man-
ner in which the process can be viewed as IDA* search motivates the potential for employing avail-
able memory to accelerate solution extraction. Section 3 addresses the two primary challenges in at-
tempting to build and use a search trace to advantage with Graphplan: 1) How can this be done within
reasonable memory constraints given Graphplan’s CSP-style search on the planning graph? and, 2)
Once the trace is available, how can it most effectively be used? This section briefly describes EGBG
(Zimmerman & Kambhampati, 1999), the first system to use such a search trace to guide Graphplan’s
search, and outlines the limitations of that method (Details of the algorithm are contained in Appendix
A.) Section 4 summarizes our investigations into a variety of memory reduction techniques and re-
ports the impact of a combination of six of them on the performance of EGBG. The PEGG planners
are discussed in Section 5 and the performance of so-PEGG and PEGG (using beam search) are com-
pared to an enhanced version of Graphplan, EGBG, and a modern, serial state-space planner. Section
6 contains a discussion of our findings and Section 7 compares this work to related research. Finally,
Section 8 wraps up with our conclusions.

2. Background & Motivation: Planning Graphs and the Nature of Direct
Graph Search

Here we outline the Graphplan algorithm and discuss traits suggesting that judicious use of additional
memory might greatly improve its performance. We touch on three related views of Graphplan’s
search; 1) as a form of CSP, 2) as IDA* search and, 3) its state space aspect.

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 537

2.1 Construction and Search on a Planning Graph

The Graphplan algorithm employs two interleaved phases – a forward phase, where a data structure
called a “planning graph” is incrementally extended, and a backward phase where the planning graph
is searched to extract a valid plan. The planning graph consists of two alternating structures, called
proposition lists and action lists. At the bottom of Figure 2 is depicted a simple domain we will refer
to as the Alpha domain and use for illustration in this study. The figure shows four action and propo-
sition levels of the planning graph engendered by the simple initial state given the domain. We start
with the initial state as the zeroth level proposition list. Given a k-level planning graph, the extension
of the graph structure to level k+1 involves introducing all actions whose preconditions are present in
the kth level proposition list. In addition to the actions of the domain model, “no operation” actions are
introduced, one for each condition in the kth level proposition list (abbreviated as “nop” in this paper’s
figures, but also termed “persists” by others). A “nop-C” action has C as its precondition and C as its
effect. Given the kth level actions, the proposition list at level k+1 is constructed as just the union of
the effects of all the introduced actions. The planning graph maintains the dependency links between

J J

The Planning Graph

Initial
State

J

Actions
Level 1

Propositions
Level 1

Actions
Level 2

Propositions
Level 2

Actions
Level 3

Propositions
Level 3

nop

W nop W W nop W nop

 H H nop H nop

Y nop Y Y nop Y nop

nop

 I I nop I nop

~W ~W nop ~W nop

~Y ~Ynop ~Y nop

a3

a1

a3

a5

a1

a5

a4

a5

a3

a1

a2

X

Z

action-ID [effects]
[preconditions]

 action descriptions:

Figure 2: Planning graph representation for three levels in the Alpha domain

Domain Actions

 a1
I H W

Y
 a2

X

H J
a3

Y ~W
Y

a4

Z

 I J
a5

J ~Y

 Y

ZIMMERMAN & KAMBHAMPATI

 538

the actions at level k+1, their preconditions in the level k proposition list, and their effects in the level
k+1 proposition list.

 During planning graph construction binary "mutex'' constraints are computed and propagated. In
Figure 2, the arcs denote mutex relations between pairs of propositions and pairs of actions. The
propagation starts at level 1 by labeling as mutex all pairs of actions that are statically interfering with
each other (“static mutex”), that is their preconditions or effects are logically inconsistent. Mutexes
are then propagated from this level forward using two simple propagation rules. Two propositions at
level k are marked mutex if all actions at level k that support one proposition are mutex with all ac-
tions that support the second proposition. Two actions at level 2 are then mutex if they are statically
interfering or if a precondition of the first action is mutually exclusive with a precondition of the sec-
ond . (We term the latter “dynamic mutex”, since this constraint may relax at a higher planning graph
level).1 The propositions themselves can also be either static mutex (one negates the other) or dy-
namic mutex (all actions supporting one proposition are mutex with all actions supporting the other).
To reduce Figure 2 clutter mutex arcs for propositions and their negations are omitted.

The search phase on a k-level planning graph involves checking to see if there is a sub-graph of the
planning graph that corresponds to a valid solution to the problem. Figure 3 depicts Graphplan search
in a manner similar to the CSP variable-value assignment process. Beginning with the propositions
corresponding to the goals at level k, we incrementally select a set of actions from the level k action
list that support all the goals, such that no two actions selected for supporting two different goals are
mutually exclusive (if they are, we backtrack and try to change the selection of actions). This is essen-
tially a CSP problem where the goal propositions at each level are the variables, actions that establish
a proposition are the values, and the mutex conditions constitute constraints. The search proceeds in
depth-first fashion: Once all goals for a level are supported, we recursively call the same search proc-
ess on the k-1 level planning graph, with the preconditions of the actions selected at level k as the
goals for the k-1 level search. The search succeeds when we reach level 0 (the initial state) and the
solution is extracted by unwinding the recursive goal assignment calls. This process can be viewed as
a system for solving “Dynamic CSPs” (DCSP) (Mittal & Falkenhainer, 1990; Kambhampati 2000),
wherein the standard CSP formalism is augmented with the concept of variables that do not appear
(a.k.a. get activated) until other variables are assigned.

During the interleaved planning graph extension and search phases, the graph may be extended to a
stasis condition, after which no further changes occur in actions, propositions, or mutex conditions. A
sufficient condition defining this “level-off” is a level where no new actions are introduced and no
existing mutex conditions between propositions go away. We will refer to all planning graph levels at
or above level-off as ‘static levels’. Note that although the graph becomes static at this point, finding a
solution may require many more episodes composed of adding identical static levels and conducting
regression search on the problem goals.

Like many fielded CSP solvers, Graphplan's search process benefits from a simple form of no-
good learning. When a set of (sub)goals for a level k is determined to be unsolvable, they are memo-
ized at that level in a hash table. Subsequently, when the backward search process later enters level k
with a set of subgoals they are first checked against the hash table, and if a match is found the search

1 The static mutex condition has also been called “eternal mutex” and the dynamic mutex termed “conditional mutex” (Smith

& Weld, 1998).

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 539

process backtracks. This constitutes one of three conditions for backtracking: the two others arise
from attempts to assign static mutex actions and dynamic mutex actions (See the Figure 3 legend).

We next discuss Graphplan’s search from a higher-level view that abstracts away its CSP nature.

2.2 Graphplan as State Space Search

From a more abstract perspective, Graphplan can be viewed as conducting regression state space
search from the problem goals to the initial state. In this view, the ‘states’ that are generated and ex-
panded are the subgoals that result when the CSP process for a given set of subgoals finds a consistent
set of actions satisfying the subgoals at that planning graph level (c.f. Kambhampati & Sanchez,
2000). In this view the “state-generator function” is effectively Graphplan’s CSP-style goal assign-
ment routine that seeks a non-mutex set of actions for a given set of subgoals within a given planning
graph level. This view is depicted in Figure 4, where the top graph casts the CSP-style search trace of

 G
oal State

W
 X

 Y Z

 Initial State

W

Y

nop

W

nop

X

X

 a1

 a2

Y

 a3

nop

Y
H

 I J

Y

Z

 W
Y

H
IJ

S

 a3

Z

S

 a4

a2

H

H

W

Y

J nop nop

JD nop

S
 a5

S

nop

S

S

 a3

SJ
D

I

D

S

D

S

 a5

 a1

nop I
 a3

I

J

nop

 a3
a4

 a1

 a1

 Icon explanation:
 Action a5 assigned to give Assigned action is Assigned action is
 goal J static mutex with a dynamic mutex with a
 previous assigned action previous assigned action

 Goal I is already satisfied Set of regressed subgoals
 by a previously assigned action a1 to be satisfied at next lower level

a1

DS
 a5

J

 Y
 H

 I

Figure 3: CSP-style trace of Graphplan’s regression search on the Figure 2 planning graph

nop

 a5

 a3 nop

 a3

H
D I

Y
nop

nopJ

S
I

J
nop

S a5 H
I

 a1 SJ
nop

D

S
Y

 J

 nop

a1

 a5

Y

 a3

J
S a5

S

nop

J
 a5

nop

 a5

 a5

nop

 a1

 Level 1 Level 2 Level 3

nop

I
a1

ZIMMERMAN & KAMBHAMPATI

 540

Figure 3 as a high-level state-space search trace. The terms in each box depict the set of (positive)
subgoals that result from the action assignment process for the goals in the higher-level state to which
the box is linked.2

Recognizing the state-space aspect of Graphplan’s search helps in understanding its connection to
IDA* search. First noted and briefly discussed in (Bonet & Geffner, 1999), we highlight and expand
upon this relationship here. There are three correspondences between the algorithms:

1. Graphplan’s episodic search process in which all nodes generated in the previous episode are re-
generated in the new episode (and possibly some new nodes), corresponds to IDA*’s iterative
search. Here the Graphplan nodes are the ‘states’ (sets of subgoals) that result when its regres-

2 Figure 4 facilitates discussion of the search trace in the next section, by conjuring up a hypothetical problem in which the

first search episode begins on level 7 of the planning graph instead of level 3, as in Figure 3.

Figure 4: Graphplan’s regression search space: Three consecutive search episodes

 1 2 6 7 Proposition Levels

Goal
W
X
Y
Z Y

H
I

W
Y
H
I

Y
J a1

 a1, a2

 a4

 a2 a4

W

Y

Init
State

2 valid sets of action
assignments to satisfy
goals WXYZ at level 7

S19

S18

S15

S8

S14

S5

Goal
W
X
Y
Z

S17

S11

S12

Y
H
I

W
Y
H
I

W

Y

Init
State

S16

S9

S6

S21

S20

S7

S4

Y
J

S13

S10

 Proposition Levels 6 7 8 1 2

W

Y

Init
State

S28

S29

S30
S27

S15

S14

S6

S8

S5

S25
S10

S21

S20

S16

S9

Y
J

S7

S13

S4

S26

Goal
W
X
Y
Z

Y
H
I

W
Y
H
I

S23

S24

S18

S19 S17

S12

S11

S22

 1 2 3 Proposition Levels 7 8 9

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 541

sion search on a given plan graph level succeeds. From this perspective the “node-generator
function” is effectively Graphplan’s CSP-style goal assignment routine that seeks a non-mutex
set of actions for a given set of propositions within a given planning graph level.

2. From the state space view of Graphplan’s search (ala Figure 4), within a given search epi-
sode/iteration the algorithm conducts its search in the depth-first fashion of IDA*. This ensures
that the space requirements are linear in the depth of a solution node.

3. The upper bound that is ‘iteratively deepened’ ala IDA* is the node-state heuristic f-value;
f = g + h. In this context h is the distance in terms of associated planning graph levels between a
state generated in Graphplan’s regression search and the initial state3 and g is the cost of reaching
the state from the goal state in terms of number of CSP epochs (i.e. the numerical difference be-
tween the highest graph level and the state’s level).

 For our purposes, perhaps he most important observation is that the implicit f-value bound for a
given iteration is just the length of the planning graph associated with that iteration. That is, for any
node-state, its associated planning graph level determines both the distance to the initial state (h) and
the cost to reach it from the goal state (g), and the total must always equal the length of the plan graph.
This heuristic is clearly admissible; there can be no shorter distance to the goal because Graphplan
exhaustively searches all shorter length planning graphs in (any) previous iterations. It is this heuristic
implicit in the Graphplan algorithm which guarantees that a step-optimal solution is returned. Note
that from this perspective all nodes visited in a given Graphplan search iteration implicitly have the
same f-value: g + h = length of planning graph. We will consider implications of this property when
we address informed traversal of Graphplan’s search space in Section 5.

 The primary shortcoming of a standard IDA* approach to search is that it regenerates so many of
the same nodes in each of its iterations. It has long been recognized that IDA*’s difficulties in some
problem spaces can be traced to using too little memory (Russell, 1992; Sen & Bagchi, 1989). The
only information carried over from one iteration to the next is the upper bound on the f-value. Graph-
plan partially addresses this shortcoming with its memo caches that store “no-goods” -states found to
be inconsistent in successive episodes. However, the IDA* nature of its search can make it an ineffi-
cient planner for problems in which the goal propositions appear non-mutex in the planning graph
many levels before a valid plan can actually be extracted.

A second shortcoming of the IDA* nature of Graphplan’s search is that all node-states generated in
a given Graphplan episode have the same f-value (i.e. the length of the graph). As such, within an
iteration (search episode) there is no discernible preference for visiting one state over another. We
next discuss the use of available memory to target these shortcomings of Graphplan’s search.

3. Efficient Use of a Search Trace to Guide Planning Graph Search

The search space Graphplan explores in a given search episode is defined and constrained by three
factors: the problem goals, the plan graph associated with the episode, and the cache of memoized no-
good states created in all previous search episodes. Typical of IDA* search there is considerable

3 Bonet & Geffner define hG (the Graphplan h-value) somewhat differently as the first level at which the goals of a
state appear non-mutex and have not been memoized. Our definition (which is not necessarily the first level at
which the Sm goals appear non-mutex) produces the most informed admissible estimate in all cases. This
guarantees that all states generated by Graphplan have an f-value equal to the planning graph length, which is
the property of primary interest to us.

ZIMMERMAN & KAMBHAMPATI

 542

similarity (i.e. redundancy) in the search space for successive episodes as the plan graph is extended.
In fact, as discussed below, the backward search conducted at any level k+1 of the graph is essentially
a “replay” of the search conducted at the previous level k with certain well-defined extensions. More
specifically, essentially every set of subgoals generated in the backward search of episode n, starting at
level k, will be regenerated by Graphplan during episode n+1 starting at level k+1 (unless a solution is
found first).4

Now returning to Figure 4 in its entirety, note that it depicts a state space tree structure correspond-
ing to Graphplan’s search over three consecutive iterations. The top graph, as discussed above, repre-
sents the subgoal ‘states’ generated in the course of Graphplan’s first attempt to satisfy the WXYZ
goal of a problem resembling our running example. (It is implied here that the W,X,Y,Z propositions
are present in the planning graph at level 7 and that this is the first level at which no pair of them is
mutex.) In the second search episode (the middle Figure 4 graph), the same states are generated again,
but each at one level higher. In addition, these states are expanded to generate a number of children,
shown in a darker shade. (Since Figure 4 is a hypothetical variation of the Alpha domain problem
detailed in Figures 2 and 3, all states created beyond the first episode are labeled only with state num-
bers representing the order in which they are generated.) Finally, in the third episode, Graphplan re-
generates the states from the previous two episodes in attempting to satisfy WXYZ at level 9, and ul-
timately finds a solution (the assigned actions associated with the figure’s double outlined subgoal
sets) after generating the states shown with darkest shading in the bottom graph of Figure 4.

Noting the extent to which consecutive iterations of Graphplan’s search overlap, we investigate the
application of additional memory to store a trace of the explored search tree. The first implemented
approach, EGBG (which is summarized in the following subsection), seeks to leverage an appropri-
ately designed search trace to avoid as much of the inter-episode redundant search effort as possible
(Zimmerman & Kambhampati, 1999).

3.1 Aggressive Use of Memory in Tracing Search: The EGBG Planner

Like other types of CSP-based algorithms, Graphplan consumes most of its computational effort on a
given problem in checking constraints. An instrumented version of the planner reveals that typically,
60 - 90% of the cpu run-time is spent in creating and checking action and proposition mutexes -both
during planning graph construction and the search process. (Mutex relations incorporated in the plan-
ning graph are the primary ‘constraints’ in the CSP view of Graphplan, Kambhampati, 2000) As
such, this is an obvious starting point when seeking efficiency improvements for this planner and is
the primary tactic adopted by EGBG. We provide here only an overview of the approach, referring the
interested reader to Appendix A for details.

EGBG exploits four features of the planning graph and Graphplan’s search process:

 The set of actions that can establish a given proposition at level k+1 is always a superset of
those establishing the proposition at level k.

4 Strictly speaking, this is not always the case due to the impact of Graphplan’s memoizing process. For some problems a

particular branch of the search tree generated in search episode n and rooted at planning graph level k may not be revisited in
episode n+1 at level k+1 due to a ‘no-good’ proposition set memoized at level k+1. However, the memo merely acts to
avoid some redundant search and neglecting these relatively rare cases serves to simplify visualization of the symmetry
across Graphplan’s search episodes. .

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 543

 The “constraints” (mutexes) that are active at level k monotonically decrease with increasing
planning graph levels. That is, a mutex that is active at level k may or may not continue to be
active at level k+1 but once it becomes inactive it never gets re-activated at future levels.

 Two actions in a level that are “statically” mutex (i.e. their effects or preconditions conflict with
each other) will be mutex at all succeeding levels.

 The problem goal set that is to be satisfied at a level k is the same set that will be searched on at
level k+1 when the planning graph is extended. That is, once a subgoal set is present at level k
with no two propositions being mutex, it will remain so for all future levels.

Given an appropriate trace of the search conducted in episode n (which failed to find a solution) we
would like to ignore those aspects of the search that are provably unchanged in episode n+1, and fo-
cus effort on only features that may have evolved. If previous search failed to extract a solution from
the k-length planning graph, search on the k+1 length graph can succeed only if one or more of the
following conditions holds:

1. The dynamic mutex condition between some pair of actions whose concurrent assignment
was attempted in episode n no longer holds in episode n+1.

2. For a subgoal that was generated in the regression search of episode n at planning graph level
k, there is an action that establishes it in episode n+1 and first appears in level k+1.

3. An episode n regression state (subgoal set) at level k that matched a cached memo at that
level has no memo-match when it is generated at level k+1 in episode n+1.

(The discussion in Appendix A formalizes these conditions.) In each instance where one of these
conditions does not hold, a complete policy must resume backward search under the search parame-
ters associated with the instance in the previous episode, n. Such resumed partial search episodes will
either find a solution or generate additional trace subgoal sets to augment the parent trace. This spe-
cialized search trace can be used to direct all future backward search episodes for this problem, and
can be viewed as an explanation for the failure of the search process in each episode. We hereafter use
the terms pilot explanation (PE) and search trace interchangeably. The following definitions are use-
ful in describing the search process:

Search segment: This is essentially a state, specifically a set of planning graph level-specific subgoals
generated in regression search from the goal state (which is itself the first search segment). Each
EGBG search segment Sn , generated at planning graph level k contains:

• A subgoal set of propositions to be satisfied
• A pointer to the parent search segment (Sp), (the state at level k+1 that gave rise to Sn)
• A list of the actions that were assigned in Sp which resulted in the subgoals of Sn
• A pointer to the PE level (as defined below) associated with the Sn
• A sequential list of results of the action consistency-checking process during the attempt to sat-

isfy Sn’s subgoals. The possible trace results for a given consistency check are: static mutex,
dynamic mutex, or action is consistent with all other prior assigned actions. Trace results are
stored as a list of bit vectors for efficiency.

A search segment therefore represents a state plus some path information, but we often use ‘search
segment’ and ‘state’ interchangeably. As such, all the boxes in Figure 4 (whether the state goals are
explicitly shown or not) can be viewed as search segments.

ZIMMERMAN & KAMBHAMPATI

 544

Pilot explanation (PE): This is the search trace. It consists of the entire linked set of search segments
representing the search space visited in a Graphplan backward search episode. It is convenient to
visualize it as in Figure 4: a tiered structure with separate caches for segments associated with search
on each planning graph level. We adopt the convention of numbering the PE levels in the reverse
order of the plan graph: The top PE level is 0 (it contains a single search segment whose goals are the
problem goals) and the level number is incremented as we move towards the initial state. When a
solution is found, the PE will necessarily extend from the highest plan graph level to the initial state,
as shown in the third graph of Figure 4.

PE transposition: When a state is first generated in search episode n it is associated with a specific
planning graph level, say k. The premise of using the search trace to guide search in episode n+1 is
based on the idea of re-associating each PE search segment (state) generated (or updated) in episode n
with the next higher planning graph level. That is, we define transposing the PE as: For each search
segment in the PE associated with a planning graph level k after search episode n, associate it with
level k+1 for episode n+1.

Given these definitions, we note that the states in the PE after a search episode n on plan graph
level k, loosely constitute the minimal set 5 of states that will be visited when backward search is con-
ducted in episode n+1 at level k+1. (This bound can be visualized by sliding the fixed tree of search
segments in the first graph of Figure 4 up one level.)

3.2 Conducting Search with the EGBG Search Trace

EGBG builds the initial pilot explanation during the first regression search episode while tracing the
search process with an augmented version of Graphplan’s “assign-goals” routine. If no solution is
possible on the k-length planning graph, the PE is transposed up one level, and key features of its pre-
vious search are replayed such that significant new search effort only occurs at points where one of the
three conditions described above holds. During any such new search process the PE is augmented ac-
cording to the search space visited.

The EGBG search algorithm exploits its search trace in essentially bi-modal fashion: It alternates
informed selection of a state from the search trace of its previous experience with a focused CSP-type
search on the state’s subgoals. Our discussion here of EGBG’s bi-modal algorithm revolves around
the second mode; minimizing redundant search effort once a state has been chosen for visitation.
When we describe PEGG’s use of the search trace in Section 5 we will see that greater potential for
dramatic efficiency increases lies with the first mode; the selection of a promising state from the
search trace.

After choosing a state to visit, EGBG uses the trace from the previous episode to focus on only
those aspects of the entailed search that could possibly have changed. For each search segment Si at
planning graph level k+1, visitation is a 4–step process:

1. Perform a memo check to ensure the subgoals of Si are valid at level k+1

2. ‘Replay’ the previous episode’s action assignment sequence for all subgoals in Si, using the
segment’s ordered trace vectors. Mutex checking is conducted on only those pairs of actions
that were dynamic mutex at level k. For actions that are no longer dynamic mutex, add the can-

5 It is possible for Graphplan’s memoizing process to preclude some states from being regenerated in a subsequent episode.

See footnote 2 for an brief explanation of conditions under which this may occur.

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 545

didate action to Si’s list of consistent assignments and resume Graphplan-style search on the re-
maining goals. Si ,is augmented and the PE extended in the process. Whenever Si’s goals are
successfully assigned, entailing a new set of subgoals to be satisfied at lower level k, a child
search segment is created, linked to Si , and added to the PE.

3. For each Si subgoal in the replay sequence, check also for new actions appearing at level k+1
that establish the subgoal. New actions that are inconsistent with a previously assigned action
are logged as such in Si’s assignments. For new actions that do not conflict with those previ-
ously assigned, assign them and resume Graphplan-style search from that point as for step 2.

4. Memoize Si’s goals at level k+1 if no solution is found via the search process of steps 2 and 3.

As long as all the segments in the PE are visited in this manner, the planner is guaranteed to find an
optimal plan in the same search episode as Graphplan. Hereafter we refer to a PE search segment that
is visited and extended via backward search to find a valid plan, as a seed segment. In addition, all
segments that are part of the plan extracted from the PE we call plan segments. Thus, in the third
graph of Figure 4, S18 is the apparent seed segment while the plan segments (in bottom up order) are;
S30, S29, S18, S17, S16, S15, labeled segments YH, YHI, and the goal state WXYZ.

 In principle we have the freedom to traverse the search states encapsulated in the PE in any order
and are no longer restricted to the (non-informed) depth-first nature of Graphplan’s search process.
Unfortunately, EGBG incurs a high overhead associated with visiting the search segments in any or-
der other than bottom up (in terms of PE levels). If an ancestor of any state represented in the PE
were to be visited before the state itself, EGBG’s search process would regenerate the state and any of
its descendents (unless it first finds a solution). There is a non-trivial cost associated with generating
the assignment trace information in each of EGBG’s search segments; its search advantage lies in re-
using that trace data without having to regenerate it.

On the other hand, top-down visitation of the segments in the PE levels is the degenerate mode.
Such a search process essentially mimics Graphplan’s, since each episode begins with search on the
problem goal set, and (with the exception of the replay of the top-level search segment’s assignments)
regenerates all the states generated in the previous episode -plus possibly some new states- during its
regression search. The search trace provides no significant advantage under a top-down visitation
policy.

The bottom-up policy, on the other hand, has intuitive appeal since the lowest levels of the PE cor-
respond to portions of the search space that lie closest to the initial state (in terms of plan steps). If a
state in one of the lower levels can in fact be extended to a solution, the planner avoids all the search
effort that Graphplan would expend in reaching the state from the top-level problem goals.

Adopting a bottom-up visitation policy amounts to layering a secondary heuristic on the primary
IDA* heuristic, which is the planning graph length that is iteratively deepened. Recalling from Sec-
tion 2.2 that all states in the PE have the same f-value in terms of the primary heuristic, we are essen-
tially biasing here in favor of states with low h-values. Support for such a policy comes from work on
heuristic guided state-space planning (Bonet & Geffner, 1999; Nguyen & Kambhampati, 2000) in
which weighting h by a factor of 5 relative to the g component of the heuristic f-value generally im-
proved performance. However, unlike these state-space planning systems, for which this is the pri-
mary heuristic, EGBG employs it as a secondary heuristic so the guarantee of step optimality does not

ZIMMERMAN & KAMBHAMPATI

 546

depend on its admissibility. We have found bottom-up visitation to be the most efficient mode for
EGBG and it is the default order for all EGBG results reported in this study.

3.3 EGBG Experimental Results

Table 1 shows some of the performance results reported for the first version of EGBG (Zimmerman &
Kambhampati, 1999). Amongst the search trace designs we tried, this version is the most memory
intensive and records the greatest extent of the search experience. Runtime, the number of search
backtracks, and the number of search mutex checks performed is compared to the Lisp implementa-
tion of the original Graphplan algorithm. EGBG exhibits a clear advantage over Graphplan for this
small set of problems;

• total problem runtime: 2.7 - 24.5x improvement
• Number of backtracks during search: 3.2 - 33x improvement
• Number of mutex checking operations during search: 5.5 - 42x improvement

Since total time is, of course, highly dependent on both the machine as well as the coding language 6
(EGBG performance is particularly sensitive to available memory), the backtrack and mutex checking
metrics provide a better comparative measure of search efficiency. For Graphplan, mutex checking is
by far the biggest consumer of computation time and, as such, the latter metric is perhaps the most
complete indicator of search process improvements. Some of the problem-to-problem variation in
EGBG’s effectiveness can be attributed to the static/dynamic mutex ratio characterizing Graphplan’s
action assignment routine. The more action assignments rejected due to pair-wise statically mutex
actions, the greater the advantage enjoyed by a system that doesn’t need to retest them. Tower-of-
Hanoi problems fall into this classification.

As noted in the original study (Zimmerman & Kambhampati, 1999) the range of problems that can

6 All planners developed for this report were coded in Allegro Lisp and run on a Pentium 900 mhz, with 384 M RAM.
Runtimes include plangraph construction time and exclude garbage collection time. Values in Table 1 differ from those
published in 1999 because problems were re-run on this platform. They also reflect some changes in the tracking of sta-
tistics.

Standard Graphplan EGBG
Problem

Total
Time Backtracks Mutex

Checks
Total
Time Backtracks Mutex

Checks
Size of

PE

Speedup Ratios

 Time Bktrks Mutex
 Chks

BW-Large-B
(18/18) 213 2823 K 121,400 K 79 880 K 21,900 K 7919 2.7x 3.2x 5.5x

Rocket-ext-a
(7/36) 402 8128 K 74,900 K 40 712 K 3,400 K 1020 10.0x 11.4x 22x

Tower-5
(31/31) 811 7907 K 23040 K 33 240 K 548 K 2722 24.5x 33x 42x

Ferry-6
(39/39) 319 5909 K 81000 K 62 977 K 8901 K 6611 5.1x 6.0x 9.1x

Table 1: Comparison of EGBG with standard Graphplan.
 Numbers in parentheses give number of time steps / number of actions respectively. Search backtracks and
 mutex checks performed during the search are shown. "Size of PE" is pilot explanation size in terms of the
 final number of search segments. “Standard Graphplan” is the Lisp version by Smith and Peot.

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 547

be handled by this implementation is significantly restricted by the amount of memory available to the
program at runtime. For example, with a PE consisting of almost 8,000 search segments, the very
modest sized BW-Large-B problem challenges the available memory limit on our test machine. We
consider next an approach (me-EGBG in Figure 1) that occupies a middle ground in terms of memory
demands amongst the search trace approaches we have investigated.

4. Engineering to Reduce EGBG Memory Requirements: The me-EGBG Planner

The memory demands associated with Graphplan’s search process itself are not a major concern, since
it conducts depth-first search with search space requirements linear in the depth of a solution node.
Since we seek to avoid the redundancy inherent in the IDA* episodes of Graphplan’s search by using
a search trace, we must deal with a much different memory-demand profile. The search trace design
employed by EGBG has memory requirements that are exponential in the depth of the solution. How-
ever, the search trace grows in direct proportion to the search space actually visited, so that techniques
which prune search also act to greatly reduce its memory demands.

We examined a variety of methods with respect to this issue, and eventually implemented a suite of
seven that together have proven instrumental in helping EGBG (and later, PEGG) overcome memory-
bound limitations. Six of these are known techniques from the planning and CSP fields: variable or-
dering, value ordering, explanation based learning (EBL), dependency directed backtracking (DDB),
domain preprocessing and invariant analysis, and transitioning to a bi-partite planning graph. Four of
the six most effective methods are CSP speedup techniques, however our interest lies primarily in
their impact on search trace memory demands. While there are challenging aspects to adapting these
methods to the planning graph and search trace context, it is not the focus of this paper. Thus details
on the motivation and implementation of these methods is relegated to Appendix B.

The seventh method, a novel variant of variable ordering we call ‘EBL-based reordering’, exploits the
fact that we are using EBL and have a search trace available. Although the method is readily imple-
mented in PEGG, the strict ordering of the trace vectors required by the EGBG search trace make it
costly to implement for that planner. As such, ‘memory-efficient EGBG’ (me-EGBG) does not use
EBL-based reordering and we defer further discussion until PEGG is introduced in Section 5.

4.1 Impact of Enhancements on EGBG Memory Demands

There are two major modes in which the first six techniques impact memory demand for me-EGBG:
1) Reduction in the size of the pilot explanation (search trace), either in the number of search segments
(states), or the average trace content within the segments, and 2) Reduction in the requirements of
structures that compete with the pilot explanation for available memory (i.e. the planning graph and
the memo caches). Admittedly, these two dimensions are not independent, since the number of
memos (though not the size) is linear in the number of search segments. We will nonetheless consider
this partition in our discussion to facilitate the comparison of each method’s impact on the search
trace.

In general, the impact of each these enhancements on the search process depends significantly, not
only on the particular problem, but also on the presence (or absence) of any of the other methods. No
single configuration of techniques proves to be optimal across a wide range of problems. Indeed, due
to computational overhead associated with these methods, it is generally possible to find a class of
problems for which planner performance degrades due to the presence of the method. We chose this

ZIMMERMAN & KAMBHAMPATI

 548

set of techniques then, based on their joint average impact on the me-EGBG / PEGG memory footprint
over an extensive variety of problems.

 Figure 5 illustrates for each method the impact on memory reduction relative to the two dimen-
sions above, when the method operates in isolation of the others. The plot reflects results based on
twelve problems in three domains (logistics, blocksworld, and tower-of-hanoi), chosen to include a
mix of problems entailing large planning graphs, problems requiring extensive search, and problems
requiring both. The horizontal axis plots percent reduction in the end-of-run memory footprint of the
combined memo caches and the planning graph. The ratios along this ordinate are assessed based on
runs with Graphplan (no search trace employed) where the memo cache and planning graph are the
only globally defined structures of significant size that remain in the Lisp interpreted environment at
run completion.7 Similarly, the vertical axis plots percent reduction in the space required for the PE at
the end of EGBG runs with and without each method activated, and with the planning graph and
memo cache structures purged from working memory.

The plot crossbars for each method depict the spread of reduction values seen across the twelve
problems along both dimensions, with the intersection being the average. The bi-partite planning
graph, not surprisingly, impacts only the graph aspect, but five of the six methods are seen to have an
impact on both search trace size and graph/memo cache size. Of these, DDB has the greatest influ-
ence on PE size but little impact on the graph or memo cache size, while EBL has a more modest in-
fluence on the former and a larger impact on the latter (due both to the smaller memos that it creates

7 The Allegro Common Lisp ‘global scavenging’ function was used to purge all but the target global data structures from
the workspace.

10

 2

0

 30

 4
0

 50

60

 7
0

 8

0

 90

 1
00

 10 20 30 40 50 60 70 80 90 100

 Bi-partite graph

%
 r

ed
uc

tio
n i

n P
E

(se
ar

ch
 tr

ac
e)

 m
em

or
y r

eq
uir

em
en

t

 % reduction in planning graph, memo cache memory requirements

DDB

 EBL

 Domain preprocess /
 Invariant Analysis

Value Ordering

All six in combination
 (in me-EGBG)

Figure 5: Memory demand impact along two dimensions for six memory reduction/speedup
 techniques. Plots for each applied independently and as a suite (within EGBG).

Variable Ordering

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 549

and the production of more ‘general’ memos, which engender more backtracks). Domain preprocess-
ing/ invariant analysis can have a major impact on both the graph size and the PE size due to processes
such as the extraction of invariants from operator preconditions. It is highly domain dependent, hav-
ing little effect in the case of blocksworld problems, but can be of great consequence in tower-of-
Hanoi and some logistics problems.

That these six methods combined can complement each other is evidenced by the crossbars plot-
ting space reduction when all six are employed at once. Over the twelve problems average reduction
in PE size approaches 90% and average reduction in the planning graph/memo cache aspect exceeds
80%. No single method in isolation averages more than a 55% reduction along these dimensions.

The runtime reduction associated with each of these methods in isolation is also highly dependent
on the problem and which of the other methods are active. In general, the relative time reduction for
any two methods does not correlate closely with their relative memory reduction. However, we found
that similarly, the techniques broadly complement each other such that net speedup accrues.

All of the techniques listed above can be (and have been) used to improve Graphplan’s perform-
ance also, in terms of speed. In order to focus on the impact of planning with the search trace, we use
a version of Graphplan that has been enhanced by these six methods for all comparisons to me-EGBG
and PEGG in this study (We hereafter refer to this enhanced version of Graphplan as GP-e).

4.2 Experimental Results with me-EGBG

Table 2 illustrates the impact of the six augmentations discussed in the previous section on EGBG’s
(and Graphplan’s) performance, in terms of both space and runtime. Standard Graphplan, GP-e,
EGBG, and me-EGBG are compared across 37 benchmark problems in a wide range of domains, in-
cluding problems from the first three AIPS planning competitions held to date. The problems were
selected to satisfy three objectives: a subset that both standard Graphplan and EGBG could solve for
comparison to me-EGBG, different subsets that exceed the memory limitations of each of the three
planners in terms of either planning graph or PE size, and a subset that gives a rough impression of
search time limitations.

Not surprisingly, the memory efficient EGBG clearly outperforms the early version on all prob-
lems attempted. More importantly, me-EGBG is able to solve a variety of problems beyond the reach
of both standard Graphplan and EGBG. Of the 37 problems, standard Graphplan solves 12, the origi-
nal EGBG solves 14, GP-e solves 32, and me-EGBG solves 32. Wherever me-EGBG and GP-e solve
the same problem, me-EGBG is faster by up to a factor of 62x, and averages ~4x speedup. Standard
Graphplan (on the twelve problems it can solve), is bested by me-EGBG by factors ranging from 3x to
over 1000x.

 The striking improvement of the memory efficient version of EGBG over the first version is not
simply due to the speedup associated with the five techniques discussed in the previous section, but is
directly tied to their impact on search trace memory requirements. Table 2 indicates one of three rea-
sons for each instance where a problem is not solved by a planner: 1) s: planner is still in search after
30 cpu minutes, 2) pg: memory is exhausted or exceeded 30 minutes during the planning graph build-
ing phase, 3) pe: memory is exhausted during search due to pilot explanation extension. The third rea-
son clearly favors me-EGBG as the size of the PE (reported in terms of search segments at the time
the problem is solved) indicates that it generates and retains in its trace up to 100x fewer states than
EGBG. This translates into a much broader reach for me-EGBG; it exhausts memory on 14% of the

ZIMMERMAN & KAMBHAMPATI

 550

Table 2 problems compared to 49% for the first version of EGBG. Regardless, GP-e solves three
problems on which me-EGBG fails in 30 minutes due to search trace memory demands

The table also illustrates the dramatic impact of the speedup techniques on Graphplan itself. The
enhanced version, GP-e, is well over 10x faster than the original version on problems they can both
solve in 30 minutes, and it can solve many problems entirely beyond standard Graphplan’s reach.
Nonetheless, me-EGBG modestly outperforms GP-e on the majority of problems that they both can
solve. Since the EGBG (and PEGG) planners derive their strength from using the PE to shortcut
Graphplan’s episodic search process, their advantage is realized only in problems with multiple search
episodes and a high fraction of runtime devoted to search. Thus, no speedup is seen for grid-y-1 and
all problems in the ‘mystery’, ‘movie’, and ‘mprime’ domains where a solution can be extracted as
soon as the planning graph reaches a level containing the problem goals in a non-mutex state.

The bottom-up order in which EGBG visits PE search segments turns out to be surprisingly effec-
tive for many problems. For Table 2 problems we found that in the great majority the PE for the final
episode contains a seed segment (a state from which search will reach the initial state) within the
deepest two or three PE levels. This supports the intuition discussed in Section 3.2 and suggests that
the advantage of a low h-value bias as observed for heuristic state-space planners (Bonet & Geffner,
1999; Nguyen & Kambhampati, 2000) trans-lates to search on the planning graph.

Results for even the memory efficient version of EGBG reveal two primary weaknesses:

1. The action assignment trace vectors that allow EGBG to avoid redundant search are somewhat
costly to generate, make significant demands on available memory for problems that elicit large
search (e.g. Table 2 problems: log-y-4, 8puzzle-1, freecell-2-1), and are difficult to revise when
search experience alters drastically in subsequent visits.

2. Despite its surprising effectiveness in many problems, the bottom up visitation of PE search
segments is inefficient in others. For Table 2 problems such as freecell-2-1 and essentially all
‘schedule’ domain problems, when the planning graph gets extended to the level from which a
solution can be extracted, that solution arises via a new search branch generated from the root
search segment (i.e. the problem goal state). Thus, the only seed segment in the PE is the top-
most search segment, and bottom-up visitation of the PE states is more costly than Graphplan’s
top-down approach.

 The first shortcoming is particularly manifest in problems that do not allow EGBG to exploit the
PE (e.g. problems in which a solution can be extracted in the first search episode). The hit that EGBG
takes on such problems relative to Graphplan is closely tied to the overhead associated with building
its search trace. A compelling tactic to address the second shortcoming is to traverse the search space
implicit in the PE according to state space heuristics. We might wish, for example, to exploit any of
the variety of state-space heuristics that have revolutionized state space planners in recent years
(Bonet & Geffner, 1999; Nguyen & Kambhampati, 2000; Gerevini & Serina, 2002). However, as we
noted in Section 3.2, when we depart from a policy of visiting EGBG search segments in level-by-
level, bottom-up order, we face more costly bookkeeping and high memory management overhead.
More informed traversal of the state-space view of Graphplan’s search space is taken up next, where
we argue that it’s perhaps the key benefit afforded by a trace of search on the planning graph.

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 551

 Table 2: Search for step-optimal plans: EGBG, me-EGBG, standard & enhanced Graphplan
 Standard Graphplan: Lisp version by Smith and Peot
 GP-e: Graphplan enhanced per Section 4.1 me-EGBG: memory efficient EGBG
 “Size of PE” is the final search trace size in terms of the number of "search segments"
 Search failure modes: ‘pg’ Exceeded 30 mins. or memory constraints during graph building
 ‘pe’ Exceeded memory limit during search due to size of PE
 ‘s’ Exceeded 30 mins. during search
 Parentheses adjacent to cpu time give (# of steps / # of actions) in the solution.

Graphplan
Problem

(steps/actions)
cpu sec

 Stnd. GP-e
 (enhanced)

EGBG

 cpu sec size of
 PE

me-EGBG
(memory efficient EGBG)

 cpu sec size of
 PE

SPEEDUP
(me-EGBG
vs. GP-e)

bw-large-B (18/18) 126 11.4 79 7919 9.2 2090 1.2x
huge-fct (18/18) 165 13.0 98 8410 9.1 2964 1.4x
rocket-ext-a (7/34) s 3.5 40.3 1020 1.8 174 1.9x
att-log-a (11/79) s 12.2 pe 7.2 1115 1.7x
gripper-8 (15/23) 125 14.2 88 9790 7.9 2313 1.8x
Tower-6 (63/63) s 43.1 39.1 3303 7.6 80 5.7x
Tower-7 (127/127) s 158 s 20.0 166 7.9x
8puzzle-1 (31/31) 667 57.1 pe pe >16000 (pe)
8puzzle-2 (30/30) 304 48.3 pe 26.9 10392 1.8x
TSP-12 (12/12) s 454 pe 97.0 7155 4.7x
AIPS 1998 Graphplan GP-e EGBG me-EGBG Speedup
grid-y-1 (14/14) 388 16.7 393 19 16.9 15 1x
grid-y-2 (??/??) pg pg pg pg ~
gripper-x-3 (15/23) 291 16.1 200 9888 8.4 2299 1.9x
gripper-x-4 (19/29) s 190 pe 65.7 6351 2.9x
gripper-x-5 (23/35) s s pe 433 13572 > 5x
log-y-4 (11/56) pg 470 pg pe >25000 (pe)
mprime-x-29 (4/6) 15.7 5.5 6.6 4 5.5 4 1x
movie-x-30 (2/7) .1 .05 .06 2 .05 2 1x
mysty-x-30 (6/14) 83 13.5 85 32 13.5 19 1x
AIPS 2000 Graphplan GP-e EGBG me-EGBG Speedup
blocks-10-1 (32/32) s 101 pe 16.1 6788 6.3x
blocks-12-0 (34/34) s 24.2 pe 14.5 3220 1.7x
logistics-10-0 (15/56) s 30.0 s 16.3 1259 1.8x
logistics-11-0 (13/56) s 78.6 pe 10.0 1117 7.9x
logistics-12-1 (15/77) s s pe 1205 7101 > 2x
freecell-2-1 (6/10) s 98.0 pe pe >12000 (pe)
schedule-8-5 (4/14) pg 63.5 pg 42.9 6 1.5x
schedule-9-2 (5/13) pg 58.1 pg 46.8 6 1.2x
AIPS 2002 Graphplan GP-e EGBG me-EGBG Speedup
depot-6512 (10/26) 239 5.1 219 4272 4.1 456 1.25x
depot-7654a (10/28) s 32.5 s 14.8 1199 2.2x
driverlog-2-3-6a (10/24) 1280 2.8 807 1569 1.0 230 2.8x
driverlog-2-3-6e (12/28) s 169 s 83.3 7691 2x
roverprob1425 (10/32) s 18.9 979 10028 10.3 1522 1.8x
roverprob1423 (9/30) s 170 pe 94.7 10217 1.8x
strips-sat-x-5 (7/22) 313 47.0 272 4111 23.0 2717 2.0x
strips-sat-x-9 (6/35) s s s 84.4 306 >21x
ztravel-3-8a (7/25) s 972 pe 15.6 1353 62x
ztravel-3-7a (10/21) s s pe pe >20000 ~

ZIMMERMAN & KAMBHAMPATI

 552

5. Focusing on the State Space View: The so-PEGG and PEGG Planners

The costs associated with EGBG’s generation and use of its search trace are directly attributable to the
storage, updating, and replay of the CSP value assignments for a search segment’s subgoals. We
therefore investigated a stripped down version of the search trace that abandons this tactic and focuses
instead on the embodied state space information. We will show that the PEGG planners employing
this search trace (both so-PEGG, the step-optimal version and PEGG, a version using beam search),
outperform the EGBG planners on larger problems. The key difference between EGBG’s pilot expla-
nation and the pared down, ‘skeletal’ PE used by the PEGG planners, is the elimination of the detailed
mutex-checking information contained in the bit vectors of the former (i.e. the last item in the bullet
list of EGBG search segment contents in Section 3.1). The PEGG planners then apply state-space
heuristics to rank the PE search segments based on their associated subgoal sets (states) and are free to
visit this ‘state space’ in a more informed manner. The tradeoff is that for each PE state so visited the
planner must regenerate the CSP effort of finding consistent action assignments for the subgoals.

Figure 6 illustrates the PEGG advantage in a small hypothetical search trace at the final search epi-
sode. Here search segments in the PE at the onset of the episode appear in solid lines and all plan
segments (states extendable to a valid plan) are shown as double-lined boxes. The figure reflects the
fact that typically there may be many such latent plan segments in diverse branches of the search trace
at the solution-bearing episode. Clearly a planner that can discriminate plan segment states from other
states in the PE could solve the problem more quickly than a planner restricted to a bottom-up tra-
versal (deepest PE level first). State space heuristics endow the PEGG planners with this capability.

The so-PEGG planner visits every search segment in the PE during each search episode (compara-
ble to Graphplan’s exhaustive search on a given length graph) thereby guaranteeing that returned
plans are step-optimal. As such, any advantage of heuristic-guided traversal is realized only in the
final episode. For many problems, the computational effort expended by Graphplan in the last search
episode greatly exceeds that of all previous episodes combined, so this can still be a powerful advan-
tage. However, as we scale up to problems that are larger in terms of the number and size of search
episodes, the cost of exhaustive search in even the intermediate episodes becomes prohibitive. The

 1 2 3 Proposition Levels 7 8

1

W

Y

Init
State

 4

3

 2

.

.
.
.
.

Goal
W
X
Y
Z

.

.
.
.

.

.

Figure 6: The PE for the final search episode of a hypothetical problem. Search segments in the PE
at onset of search appear in solid lines, double-lined boxes represent plan segments,
dashed lined boxes are states newly generated in regression search during the episode.
Visitation order as dictated by the secondary heuristic is shown via numbering.

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 553

planner we refer to simply as PEGG employs beam search, applying the search trace heuristics in all
intermediate search episodes to visit only a select subset of the PE segments. In so doing PEGG
trades off the step-optimality guarantee for often greatly reduced solution times.

 There are several challenges that must be dealt with to effectively use the pared down search trace
employed by so-PEGG and PEGG, including adaptation and augmentation of distance-based heuris-
tics to guide search trace traversal and dealing with memory management problems induced by the
tactic of ‘skipping about the search space’. Before we describe how we addressed such issues and
give a more complete description of the algorithm, we first present some results that provide perspec-
tive on the effectiveness of these planners.

5.1 Experimental Results With so-PEGG and PEGG

Table 3 compares Graphplan (standard and GP-e), me-EGBG, so-PEGG, and PEGG over most of the
same problems as Table 2, and adds a variety of larger problems that only the latter two systems can
handle. Table 2 problems that were easily solved for GP-e and me-EGBG (e.g. those in the AIPS-98
‘movie’ and ‘mystery’ domains) are omitted from Table 3. Here, all planners that employ variable and
value ordering (i.e. all except standard Graphplan), are configured to use value ordering based on the
planning graph level at which an action first appears and goal ordering based on proposition distance
as determined by the ‘adjusted-sum’ heuristic (which will be defined below). There are a variety of
other parameters for the so-PEGG and PEGG planners for which optimal configurations tend to be
problem-dependent. We defer discussion of these to Sections 5.3, 5.4, and 5.6 but note here that for
the Table 3 results the following parameter settings were used based on good performance on average
across a variety of domains and problems:

• Secondary heuristic for visiting states: adjusted-sum with w0=1 (eqn 5-1)

• Beam search: visit the best 20% (lowest f-value) search segments per search episode, with a
minimum of 25 and a maximum of 50. Search segments with ‘flux’ lower than 10% of average
are not visited regardless of heuristic rank. (wcf = .01, see section 5.6.1)

Focusing first on the GP-e, me-EGBG, and so-PEGG columns, we clearly see the impact of the
tradeoff between storing and exploiting all the intra-segment action assignment information in the PE.
In this set of 37 problems, 16 result in me-EGBG exceeding available memory due to the size of the
PE while only one pushes that limit for so-PEGG. Seven of the problems that cause me-EGBG to run
out of memory are actually solved by so-PEGG while the remainder exceed the time limit during
search. In addition, so-PEGG handles five problems in the table that GP-e fails on. These problems
typically entail extensive search in the final episode, where the PE efficiently shortcuts the full-graph
search conducted by GP-e. The speedup advantage of so-PEGG relative to GP-e ranges between a
modest slowdown on three problems to almost 87x on the Zeno-Travel problems, with an average of
about 5x. (Note that the speedup values reported in the table are not for so-PEGG.)

Generally, any planner using a search trace will under perform GP-e on single search episode prob-
lems such as grid-y-1, in which the cost of building the trace is not recovered. The low overhead as-
sociated with building so-PEGG’s search trace means it suffers little relative to GP-e in this case. On
most problems that both me-EGBG and so-PEGG can solve, me-EGBG has the upper hand due to its
ability to avoid redundant consistency-checking effort. The fact that me-EGBG’s advantage over so-
PEGG is not greater for such problems is attributable both to so-PEGG’s ability to move about the PE
search space in the final search episode (versus me-EGBG’s bottom-up traversal) and its lower

ZIMMERMAN & KAMBHAMPATI

 554

Table 3: so-PEGG and PEGG comparison to Graphplan, GP-e, and me-EGBG
 GP-e: Graphplan enhanced per Section 4.1 me-EGBG: memory efficient EGBG

 so-PEGG: step-optimal, search via the PE, segments ordered by adjusted-sum-u heuristic
 PEGG: beam search, best 20% of segments in PE ordered by adjusted-sum-u heuristic
 Parentheses give (# of steps/ # of actions) in plan. Boldface values exceed a known
 step-optimal. See Table 2 for definitions of s, pg, and pe

Graphplan

Problem cpu sec (steps/acts)
 Stnd. GP-e
 (enhanced)

me-EGBG
cpu sec

(steps/acts)

so-PEGG
heur:istic:
adjsum

cpu sec
(steps/acts)

PEGG
heur: adjsum-u

cpu sec
(steps/acts)

Speedup
(PEGG

vs. GP-e)

bw-large-B 194.8 11.4 (18/18) 9.2 7.0 4.1 (18/18) 2.8x
bw-large-C s s (28/28) pe 1104 24.2 (28/28) > 74x
bw-large-D s s (38/38) pe pe 388 (38/38) > 4.6x
att-log-a s 31.8 (11/79) 7.2 2.9 (11/72) 2.2 (11/62) 14.5x
att-log-b s s pe s 21.6 (13/64) > 83x
Gripper-8 s 14.2 (15/23) 7.9 30.6 5.5 (15/23) 2.6x
Gripper-15 s s pe s 46.7 (31/45) > 38.5x
Tower-7 s 158 (127/127) 20.0 14.3 6.1 (127/127) 26x
Tower-9 s s (511/511) 232 118 23.6 (511/511) > 76x
8puzzle-1 2444 57.1 (31/31) pe 31.1 9.2 (31/31) 6.2x
8puzzle-2 1546 48.3 (30/30) 26.9 31.3 7.0 (32/32) 6.9x
TSP-12 s 454 (12/12) 97.0 390 6.9 (12/12) 51x
AIPS 1998 Stnd GP GP-e me-EGBG so-PEGG PEGG Speedup
grid-y-1 388 16.7 (14/14) 17.9 16.8 16.8 (14/14) 1x
gripper-x-5 s s 433 512 110 (23/35) > 16x
gripper-x-8 s s pe s 520 (35/53) > 3.5x
log-y-5 pg 470 (16/41) pe 361 30.5 (16/34) 15.4x
AIPS 2000 Stnd GP GP-e me-EGBG so-PEGG PEGG Speedup
blocks-10-1 s 95.4 (32/32) 16.1 18.7 6.9 (32/32) 13.8x
blocks-12-0 ~ 26.6 (34/34) 14.5 23.0 9.4 (34/34) 2.8x
blocks-16-2 s s pe s 28.1 (56/56) > 64 x
logistics-10-0 ~ 30.0 (15/56) 16.6 21 7.3 (15/53) 4.1x
logistics-12-1 s s 1205 (15/77) 1101 (15/75) 17.4 (15/75) > 103x
logistics-14-0 s s pe s 678 (13/74) > 2.7x
freecell-2-1 pg 98.0 (6/10) pe 102 19.5 (6/10) >92x
freecell-3-5 pg 1885 (7/16) pe 511 101 (7/17) 18.7x
schedule-8-9 pg 300 (5/12) 615 719 719 (5/12) (.42x)
AIPS 2002 Stnd GP GP-e me-EGBG so-PEGG PEGG Speedup
depot-7654a s 32.5 (10/28) 14.8 12.9 13.2 (10/26) 2.7x
depot-4321 s s s s 42.6 (14/37) >42x
depot-1212 s s s s 79.1 (22/53) >22.8x
driverlog-2-3-6e s 166 (12/28) 83.3 109 80.6 (12/26) 2.1x
driverlog-3-3-6b s s pe 1437 (11/39) 169 (14/45) > 10.7x
roverprob1423 s 170 (9/30) pe 63.4 15.0 (9/26) 11.3x
roverprob4135 s s pe s 379 (12 / 43) > 4.7x
roverprob8271 s s pe s 220 (11 / 39) > 8.2x
sat-x-5 313 45 (7/22) 43.0 27.0 25.1 (7 / 22) 1.7x
sat-x-9 s s 918 9.9 9.9 (6 / 35) >182x
ztravel-3-8a s 972 (7/25) 15.6 11.2 15.1 (9/26) 119x
ztravel-3-7a s s pe s 101 (10/23) > 18x

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 555

overhead due to its more concise search trace. Note that there is no obvious reason to prefer one state
traversal order over the other in non solution-bearing episodes since these step-optimal planners visit
all the states in their PE for these search episodes. 8

Now turning attention to the PEGG results, it’s apparent that the beam search greatly extends the
size of problems that can be handled. PEGG solves ten larger problems of Table 3 that could not be
solved by either so-PEGG or enhanced Graphplan. Speed-wise PEGG handily outperforms the other
planners on every problem except schedule-8-9, where GP-e has a factor of 2.3x advantage. As indi-
cated by the table’s right-hand column, the speedup of PEGG over GP-e ranges from .42x to over
182x. This is a conservative bound on PEGG’s maximum advantage relative to GP-e since speedup
values for the seventeen problems that GP-e fails to solve were conservatively assessed at the time
limit of 1800 seconds.

We defer further analysis of these results to Section 6 in order to first describe the PEGG algorithm
and the advantages it extracts from its search trace.

 5.2 The Algorithm for the PEGG Planners

The high-level algorithm for so-PEGG and PEGG is given in Figure 7. As for Graphplan, search be-
gins once the planning graph it has been extended to the level where all problem goals first appear
with no binary mutex conditions. (The routine, find_1st_level_with_goals is virtually the same as
Graphplan’s and is not defined here). The first search episode is then conducted in Graphplan fashion,
except that the assign_goals and assign_next_level_goals routines of Figure 8 initialize the PE as they
create search segments that hold all states generated during the regression search process. The as-
sign_goals pseudo-code outlines the process of compiling “conflict sets” (see Appendix B) as a means
of implementing DDB and EBL during the action assignment search. The assign_next_level_goals
routine illustrates the role of the top-level conflict set for recording a minimal no-good when search on
a state is completed (EBL) and depicts how variable ordering need be done only once for a state
(when the search segment is created). A child segment is created and linked to its parent (extending
the PE) in assign_next_level_goals whenever all parent goals are successfully assigned. The as-
sign_next_level_goals routine determines the subgoals for the child search segment by regressing the
parent’s goals over the actions assigned and then checks to see if either the initial state has been
reached or there are no remaining goals. If so, success is signaled by returning the child search seg-
ment which can then be used to extract the ordered actions in the plan.

Subsequent to the first episode, PEGG_plan enters an outer loop that employs the PE to conduct
successive search episodes. For each episode, the newly generated search segments from the previous
episode are evaluated according to a state space heuristic, ranked, and merged into the already ordered
PE. In an inner loop each search segment is visited in turn by passing its subgoals to the Graphplan-
like assign_goals routine.

It is the exit conditions on the inner loop that primarily differentiate so-PEGG and PEGG.
Whereas so-PEGG will visit every search segment whose goals are not found to match a memo,
PEGG restricts visitation to a best subset, based on a user-specified criterion. As such, expansion of
the planning graph can be deferred until a segment is chosen for visitation that transposes to a plan-
ning graph level exceeding the current graph length. As a consequence, in some problems the PEGG

8 We have in fact found advantages with respect to traversal order even in intermediate search episodes for some prob-
lems. However, this is highly problem-dependent, and we do not consider it in this study.

ZIMMERMAN & KAMBHAMPATI

 556

planners may be able to extract a step-optimal solution while building one less level than other Graph-
plan-based planners.9

9 Interestingly, PEGG under beam search could conceivably extract an optimal solution from a planning graph that is an arbi-

trary number of levels shorter than that required by Graphplan. Consider the case where the PE, on average, extends at least
one level deeper in each episode and the subset of PE search segments visited always resides on the deepest levels of the PE.
Here an arbitrary number of search episodes might be completed without extending the planning graph. Based on experi-
ments with problems to date however, this advantage seldom saves more than one planning graph level extension.

PEGG_PLAN (Ops, Init, Goals) /*{ Ops, Init, Goals} constitutes a planning problem */
 /* build plangraph, PG, until level n where goals first occur in non-mutex state*/
 Let PG find_1st_level_with_goals(Ops, Init, Goals)
 if PG reached level-off and goals are not present in non-mutex state then Return FAIL
 Let n be the number of levels in PG
 Reorder Goals according to variable ordering method
 Let SS0 be a new search segment with fields:
 goals Goals, parent root, PE-level 0, parent-actions {}
 Let PE be the pilot explanation structure with fields: ranked-segs {SS0}, new-segs {}
 /* Conduct Graphplan-style backward search on the n-length planning graph, storing trace in PE..*/
 Let search-reslt assign_goals(Goals, {}, n, SS0, PG, PE)
 if search-reslt is a search segment /* Success… */
 then Let Plan extract plan actions from the ancestors linked to search-reslt
 Return Plan
 else /* no n-length solution possible ...use the PE to search for a longer length solution */
 loop forever
 n n+1
 /* rank newly generated states and merge into existing ordered PE segments list */

 PE<ranked-segs> merge sort(PE<ranked-segs> U heuristic_sort(PE<new-segs>))
 loop while there are unvisited search segments in PE[ranked-segs] (optionally: for all segments
 below the heuristic threshold)
 Let SS be the highest ranked, unvisited segment from PE’s ranked-segs
 Let k = n – (PE-level of SS) /*... the planning graph level for SS based on transposed PE */
 if k = n then PG extend_plangraph(PG) /*.. delays extending graph until unavoidable! */
 optionally: if flux metric for SS goals < user-specified threshold then continue loop.
 if SS goals ∈ memos for level k of PG then remove SS from PE’s ranked-segs
 else /* visit search segment SS... */
 search-reslt assign_goals (SS<goals>, {}, k, SS, PG, PE)
 if search-reslt is a search segment /* Success...*/
 then Let Plan extract plan actions from the ancestors linked to search-reslt
 Return Plan
 else search-reslt is a conflict set..
 add conflict set to level k memos of PG /* memoize the minimal nogood */
 reorder SS goals so that goals∈ conflict set appear first /* EBL-based reordering */
 end while
 end-loop
end

Figure 7: Top-level algorithm for PEGG and so-PEGG planners.

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 557

Figure 8: PEGG / so-PEGG regression search algorithm for Graphplan-style regression search
 on subgoals while concurrently building the search trace (PE)

Conduct DDB & EBL-enhanced Graphplan-style search while building search trace
 arguments> G: goals still to be assigned, A: action set already assigned, k: PG level,
 SS1: search segment, PG: planning graph, PE: pilot explanation (search trace)
ASSIGN_GOALS (G, A, k, SS1, PG, PE)
 Let g be a goal selected from G
 Let Ag be the actions from PG level k that support g, ordered by value-ordering heuristic
 Let cs {g} /* initialize a conflict set for DDB */
 loop for act∈ Ag
 Let search-reslt = {}
 if act is mutex with an action in A
 then Let b be the goal that the conflicted action in A was assigned to support
 cs cs U {b} /* augment the conflict set and continue to loop*/
 else /* act has no conflict with actions already in A */
 if G-{g} is not empty
 then /* continue goal assignment at this level… */
 search-reslt assign_goals (G-{g}, A U{act}, k, SS1, PG, PE)
 else /* there are no SS1 goals left to satisfy...setup for search at the next lower level */
 search-reslt assign_next_level-goals (A U{act}, k, SS1, PG, PE)
 if search-reslt is a conflict set, check if it contains current goal..
 if g∈search-reslt
 then /* absorb returned conflict set & try next action */
 cs cs U search-reslt
 else Return search-reslt /*just return this conflict set */
 else search-reslt is a search segment: /* Success.. */
 Return search-reslt
 end loop (actions)
 Return cs /* no soln reached .. compiled conflict set is returned*/
 end-if
 end

Set up search on graph level k-1 given that SS1 goals have been satisfied by actions in A at level k
ASSIGN_NEXT_LEVEL_GOALS (A, k, SS1, PG, PE)
 Let nextgoals regress SS1 goals over A (the actions assigned to satisfy goals)
 if nextgoals is empty or k = 0 (it’s the initial state)
 then Return SS1 /* Success */
 else if there is an M∈ memos at level k-1 of PG such that M ⊆ nextgoals
 then Return M as the conflict set /* backtrack due to nogood */
 else /* … initiate search on the next lower PG level*/
 Let SS2 be a new search segment holding nextgoals, a pointer to SS1, & actions A assigned in SS1
 Add SS2 to PE new-segs list
 Let search-reslt assign_goals (nextgoals, {}, k-1, SS2, PG, PE)
 if search-reslt is a search segment /* Success.. */
 then Return search-reslt
 else search-reslt is a conflict set: /*memoize minimal nogood and return conflict set */
 add conflict set to level k-1 memos of PG
 reorder SS2 goals such that goals∈conflict set appear first /* .. EBL-based reordering */
 Return search-reslt
 end-if
 end

ZIMMERMAN & KAMBHAMPATI

 558

Note that PEGG’s algorithm combines both state-space and CSP-based aspects in its search:
• It chooses for expansion the most promising state based on the previous search iteration and

state space heuristics. PEGG and so-PEGG are free to traverse the states in its search trace in
any order.

• A selected state is expanded in Graphplan’s CSP-style, depth-first fashion, making full use of
all CSP speedup techniques outlined above.

The first aspect most clearly distinguishes PEGG from EGBG: traversal of the state space in the PE is
no longer constrained to be bottom-up and level-by-level. As it was for EGBG, management of
memory associated with the search trace is a challenge for PEGG once we stray from bottom-up tra-
versal, but it is less daunting. It will be easier to outline how we address this if we first discuss the
development and adaptation of heuristics to search trace traversal.

5.3 Informed Traversal of the Search Trace Space

The HSP and HSP-R state space planners (Bonet & Geffner, 1999) introduced the idea of using the
‘reachability’ of propositions and sets of propositions (states) to assess the difficulty degree of a re-
laxed version of a problem. This concept underlies their powerful ‘distance based’ heuristics for se-
lecting the most promising state to visit. Subsequent work demonstrated how the planning graph can
function as a rich source of such heuristics (Nguyen & Kambhampati, 2000). Since the planning
graph is already available to PEGG, we adapt and extend heuristics from the latter work to serve in a
secondary heuristic role to direct PEGG’s traversal of its search trace states. Again, the primary heu-
ristic is the planning graph length that is iteratively deepened (Section 2.2), so the step-optimality
guarantee for the so-PEGG planner does not depend on the admissibility of this secondary heuristic.

There are important differences between heuristic ranking of states generated by a state space plan-
ner and ordering of the search segments (states) in PEGG’s search trace. For example, a state space
planner chooses to visit a given state only once while the PEGG planners often must consider whether
to revisit a state in many consecutive search episodes. Ideally, a heuristic to rank states in the search
trace should reflect level-by-level evolutions of the planning graph, since the transposition process
associates a search segment with a higher level in each successive episode. For each higher planning
graph level that a given state is associated with, the effective regression search space ‘below’ it
changes as a complex function of the number of new actions that appear in the graph, the number of
dynamic mutexes that relax, and the no-goods in the memo caches. Moreover, unlike a state space
planner’s queue of previously unvisited states, the states in a search trace include all children of each
state generated when it was last visited. Ideally the value of visiting a state should be assessed inde-
pendently of the value associated with any of its children, since they will be assessed in turn. Refer-
ring back to the search trace depicted in Figure 6, we desire a heuristic that can, for example, discrimi-
nate between the #4 ranked search segment and its ancestor, top goal segment (WXYZ). Here we
would like the heuristic assessment of segment WXYZ to discount the value associated with its chil-
dren already present in the trace, so that it is ranked based only on its potential for generating new lo-
cal search branches.

We next discuss adaptation of known planning graph based heuristics for the most effective use
with the search trace.

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 559

5.3.1 ADOPTION OF DISTANCE-BASED STATE SPACE HEURISTICS
The heuristic value for a state, S, generated in backward search from the problem goals can be ex-
pressed as:

5-1))(*)()(0 ShwSgSf +=
 where: g(S) is the distance from S to the problem goals (e.g. in terms of steps)

 h(S) is a distance estimate from S to the initial state (e.g. in steps)
 w0 is an optional weighting factor

The value of g for any state generated during the search (e.g. the states in the PE) is easily assessed as
the cumulative cost of the assigned actions up to that point. The h values we consider here are taken
from the distance heuristics adapted to exploit the planning graph by (Nguyen & Kambhampati,
2000). One heuristic that is readily extractable from the planning graph is based on the notion of the
level of a set of propositions:

Set Level heuristic: Given a set S of propositions, denote lev(S) as the index of the first level in the
leveled serial planning graph in which all propositions in S appear and are non-mutex with one an-
other. (If S is a singleton, then lev(S) is just the index of the first level where the singleton element
occurs.) If no such level exists, then lev(S) = ∞.

 This admissible heuristic embodies a lower bound on the number of actions needed to achieve S from
the initial state and also captures some of the negative interactions between actions (due to the plan-
ning graph binary mutexes). In the Nguyen & Kambhampati, 2000 study, the set level heuristic was
found to be moderately effective for the backward state space (BSS) planner AltAlt, but tended to re-
sult in too many states having the same f-value. In directing search on PEGG’s search trace it is
somewhat more effective, but still suffers from a lower level of discrimination than some of the other
heuristics they examined -especially for problems that engender a planning graph with relatively few
levels. Nonetheless, as noted in the Appendix B discussion of memory efficiency improvements we
use it during planning graph construction as the default heuristic for value ordering, due to both its low
computational cost and its synergy with building and using a bi-partite planning graph.

The inadmissible heuristics investigated in the Nguyen & Kambhampati, 2000 work are based on
computing the heuristic cost h(p) of a single proposition iteratively to fixed point as follows. Each
proposition p is assigned cost 0 if it is in the initial state and ∞ otherwise. For each action, a, that adds
p, h(p) is updated as:

 5-2) h(p) := min{ h(p), 1+h(Prec(a) }

 where h(Prec(a)) is the sum of the h values for the preconditions of action a.

Given this estimate for a proposition’s h-value, a variety of heuristic estimates for a state have been
studied, including summing the h values for each subgoal and taking the maximum of the subgoal h-
values. For this study we will focus on a heuristic termed the ‘adjusted-sum’ (Nguyen & Kambham-
pati, 2000), that combines the set-level heuristic measure with the sum of the h-values for a state’s
goals. Though not the most powerful heuristic tested by them, it is computationally cheap for a plan-
ning graph based planner and was found to be quite effective for the BSS planners they tested.

Adjusted-sum heuristic: Define lev(p) as the first level at which p appears in the plan graph and
lev(S) as the first level in the plan graph in which all propositions in state S appear and are non-
mutexed with one another. The adjusted-sum heuristic may be stated as:

ZIMMERMAN & KAMBHAMPATI

 560

))(max)(()(:)(∑
∈

∈
−+=

Sp
iSpiadjsum

i
i

plevSlevphSh 5-3)

This is a 2-part heuristic; a summation, which is an estimate of the cost of achieving S under the as-
sumption that its goals are independent, and an estimate of the cost incurred by negative interactions
amongst the actions that must be assigned to achieve the goals. The latter factor is estimated by taking
the difference between the planning graph level at which the propositions in S first become non-mutex
with each other and the level in which these propositions first appear together in the graph.

More complex heuristics have been proposed that include a measure of the positive interactions be-
tween subgoals in a state, that is, the extent to which an action establishes more than one relevant sub-
goal. The so-called ‘relaxed plan’ distance-based heuristics focus on the positive interactions, and
several studies have demonstrated their power for backward and forward state-space planners
(Nguyen & Kambhampati, 2000; Hoffman, 2001). However, as reported in the former study, the pri-
mary advantage of adding positive interactions to the adjusted-sum heuristic is to produce shorter
make-span plans at the expense of a modest increase in planning time. Since PEGG’s IDA* search
already ensures optimal make-span there is little incentive to incur the expense of the relaxed plan
calculation, and we restricted our work here to the simpler adjusted-sum heuristic of eqn 5-3.

 The adjusted-sum heuristic can be further adapted to search on the planning graph by leveraging the
information in PEGG’s search trace. This takes the form of heuristic updating to dynamically im-
prove the h value estimate of states in the PE. The lev(S) term in the adjusted-sum heuristic represents
the first planning graph level at which the subgoals in state S appear and are binary non-mutex with
each other. However, once regression search on S at graph level k fails in a given episode, the search
process has essentially discovered an n-ary mutex condition between some subset of the goals in S at
level k (This subset is the conflict set, C, that gets memoized in the PEGG algorithm of Figures 7 and
8). At this point the lev(S) value can be updated to k+1, indicating that k+1 is a conservative estimate
of the first level that the S goals appear in n-ary non-mutex state. This has a desirable property for
ranking search trace states; the longer a state resides in the search trace, the more often its h-value gets
increased, and the less appealing it becomes as a candidate to visit again. That is, this heuristic update
biases against states that have been visited the most and failed to extend to a solution. We use this
augmented adjusted-sum heuristic for the PEGG runs in this work and refer to it as “adjusted-sum-u”.

Experimentally, we find that the advantage of any given heuristic for ordering PE states is highly
domain dependent (but less sensitive to a particular domain problem). For example, compared to a
simple bottom-up visitation strategy, the adjusted-sum-u heuristic improves so-PEGG runtimes by up
to an order of magnitude in some domains (e.g. Freecell and, Satellite) while degrading it by up to a
factor of 2x to 7x in others (e.g. Zenotravel). Figure 9 depicts the performance of the adjusted-sum-u
heuristic relative to a bottom-up heuristic in so-PEGG on several sets of problems. Here the heuris-
tics are compared in terms of so-PEGG’s average computation time as a percentage of GP-e’s in the
final search episode -the most important measure for exhaustive search on the planning graph. The
more informed heuristic will not only find a seed segment sooner but, in the event there are many
(typical of logistics domains), it will find one that lies on a planning graph level that is closer to the
initial state. A less informed heuristic may cause PEGG to end up conducting more search in its final
episode than GP-e, as there may be many states in the PE that would not be regenerated by Graphplan
in its final regression search before it finds a solution. This is a direct measure of the power of the

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 561

search segment selection heuristic. Since performance can vary considerably with the specific prob-
lem the results in the figure are averages for three representative examples in each domain10.

5.4 Memory Management Under Arbitrary Search Trace Traversal Order

We return now to the memory management problems induced by the strategy of skipping about the
search space. Consider again the PE at the time of the final search episode in Figure 6. If search seg-
ments are visited in an order other than deepest PE level first, we encounter the problem of regenerat-
ing states that are already contained in the PE. The visitation order depicted by numbered segments in
the figure could result from a fairly informed heuristic (the 4th segment it chooses to visit is a plan
segment), but it implies that many states already resident in the PE will be regenerated. This includes,
for example, all the as yet unvisited descendents of the third segment visited. Unchecked, this process
can significantly inflate search trace memory demands as well as the overhead associated with regen-
erating search segments. In addition, heuristic information about a state is lost when the state is re-
generated instead of revisited as an extant PE search segment. This is because due to the adjusted-
sum-u secondary heuristic PEGG ‘learns’ an improved n-ary mutex level for a search segment’s goals
and updates its f-value accordingly in each search episode.

We address this issue by hashing every search segment generated into an associated PE state hash
table according to its canonically ordered goal set. One such hash table is built for each PE level.
Prior to initiating regression search on a subgoal set of a search segment, Sn , PEGG first checks the
planning graph memo caches and, if no relevant memo is found, it then checks the PE state hash table
to see if Sn’s goals are already embodied in an existing PE search segment at the relevant PE level. If

10 Problem sets used- Blocksworld: bw-large-b, blocks-10-1 and 12-0 Logistics: att-log-a, logistics-10-0, 12-0, Gripper:

gripper8, gripper-x-3, x-5, Depot: depotprob6512, -5646, 6587, Driverlog: dlog-3-36a, -2-3-6a, 2-3-6e, Zenotravel:
ztravel-3-8a, -3-8b, 3-7b, Freecell: freecell-2-1, -2-2, -3-5, Satellite: strips-sat-x-4, x-5, x-9.

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00

% of Graphplan's search cost in final episode

TSP

Blocks

Logistics

Satellite

Driverlog

Freecell

ZenoTravel

Schedule

Depot

 P
ro

bl
em

 S
et

bottom-up adjusted-sum-u

Figure 9: Heuristic accuracy in so-PEGG for the final search episode --relative to GP-e

ZIMMERMAN & KAMBHAMPATI

 562

such a search segment, Se,, is returned by this PE state check, Se is made a child of Sn (if it is not al-
ready) by establishing a link, and search can then proceed on the Se goals.11

Another search trace memory management issue is associated with the fact that PEGG only visits a
subset of the PE states -a set we will call the “active” PE. It is tempting to pursue a minimal memory
footprint strategy by retaining in memory only the active search segments in the PE. However unlike
Graphplan, when the initial state is reached PEGG cannot extract a solution by unwinding the com-
plete sequence of action assignment calls since it may have begun this regression search from an arbi-
trary state in any branch of the search trace tree. PEGG depends instead on the link between a child
search segment and its parent to extract the plan actions once a solution is found. As such we must
retain as a minimum, the active search segments and all of their ancestor segments up to the root node.

Beyond the requirement to retain search segments tied to the active PE, there are many strategies
that might be used in managing the inactive portion. For this study we have not attempted to reduce
PE memory requirements in this manner, instead focusing on what might be termed the search space
‘field of view’. Under beam search, heuristic effectiveness depends not only on how informed it is,
but the search trace states available for it to rank. The reduced memory footprint of PEGG’s skeletal
search trace allows us to adopt a strategy of retaining in memory all search segments generated. All
such segments have their f-values updated before they are ranked, giving the beam search a wide se-
lection of states contending for ‘active’ status in a given search episode.

5.5 Learning to Order a State’s Subgoals

The PEGG planners employ both EBL and a search trace, and this allows them to overlay a yet more
sophisticated version of variable ordering on top of the distance-based ordering heuristic. The guiding
principle of variable ordering in search is to fail early, when failure is inevitable. In terms of Graph-
plan-style search on a regressed state, this translates as ‘Since all state goals must be assigned an ac-
tion, it’s best to attempt to satisfy the most difficult goals first.’ The adjusted-sum heuristic described
above, applied to a single goal, provides an estimate of this difficulty based on the structure of the
planning graph. However, EBL provides additional information on the difficulty of goal achievement
based directly on search experience. To wit, the conflict set that is returned by the PEGG’s as-
sign_goals routine during search on a goal set explicitly identifies which of these goals were responsi-
ble for the search failure. The intuition behind the EBL-based reordering technique then, is that these
same goals are likely to be the most difficult to assign when the search segment is revisited in the next
search episode. This constitutes a dynamic form of variable ordering in that, unlike the distance-based
ordering, a search segment’s goals may be reordered over successive search episodes based on the
most recent search experience.

Figure 10 compares the influence of adjusted sum variable ordering and EBL-based reordering
methods on memory demand, in a manner similar to Figure 5. Here the impact of EBL-based reorder-
ing on EGBG’s performance is reported because PEGG tightly integrates the various CSP and effi-
ciency methods, and their independent influence cannot be readily assessed.12 We isolate the impact
of EBL-based reordering from that of EBL itself by activating the EBL but using the produced con-

11 In the interests of simplicity, the Figure 8 algorithm does not outline this memory management process.
12 Given the success of the various memory-efficiency methods within EGBG, all versions of PEGG implement them by

default. A graph analogous to Figure 5 for the PEGG planner would differ in terms of the actual memory reduction val-
ues, but we are confident that the overall benefits of the methods would persist, as would the relative benefit relationship
between methods.

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 563

flict sets only in reordering, not during memoization. The average reduction in search trace memory
over the 12-problem sample is seen to be about 18% for EBL-based reordering alone. This compares
favorably with the 22% average reduction of the distance-based ordering, especially since, unlike the
adjusted sum ordering, the EBL-based reordering only takes effect in the 2nd search episode. The plot
also reveals that the two modes of ordering are quite complimentary.

Across a variety of problems and domains we found the following approach to be most effective in
combining distance-based variable ordering and EBL-based reordering: 1) a newly created search
segment’s goals are ordered according to the distance-based heuristic. 2) After each visit of the search
segment, the subset of its goals that appear in the conflict set are reordered to appear first. 3) The goals
in the conflict set are then ordered by the distance-based heuristic and appended to non-conflict goals,
which are also set in distance-based order.

As indicated in Figure 10, this hybrid form of variable ordering not only boosts the average mem-
ory reduction to almost 30%, but also significantly reduces the wide fluctuation in performance of
either method in isolation. We re-emphasize here that this search experience-informed goal ordering
is only available to a search algorithm that maintains a memory of states it has visited. It is therefore
not portable to any Graphplan-based planner we know of.

5.6 Trading Off Guaranteed Step-Optimality for Speed and Reach:
 PEGG Under Beam Search

Many of the more difficult benchmark problems for Graphplan’s IDA* style search have 20 or more
such search episodes before the reaching the episode in which a solution can be extracted. The cumu-
lative search time tied to these episodes can be a large portion of the total search time and, as indicated
in Table 3, so-PEGG exhausts search time limits well before reaching the episode in which a solution
can be extracted. The strategy of exhaustively searching the planning graph, in each episode up to the
solution bearing level, gives the step-optimal guarantee to Graphplan’s solutions but it can exact a

 10 20 30

 1
0

20

 3

0

 Figure 10: Memory demand impact along two dimensions for ‘adjusted-sum’
 variable ordering and EBL-based reordering techniques when applied
 independently and together.

%
 re

du
cti

on
 in

 P
E

(se
ar

ch
 tr

ac
e)

 m
em

or
y r

eq
uir

em
en

t

 % reduction in planning graph, memo cache memory requirements

 EBL- Reordering

Variable Ordering (adjsum) & EBL-
Reordering

Variable ordering

ZIMMERMAN & KAMBHAMPATI

 564

high cost to ensure what is, after all, only one aspect of plan quality. We explore with PEGG, a non-
exhaustive search version of so-PEGG, the extent to which search episodes can be truncated while
producing plans with virtually the same makespan as Graphplan’s solution.

PEGG shortcuts the time spent in search during these intermediate episodes by using the secondary
heuristic to not only direct the order in which PE states are visited but to prune the search space visited
in the episode. This beam search seeks to visit only the most promising PE states, as measured by
their f-values against a user-specified limit. In addition, the beam search has an important dual benefit
for PEGG in that it further reduces the memory demands of its search trace and, depending on the
problem, even the planning graph. In the PEGG algorithm of Figure 8, the ‘loop while’ statement is
the point at which a beam search f-value threshold can be optionally applied to PE states that are can-
didates for visitation. When the first segment exceeding this threshold is reached on the sorted queue
the search episode ends.

To devise an effective threshold test must reconcile competing goals: minimizing search in non-
solution bearing episodes while maximizing the likelihood that the PE retains and visits (preferably as
early as possible), a search segment that’s extendable to a solution once the graph reaches the first
level with an extant solution. The narrower the window of states to be visited, the more difficult it is
for the heuristic that ranks states to ensure it includes a plan segment, i.e. one that is part of a step-
optimal plan. PEGG will return a step-optimal plan as long as its search strategy leads it to visit any
plan segment (including the top, ‘root’ segment in the PE) belonging to any plan latent in the PE, dur-
ing search on the first solution-bearing planning graph. The heuristic’s job in selecting the window of
search segments to visit is made less daunting for many problems because there are many step-optimal
plans latent at the solution-bearing level.

We next describe an effective planning graph based metric that augments the state space heuristic
in choosing the set of PE states to visit in each search episode.

5.6.1 MINING THE PLANNING GRAPH TO FILTER THE BEAM
Beyond the heuristic updating we introduced in Section 3, the distance-based heuristics are virtually
insensitive to planning graph evolution as a search segment is transposed up successive levels. Since
the search trace contains all children states that were generated in regression search on a state S in epi-
sode n, a heuristic preference to include S over other states in the trace to visit in episode n+1 should
reflect the chance that it will directly generate new and promising search branches. The child states of
S from search episode n are competitors with S, so ideally a heuristic’s rank for S should reflect in
some sense the value of visiting the state beyond the importance of its children.

Consider now the sensitivity of the adjusted-sum heuristic (or any of the distance-based heuristics)
to possible differences in the implicit regression search space ‘below’ a set of propositions, S, at plan-
ning graph level k versus level k+1. Given that the propositions are present and binary non-mutex
with each other at level k, only the cost summation factor in equation 5-3 could conceivably change
when S is evaluated at level k+1. This would require two conditions: a new action must establish one
of the S propositions for the first time at level k+1 and the action’s precondition costs must sum to less
than the precondition costs of any other establisher of the proposition. In practice this happens infre-
quently since the later that an action appears in the graph construction process, the higher its cost tends
to be. Consequently h-values for states based on distance-based heuristics remain remarkably con-
stant for planning graph levels beyond that at which the propositions appear and are binary non-

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 565

mutex13. We desire a means of compensating for a static h-value when a state is transposed to a plan-
ning graph level at which promising new branches of regression search open up.

The likelihood that a state visited in episode n at graph level k will give rise to new child states if
visited in episode n+1 at level k+1 is rooted in the graph dynamics summarized by Observations A-1
and A-2 of Appendix A. Three planning graph and memo cache properties determine whether regres-
sion search on a subgoal set S will evolve over successive episodes:

1. There are new actions at level k+1 that establish a subgoal of S
2. There are dynamic mutexes at level k between actions establishing subgoals of S that relax

at level k+1
3. There were no-good memos encountered in regression search on state S during episode n

that will not be encountered at level k+1 (and also the converse).

This set of measures of the potential for new search branches to result from visiting a state in the PE
we refer to as the ‘flux’; the intuition being that the higher the flux, the more likely that search on a
given state will differ from that seen in the previous search episode (and captured in the PE). If none
of the three factors applies to a state under consideration, there is no point in visiting it, as no new
search can result relative to the previous episode.

 The first factor above can be readily assessed for a state (thanks in part to the bi-partite graph struc-
ture). The second flux factor is unfortunately expensive to assess; a direct measure requires storing all
pairs of attempted action assignments for the goals of S that were inconsistent in episode n and retest-
ing them at the new planning graph level. However, the graph mechanics are such that relaxation of a
dynamic mutex between two actions at level k requires the relaxation of a dynamic mutex condition
between some pair of their preconditions at level k-1 (one precondition for each action). This relaxa-
tion, in turn, is either due to one or more new establishing actions for the preconditions at level k-1 or
recursively, relaxations in existing actions establishing the preconditions. As such, the number of new
actions establishing the subgoals of a state S in the PE (factor 1 above) provide not only a measure of
the flux for S, but also a predictor of the flux due to factor 2 for the parent (and higher ancestors) of S.
Thus, it turns out that by simply tracking the number of new actions for each state subgoal at its cur-
rent level and propagating an appropriately weighted measure up to its parent, we can compile a useful
estimate of flux for factors 1 and 2 above.

The third flux factor above is the most unwieldy and costly to estimate; an exact measure requires
storing all child states of S generated in regression search at level k that caused backtracking due to
cached memos, and retesting them to see if the same memos are present at level k+1.14 Ignoring this
factor, we sum just the two flux measures that depend on new actions to derive a filtering metric
which is then used to assist the largely static adjusted-sum distance-based heuristic in culling the
beam. The resulting (inexact) metric is sensitive to the evolution in search potential as a state is trans-
posed to higher planning graph levels:

13 This, in part, explains the observation (Nguyen & Kambhampati, 2000) that the AltAlt state space planner performance

generally degrades very little if the planning graph used to extract heuristic values is built only to the level where the prob-
lem goals appear and are non-mutex, rather than extending to level-off.

14 Note that as long as we are using EBL/DDB, it is not sufficient to just test whether some memo exists for each child state.
This is because no-good goals themselves contribute to the conflict set used to direct search within S whenever such back-
tracking occurs.

ZIMMERMAN & KAMBHAMPATI

 566

5-4)

 where: pi is a proposition in state S

 newacts(pi) is the number of new actions that establish proposition pi of S at its
 associated planning graph level
 | S | is a normalization factor; the number of propositions in S
 Sc is the set of all child states of S currently represented in the search trace
 childflux(si) is the sum of the two flux terms in eqn 5-4 applied to child state si of S
 wcf weights the contribution of flux from child states to the parent state

Here the number of new actions establishing the subgoals of a state is normalized relative to the num-
ber of subgoals in the state.

We report elsewhere (Zimmerman, 2003) on the use of this flux to directly augment the secondary
heuristic. Depending on the domain and the weighting of flux contribution to the adjusted-sum heu-
ristic, speedups of up to an order of magnitude are observed15. However its impact is highly domain
dependent and since we are primarily concerned with the performance of a general purpose planner, in
this study we only consider its use as a beam filter.

Under beam search, the flux measure can strongly impact every search episode, as it influences the
states actually included in the active PE. When used in this mode, search segments with an assessed
flux below a specified threshold are skipped over even if their f-value places them in the active PE.
Flux proves to be broadly effective across most domains when used in this mode. As mentioned in
Section 5.1, we use a flux cutoff in each search episode of 10% of the average flux for all search seg-
ments in the PE; any segment below this value is not visited regardless of its heuristic rank. At this
setting the impact on speedup for the PEGG column problems of Table 3 ranges from nil to a factor of
9x over PEGG’s performance without the flux filter. Higher settings can dramatically speed up the
solution search, but often at the expense of greater solution makespan.

5.6.2 PEGG’S ABILITY TO FIND STEP-OPTIMAL PLANS
The variety of parameters associated with the beam search approach described above admits consider-
able flexibility in biasing PEGG towards producing plans of different quality. Shorter makespan plans
are favored by more extensive search of the PE states in each episode while heuristically truncated
search tends to generate non-optimal plans more quickly, often containing redundant or unnecessary
actions. The settings used in this study clearly bias PEGG solutions towards step-optimality: The
step-optimal plan produced by enhanced Graphplan is matched by PEGG for all but four of the 37
problems reported in Table 3, as indicated by the annotated steps and actions numbers given in paren-
thesis next to successful GP-e and PEGG runs16. (PEGG solutions with a longer makespan than the
step-optimal have boldface step/action values.) In these four problems, PEGG returns solutions

15 For example, compared to a simple bottom-up visitation strategy, the flux-augmented adjusted-sum heuristic improves
so-PEGG runtimes by up to 11x in some domains (e.g. Freecell and, Satellite) while degrading it by as much as 2x to 7x in
others (e.g. Zenotravel).

16 Where more than one of the guaranteed step-optimal planners (GP-e, me-EGBG and so-PEGG) finds a solution the steps
and actions are reported only for one of them, since they all will have the same makespan.

∑
∑

⊂

⊂ ∗+=
ci

i

Ss
icf

Sp
i

schildfluxw
S

pnewacts
Sflux)(

||

)(
)(

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 567

within four steps of optimum, in spite of its highly pruned search. This proved to be a fairly robust
property of PEGG’s beam search under these settings across all problems tested to date.

 PEGG under the adjusted-sum-u secondary heuristic often finds plans with fewer actions than
GP-e in parallel domains, and this ‘Graphplan hybrid’ system is also impressive in serial domains such
as blocksworld (which are not exactly Graphplan’s forte).

The tactic of trading off optimal plan length in favor of reduced search effort is well known in the
planning community. By comparison, PEGG’s beam search approach is biased towards producing a
very high quality plan at possibly some expense in runtime. For example, in their paper focusing on
an action selection mechanism for planning, Bonet et. al. briefly describe some work with an “N-best
first algorithm” (Bonet, Loerincs, & Geffner, 1997). Here they employ their distance-based heuristic
to conduct beam search in forward state space planning. They report a small set of results for the case
where the 100 best states are retained in the queue to be considered during search.

Table 4 reproduces those results alongside PEGG’s performance on the same problems using beam
search. Here, to approximate the N-best algorithm, PEGG is also run with 100 states visited in each
intermediate search episode. The 1997 study compared the N-best first approach against SATPLAN,
which produces the optimal length plan, to make the point that the approach could produce plans rea-
sonably close to optimal with much less search. The ‘N-best first’ code is not available to run on our
test platform, so only PEGG’s runtime is reported. Focusing on plan makespan, it’s clear that even in
this serial domain, the parallel planner PEGG produces a much shorter plan than the ‘N-best first’
state space approach, and in fact finds the optimum length plan generated by SATPLAN in all cases.

 More recently LPG (Gerevini & Serina, 2002), another planner whose search is tightly integrated
with the planning graph, was awarded top honors at the AIPS-2002 planning competition, due to its
ability to quickly produce high quality plans across a variety of domains currently of interest. In the
Figure 11 scatter plot, solution quality in terms of steps for LPG and PEGG are compared against the
optimal for 22 problems from three domains of the 2002 AIPS planning competition. We chose these
particular problems because the optimal solution is known, and we are interested in comparing to a
quality baseline. LPG’s results are particularly apt in this case, because that planner also non-
exhaustively searches the planning graph at each level before extending it, although its search process
differs markedly from PEGG’s. LPG, too, can be biased to produce plans of higher quality (generally
at the expense of speed) and here we report the competition results for its ‘quality’ mode. In terms of
number of actions in the solutions neither planner consistently dominates for these problems but
PEGG clearly excels in step-optimality. Its maximum deviation from optimum is four steps and most

Problem ‘N-best first’
[N=100, state-space search]

PEGG
[adjusted-sum-u heuristic with beam search on
 the 100 best search segments]

SATPLAN
(optimal)

bw-large-a 8 6 (.1 s) 6

bw-large-b 12 9 (4.5 s) 9
bw-large-c 21 14 (39.0 s) 14
bw-large-d 25 18 (412 s) 18

Table 4: Quality comparison (in terms of plan steps) for PEGG and N-best beam search
 on a forward state space planner (Bonet et al., 1997).

ZIMMERMAN & KAMBHAMPATI

 568

of the plot points for its solutions lie right on the optimal makespan axis. It is possible that there are
sets of actions within LPG’s solutions that could be conducted in parallel but the algorithm’s quality
mode heuristic is insensitive to them .

 It should be noted that LPG produced solutions for some difficult problems in these domains that
PEGG currently does not solve within a reasonable time limit. We are investigating the characteristics
of these problems that make them so difficult for PEGG.

5.6.3 PEGG COMPARED TO HEURISTIC STATE SPACE SEARCH

We have not attempted here to run PEGG head-to-head for speed against recent IPC planners, in part
due to platform difficulties (PEGG is written in Lisp while the competition planners are generally
coded in C and published results are based on the execution on the competition machines) and partly
due to our focus on near-optimal makespan for parallel plans rather than speed. Given PEGG’s close
coupling with the planning graph, the most relevant comparisons are with other parallel planners that
also employ the graph in some form. For such comparisons, we would like to isolate the search com-
ponent of the runtime from planning graph construction, since there are a variety of routines that pro-
duce essentially the same graph with widely different expenditures of computational time and mem-
ory. The reported runtimes for the LPG planner in the AIPS-02 competition are generally much
smaller than PEGG’s, but it’s difficult to isolate the impact of graph construction and platform-related
effects, not to mention the disparity in the makespan of the plans produced.

Table 5 compares PEGG against a Lisp version of a fast distance-based heuristic state space plan-
ner using most of the same problems as Table 3. AltAlt (Srivastava et al., 2001), like PEGG, depends
on the planning graph to derive the powerful heuristics it uses to direct its regression search on the
problem goals. This facilitates planner performance comparison based on differences in search with-
out confusing graph construction time issues. The last column of Table 5 reports AltAlt performance
(runtime and makespan) for two of the most effective heuristics developed for that planner (Nguyen &
Kambhampati, 2000), the first of which is the adjusted-sum heuristic as described in Section 5.3.1.

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18Problem number

S
te

ps
 o

ve
r o

pt
im

al
LPG: dlog
LPG: depot
LPG: ztravel
PEGG: dlog
PEGG: depot
PEGG: ztravel

Figure 11: Makespan comparison of PEGG and LPG -Departure from step-optimal
 plan length. (LPG data taken from the AIPS 2002 competition results.)

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 569

 Table 5: PEGG and a state space planner using variations of the ‘adjusted-sum’ heuristic
 PEGG: bounded PE search, best 20% of search segments visited in each search episode, as ordered by
 adjusted-sum-u state space heuristic
 AltAlt: Lisp version, state space planner with two of the most effective planning graph distance-based
 heuristics: “adjusum2” and “combo” (combo results are not reported for all problems since
 adjusum2 produces plans that are more competitive with PEGG in terms of makespan.)

Problem

PEGG
heuristic: adjusted-sum-u

cpu sec (steps/acts)

Alt Alt (Lisp version)
 cpu sec (/ acts)
 heuristics:
adjusum2 combo

bw-large-B 4.1 (18/18) 67.1 (/ 18) 19.5 (/28)
bw-large-C 24.2 (28/28) 608 (/ 28) 100.9 (/38)
bw-large-D 388 (38/38) 950 (/ 38) ~
rocket-ext-a 1.1 (7/34) 23.6 (/ 40) 1.26 (/ 34)
att-log-a 2.2 (11/62) 16.7 (/56) 2.27(/ 64)
att-log-b 21.6 (13/64) 189 (/ 72) 85.0 (/77)
Gripper-8 5.5 (15/23) 6.6 (/ 23) *
Gripper-15 46.7 (36/45) 10.1 (/ 45) 6.98 (/45)
Gripper-20 1110.8 (40/59) 38.2 (/ 59) 20.9 (/59)
Tower-7 6.1 (127/127) 7.0 (/127) *
Tower-9 23.6 (511/511) 28.0 (/511) *
8puzzle-1 9.2 (31/31) 33.7 (/ 31) 9.5 (/39)
8puzzle-2 7.0 (32/32) 28.3 (/ 30) 5.5 (/ 48)
TSP-12 6.9 (12/12) 21.1 (/12) 18.9 (/12)
AIPS 1998 PEGG Alt Alt
grid-y-1 16.8 (14/14) 17.4 (/14) 17.5 (/14)
gripper-x-5 110 (23/35) 9.9 (/35) 8.0 (/37)
gripper-x-8 520 (35/53) 73 (/48) 25.0 (/53)
log-y-5 30.5 (16/34) 44 (/38) 29.0 (/42)
mprime-1 2.1 (4/6) 722.6 (/ 4) 79.6 (/ 4)
AIPS 2000 PEGG Alt Alt
blocks-10-1 6.9 (32/32) 13.3 (/32) 7.1 (/36)
blocks-12-0 9.4 (34/34) 17.0 (/34)
blocks-16-2 40.9 (56/56) 61.9 (/56)
logistics-10-0 7.3 (15/ 53) 31.5 (/53)
logistics-12-1 17.4 (15/75) 80 (/77)
freecell-2-1 19.1 (6/10) 49 (/12)
schedule-8-9 297 (5/12) 123 (/15)
AIPS 2002 PEGG Alt Alt
depot-6512 2.1 (14/31) 1.2 (/33)
depot-1212 79.1 (22/53) 290 (/61)
driverlog-2-3-6e 80.6 (12/26) 50.9 (/28)
driverlog-4-4-8 889 (23/38) 461 (/44)
roverprob1423 15 (9/28) 2.0 (/33)
roverprob4135 379 (12 / 43) 292 (/45)
roverprob8271 220 (11 / 39) 300 (/ 45)
sat-x-5 25.1 (7/22) 3.1 (/25)
sat-x-9 9.1 (6/35) 5.9 (/ 35)
ztravel-3-7a 101 (10/23) 77 (/28)
ztravel-3-8a 15.1 (9/26) 15.4 (/31)

ZIMMERMAN & KAMBHAMPATI

 570

Surprisingly, in the majority of problems PEGG returns a parallel, generally step-optimal plan faster
than AltAlt returns its serial plan. (AltAlt cannot construct a plan with parallel actions, however recent
work with a highly modified version of AltAlt does, in fact, construct such plans -Nigenda & Kamb-
hampati, 2003). The PEGG plans are also seen to be of comparable length, in terms of number of ac-
tions, to the best of the AltAlt plans.

6. Discussion of Results

A distinguishing feature of the EGBG and PEGG planners relative to other planners that exploit the
planning graph, is their aggressive use of available memory to learn online from their episodic search
experience so as to expedite search in subsequent episodes. Although they each employ a search trace
structure to log this experience, the EGBG and PEGG systems differ in both the content and granular-
ity of the search experience they track and the aggressiveness in their use of memory. They also differ
in how they confront a common problem faced by learning systems; the utility of learned information
versus the cost of storing and accessing it when needed.

Our first efforts focused primarily on using a search trace to learn mutex-related redundancies in
the episodic search process. Although the resulting planners, EGBG and me-EGBG, can avoid virtu-
ally all redundant mutex checking based on search experience embodied in their PE’s, empirically we
find that it’s a limited class of problems for which this is a winning strategy. The utility of tracking
the mutex checking experience during search is a function of the number of times that information is
subsequently used. Specifically:

 where: Umt is the utility of tracking mutex checking experience
 p is a planning problem
EPS(p) is the number of search episodes in problem p

 PEvisit (e) is the number of PE search segments visited in search episode e
PEadd (e)is the number of new search segments added to PE in episode e

Thus the payback for EGBG’s incurred overhead of tracing consistency-checking experience during
search depends on the number of times the sets are revisited relative to the total number of subgoal
sets generated (and added to the PE) during the problem run. This characteristic explains the less than
2x speedups observed for me-EGBG on many Table 2 problems. The approach is a handicap for sin-
gle search episode problems. It is also ineffectual for problems where final search episode search gen-
erates a large number of states relative to previous episodes and when the only seed segment(s) are at
the top levels of the PE (due to need for bottom-up visitation of the search segments in EGBG’s
search trace).

The PE can be thought of as a snapshot of the ‘regression search reachable’ (RS reachable) states
for a search episode. That is, once the regression search process generates a state at level k of the
planning graph, the state is reachable during search at all higher levels of the graph in future search
episodes. Essentially, the search segments in the PE represent not just the RS reachable states, but a

∑

∑

=

=∝−)(

1

)(

1

)(

)(
)()16 pEPS

e
add

pEPS

e
visit

mt

ePE

ePE
pU

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 571

candidate set of partial plans with each segment’s state being the current tail state of such a plan. Ta-
ble 3 and 5 results indicate that the utility of learning the states that are RS reachable in a given search
episode generally outweighs the utility of learning details of the episode’s consistency-checking, and
require much less memory. Freed from the need to regenerate the RS reachable states in IDA* fash-
ion during each search episode, PEGG can visit such states in any heuristically preferred order.

Tables 2, 3 and 5 shed light on several classes of problems that are problematic for search trace
guided search on the planning graph:

1. Domains with high branching factors and operator descriptions that thwart DDB and EBL
(e.g. the larger Schedule, Satellite, and Zenotravel domain problems)

2. Problems with a significant fraction of runtime consumed in planning graph construction.
(e.g. Grid domain,, dlog-2-3-6e, freecell-2-1)

3. Problems with only one or two search episodes (grid-y-1, schedule-8-5)

For problems in the first class, the Graphplan-style CSP assignment search is prone to bogging
down after certain PE states are selected for visitation. For those in the second class any search time
reduction can be dominated by the large graph construction time (a problem shared by any planner
that builds the complete planning graph). Problems in the third class do not give PEGG sufficient
opportunity to exploit the PE, since it is built in the first episode (and the first episode PE is typically
small) and of no benefit until subsequent episodes. This aspect of PEGG’s behavior is illustrated in
Figure 12. Here the speedup factors of both so-PEGG and PEGG (under beam search) are plotted for
a series of problems ordered according to the number of search episodes that Graphplan would con-
duct prior to finding a solution. The data was gathered by running the GP-e, so-PEGG, and PEGG
planners on two different domains (the Logistics domain from the AIPS-00 planning competition, and
the Zenotravel domain from the AIPS-02 competition) and then averaging the speedups observed for
problems with the same number of observed search episodes. The downturn for the PEGG/ Ztravel
curve at seven episodes is not surprising given that there was only one such problem and there are
many factors beyond the number of search episodes that impact solution time. Noting that the speed-

0.1

1.0

10.0

100.0

1000.0

1 2 3 4 5 6 7

search episodes in problem

sp
ee

du
p

w
rt

en
ha

nc
ed

 G
ra

ph
pl

an

so-PEGG: log
PEGG: log
so-PEGG: ztravel
PEGG:ztravel

Figure 12: Speedup vs. number of search episodes: Logistics '00 and Zenotravel '02 domains

ZIMMERMAN & KAMBHAMPATI

 572

ups are plotted on a logarithmic scale, the power of a search trace given multiple search episode prob-
lems is evident. PEGG using beam search handily outperforms so-PEGG for all problems of three or
more search episodes, largely because it shortcuts exhaustive search in the intermediate episodes.

There are several avenues for addressing the above-listed limitations of PEGG that we have ex-
plored or anticipate investigating. For example, unlike the ‘N-best first’ state space planner reported
in Table 4, PEGG enforces the user-specified limit on state f-values only when selecting PE search
segments to visit. Once a search segment is chosen for visitation, Graphplan-style regression search
on the state goals continues until either a solution is found or all sub-branches fail. A more greedy
approach would be to also apply the heuristic bound during this regression search. That is, we could
backtrack whenever a state is generated that exceeds the f-value threshold applied to search segments
before they are visited. This translates the Greedy Best First Search (GBFS) algorithm employed by
HSP-r (Bonet & Geffner, 1999) for state space search, into a form of hill-climbing search on the plan-
ning graph.

Experimentally we find that when PEGG is adapted to enforce the PE state f-value limit during its
regression search, improvements are unpredictable at best. Speedups of up to a factor of 100 were
observed in a few cases (all logistics problems) but in many cases runtimes increased or search failed
entirely within the time limit. In addition, the quality (make-span) of the returned solutions suffered
across a broad range of problems. There are two factors that may explain this result: 1) PEGG’s re-
gression search is greatly expedited by DDB and EBL, but the regressed conflict set that they rely on
is undefined when the regression search space below a state is not fully explored, such as when an f-
value limit is enforced. Without conducting such search there is no informed basis for returning any-
thing other than the full set of subgoals in the state, which essentially forces search towards chrono-
logical backtracking. 2) Assessing an f-value for a newly generated state to compare against an f-
value bound that is based on states generated in previous episodes is problematic. This is because the
heuristic values of PE states that determine the f-value bound have been increased by PEGG’s use of
search experience to improve h-value estimates (Section 5.1.2).

Degradation of solution quality as we shift PEGG closer to a greedy search approach may be an in-
dicator that PEGG’s ability to return step-optimal plans (as evidenced by Table 3 results) is rooted in
its interleaving of best-state selection from the PE with Graphplan-style depth-first search on the
state’s subgoals.

7. Related Work

We focus here on related or alternative strategies for employing search heuristics in planning, generat-
ing parallel plans, or making use of memory to expedite search. Related work pertaining to some of
the search techniques, efficiencies, and data structures that enable EGBG and PEGG to successfully
employ a search trace were cited as they arose above and are not further considered here.17

As noted in Section 2.2, a shortcoming of IDA* search (and Graphplan) is its inadequate use of
available memory: The only information carried over from one iteration to the next is the upper
bound on the f-value. Exploitation of a search trace directly addresses this shortcoming by serving as
a memory of the states in the visited search space of the previous episode in order to reduce redun-

17 Support methodologies include memory efficient bi-partite planning graph models, explanation based learning and depend-

ency directed backtracking in the context of planning graph search, variable and value ordering strategies, and the evolution
and extraction of distance-based heuristics from the planning graph.

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 573

dant regeneration. In this respect PEGG’s search is closely related to methods such as MREC (Sen,
Anup & Bagchi, 1989), MA*, and SMA* (Russell, 1992) which lie in the middle ground between the
memory intensive A* and IDA*’s scant use of memory. A central concern for these algorithms is
using a prescribed amount of available memory as efficiently as possible. Like EGBG and PEGG,
they retain as much of their search experience as memory permits to avoid repeating and regenerating
nodes, and depend on a heuristic to order the nodes in memory for visitation. Unlike our search trace
based algorithms though, all three of the above algorithms backup a deleted node’s f-value to the par-
ent node. This ensures the deleted branch is not re-expanded until no other more promising node re-
mains on the open list. We have not implemented this extended memory management in PEGG
(though it would be straight-forward to do so) primarily because, at least under beam search, PEGG
has seldom confronted PE-related memory limitations.

EGBG and PEGG are the first planners to directly interleave the CSP and state space views in prob-
lem search, but there are related approaches that synthesize different views of the planning problem.
The Blackbox system (Kautz & Selman 1999) constructs the planning graph but instead of exploiting
its CSP nature, it is converted into a SAT encoding after each extension and a k-step solution is
sought. GP-CSP (Do & Kambhampati, 2000), similarly alternates between extending a planning
graph and converting it, but it transforms the graph into CSP format and seeks to satisfy the constraint
set in each search phase.

The beam search concept is employed in the context of propositional satisfiability in GSAT (Sel-
man, Levesque, & Mitchell, 1992) and is an option for the Blackbox planner (Kautz & Selman, 1999).
For these systems greedy local search is conducted by assessing in each episode, the n-best ‘flips’ of
variable values in a randomly generated truth assignment (Where the best flips are those that lead to
the greatest number of satisfied clauses). If n flips fail to find a solution, GSAT restarts with a new
random variable assignment and again tries the n-best flips. There are several important differences
relative to PEGG’s visitation of the n-best search trace states. The search trace captures the state as-
pect engendered by Graphplan’s regression search on problem goals and as such, PEGG exploits
reachability information implicit in its planning graph. In conducting their search on a purely proposi-
tional level, SAT solvers can leverage a global view of the problem constraints but cannot exploit
state-space information. Whereas GSAT (and Blackbox) do not improve their performance based on
the experience from one n-best search episode to the next, PEGG learns in a variety of modes; im-
proving its heuristic estimate for the states visited, reordering the state goals based on prior search ex-
perience, and memorizing the most general no-goods based on its use of EBL.

Like PEGG, the LPG system (Gerevini & Serina, 2002) heavily exploits the structure of the plan-
ning graph, leverages a variety of heuristics to expedite search, and generates parallel plans. However,
LPG conducts greedy local search in a space composed of subgraphs on a given length planning
graph, while PEGG combines a state space view of its search experience with Graphplan’s CSP-style
search on the graph itself. LPG does not systematically search the planning graph before heuristically
moving to extend it, so the guarantee of step-optimality is forfeited. PEGG can operate either in a
step-optimal mode or in modes that trade off optimality for speed to varying degrees.

We are currently investigating an interesting parallel to LPG’s ability to simultaneously consider
candidate partial plans of different lengths. In principle, there is nothing that prevents PEGG from
simultaneously considering a given PE search segment Sn, in terms of its heuristic rankings when it’s
transposed onto various levels of the planning graph. This is tantamount to simultaneously consider-

ZIMMERMAN & KAMBHAMPATI

 574

ing which of an arbitrary number of candidate partial plans of different implied lengths to extend first
(each such partial plan having Sn as its tail state). The search trace again proves to be very useful in
this regard as any state it contains can be transposed up any desired number of levels -subject to the
ability to extend the planning graph as needed- and have its heuristics re-evaluated at each level. Re-
ferring back to Figure 4, after the first search episode pictured (top), the YJ state in the PE could be
expanded into multiple distinct states by transposing it up from graph level 5 to levels 6, 7, or higher,
and heuristically evaluating it at each level. These graph-level indexed instances of YJ can now be
simultaneously compared. Ideally we’d like to move directly to visiting YJ at planning graph level 7,
since at that point it becomes a plan segment for this problem (bottom graph of Figure 4). If our sec-
ondary heuristic can discriminate between the solution potential for a state at the sequential levels it
can be transposed to, we should have an effective means for further shortcutting Graphplan’s level-by-
level search process. The flux adjunct is likely to be one key to boosting the sensitivity of a distance-
based heuristic in this regard.

Generating and assessing an arbitrarily large number of graph-level transposed instances of PE
states would be prohibitive in terms of memory requirements if we had to store multiple versions of
the PE. However we can simply store any level-specific heuristic information in the search segments
of a single PE as values indexed to their associated planning graph levels. Challenging issues include
such things as the range of plan lengths to be considered at one time and the potential for plans with
steps consisting entirely of ‘persists’ actions.

We haven’t examined PEGG in the context of real-time planning here, but its use of the search
trace reflects some of the flavor of the real-time search methods, such as LRTA* (Korf, 1990) and
variants such as B-LRTA* (Bonet, Loerincs, & Geffner, 1997), -a variant that applies a distance-based
heuristic oriented to planning problems. Real-time search algorithms interleave search and execution,
performing an action after a limited local search. LRTA* employs a search heuristic that is based on
finding a less-than-optimal solution then improving the heuristic estimate over a series of iterations. It
associates an h-value with every state to estimate the goal distance of the state (similar to the h-values
of A*). It always first updates the h-value of the current state and then uses the h-values of the succes-
sors to move to the successor believed to be on a minimum-cost path from the current state to the goal.
Unlike traditional search methods, it can not only act in real-time but also amortize learning over con-
secutive planning episodes if it solves the same planning task repeatedly. This allows it to find a sub-
optimal plan fast and then improve the plan until it converges on a minimum-cost plan.

Like LRTA*, the PEGG search process iteratively improves the h-value estimates of the states it
has generated until it determines an optimal make-span plan. Unlike LRTA*, PEGG doesn’t actually
find a sub-optimal plan first. Instead it converges on a minimum-cost plan by either exhaustively ex-
tending all candidate partial plans of monotonically increasing length (so-PEGG) or extending only the
most promising candidates according to its secondary heuristic (PEGG with beam search). A real-
time version of PEGG more closely related to LRTA* might be based on the method described above,
in which search segments are simultaneously transposed onto multiple planning graph levels. In this
mode PEGG would be biased to search quickly for a plan of any length, and then search in anytime
fashion on progressively shorter length planning graphs for lower cost plans.

This methodology is of direct relevance to work we have reported elsewhere on “multi-PEGG”
(Zimmerman & Kambhampati, 2002; Zimmerman 2003), a version of PEGG that operates in an any-
time fashion, seeking to optimize over multiple plan quality criteria. Currently multi-PEGG first re-

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 575

turns the optimal make-span plan, and then exploits the search trace in a novel way to efficiently
stream plans that monotonically improve in terms of other quality metrics. As discussed in that paper,
an important step away from multi-PEGG’s bias towards the make-span plan quality metric would be
just such a modification. Co-mingling versions of the same state transposed onto multiple planning
graph levels would enable the planner to concurrently consider for visitation candidate search seg-
ments that might be seed segments for latent plans of various lengths.

8. Conclusions

We have investigated and presented a family of methods that make efficient use of available memory
to learn from different aspects of Graphplan’s iterative search episodes in order to expedite search in
subsequent episodes. The motivation, design, and performance of four different planners that build
and exploit a search trace are described. The methods differ significantly in either the information
content of their trace or the manner in which they leverage it. However, in all cases the high-level
impact is to transform the IDA* nature of Graphplan’s search by capturing some aspect of the search
experience in the first episode and using it to guide search in subsequent episodes, dynamically updat-
ing it along the way.

The EGBG planners employ a more aggressive mode of tracing search experience than the PEGG
planners. They track and use the action assignment consistency checking performed during search on
a subgoal set (state) to minimize the effort expended when the state is next visited. The EGBG ap-
proach was found to be memory intensive, motivating the incorporation of a variety of techniques
from the planning and CSP fields which, apart from their well-known speedup benefits, are shown to
have a dramatic impact on search trace and planning graph memory demands. The resulting planner,
me-EGBG, is frequently two orders of magnitude faster than either standard Graphplan or EGBG and
for problems it can handle, it is generally the fastest of the guaranteed step-optimal approaches we
investigated. In comparisons to GP-e, a version of Graphplan enhanced with the same space saving
and speedup techniques, me-EGBG solves problems on average 5 times faster.

The PEGG planners adopt a more skeletal search trace, a design more conducive to informed tra-
versal of the search space. Ultimately this proves to be a more powerful approach to exploiting the
episodic search experience. We adapt distance-based, state space heuristics to support informed tra-
versal of the states implicit in the search trace and describe a metric we call “flux” which effectively
focuses search on states worth visiting. This flux measure is sensitive to the potential for a search
trace state to seed new search branches as it is transposed to higher planning graph levels. We also
describe some new techniques that leverage the search experience captured in the search trace and
demonstrate their effectiveness.

The so-PEGG planner, like me-EGBG, produces guaranteed optimal parallel plans and similarly
averages a 5x speedup over GP-e. Its greatly reduced memory demands allow so-PEGG to handles all
but one of the 16 problems for which me-EGBG exceeds available memory. More compelling evi-
dence of the speedup potential for a search trace guided planner is provided by PEGG under beam
search. Since it no longer exhaustively searches the planning graph in each episode, PEGG sacrifices
the guarantee of returning an optimal make-span plan. Nonetheless, even under beam search limited
to just the best 20% of PE states in each episode, PEGG returns the step-optimal plan in almost 90%
of the test bed problems and comes within a few steps of optimal in the others. It does so at speedups

ZIMMERMAN & KAMBHAMPATI

 576

ranging to almost two orders of magnitude above GP-e, and quite competitively with a modern state
space planner (which finds only serial plans).

 The code for the PEGG planners (including GP-e) with instructions for running them in various
modes is available for download at http://rakaposhi.eas.asu.edu/pegg.html

Acknowledgements

This research was improved by many discussions with Binh Minh Do, XuanLong Nguyen, Romeo
Sanchez Nigenda and William Cushing. Thanks also to David Smith and the anonymous reviewers,
whose copious suggestions greatly improved the presentation of this paper. This research is supported
in part by the NSF grants IRI-9801676 and IIS-0308139, DARPA AASERT Grant DAAH04-96-1-
0247 and the NASA grants NAG2-1461 and NCC-1225.

Appendix A: The EGBG Planner

The insight behind EGBG’s use of a search trace is based on the characterization of Graphplan’s
search given at the beginning of Section 3.1 and some entailed observations:

Observation A-1) The intra-level CSP-style search process conducted by Graphplan on a set of proposi-
tions (subgoals) S , at planning graph level k+1 in episode n+1 is identical to the search process on S at
level k in episode n IF:
1. All mutexes between pairs of actions that are establishers of propositions of S at level k remain

mutex for level k+1. (this concerns dynamic mutexes; static mutexes persist by definition)
2. There are no actions establishing a proposition of S at level k+1 that were not also present at level k.

Observation A-2) The trace of Graphplan’s search during episode n+1, on a set of goals G, at planning
graph level m+1, is identical to its episode n search at level m IF:

1. The two conditions of observation A-1 hold for every subgoal set (state) generated by Graphplan in
the episode n+1 regression search on G.

2. For every subgoal set S at planning graph level j in search episode n for which there was a matching
level j memo, there exists an equivalent memo at level j+1 when S is generated in episode n+1.
Conversely, for every subgoal set S at level j in search episode n for which no matching level j memo
existed at the time it was generated, there is also no matching memo at level j+1 at the time S is gen-
erated in episode n+1.

Now, suppose we have a search trace of all states (including no-good states) generated by Graph-
plan’s regression search on the problem goals from planning graph level m in episode n. If that search
failed to extract a solution from the m-length planning graph (i.e. reach the initial state), then a neces-
sary condition to extract a solution from the m+1 length graph is that one or more of the conditions of
observations in A-1 or A-2 fails to hold for the states in the episode n search trace.

With observations A-1 and A-2 in mind, we can exploit the search trace in a new episode in a
sound and complete manner by focusing search effort on the only three situations that could lead to a
solution: 1) under state variables with newly extended value ranges (i.e. search segment goals that
have at least one new establishing action at their newly associated graph level), 2) at points in the pre-
vious search episode that backtracked due to violation of a ‘dynamic’ constraint (i.e. two actions that

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 577

were dynamic mutex), and 3) at states that matched a cached memo in episode n. All other assign-
ment and mutex checking operations involved in satisfying a set of subgoals are static across search
episodes.

 We experimented with several search trace designs for capturing key decision points. The design
adopted for EGBG employs an ordered sequence of bit vectors, where each vector contains the results
of Graphplan’s CSP-style action assignment process related to a given subgoal in a search segment.
Efficient action assignment replay is possible with a trace that uses vectors of two-bit tags to represent
four possible assignment outcomes: 1) dynamic mutex, 2) static mutex, 3) no conflict, and 4) a com-
plete, consistent set of assignments that is rejected at the next level due to a memoized no-good. Fig-
ure A1 illustrates how a sequence of eight such bit vectors can be used to capture the search experi-
ence for the search segment with state goals WYHIJ from our Figure 3 Alpha problem. Here the pro-
positional goals (the variables) appear to the left of the sets of bit vectors (depicted as segmented bars)
which encode the outcome of all possible action assignment (the values). Each possible establishing
action for a goal appears above a bit vector tag.

The numbered edges reflect the order in which the trace vectors are initially created when the first
goal action is tried. Note that whenever a candidate action for a goal is conflict free with respect to
previously assigned actions (indicated by the OK in the figure), action checking for the goal is sus-
pended, the process jumps to the next goal, and a new bit vector is initialized for this goal’s possible
establishers. The edge numbering also reflects the order in which the vectors are popped from the
search segment trace list when the segment is revisited in the next episode. For this scheme to work,
the bit vectors must be pushed onto the search segment trace list after all actions for a goal are tried, in
the reverse of the numbered edge order. Long edges that skip over one or more goals indicate that
those goals are already established by previously assigned actions.

As long as the order of actions appearing under the “establishers” list for a planning graph proposi-
tion remains constant, the bit vectors can be used to replay the search in the next episode on the next
higher planning graph level. The graph building routine for EGBG enforces this constraint.

Figure A1: Bit vector representation of the search trace for the WYHIJ state in Figure 3.
 Semantics: OK −> assigned (no action conflicts) SM −> action is static mutex with previous assign
 DM −> action is dynamic mutex with previous assign
 NG −> a no-conflict action results in a no-good state at lower graph level

OK

6 3
8

SM OK
nop a3 a1

OK

nop a3

Y

H

I

J

2

OK SM

nop a1

4

OK
nop a1

OK OK W

1

nop a5

DM SM

5 nop a5

DM SM
 nop a5

DM SM
 nop a5
DM SM

nop a3
OK SM

7

ZIMMERMAN & KAMBHAMPATI

 578

The EGBG Algorithm

The high-level EGBG algorithm is given in Figure A2. As for Graphplan, search on the planning
graph occurs only after it has been extended to the level where all problem goals first appear with no
binary mutex conditions. (the call to find_1st_level_with_goals). The first search episode is conducted
in Graphplan fashion except that the assign_goals routines of Figure A3 create search segments to
hold the states and trace information generated during the regression search process. The necessary
trace information for a search segment is captured in trace vectors as described above. These seg-
ments are stored in the PE structure indexed according to the level at which they where generated
(where the current highest planning graph level corresponds to 0 and contains the problem goals).

Subsequent to the first episode, EGBG_plan enters an outer loop that employs the PE to conduct
successive episodes (Referred to as “search trace guided”). The search strategy alternates between the
selection and visitation of a promising state from the trace of previous experience (se-
lect_searchseg_from_PE routine), with a focused CSP-type search on the state’s subgoals (the re-
play_trace_goals and assign_goals routines of Figures A3 and A4).

For each episode, an inner loop visits the PE search segments in level-by-level, bottom-up fashion
(for the reasons discussed in Section 3). The extend_plangraph routine called only when a state being
visited corresponds to a level beyond the current graph length.

The replay_trace_goals routine is the counterpart to Graphplan’s assign_goals routine, except that
it avoids the latter’s full-blown mutex checking by stepping through the trace vectors that captured
previous search experience for a given state. Unlike assign_goals, it does not branch to any child
states already contained in the PE. The conditional checking of the trace vectors against establishing
actions initiates new search by calling assign_goals under two conditions: 1) when dynamic mutexes
from previous episodes no longer hold 2) when new establishing actions appear for a subgoal (These
are tried after all other establishers are replayed.) When a dynamic mutex no longer holds or a new
establishing action is considered the trace vector is modified accordingly and EGBG resumes Graph-
plan’s CSP-style search, adding new trace vectors to the search segment in the process.

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 579

EGBG-PLAN (Ops, Init, Goals) /* {Ops,Init,Goals} is a planning problem */
 /* build plangraph, PG, until level n where goals first occur in non-mutex state*/
 Let PG find_1st_level_with_goals(Ops, Init, Goals)
 if PG reached level-off and goals are not present in non-mutex state then Return FAIL
 Let n be the number of levels in PG
 Let SS0 be a new search segment with fields:
 goals Goals, parent ’root, PE-level 0, parent-actions {} trace {}
 Let PE pilot explanation structure with fields to hold search segments at each plangraph level
 PE[0] {SS0} /* 0 is top level of PE */
 /* Conduct Graphplan-style backward search on the n-length plangraph, store trace in the PE...*/
 Let search-reslt assign_goals(Goals, {}, n, SS0, PG, PE)
 if search-reslt is a search segment /* Success… */
 then Plan extract plan actions from the ancestors linked to search-reslt
 Return Plan
 else /* No n-length solution possible ...use the PE to search for a longer length solution */
 loop forever
 n n+1
 loop for pe-lev ranging from the number of deepest level of PE to 0 (top level)
 let k planning graph level associated with PE level pe-lev
 = n – pe-lev /* ..essentially translates the PE up one planning graph level */
 if pe-lev = 0 then PG extend_plangraph(PG) /*.. must extend plangraph at this point */
 loop for search segments in PE[pe-lev]
 SS select_searchseg_from_PE[pe-lev]
 SSassigns SS<trace> /* get ordered, goal-by-goal trace vectors from search segment */
 SS<trace> {} /* Clear the search segment trace vectors field */
 if SS<goals> ∈ memos(k, PG) /*check for nogoods at level k */
 then these goals match a nogood at this level, loop to next search segment
 else /* use SS trace to avoid redundant search effort on SS goals.. */
 search-reslt replay_trace_goals (SS<goals>, {}, k, SSassigns, SS, PG, PE)
 if search-reslt is a search segment
 then Plan extract plan actions from the ancestors linked to search-reslt
 Return Plan
 else Add SS<goals> to memos(k, PG) /*memoize nogood */
 end loop (search segments)
 end loop (PE levels)
 end-loop (PG level)
end

Figure A2: EGBG planner top level algorithm

ZIMMERMAN & KAMBHAMPATI

 580

 Conduct Graphplan-style search on a subgoal set at planning graph level k
 arguments> G: goals still to be assigned, A: actions already assigned, k: PG level,
 SS1: search segment, PG: planning graph, PE: pilot explanation (search trace)
ASSIGN_GOALS (G, A, k, SS1, PG, PE)
 if G is empty or k = 0 (the initial state) then Return SS1 /* Success */
 else /* there are goals left to satisfy…*/
 Let g-assigns ={} /* trace vector will hold ordered action assignment tags */
 Let g be a goal selected from G
 Let Ag = actions from PG level k that support g, ordered by value-ordering heuristic
 loop for act∈ Ag
 Let search-reslt = {}
 if an action in A is dynamic mutex with act then append ‘dm’ tag to g-assigns
 else if an action in A is static mutex with act then append ‘sm’ tag to g-assigns
 else /* act has no conflict with actions already in A */
 if G is empty
 then /* done with G goals, setup for search at next lower level */
 search-reslt assign_next_level_goals (A U{act}, k, SS1, PG, PE)
 if search-reslt is a ‘nogood’ then append ‘ng’ tag to g-assigns
 else append ‘ok’ tag to g-assigns /* search occurred at lower level */
 else /* search continues at this level with the next goal… */
 append ‘ok’ tag to g-assigns
 search-reslt assign_goals (G-{g}, A U{act}, k, SS1, PG, PE)
 end-if
 if search-reslt is a search segment then Return search-reslt /* Success */
 /* else we loop and try another action…*/
 end-if
 end loop (actions)
 push g-assigns into trace field of SS1 /*add trace data to search segment */
 Return nil /* no solution found */
 end-if
end

Setup for search on graph level k-1 given that the actions in A satisfy the goals of SS1 at level k
ASSIGN_NEXT_LEVEL_GOALS (A, k, SS1, PG, PE)
 Let nextgoals regress SS1 goals over assigned actions in A
 if nextgoals ∈ memos at PG level k-1 then Return ‘nogood’ /* backtrack on nogood goals */
 else /* … initiate search on next lower PG level*/
 Let SS2 be a new search segment with fields:
 goals nextgoals, parent SS1, parent-actions A, trace {}
 Add SS2 to the PE at level: (maximum PG level) – (k-1)
 Let search-reslt assign_goals (nextgoals, {}, k-1, SS2, PG, PE)
 if search-reslt is nil /* search at level k-1 failed */
 then Add nextgoals to memos to level k-1 of PG /*memoize nogood */
 Return search-reslt
 end-if
end

ASSIGN_NEW_ACTIONS (G, A, Ag, g, g-assigns, k, SS, PG, PE)
 /* Routine is essentially the same as assign_goals, except it attempts to satisfy goal g actions
with only the ‘new’ actions (i.e. those first appearing in the most recent plangraph extension */

Figure A3: EGBG’s non-guided regression search algorithm

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 581

Figure A4: EGBG’s search-trace guided algorithm

Regression search using search trace (PE) replay
 arguments> G: goals still to be assigned, A: actions already assigned, k: PG level,
 SS1: search segment, PG: planning graph, PE: pilot explanation (search trace)
REPLAY_TRACE_GOALS (G, A, k, SS1, PG, PE)
 if G is empty /* all SS1 goals in this branch were successfully assigned during last episode...*/
 then Return /* .. continue with level k replay, ignoring search replay at next lower level */
 else /* there are goals left to satisfy…*/
 Let g select goal from G
 Let g-assigns pop the front trace vector from SS<trace>
 Let Ag set of actions from level k of PG that support g
 /* Now replay assignments for g from previous episode, rechecking only those that may have changed..*/
 loop for tag ∈ g-assigns
 Let search-reslt {}, Let act pop action from Ag
 if tag = ‘ok’ /* act had no conflict with actions in A during last episode.. go to next goal… */
 then search-reslt replay_trace_goals (G-{g}, A U{act}, k, SSassigns, SS1, PG, PE)
 else-if tag =‘ng’ then loop /* it’s the last action assign at this level & act was not mutex in the last
 episode --So the next-level regressed goals reside in a child search segment that was already visited */
 else if tag = ‘sm’ then loop /* act was static mutex with action in A last episode */
 else tag = ‘dm’ /* act was dynamic mutex with action in A last episode …retest it...*/
 if dynamic mutex persists then loop
 else change tag to ‘ok’ in g-assigns vector /* act is no longer mutex with A actions */
 if G-{g} is not empty /* resume backward search at this level… */
 then search-reslt assign_goals (G-{g}, A U{act}, k, SS1, PG,PE)
 else /* no goals left to satisfy in SS1, setup for search at lower level */
 search-reslt assign_next_level_goals (A U{act}, k, SS1, PG, PE)
 if search-reslt =‘nogood’ then change g-assigns vector tag to ‘ng’
 end-if
 if search-reslt is a search segment then Return search-reslt (Success)
 else loop (check next action)
 end-loop /* all establishment possibilities from prior episode tried ..Now check for new actions */
 if Ag still contains actions /* they are new actions establishing g at this level .. attempt to assign */
 then search-reslt assign_new_actions(G, A, Ag, g, g-assigns, k, SS1, PG, PE)
 if search-reslt is a search segment then Return search-reslt /* Success */
 else push g-assigns SS1<trace>
 Return nil /* no solution found in search stemming from SS1 goals */
 end-if
end

ZIMMERMAN & KAMBHAMPATI

 582

Appendix B: Exploiting CSP Speedup Methods to Reduce Memory Demands

Background and implementation details are provided here for the six techniques from the planning
and CSP fields which proved to be key to controlling memory demands in our search trace based
planners. They are variable ordering, value ordering, explanation based learning (EBL), dependency
directed backtracking (DDB), domain preprocessing and invariant analysis, and replacing the redun-
dant multi-level planning graph with a bi-partite version.

Domain preprocessing and invariant analysis:

 The speedups attainable through preprocessing of domain and problem specifications are well
documented (Fox & Long, 1998; Gerevini & Schubert, 1996). Static analysis prior to the planning
process can be used to infer certain invariant conditions implicit in the domain theory and/or problem
specification. The domain preprocessing for me-EGBG and PEGG is fairly basic, focusing on identi-
fication and extraction of invariants in action descriptions, typing constructs, and subsequent rewrite
of the domain in a form that is efficiently handled by the planning graph build routines. Our imple-
mentation discriminates between static (or permanent) mutex relations and dynamic mutex relations
(in which a mutex condition may eventually relax) between actions and proposition pairs. This infor-
mation is used to both expedite graph construction and during me-EGBG’s ‘replay’ of action assign-
ments when a search segment is visited.

Domain preprocessing can significantly reduce memory requirements to the extent that it identifies
propositions that do not need to be explicitly represented in each level of the graph. (Examples of
terms that can be extracted from action preconditions -and hence do not get explicitly represented in
planning graph levels- include the (SMALLER ?X ?Y) term in the MOVE action of the ‘towers of Ha-
noi’ domain and typing terms such as (AUTO ?X) and (PLACE ?Y) in logistics domains.) This benefit is
further compounded in EGBG and PEGG since propositions that can be removed from action precon-
ditions directly reduce the size of the subgoal sets generated during the regression search episodes, and
hence the size of the search trace.

Bi-partite planning graph:

The original Graphplan maintains the level-by-level action, proposition, and mutex information in
distinct structures for each level, thereby duplicating -often many times over- the information con-
tained in previous levels. This multi-level planning graph can be efficiently represented as an indexed
two-part structure and finite differencing techniques employed to focus on only those aspects of the
graph structure that can possibly change during extension. This leads to more rapid construction of a
more concise planning graph (Fox & Long 1998; Smith & Weld, 1998).

For me-EGBG and PEGG, the bi-partite graph offers a benefit beyond the reduced memory de-
mands and faster graph construction time; the PE transposition process described in section 3.1 is re-
duced to simply incrementing each search segment’s graph level index. This is not straightforward
with the multi-level graph built by Graphplan, since each proposition (and action) referenced in the
search segments is a unique data structure in itself.

Explanation Based Learning and Dependency Directed Backtracking:

The application of explanation based learning (EBL) and dependency directed backtracking (DDB)
were investigated in a preliminary way in (Zimmerman & Kambhampati, 1999), where the primary
interest was in their speedup benefits. The techniques were shown to result in modest speedups on

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 583

several small problems but the complexity of integrating them with the maintenance of the PE replay
vectors limited the size of problem that could be handled. We have since succeeded in implementing
a more robust version of these methods, and results reported here reflect that.

Both EBL and DDB are based on explaining failures at the leaf-nodes of a search tree, and propa-
gating those explanations upwards through the search tree (Kambhampati, 1998). DDB involves us-
ing the propagation of failure explanations to support intelligent backtracking, while EBL involves
storing interior-node failure explanations, for pruning future search nodes. An approach that imple-
ments these complimentary techniques for Graphplan is reported in (Kambhampati, 2000) where
speedups ranged from ~2x for ‘blocksworld’ problems to ~100x for ‘ferry’ domain problems. We
refer to that study for a full description of EBL/DDB in a Graphplan context, but note here some as-
pects that are particularly relevant for me-EGBG and PEGG.

As for conflict directed back-jumping (Prosser, 1993), the failure explanations are compactly rep-
resented in terms of “conflict sets” that identify the specific action/goal assignments that gave rise to
backtracking. This liberates the search from chronological backtracking, allowing it to jump back to
the most recent variable taking part in the conflict set. When all attempts to satisfy a set of subgoals (a
state) fail, the conflict set that is regressed back represents a useful ‘minimal’ no-good for memoiza-
tion. (See the PEGG algorithm in Figures 8 and 9 for a depiction of this process.) This conflict set
memo is usually shorter and hence more general than the one generated and stored by standard
Graphplan. Additionally, an EBL-augmented Graphplan generally requires less memory for memo
caches.

 Less obvious than their speedup benefit perhaps, is the role EBL and DDB often play in dramati-
cally reducing the memory footprint of the pilot explanation. Together EBL and DDB shortcut the
search process by steering it away from areas of the search space that are provably devoid of solutions.
Search trace memory demands decrease proportionally.

Both me-EGBG and PEGG have been outfitted with EBL/DDB for all non-PE directed Graph-
plan-style search. me-EGBG however, does not use EBL/DDB in the ‘replay’ of the action assign-
ment results for a PE search segment due to the complexity of having to retract parts of assignment
vectors whenever the conflict set in a new episode entails a new replay order.

Value and Variable Ordering:

Value and variable ordering are also well known speedup methods for CSP solvers. In the context of
Graphplan’s regression search on a given planning graph level k, the variables are the regressed sub-
goals and the values are the possible actions that can give these propositions at level k of the graph. In
their original paper, Blum and Furst (1997) argue that variable and value ordering heuristics are not
particularly useful in improving Graphplan, mainly because exhaustive search is required in the levels
before the solution bearing level anyway. Nonetheless, the impact of dynamic variable ordering
(DVO) on Graphplan performance was examined in (Kambhampati, 2000), and modest speedups
were achieved using the standard CSP technique of selecting for assignment the subgoal (‘variable’)
that has the least number of remaining establishers (‘values’). More impressive results are reported in
a later study (Nguyen & Kambhampati, 2000) where distance-based heuristics rooted in the planning
graph were exploited to order both subgoals and goal establishers. In this configuration, Graphplan
exhibits speedups ranging from 1.3 to over 100x, depending on the particular heuristic and problem.

ZIMMERMAN & KAMBHAMPATI

 584

For this study we fix variable ordering according to the ‘adjusted sum’ heuristic and value ordering
according the ‘set level’ heuristic, as we found the combination to be reasonably robust across the
range of our test bed problems. These heuristics are described in Section 5 where they are used to
direct the traversal of the PE states is discussed. Section 4.1 describes the highly problem-dependent
performance of distance-based variable and value ordering for our search trace-based planners.

The manner in which EGBG/PEGG builds and maintains the planning graph and search trace
structures actually reduces the cost of variable and value ordering. The default order in which Graph-
plan considers establishers (values) for satisfying a proposition (variable) at a given level is set by the
order in which they appear in the planning graph structure. During graph construction in me-EGBG
and PEGG we can set this order to correspond to the desired value ordering heuristic, so that the or-
dering is only computed once. For its part, the PE that is constructed during search can record the
heuristically-best ordering of each regression state’s goals, so that this variable ordering is also done
only once for the given state. This contrasts with versions of Graphplan that have been outfitted with
variable and value ordering (Kambhampati, 2000) where the ordering is reassessed each time a state is
regenerated in successive search episodes.

References

Blum, A. & Furst, M.L. (1997). Fast planning through planning graph analysis. Artificial
Intelligence, 90(1-2).

Bonet, B., Loerincs, G., & Geffner, H. (1997). A robust and fast action selection mechanism for
planning. In Proceedings of AAAI-97.

Bonet, B. & Geffner, H. (1999). Planning as heuristic search: New results. In Proceedings of
ECP-99.

Do, M.B. & Kambhampati, S. (2000). Solving Planning-Graph by compiling it into CSP. In
Proceedings of AIPS-00.

Fox, M., & Long, D. (1998). The automatic inference of state invariants in TIM. Journal of
Artificial Intelligence Research, 9, 317-371.

Frost, D. & Dechter, R. (1994). In search of best constraint satisfaction search. In Proceedings of
AAAI-94.

Gerevini , A., & Schubert, L. (1996). Accelerating Partial Order Planners: Some techniques for
effective search control and pruning. Journal of Artificial Intelligence Research 5, 95-137.

Gerevini, A. & Serina, I., (2002). LPG: A planner based on local search for planning graphs with
action costs. In Proceedings of AIPS-02.

Haslum, P., & Geffner, H. (2000). Admissible Heuristics for Optimal Planning. In Proceedings.
of AIPS-00.

Hoffman, J. (2001) A heuristic for domain independent planning and its use in an enforced hill-
climbing algorithm. Technical Report No. 133, Albert Ludwigs University.

Kambhampati, S. (1998). On the relations between Intelligent Backtracking and Failure-driven
Explanation Based Learning in Constraint Satisfaction and Planning. Artificial Intelligence,
105(1-2).

Kambhampati, S. (2000). Planning Graph as a (dynamic) CSP: Exploiting EBL, DDB and other
CSP search techniques in Graphplan. Journal of Artificial Intelligence Research, 12, 1-34.

Kambhampati, S. & Sanchez, R. (2000). Distance-based Goal-ordering heuristics for Graphplan.
In Proceedings of AIPS-00.

USING MEMORY TO TRANSFORM SEARCH ON THE PLANNING GRAPH

 585

Kambhampati, S., Parker, E., & Lambrecht, E. (1997). Understanding and extending Graphplan.
In Proceedings of ECP-97.

Kautz, H. & Selman, B. (1996). Pushing the envelope: Planning, prepositional logic and
stochastic search. In Proceedings of AAAI-96.

Kautz, H. & Selman, B. (1999). Unifying SAT-based and Graph-based Planning. In Proceedings
of IJCAI-99, Vol 1.

Koehler, D., Nebel, B., Hoffman, J., & Dimopoulos, Y., (1997). Extending planning graphs to an
ADL subset. In Proceedings of ECP-97, 273-285.

Korf, R. (1985). Depth-first iterative-deepening: an optimal admissible tree search. Artificial
Intelligence, 27(1), 97-109.

Korf, R. (1990). Real-time heuristic search. Artificial Intelligence, 42, 189-211.
Long, D. & Fox, M. (1999). Efficient implementation of the plan graph in STAN. Journal of

Artificial Intelligence Research, 10, 87-115.
Mittal, S., & Falkenhainer, B. (1990). Dynamic constraint satisfaction problems. In Proceedings

of AAAI-90.
McDermott, D. (1999). Using regression graphs to control search in planning. Artificial

Intelligence, 109(1-2), 111-160.
Nigenda, R., & Kambhampati, S. (2003). AltAltp: Online Parallelization of Plans with Heuristic

State Search. Journal of Artificial Intelligence Research, 19, 631-657.
Nguyen, X. & Kambhampati, S. (2000). Extracting effective and admissible state space heuristics

from the planning graph. In Proceedings of AAAI-00.
Prosser, P. (1993). Domain filtering can degrade intelligent backtracking search. In Proceedings

of IJCAI-93.
Russell, S.J., (1992). Efficient memory-bounded search methods. In Proceedings of ECAI 92.
Sen, A.K., & Bagchi, A., (1989). Fast recursive formulations for best-first search that allow

controlled use of memory. In Proceedings of IJCAI-89.
Selman, B, Levesque, H., & Mitchell, D. (1992). A new method for solving hard satisfiability

problems. In Proceedings of AAAI-92.
Smith, D., Weld, D. (1998). Incremental Graphplan. Technical Report 98-09-06. Univ. of Wash.
Srivastava, B., Nguyen, X., Kambhampati, S., Do, M., Nambiar, U. Nie, Z., Nigenda, R.,

Zimmerman, T. (2001). AltAlt: Combining Graphplan and Heuristic State Search. In AI
Magazine, 22(3), American Association for Artificial Intelligence, Fall 2001.

Zimmerman, T. (2003). Exploiting memory in the search for high quality plans on the planning
graph. PhD dissertation, Arizona State University.

Zimmerman, T. & Kambhampati, S. (1999). Exploiting Symmetry in the Planning-graph via
Explanation-Guided Search. In Proceedings of AAAI-99.

Zimmerman, T., Kambhampati, S. (2002). Generating parallel plans satisfying multiple criteria in
anytime fashion. In Proceedings of workshop on Planning and Scheduling with Multiple
Criteria, AIPS-02.

Zimmerman, T. & Kambhampati, S. (2003). Using available memory to transform Graphplan’s
search. Poster paper in Proceedings of IJCAI-03.

