

Journal of Arti�cial Intelligence Research 5 (1996) 139-161 Submitted 4/96; published 10/96

Learning First-Order De�nitions of Functions

J. R. Quinlan quinlan@cs.su.oz.au

Basser Department of Computer Science

University of Sydney

Sydney 2006 Australia

Abstract

First-order learning involves �nding a clause-form de�nition of a relation from examples
of the relation and relevant background information. In this paper, a particular �rst-order
learning system is modi�ed to customize it for �nding de�nitions of functional relations.
This restriction leads to faster learning times and, in some cases, to de�nitions that have
higher predictive accuracy. Other �rst-order learning systems might bene�t from similar
specialization.

1. Introduction

Empirical learning is the sub�eld of AI that develops algorithms for constructing theories
from data. Most classi�cation research in this area has used the attribute-value formalism,
in which data are represented as vectors of values of a �xed set of attributes and are labelled
with one of a small number of discrete classes. A learning system then develops a mapping
from attribute values to classes that can be used to classify unseen data.

Despite the well-documented successes of algorithms developed for this paradigm (e.g.,
Michie, Spiegelhalter, and Taylor, 1994; Langley and Simon, 1995), there are potential
applications of learning that do not �t within it. Data may concern objects or observations
with arbitrarily complex structure that cannot be captured by the values of a predetermined
set of attributes. Similarly, the propositional theory language employed by attribute-value
learners may be inadequate to express patterns in such structured data. Instead, it may
be necessary to describe learning input by relations, where a relation is just a set of tuples
of constants, and to represent what is learned in a �rst-order language. Four examples of
practical learning tasks of this kind are:

� Speeding up logic programs (Zelle and Mooney, 1993). The idea here is to learn a
guard for each nondeterministic clause that inhibits its execution unless it will lead
to a solution. Input to the learner consists of a Prolog program and one or more
execution traces. In one example Dolphin, the system cited above, transformed a
program from complexity O(n!) to O(n2).

� Learning search control heuristics (Leckie and Zukerman, 1993). Formulation of pref-
erence criteria that improve e�ciency in planning applications has a similar avor.
One task investigated here is the familiar `blocks world' in which varying numbers of
blocks must be rearranged by a robot manipulator. Each input to learning concerns
a particular situation during search and includes a complete description of the cur-
rent planning state and goals. As the amount of this information increases with the

c1996 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Quinlan

number of blocks and their inter-relationships, it cannot be encoded as a �xed set of
values.

� Recovering software speci�cations. Cohen (1994) describes an application based on a
software system consisting of over a million lines of C code. Part of the system im-
plements virtual relations that compute projections and joins of the underlying base
relations, and the goal is to reconstruct their de�nitions. Input to learning consists of
queries, their responses, and traces showing the base relations accessed while answer-
ing the queries. The output is a logical description of the virtual relation; since this
involves quanti�ed variables, it lies beyond the scope of propositional attribute-value
languages.

� Learning properties of organic molecules (Muggleton, King, and Sternberg, 1992;
Srinivasan, Muggleton, Sternberg, and King, 1996). The approach to learning in
these papers is based on representing the structure of the molecules themselves in
addition to properties of molecules and molecule segments. The latter paper notes
the discovery of a useful indicator of mutagenicity expressed in terms of this structure.

The development of learning methods based on this more powerful relational formalism
is sometimes called inductive logic programming (Muggleton, 1992; Lavra�c and D�zeroski,
1994; De Raedt, 1996). Input typically consists of tuples that belong, or do not belong,
to a target relation, together with relevant information expressed as a set of background
relations. The learning task is then to formulate a de�nition of the target relation in terms
of itself and the background relations.

This relational learning task is described in more detail in the following section. Several
algorithms for relational learning have been developed recently, and Section 3 introduces
one such system called foil (Quinlan, 1990). While foil can be used with relations of
any kind, one particularly common use of relations is to represent functions. Changes to
foil that in e�ect customize it for learning functional relations are outlined in Section 4.
Several comparative studies, presented in Section 5, show that this specialization leads to
much shorter learning times and, in some cases, to more accurate de�nitions. Related work
on learning functional relations is discussed in Section 6, and the paper ends with some
conclusions from this study and directions for further development.

2. Relational Learning

An n-ary relation RE consists of a set of n-tuples of ground terms (here constants). All
constants in the ith position of the tuples belong to some type, where types may be di�er-
entiated or all constants may be taken to belong to a single universal type.

As an alternative to this extensional de�nition as a (possibly in�nite) set, a relation can
be speci�ed intensionally via an n-argument predicate RI de�ned by a Prolog program. If

hc1; c2; :::cni 2 RE if and only if RI(c1; c2; :::; cn) is true

for any constants fcig, then the intensional and extensional de�nitions are equivalent. For
convenience, the subscripts of RE and RI will be omitted and R will be used to denote
either the set of tuples or the predicate.

140

Learning First-Order Definitions of Functions

Input to a relational learning task consists of extensional information about a target
relation R and extensional or intensional de�nitions of a collection of background relations.
Examples of tuples known to belong to the target relation are provided and, in most cases,
so are examples of tuples known not to belong to R. The goal is to learn a Prolog program
for R that covers all tuples known to belong to R but no tuples known not to belong to R
or, in other words, a program that agrees with the extensional information provided about
R.

Many relations of interest are in�nite. An alternative to selecting examples that belong
or do not belong to R is to de�ne a �nite vocabulary V and to specify relations with respect
to this vocabulary. That is, R is represented as the �nite set of tuples, all constants in
which belong to V . Since this speci�cation of R is complete over the vocabulary, the tuples
that do not belong to R can be inferred by the closed world assumption as the complement
of the tuples in R.

A function f(X1;X2; :::;Xk) of k arguments can be represented by a k+1-ary relation
F (X1; X2; :::;Xk ;Xk+1) where, for each tuple in F , the value of the last argument is the
result of applying f to the �rst k arguments. (Rouveirol (1994) proves that this attening
can be used to remove all non-constant function symbols from any �rst-order language.)
Such functional relations have an additional property that for any constants fc1; c2; ::; ckg
there is exactly one value of ck+1 such that hc1; c2; :::; ck+1i belongs to F .

As an example, consider the three-argument predicate append(A,B,C) whose meaning is
that the result of appending list A to list B is list C.1 The corresponding relation append is
in�nite, but a restricted vocabulary can be de�ned as all at lists containing only elements
from f1,2,3g whose length is less than or equal to 3. There are 40 such lists

[], [1], [2], [3], [1,2],, [3,3,2], [3,3,3]

and 64,000 3-tuples of lists. With respect to this vocabulary, append consists of 142 of these
3-tuples, viz.:

h[],[],[]i, h[],[1],[1]i, ..., h[2],[1,3],[2,1,3]i, ..., h[3,3,3],[],[3,3,3]i.

There is also a background relation components, where components(A,B,C) means that list
A has head B and tail C. The goal is then to learn an intensional de�nition of append given
the background relation components. A suitable result might be expressed as

append([],A,A).

append(A,B,C) :- components(A,D,E), append(E,B,F), components(C,D,F).

which is recognizable as a Prolog de�nition of append.

1. In Prolog, append can be invoked with any combination of its arguments bound so as to �nd possible
values for the unbound arguments. Here and in Section 5.1, however, append is treated as a function
from the �rst two arguments to the third.

141

Quinlan

Initialization:
de�nition := null program
remaining := all tuples belonging to target relation R

While remaining is not empty

/* Grow a new clause */

clause := R(A;B; :::) :-

While clause covers tuples known not to belong to R

/* Specialize clause */

Find appropriate literal(s) L
Add L to body of clause

Remove from remaining tuples in R covered by clause

Add clause to de�nition

Figure 1: Outline of foil

3. Description of foil

In common with many �rst-order learning systems, foil requires that the background rela-
tions are also de�ned extensionally by sets of tuples of constants.2 Although the intensional
de�nition is learned from a particular set of examples, it is intended to be executable as a
Prolog program in which the background relations may also be speci�ed intensionally by
de�nitions rather than by sets of ground tuples. For instance, although the append de�nition
above might have been learned from particular examples of lists, it will correctly append
arbitrary lists, provided that components is speci�ed by a suitable clausal de�nition. (The
applicability of learned de�nitions to unseen examples cannot be guaranteed, however; Bell
and Weber (1993) call this the open domain assumption.)

The language in which foil expresses theories is a restricted form of Prolog that omits
cuts, fail, disjunctive goals, and functions other than constants, but allows negated literals
not(L(...)). This is essentially the Datalog language speci�ed by Ullman (1988), except that
there is no requirement that all variables in a negated literal appear also in the head or in
another unnegated literal; foil interprets not using negation as failure (Bratko, 1990).

3.1 Broad-brush overview

As outlined in Figure 1, foil uses the separate-and-conquer method, iteratively learning
a clause and removing the tuples in the target relation R covered by the clause until none
remain. A clause is grown by repeated specialization, starting with the most general clause

2. Prominent exceptions include focl (Pazzani and Kibler, 1992), filp (Bergadano and Gunetti, 1993),
and Foidl (Mooney and Cali�, 1995), that allow background relations to be de�ned extensionally, and
Progol (Muggleton, 1995), in which information about all relations can be in non-ground form.

142

Learning First-Order Definitions of Functions

head and adding literals to the body until the clause does not cover any tuples known not
to belong to R.

Literals that can appear in the body of a clause are restricted by the requirement that
programs be function-free, other than for constants appearing in equalities. The possible
literal forms that foil considers are:

� Q(X1;X2; :::;Xk) and not(Q(X1;X2; :::;Xk)), where Q is a relation and the Xi's de-
note known variables that have been bound earlier in the clause or new variables. At
least one variable must have been bound earlier in the partial clause, either by the
head or a literal in the body.

� Xi=Xj and Xi 6=Xj, for known variables Xi and Xj of the same type.

� Xi=c and Xi 6=c, where Xi is a known variable and c is a constant of the appropriate
type. Only constants that have been designated as suitable to appear in a de�nition
are considered { a reasonable de�nition for append might reference the null list [] but
not an arbitrary list such as [1,2].

� Xi � Xj , Xi > Xj , Xi � t, and Xi > t, where Xi and Xj are known variables with
numeric values and t is a threshold chosen by foil.

If the learned de�nition must be pure Prolog, negated literal forms not(Q(:::)) and Xi 6=...
can be excluded by an option.

Clause construction is guided by di�erent possible bindings of the variables in the partial
clause that satisfy the clause body. If the clause contains k variables, a binding is a k-tuple
of constants that speci�es a value for all variables in sequence. Each possible binding is
labelled � or 	 according to whether the tuple of values for the variables in the clause head
does or does not belong in the target relation.

As an illustration, consider the tiny task of constructing a de�nition of plus(A,B,C),
meaning A+B = C, using the background relation dec(A,B), denoting B = A�1. The
vocabulary is restricted to just the integers 0, 1, and 2, so that plus consists of the tuples

h0,0,0i, h1,0,1i, h2,0,2i, h0,1,1i, h1,1,2i, h0,2,2i

and dec contains only h1,0i and h2,1i.

The initial clause consists of the head

plus(A,B,C) :-

in which each variable is unique. The labelled bindings corresponding to this initial partial
clause are just the tuples that belong, or do not belong, to the target relation, i.e.:

h0,0,0i � h1,0,1i � h2,0,2i � h0,1,1i � h1,1,2i � h0,2,2i �

h0,0,1i 	 h0,0,2i 	 h0,1,0i 	 h0,1,2i 	 h0,2,0i 	 h0,2,1i 	
h1,0,0i 	 h1,0,2i 	 h1,1,0i 	 h1,1,1i 	 h1,2,0i 	 h1,2,1i 	
h1,2,2i 	 h2,0,0i 	 h2,0,1i 	 h2,1,0i 	 h2,1,1i 	 h2,1,2i 	
h2,2,0i 	 h2,2,1i 	 h2,2,2i 	 .

143

Quinlan

foil repeatedly tries to construct a clause that covers some tuples in the target relation
R but no tuples that are de�nitely not in R. This can be restated as �nding a clause that
has some � bindings but no 	 bindings, so one reason for adding a literal to the clause is
to move in this direction by increasing the relative proportion of � bindings. Such gainful
literals are evaluated using an information-based heuristic. Let the number of � and 	
bindings of a partial clause be n� and n	 respectively. The average information provided
by the discovery that one of the bindings has label � is

I(n�; n) = � log2

n�

n� + n	

!
bits.

If a literal L is added, some of these bindings may be excluded and each of the rest will give
rise to one or more bindings for the new partial clause. Suppose that k of the n� bindings
are not excluded by L, and that the numbers of bindings of the new partial clause are m�

and m	 respectively. If L is chosen so as to increase the proportion of � bindings, the total
information gained by adding L is then

k � (I(n�; n)� I(m�;m)) bits.

Consider the result of specializing the above clause by the addition of the literal A=0.
All but nine of the bindings are eliminated because the corresponding values of the variables
do not satisfy the new partial clause. The bindings are reduced to

h0,0,0i � h0,1,1i � h0,2,2i �

h0,0,1i 	 h0,0,2i 	 h0,1,0i 	 h0,1,2i 	 h0,2,0i 	 h0,2,1i 	

in which the proportion of � bindings has increased from 6/27 to 3/9. The information
gained by adding this literal is therefore 3� (I(6; 21)� I(3; 6)) or about 2 bits. Adding the
further literal B=C excludes all the 	 bindings, giving a complete �rst clause

plus(A,B,C) :- A=0, B=C.

or, as it would be more commonly written,

plus(0,B,B).

This clause covers three tuples of plus which are then removed from the set of tuples to be
covered by subsequent clauses. At the commencement of the search for the second clause,
the head is again plus(A,B,C) and the bindings are now

h1,0,1i � h2,0,2i � h1,1,2i �

h0,0,1i 	 h0,0,2i 	 h0,1,0i 	 h0,1,2i 	 h0,2,0i 	 h0,2,1i 	
h1,0,0i 	 h1,0,2i 	 h1,1,0i 	 h1,1,1i 	 h1,2,0i 	 h1,2,1i 	
h1,2,2i 	 h2,0,0i 	 h2,0,1i 	 h2,1,0i 	 h2,1,1i 	 h2,1,2i 	
h2,2,0i 	 h2,2,1i 	 h2,2,2i 	 .

The above literals were added to the body of the �rst clause because they gain informa-
tion. A quite di�erent justi�cation for adding a literal is to introduce new variables that
may be needed in the �nal clause. Determinate literals are based on an idea introduced

144

Learning First-Order Definitions of Functions

by Golem (Muggleton and Feng, 1992). A determinate literal is one that introduces new
variables so that the new partial clause has exactly one binding for each � binding in the
current clause, and at most one binding for each 	 binding. Determinate literals are use-
ful because they introduce new variables, but neither reduce the potential coverage of the
clause nor increase the number of bindings.

Now that the� bindings do not include any with A=0, the literal dec(A,D) is determinate
because, for each value of A, there is one value of D that satis�es the literal. Similarly, since
the � bindings contain none with C=0, the literal dec(C,E) is also determinate.

In Figure 1, the literals L added by foil at each step are

� the literal with greatest gain, if this gain is near the maximum possible
(namely n� � I(n�; n)) ; otherwise

� all determinate literals found; otherwise

� the literal with highest positive gain; otherwise

� the �rst literal investigated that introduces a new variable.

At the start of the second clause, no literal has near-maximum gain and so all determinate
literals are added to the clause body. The partial clause

plus(A,B,C) :- dec(A,D), dec(C,E),

has �ve variables and the bindings that satisfy it are

h1,0,1,0,0i � h2,0,2,1,1i � h1,1,2,0,1i �

h1,0,2,0,1i 	 h1,1,1,0,0i 	 h2,0,1,1,0i 	 h2,1,1,1,0i 	 h2,1,2,1,1i 	

The literal plus(B,D,E), which uses these newly-introduced variables, is now satis�ed by all
three � bindings but none of the 	 bindings, giving a complete second clause

plus(A,B,C) :- dec(A,D), dec(C,E), plus(B,D,E).

All tuples in plus are covered by one or other of these clauses, so they constitute a complete
intensional de�nition of the target relation.

3.2 Details omitted

foil is a good deal more complex than this overview would suggest. Since they are not
important for this paper, matters such as the following are not discussed here, but are
covered in (Quinlan and Cameron-Jones, 1993; 1995):

� Recursive soundness. If the goal is to be able to execute the learned de�nitions as
ordinary Prolog programs, it is important that they terminate. foil has an elaborate
mechanism to ensure that any recursive literal (such as plus(B,D,E) above) that is
added to a clause body will not cause problems in this respect, at least for ground
queries.

145

Quinlan

� Pruning. In practical applications with numerous background relations, the number
of possible literals L that could be added at each step grows exponentially with the
number of variables in the partial clause. foil employs some further heuristics to limit
this space, such as Golem's bound on the depth of a variable (Muggleton and Feng,
1992). More importantly, some regions of the literal space can be pruned without
examination because they can be shown to contain neither determinate literals, nor
literals with higher gain than the best gainful literal found so far.

� More complete search. As presented above, foil is a straightforward greedy hill-
climbing algorithm. In fact, because foil can sometimes reach an impasse in its
search for a clause, it contains a limited non-chronological backtracking facility to
allow it to recover from such situations.

� Simplifying de�nitions. The addition to the partial clause of all determinate literals
found may seem excessive. However, as a clause is completed, foil examines each
literal in the clause body to see whether it could be discarded without causing the
simpler clause to match tuples not in the target relation R. Similarly, when the
de�nition is complete, each clause is checked to see whether it could be omitted
without leaving any tuples in R uncovered. There are also heuristics that aim to
make clauses more understandable by substituting simpler literals (such as variable
equalities) for literals based on more complex relations.

� Recognizing boundaries of closed worlds. Some literals that appear to discriminate �
from 	 bindings do so only as a consequence of boundary e�ects attributable to a
limited vocabulary.3 When a de�nition including such literals is executed with larger
vocabularies, the open domain assumption mentioned above may be violated. foil

contains an optional mechanism for describing when literals might be satis�ed by
bindings outside the closed world, allowing some literals with unpredictable behavior
to be excluded.

Quinlan (1990) and Quinlan and Cameron-Jones (1995) summarize several applications
successfully addressed by foil, some of which are also discussed in Section 5.

4. Learning Functional Relations

The learning approach used by foil makes no assumptions about the form of the target
relation R. However, as with append and plus above, the relation is often used to represent a
function { in any tuple of constants that satis�es R, the last constant is uniquely determined
by the others. Bergadano and Gunetti (1993) show that this property can be exploited to
make the learning task more tractable.

4.1 Functional relations and foil

Although foil can learn de�nitions for functional relations, it is handicapped in two ways:

� Ground queries: foil's approach to recursive soundness assumes that only ground
queries will be made of the learned de�nition. That is, a de�nition of R(X1;X2; :::;Xn)

3. An example of this arises in Section 5.1.

146

Learning First-Order Definitions of Functions

will be used to provide true-false answers to queries of the form R(c1; c2; :::; cn)? where
the ci's are constants. If R is a functional relation, however, a more sensible query
would seem to be R(c1; c2; :::; cn�1;X)? to determine the value of the function for
speci�ed ground arguments. In the case of plus, for instance, we would not ex-
pect to ask plus(1,1,2)? (\is 1+1=2?"), but rather plus(1,1,X)? (\what is 1+1?").
R(c1; c2; :::; cn�1;X)? will be called the standard query for functional relations.

� Negative examples: foil needs both tuples that belong to the target relation and at
least some that do not. In common with other ILP systems such as Golem (Muggleton
and Feng, 1992), the latter are used to detect when a partial clause is still too general.
These can be speci�ed to foil directly or, more commonly, are derived under the
closed world assumption that, with respect to the vocabulary, all tuples in R have
been given. This second mechanism can often lead to very large collections of tuples
not in R; there were nearly 64,000 of them in the append illustration earlier. Every
tuple not belonging to R results in a binding at the start of each clause, so there can
be uncomfortably many bindings that must be maintained and tested at each stage
of clause development.4 However, functional relations do not need explicit counter-
examples, even when the set of tuples belonging to R is not complete with respect to
some vocabulary { knowing that hc1; c2; :::; cni belongs to R implies that there is no
other constant c0n such that hc1; c2; :::; c

0
ni is in R.

These problematic aspects of foil vis �a vis functional relations suggest modi�cations to
address them. The alterations lead to a new system, ffoil, that is still close in spirit to its
progenitor.

4.2 Description of ffoil

Since the last argument of a functional relation has a special role, it will be referred to as
the output argument of the relation. Similarly, the variable corresponding to this argument
in the head of a clause is called the output variable.

The most fundamental change in ffoil concerns the bindings of partial clauses and the
way that they are labelled. A new constant 2 is introduced to indicate an undetermined
value of the output variable in a binding. Bindings will be labelled according to the value
of the output variable, namely � if this value is correct (given the value of the earlier
constants), 	 if the value is incorrect, and � if the value is undetermined.

The outline of ffoil (Figure 2) is very similar to Figure 1, the only di�erences being
those highlighted. At the start of each clause there is one binding for every remaining tuple
in the target relation. The output variable has the value 2 in these bindings and this value
is changed only when some subsequent literal assigns a value to the variable. In the small
plus example of Section 3.1, the initial bindings for the �rst clause are

h0,0,2i � h1,0,2i � h2,0,2i � h0,1,2i � h1,1,2i � h0,2,2i �

Like its ancestor, ffoil also assesses potential literals for adding to the clause body as
gainful or determinate, although both concepts must be adjusted to accommodate the new
label �. Suppose that there are r distinct constants in the range of the target function.

4. For this reason, foil includes an option to sample the 	 bindings instead of using all of them.

147

Quinlan

Initialization:
de�nition := null program
remaining := all tuples belonging to target relation R

While remaining is not empty

/* Grow a new clause */

clause := R(A;B; :::) :-

While clause has 	 or � bindings

/* Specialize clause */

Find appropriate literal(s) L
Add L to body of clause

Remove from remaining tuples in R covered by clause
Add clause to de�nition

Simplify �nal de�nition

Add default clause

Figure 2: Outline of ffoil

Each � binding can be converted to a � binding only by changing 2 to the correct value
of the function, and to a 	 binding by changing 2 to any of the r � 1 incorrect values. In
computing information gain, ffoil thus counts each � binding as 1 � binding and r� 1 	
bindings. A determinate literal is now one that introduces one or more variables so that, in
the new partial clause, there is exactly one binding for each current � or � binding and at
most one binding for each current 	 binding. ffoil uses the same preference criterion for
adding literals L: a literal with near-maximum gain, then all determinate literals, then the
most gainful literal, and �nally a non-determinate literal that introduces a new variable.

The �rst literal chosen by foil in Section 3.1 was A=0 since this increases the concen-
tration of � bindings from 9 in 64 to 3 in 9 (with a corresponding information gain). From
ffoil's perspective, however, this literal simply reduces six � bindings to three and so gives
no gain; as the range of plus is the set f0,1,2g, r = 3, and so the putative concentration of
� bindings would alter from 6 in 18 to 3 in 9. The literal A=C, on the other hand, causes
the value of the output variable to be determined and results in the bindings

h0,0,0i � h1,0,1i � h2,0,2i �

h0,1,0i 	 h1,1,1i 	 h0,2,0i 	 .

This corresponds to an increase in concentration of � bindings from a notional 6 in 18 to
3 in 6, with an information gain of about 2 bits. Once this literal has been added to the
clause body, ffoil �nds that a further literal B=0 eliminates all 	 bindings, giving the

148

Learning First-Order Definitions of Functions

complete clause

plus(A,B,C) :- A=C, B=0.

The remaining tuples of plus give the bindings

h0,1,2i � h1,1,2i � h0,2,2i �

at the start of the second clause. The literals dec(B,D) and dec(E,A) are both determinate
and, when they are added to the clause, the bindings become

h0,1,2,0,1i � h1,1,2,0,2i � h0,2,2,1,1i �

in which the output variable is still undetermined. If the partial clause is further specialized
by adding the literal plus(E,D,C), the new bindings

h0,1,1,0,1i � h1,1,2,0,2i � h0,2,2,1,1i �

give the correct value for C in each case. Since there are no � or 	 bindings, this clause is
also complete.

One important consequence of the new way that bindings are initialized at the start of
each clause is easily overlooked. With foil, there is one 	 binding for each tuple that does
not belong in R; since each clause excludes all 	 bindings, it discriminates some tuples in
R from all tuples not in R. This is the reason that the learned clauses can be regarded as
a set and can be executed in any order without changing the set of answers to a query. In
ffoil, however, the initial bindings concern only the remaining tuples in R, so a learned
clause depends on the context established by earlier clauses. For example, suppose a target
relation S and a background relation T are de�ned as

S = fhv,1i, hw,1i, hx,1i, hy,0i, hz,0ig
T = fhvi, hwi, hxig .

The �rst clause learned by ffoil might be

S(A,1) :- T(A).

and the remaining bindings fhy,0i, hz,0ig could then be covered by the clause

S(A,0).

The latter clause is clearly correct only for standard queries that are not covered by the
�rst clause. As this example illustrates, the learned clauses must be interpreted in the order
in which they were learned, and each clause must be ended with a cut `!' to protect later
clauses from giving possibly incorrect answers to a query. Since the target relation R is
functional, so that there is only one correct response to a standard query as de�ned above,
this use of cuts is safe in that it cannot rule out a correct answer.

Both foil and ffoil tend to give up too easily when learning de�nitions to explain noisy
data. This can result in over-specialized clauses that cover the target relation only partially.
On tasks for which the de�nition learned by ffoil is incomplete, a �nal global simpli�cation

149

Quinlan

phase is invoked. Clauses in the de�nition are generalized by removing literals so long as the
total number of errors on the target relation does not increase. In this way, the accuracy of
individual clauses is balanced against the accuracy of the de�nition as a whole; simplifying
a clause by removing a literal may increase the number of errors made by the clause, but
this can be o�set by a reduction in the number of uncovered bindings and a consequently
lower global error rate. When all clauses have been simpli�ed as much as possible, entire
clauses that contribute nothing to the accuracy of the de�nition are removed.

In the �nal step of Figure 2, the target relation is assumed to represent a total function,
with the consequence that a response must always be returned for a standard query. As a
safeguard, ffoil adds a default clause

R(X1;X2; :::;Xn�1; c):

where c is the most common value of the function.5 The most common value of the output
argument of plus is 2, so the complete de�nition for this example, in normal Prolog notation,
becomes

plus(A,0,A) :- !.

plus(A,B,C) :- dec(B,D), dec(E,A), plus(E,D,C), !.

plus(A,B,2).

4.3 Advantages and disadvantages of ffoil

Although the de�nitions for plus in Sections 3.1 and 4.2 are super�cially similar, there are
considerable di�erences in the learning processes by which they were constructed and in
their operational characteristics when used.

� ffoil generally needs to maintain fewer bindings and so learns more quickly. Whereas
foil keeps up to 27 bindings while learning a de�nition of plus, ffoil never uses more
than 6.

� The output variable is guaranteed to be bound in every clause learned by ffoil. This
is not necessarily the case with foil, since there is no requirement that every variable
appearing in the head must also appear in the clause body.

� De�nitions found by ffoil often execute more e�ciently than their foil counterparts.
Firstly, ffoil de�nitions, through the use of cuts, exploit the fact that there cannot be
more than one correct answer to a standard query. Secondly, clause bodies constructed
by ffoil tend not to use the output variable until it has been bound, so there is less
backtracking during evaluation. As an illustration, the foil de�nition of Section
3.1 evaluates 81 goals in answering the query plus(1,1,X)?, many more than the six
evaluations needed by the ffoil de�nition for the same query.

There are also entries on the other side of the ledger:

5. No default clause is added if each value of the function occurs only once.

150

Learning First-Order Definitions of Functions

Task Bkgd Length 3 Length 4
Relns Bindings Time Bindings Time

� 	 foil ffoil � 	 foil ffoil

append 2 142 63,858 3.0 0.5 1593 396,502 22.4 10.9
last element 3 39 81 0.0 0.0 340 1024 0.5 0.3
reverse 10 40 1560 2.6 0.3 341 115,940 195.9 9.0
left shift 12 39 1561 0.5 0.3 340 115,940 26.6 6.8
translate 14 40 3120 817.9 1.1 341 115,940 495.9 28.0

Table 1: Results on tasks from (Bratko, 1990).

� foil is applicable to more learning tasks that ffoil, which is limited to learning
de�nitions of functional relations.

� The implementation of ffoil is more complex than that of foil. For example, many of
the heuristics for pruning the literal search space and for checking recursive soundness
require special cases for the constant 2 and for � bindings.

5. Empirical Trials

In this section the performance of ffoil on a variety of learning tasks is summarized and
compared with that of foil (release 6.4). Since the systems are similar in most respects,
this comparison highlights the consequences of restricting the target relation to a function.
Times are for a DEC AXP 3000/900 workstation. The learned de�nitions from the �rst
three subsections may be found in the Appendix.

5.1 Small list manipulation programs

Quinlan and Cameron-Jones (1993) report the results of applying foil to 16 tasks taken
from Bratko's (1990) well-known Prolog text. The list-processing examples and exercises
of Chapter 3 are attempted in sequence, where the background information for each task
includes all previously-encountered relations (even though most of them are irrelevant to
the task at hand). Two di�erent vocabularies are used: all 40 lists of length up to 3 on
three elements and all 341 lists of length up to 4 on four elements.

Table 1 describes the �ve functional relations in this set and presents the performance
of foil and ffoil on them. All the learned de�nitions are correct for arbitrary lists, with
one exception { foil's de�nition of reverse learned from the larger vocabulary includes the
clause

reverse(A,A) :- append(A,A,C), del(D,E,C).

that exploits the bounded length of lists.6 The times reveal a considerable advantage to

6. If C is twice the length of A and E is one element longer than C while still having length � 4, then the
length of A must be 0 or 1. In that case A is its own reverse.

151

Quinlan

Task foil ffoil

quicksort 4.7 2.2
bubblesort 7.3 0.4

Table 2: Times (sec) for learning to sort.

Time (secs) Ratio to [3,3]
[3,3] [3,4] [4,4] [4,5] [3,4] [4,4] [4,5]

ffoil 0.7 1.5 4.5 15.0 2.1 6.4 21.4
foil 0.8 4.3 11.9 146.3 5.4 14.9 182.9
Golem 4.8 14.6 59.6 >395 3.0 12.4 >82.3
Progol 43.0 447.9 5271.9 >76575 10.4 122.6 >1780.8

Table 3: Comparative times for quicksort task.

ffoil in all tasks except the second. In fact, for the �rst and last task with the larger
vocabulary, these times understate ffoil's advantage. The total number of bindings for
append is 3413, or about 40 million, so a foil option was used to sample only 1% of the
	 bindings to prevent foil exceeding available memory. Had it been possible to run foil

with all bindings, the time required to learn the de�nition would have been considerably
longer. Similarly, foil exhausted available memory on the translation task when all 232,221
possible bindings were used, so the above results were obtained using a sample of 50% of
the 	 bindings.

5.2 Learning quicksort and bubblesort

These tasks concern learning how to sort lists from examples of sorted lists. In the �rst,
the target relation qsort(A,B) means that B is the sorted form of A. Three background
relations are provided: components and append as before, and partition(A,B,C,D), meaning
that partitioning list B on value A gives the list C of elements less than A and list D of
elements greater than A. In the second task, the only background relations for learning
bsort(A,B) are components and lt(A,B), meaning A<B. The vocabulary used for both tasks
is all lists of length up to 4 with non-repeated elements drawn from f1,2,3,4g. There are
thus 65 � and 4160 	 bindings for each task.

Both foil and ffoil learn the \standard" de�nition of quicksort. Times shown in Table
2 are comparable, mainly because ffoil learns a superuous over-specialized clause that is
later discarded in favor of the more general recursive clause. The outcome for bubblesort
is quite di�erent { ffoil learns twenty times faster than foil but its de�nition is more
verbose.

The quicksort task provides an opportunity to compare ffoil with two other well-
known relational learning systems. Like ffoil and foil, both Golem (Muggleton and

152

Learning First-Order Definitions of Functions

Task foil ffoil

Ackermann's function 12.3 0.2
greatest common divisor 237.5 1.2

Table 4: Times (sec) for arithmetic functions.

Feng, 1992) and Progol (release 4.1) (Muggleton, 1995) are implemented in C, so that
timing comparisons are meaningful. Furthermore, both systems include quicksort among
their demonstration learning tasks, so it is reasonable to assume that the parameters that
control these systems have been set to appropriate values.

The four learning systems are evaluated using four sets of training examples, obtained
by varying the maximum length S of the lists and the size A of the alphabet of non-
repeating elements that can appear in the lists, as in (Quinlan, 1991). Denoting each set
by a pair [S,A], the four datasets are [3,3], [3,4], [4,4], and [4,5]. The total numbers of
possible bindings for these tasks, 256, 1681, 4225, and 42,436 respectively, span two orders
of magnitude. Table 3 summarizes the execution times7 required by the systems on these
datasets. Neither Golem nor Progol completed the last task; Golem exhausted the available
swap space of 60Mb, and Progol was terminated after using nearly a day of cpu time. The
table also shows the ratio of the execution time of the latter three to the simplest dataset
[3,3]. The growth in ffoil's execution time is far slower than that of the other systems,
primarily because ffoil needs only the � tuples while the others use both � and 	 tuples.
Golem's execution time seems to grow slightly slower than foil's, while Progol's growth
rate is much higher.

5.3 Arithmetic functions

The systems have been also used to learn de�nitions of complex functions from arithmetic.
Ackermann's function

f(m;n) =

8><
>:

n+ 1 if m = 0
f(m� 1; 1) if n = 0
f(m� 1; f(m;n� 1)) otherwise

provides a testing example for recursion control; the background relation succ(A,B) repre-
sents B=A+1. Finding the greatest common divisor of two numbers is another interesting
task; the background relation is plus. For these tasks the vocabulary consists of the integers
0 to 20 and 1 to 20 respectively, giving 51 tuples in Ackermann(A,B,C) such that A, B and
C are all less than or equal to 20, and 400 tuples in gcd(A,B,C).

As shown in Table 4, ffoil is about 60 times faster than foil when learning a de�nition
for Ackermann and about 200 times faster for gcd. This is due solely to ffoil's smaller
numbers of bindings. In gcd, for example, foil starts with 203 or 8,000 bindings whereas
ffoil never uses more than 400 bindings.

7. Di�culties were experienced running Golem on an AXP 3000/900, so all times in this table are for a
DECstation 5000/260.

153

Quinlan

Both foil and ffoil learn exactly the same program for Ackermann's function that
mirrors the de�nition above. In the case of gcd, however, the de�nitions highlight the
potential simpli�cation achievable with ordered clauses. The de�nition found by foil is

gcd(A,A,A).

gcd(A,B,C) :- plus(B,D,A), gcd(B,A,C).
gcd(A,B,C) :- plus(A,D,B), gcd(A,D,C).

while that learned by ffoil (omitting the default clause) is

gcd(A,A,A) :- !.

gcd(A,B,C) :- plus(A,D,B), gcd(A,D,C), !.

gcd(A,B,C) :- gcd(B,A,C), !.

The last clause exploits the fact that all cases in which A is less than or equal to B have
been �ltered out by the �rst two clauses.

5.4 Finding the past tense of English verbs

The previous examples have all concerned tasks for which a compact, correct de�nition
is known to exist. This application, learning how to change an English verb in phonetic
notation from present to past tense, has more of a real-world avor in that any totally correct
de�nition would be extremely complex. A considerable literature has built up around this
task, starting in the connectionist community, moving to symbolic learning through the
work of Ling (1994), then to relational learning (Quinlan, 1994; Mooney and Cali�, 1995).

Quinlan (1994) proposes representing this task as a relation past(A,B,C), interpreted as
the past tense of verb A is formed by stripping o� the ending B and then adding string C. The
single background relation split(A,B,C) shows all ways in which word A can be split into two
non-empty substrings B and C. Following the experiment reported in (Ling, 1994), a corpus
of 1391 verbs is used to generate ten randomly-selected learning tasks, each containing 500
verbs from which a de�nition is learned and 500 di�erent verbs used to test the de�nition.
A Prolog interpreter is used to evaluate the de�nitions learned by foil, each unseen word
w being mapped to a test query past(w,X,Y)?. The result of this query is judged correct
only when both X and Y are bound to the proper strings. If there are multiple responses to
the query, only the �rst is used { this disadvantages foil somewhat, since the system does
not attempt to reorder learned clauses for maximum accuracy on single-response queries.
The average accuracy of the de�nitions found by foil is 83.7%.

To apply ffoil to this task, the relation past(A,B,C)must be factored into two functional
relations delete(A,B) and add(A,C) since ffoil can currently learn only functions with a
single output variable. The same training and test sets of verbs are used, each giving rise
to two separate learning tasks, and a test is judged correct only when both delete and add

give the correct results for the unseen verb. The de�nitions learned by ffoil have a higher
average accuracy of 88.9%; on the ten trials, ffoil outperforms foil on nine and is inferior
on one, so the di�erence is signi�cant at about the 1% level using a one-tailed sign test. The
average time required by ffoil to learn a pair of de�nitions, approximately 7.5 minutes, is
somewhat less than the time taken by foil to learn a single de�nition.

154

Learning First-Order Definitions of Functions

Object Edges Correct Time (sec)
foil ffoil mfoil Golem fors foil ffoil

A 54 16 21 22 17 22 2.5 9.1
B 42 9 15 12 9 12 1.7 11.0
C 28 8 11 9 5 8 3.3 9.7
D 57 10 22 6 11 16 2.4 11.1
E 96 16 54 10 10 29 4.7 5.9

Total 277 59 123 59 52 87 14.6 46.8
(21%) (44%) (21%) (19%) (31%)

Table 5: Cross-validation results for �nite element mesh data.

5.5 Finite element mesh design

This application, �rst discussed by Dol�sak and Muggleton (1992), concerns the division of
an object into an appropriate number of regions for �nite element simulation. Each edge in
the object is cut into a number of intervals and the task is to learn to determine a suitable
number { too �ne a division requires excessive computation in the simulation, while too
coarse a partitioning results in a poor approximation of the object's true behavior.

The data concern �ve objects with a total of 277 edges. The target relation mesh(A,B)
speci�es for each edge A the number of intervals B recommended by an expert, ranging from
1 to 12. Thirty background relations describe properties of each edge, such as its shape and
its topological relationship to other edges in the object. Five trials are conducted, in each
of which all information about one object is withheld, a de�nition learned from the edges
in the remaining objects, and this de�nition tested on the edges in the omitted object.

Table 5 shows, for each trial, the number of edges on which the de�nitions learned by
foil and ffoil predict the number of intervals speci�ed by the expert. Table 5 also shows
published results on the mesh task for three other relational learning systems. The numbers
of edges for which mfoil and Golem predict the correct number of intervals are taken from
(Lavra�c and D�zeroski, 1994). These are both general relational learning systems like foil,
but fors (Karali�c, 1995), like ffoil, is specialized for learning functional relations of this
kind. Since the general relational learning systems could return multiple answers to the
query mesh(e,X)? for edge e, only the �rst answer is used; this puts them at a disadvantage
with respect to foil and fors and accounts at least in part for their lower accuracy. Using
a one-tailed sign test at the 5% level, ffoil's accuracy is signi�cantly higher than that
achieved by foil and Golem, but no other di�erences are signi�cant.

The time required by ffoil for this domain is approximately three times that used by
foil. This turnabout is caused by ffoil's global pruning phase, which requires many literal
eliminations in order to maximize overall accuracy on the training data. In one ply of the
cross-validation, for instance, the initial de�nition, consisting of 30 clauses containing 64
body literals, fails to cover 146 of the 249 given tuples in the target relation mesh. After
global pruning, however, the �nal de�nition has just 9 clauses with 15 body literals, and
makes 101 errors on the training data.

155

Quinlan

6. Related Research

Mooney and Cali�'s (1995) recent system Foidl has had a strong inuence on the devel-
opment of ffoil. Three features that together distinguish Foidl from earlier systems like
foil are:

� Following the example of focl (Pazzani and Kibler, 1992), background relations
are de�ned intensionally by programs rather than extensionally as tuple sets. This
eliminates a problem in some applications for which a complete extensional de�nition
of the background relations would be impossibly large.

� Examples of tuples that do not belong to the target relation are not needed. Instead,
each argument of the target relation has a mode as above and Foidl assumes output
completeness, i.e., the tuples in the relation show all valid outputs for any inputs that
appear.

� The learned de�nition is ordered and every clause ends with a cut.

Output completeness is a weaker restriction than functionality since there may be several
correct answers to a standard query R(c1; c2; :::; cn�1;X)?. However, the fact that each
clause ends with a cut reduces this exibility somewhat, since all answers to a query must
be generated by a single clause.

Although Foidl and ffoil both learn ordered clauses with cuts, they do so in very
di�erent ways. ffoil learns a clause, then a sequence of clauses to cover the remaining
tuples, so that the �rst clause in the de�nition is the �rst clause learned. Foidl instead
follows Webb and Brki�c (1993) in learning the last clause �rst, then prepending a sequence
of clauses to �lter out all exceptions to the learned clause. This strategy has the advantage
that general rules can be learned �rst and still act as defaults to clauses that cover more
specialized situations.

The principal di�erences between Foidl and ffoil are thus the use of intensional versus
extensional background knowledge and the order in which clauses are learned. There are
other subsidiary di�erences { for example, Foidl never manipulates 	 bindings explicitly
but estimates their number syntactically. However, in many ways ffoil may be viewed as
an intermediate system lying mid-way between foil and Foidl.

Foidl was motivated by the past tense task described in Section 5.4, and performs
extremely well on it. The formulation of the task for Foidl uses the relation past(A,B)

to indicate that B is the past tense of verb A, together with the intensional background
relation split(S,H,T) to denote all possible ways of dividing string S into substrings H and
T. De�nitions learned by Foidl are compact and intelligible, and have a slightly higher
accuracy (89.3%) than ffoil's using the same ten sets of training and test examples. It
will be interesting to see how the systems compare in other applications.

Bergadano and Gunetti (1993) �rst pointed out the advantages for learning systems of
restricting relations to functions. Their filp system assumes that all relations, both target
and background, are functional, although they allow functions with multiple outputs. This
assumption greatly reduces the number of literals considered when specializing a clause,
leading to shorter learning times. (On the other hand, many of the tasks discussed in the
previous section involve non-functional background relations and so would not satisfy filp's

156

Learning First-Order Definitions of Functions

functionality assumption.) In theory, filp also requires an oracle to answer non-ground
queries regarding unspeci�ed tuples in the target and background relations, although this
would not be required if all relevant tuples were provided initially. filp guarantees that the
learned de�nition is completely consistent with the given examples, and so is inappropriate
for noisy domains such as those discussed in Sections 5.4 and 5.5.

In contrast to ffoil and Foidl, the de�nitions learned by filp consist of unordered
sets of clauses, despite the fact that the target relation is known to be functional. This
prevents a clause from exploiting the context established by earlier clauses. In the gcd task
(Section 5.3), a de�nition learned by filp would require the bodies of both the second and
third clauses to include a literal plus(...,...,...). In domains such as the past tense task, the
complexity of de�nitions learned by ffoil and Foidl would be greatly increased if they
were constrained to unordered clauses.

7. Conclusion

In this study, a mature relational learning system has been modi�ed to customize it for
functional relations. The fact that the specialized ffoil performs so much better than
the more general foil on relations of this kind lends support to Bergadano and Gunetti's
(1993) thesis that functional relations are easier to learn. It is interesting to speculate that
a similar improvement might well be obtainable by customizing other general �rst-order
systems such as Progol (Muggleton, 1995) for learning functional relations.

Results from the quicksort experiments suggest that ffoil scales better than general
�rst-order systems when learning functional relations, and those from the past tense and
mesh design experiments demonstrate its e�ectiveness in noisy domains.

Nevertheless, it is hoped to improve ffoil in several ways. The system should be
extended to multifunctions with more than one output variable, as permitted by both
filp and Foidl. Secondly, many real-world tasks such as those of Sections 5.4 and 5.5
result in de�nitions in which the output variable is usually bound by being equated to a
constant rather than by appearing in a body literal. In such applications, ffoil is heavily
biased towards constructing the next clause to cover the most frequent function value in
the remaining tuples, as this binding tends to have the highest gain. By the time that the
clause has been specialized to exclude exceptions, however, it can end up covering just a
few tuples of the relation. If a few special cases could be �ltered out �rst, clauses like this
would be simpler and would cover more tuples of the target relation. A better learning
strategy in these situations would seem to be to grow a new clause for every function value
in the uncovered tuples, then retain the one with greatest coverage and discard the rest.
This would involve an increase in computation but should lead to better, more concise
de�nitions.

Although the conceptual changes in moving from foil to ffoil are relatively slight,
their e�ects at the code level are substantial (with only three of the 19 �les that make up
foil escaping modi�cation). As a result it has been decided to preserve them as separate
systems, rather than incorporating ffoil as an option in foil. Both are available (for
academic research purposes) by anonymous ftp from ftp.cs.su.oz.au, directory pub, �le names
foil6.sh and �oil2.sh.

157

Quinlan

Acknowledgements

This research was made possible by a grant from the Australian Research Council. Thanks
to William Cohen, Ray Mooney, Michael Pazzani, and the anonymous reviewers for com-
ments that helped to improve this paper.

Appendix: Learned De�nitions

The de�nition learned by foil appears on the left and that by ffoil on the right. As the
latter's default clauses are irrelevant for these tasks, they are omitted.

List processing functions (Section 5.1)

(a) Using lists of length 3:

append([],B,B).
append(A,B,C) :- components(A,D,E),

components(C,D,F), append(E,B,F).

append([],B,B) :- !.
append(A,B,C) :- components(A,D,E),

append(E,B,F), components(C,D,F), !.

last(A,B) :- components(A,B,[]).
last(A,B) :- components(A,C,D), last(D,B).

last(A,B) :- components(A,C,D), last(D,B), !.
last(A,B) :- member(B,A), !.

reverse(A,A) :- append(A,C,D),
components(D,E,A).

reverse(A,B) :- last(A,C), last(B,D),
components(A,D,E),
components(B,C,F), reverse(E,G),
del(D,B,G).

reverse(A,A) :- append(A,C,D),
components(D,E,A), !.

reverse(A,B) :- components(A,C,D),
reverse(D,E), append(F,D,A),
append(E,F,B).

shift(A,B) :- components(A,C,D), del(C,B,D),
append(D,E,B).

shift(A,B) :- components(A,C,D),
append(E,D,A), append(D,E,B).

translate([],[]).
translate(A,B) :- components(A,C,D),

components(B,E,F), translate(D,F),
means(C,E).

translate([],[]) :- !.
translate(A,B) :- components(A,C,D),

translate(D,E), means(C,F),
components(B,F,E).

(b) Using lists of length 4:

append([],B,B).
append(A,B,C) :- components(A,D,E),

components(C,D,F), append(E,B,F).

append([],B,B) :- !.
append(A,B,C) :- components(A,D,E),

append(E,B,F), components(C,D,F), !.

last(A,B) :- components(A,B,[]).
last(A,B) :- components(A,C,D), last(D,B).

last(A,B) :- components(A,C,D), last(D,B), !.
last(A,B) :- member(B,A), !.

reverse(A,A) :- append(A,A,C), del(D,E,C).
reverse(A,B) :- components(A,C,D),

reverse(D,E), append(F,D,A),
append(E,F,B).

reverse(A,A) :- append(A,C,D),
components(D,E,A), !.

reverse(A,B) :- components(A,C,D),
reverse(D,E), append(F,D,A),
append(E,F,B).

shift(A,B) :- components(A,C,D), del(C,B,D),
append(D,E,B).

shift(A,B) :- components(A,C,D),
append(E,D,A), append(D,E,B).

158

Learning First-Order Definitions of Functions

translate([],[]).
translate(A,B) :- components(A,C,D),

components(B,E,F), translate(D,F),
means(C,E).

translate([],[]) :- !.
translate(A,B) :- components(A,C,D),

translate(D,E), means(C,F),
components(B,F,E).

Quicksort and bubblesort (Section 5.2)

qsort([],[]).
qsort(A,B) :- components(A,C,D),

partition(C,D,E,F), qsort(E,G),
qsort(F,H), components(I,C,H),
append(G,I,B).

qsort([],[]) :- !.
qsort(A,B) :- components(A,C,D),

partition(C,D,E,F), qsort(E,G),
qsort(F,H), components(I,C,H),
append(G,I,B), !.

bsort([],[]).
bsort(A,A) :- components(A,C,[]).
bsort(A,B) :- components(A,C,D),

components(B,C,E), bsort(D,E),
components(E,F,G), lt(C,F).

bsort(A,B) :- components(A,C,D),
components(B,E,F), bsort(D,G),
components(G,E,H), lt(E,C),
components(I,C,H), bsort(I,F).

bsort([],[]) :- !.
bsort(A,A) :- components(A,C,[]), !.
bsort(A,B) :- components(A,C,D), bsort(D,E),

components(E,F,G),
components(B,C,E), lt(C,F), !.

bsort(A,B) :- components(A,C,D), bsort(D,E),
components(E,F,G),
components(D,H,I),
components(J,C,I), bsort(J,K),
components(B,F,K), !.

bsort(A,B) :- components(A,C,D), bsort(D,E),
components(F,C,E), bsort(F,B), !.

Arithmetic functions (Section 5.3)

Ackermann(0,B,C) :- succ(B,C).
Ackermann(A,0,C) :- succ(D,A),

Ackermann(D,1,C).
Ackermann(A,B,C) :- succ(D,A), succ(E,B),

Ackermann(A,E,F),
Ackermann(D,F,C).

Ackermann(0,B,C) :- succ(B,C), !.
Ackermann(A,0,C) :- succ(0,D), succ(E,A),

Ackermann(E,D,C), !.
Ackermann(A,B,C) :- succ(D,A), succ(E,B),

Ackermann(A,E,F),
Ackermann(D,F,C), !.

gcd(A,A,A).
gcd(A,B,C) :- plus(B,D,A), gcd(B,A,C).
gcd(A,B,C) :- plus(A,D,B), gcd(A,D,C).

gcd(A,A,A) :- !.
gcd(A,B,C) :- plus(A,D,B), gcd(A,D,C), !.
gcd(A,B,C) :- gcd(B,A,C), !.

References

Bell, S., & Weber, S. (1993). On the close logical relationship between foil and the frame-
works of Helft and Plotkin. In Proceedings Third International Workshop on Inductive
Logic Programming, Bled, Slovenia, pp. 127{147.

Bergadano, F., & Gunetti, D. (1993). An interactive system to learn functional logic pro-
grams. In Proceedings Thirteenth International Joint Conference on Arti�cial Intelli-
gence, Chambery, France, pp. 1044{1049. San Francisco: Morgan Kaufmann.

Bratko, I. (1990). Prolog Programming for Arti�cial Intelligence (2nd edition). Wokingham,
UK: Addison-Wesley.

159

Quinlan

Cameron-Jones, R. M., & Quinlan, J. R. (1994). E�cient top-down induction of logic
programs. SIGART, 5, 33{42.

De Raedt, L. (Ed.). (1996). Advances in Inductive Logic Programming. Amsterdam: IOS
Press.

Dol�sak, B., & Muggleton, S. (1992). The application of inductive logic programming to
�nite element mesh design. In Muggleton, S. (Ed.), Inductive Logic Programming, pp.
453{472. London: Academic Press.

Karali�c, A. (1995). First Order Regression. Ph.D. thesis, Faculty of Electrical Engineering
and Computer Science, University of Ljubljana, Slovenia.

Langley, P., & Simon, H. A. (1995). Applications of machine learning and rule induction.
Communications of the ACM, 38 (11), 55{64.

Lavra�c, N., & D�zeroski, S. (1994). Inductive Logic Programming. London: Ellis Horwood.

Ling, C. X. (1994). Learning the past tense of english verbs: the symbolic pattern associator
versus connectionist models. Journal of Arti�cial Intelligence Research, 1, 209{229.

Michie, D., Spiegelhalter, D. J., & Taylor, C. C. (Eds.). (1994). Machine Learning, Neural
and Statistical Classi�cation. Hertfordshire, UK: Ellis Horwood.

Mooney, R. J., & Cali�, M. E. (1995). Induction of �rst-order decision lists: results on
learning the past tense of english verbs. Journal of Arti�cial Intelligence Research, 3,
1{24.

Muggleton, S. (Ed.). (1992). Inductive Logic Programming. London: Academic Press.

Muggleton, S. (1995). Inverse entailment and progol. New Generation Computing, 13,
245{286.

Muggleton, S., & Feng, C. (1992). E�cient induction of logic programs. In Muggleton, S.
(Ed.), Inductive Logic Programming, pp. 281{298. London: Academic Press.

Muggleton, S., King, R. D., & Sternberg, M. J. (1992). Protein secondary structure predic-
tion using logic-based machine learning. Protein Engineering, 5, 646{657.

Pazzani, M. J., & Kibler, D. (1992). The utility of knowledge in inductive learning. Machine
Learning, 9, 57{94.

Quinlan, J. R. (1990). Learning logical de�nitions from relations. Machine Learning, 5,
239{266.

Quinlan, J. R. (1991). Determinate literals in inductive logic programming. In Proceedings
Twelfth International Joint Conference on Arti�cial Intelligence, Sydney, pp. 746{750.
San Francisco: Morgan Kaufmann.

Quinlan, J. R. (1994). Past tenses of verbs and �rst-order learning. In Proceedings AI'94
Seventh Australian Joint Conference on Arti�cial Intelligence, Armidale, Australia,
pp. 13{20. Singapore: World Scienti�c.

160

Learning First-Order Definitions of Functions

Quinlan, J. R., & Cameron-Jones, R. M. (1993). Foil: a midterm report. In Proceedings Eu-
ropean Conference on Machine Learning, Vienna, pp. 3{20. Berlin: Springer-Verlag.

Quinlan, J. R., & Cameron-Jones, R. M. (1995). Induction of logic programs: foil and
related systems. New Generation Computing, 13, 287{312.

Rouveirol, C. (1994). Flattening and saturation: two representation changes for generaliza-
tion. Machine Learning, 14, 219{232.

Srinivasan, A., Muggleton, S. H., Sternberg, M. J. E., & King, R. D. (1996). Theories for
mutagenicity: a study in �rst-order and feature-based induction. Arti�cial Intelli-
gence, 84, 277{299.

Ullman, J. D. (1988). Principles of Database and Knowledge-Base Systems. Rockville, MD:
Computer Science Press.

Webb, G. I., & Brki�c, N. (1993). Learning decision lists by prepending inferred rules. In Pro-
ceedings Australian Workshop on Machine Learning and Hybrid Systems, Melbourne,
Australia, pp. 6{10.

Zelle, J. M., & Mooney, R. J. (1993). Combining foil and ebg to speed-up logic programs.
In Proceedings Thirteenth International Joint Conference on Arti�cial Intelligence,
Chambery, France, pp. 1106{1111. San Francisco: Morgan Kaufmann.

161

