

Journal of Arti�cial Intelligence Research 6 (1997) 147-176 Submitted 6/96; published 5/97

Query DAGs: A Practical Paradigm for Implementing

Belief-Network Inference

Adnan Darwiche darwiche@aub.edu.lb

Department of Mathematics

American University of Beirut

PO Box 11 - 236, Beirut, Lebanon

Gregory Provan provan@risc.rockwell.com

Rockwell Science Center

1049 Camino Dos Rios

Thousand Oaks, CA 91360

Abstract

We describe a new paradigm for implementing inference in belief networks, which con-
sists of two steps: (1) compiling a belief network into an arithmetic expression called a
Query DAG (Q-DAG); and (2) answering queries using a simple evaluation algorithm.
Each node of a Q-DAG represents a numeric operation, a number, or a symbol for ev-
idence. Each leaf node of a Q-DAG represents the answer to a network query, that is,
the probability of some event of interest. It appears that Q-DAGs can be generated us-
ing any of the standard algorithms for exact inference in belief networks | we show how
they can be generated using clustering and conditioning algorithms. The time and space
complexity of a Q-DAG generation algorithm is no worse than the time complexity of the
inference algorithm on which it is based. The complexity of a Q-DAG evaluation algorithm
is linear in the size of the Q-DAG, and such inference amounts to a standard evaluation of
the arithmetic expression it represents. The intended value of Q-DAGs is in reducing the
software and hardware resources required to utilize belief networks in on-line, real-world
applications. The proposed framework also facilitates the development of on-line inference
on di�erent software and hardware platforms due to the simplicity of the Q-DAG evaluation
algorithm. Interestingly enough, Q-DAGs were found to serve other purposes: simple tech-
niques for reducing Q-DAGs tend to subsume relatively complex optimization techniques
for belief-network inference, such as network-pruning and computation-caching.

1. Introduction

Consider designing a car to have a self-diagnostic system that can alert the driver to a range
of problems. Figure 1 shows a simplistic belief network that could provide a ranked set
of diagnoses for car troubleshooting, given input from sensors hooked up to the battery,
alternator, fuel-tank and oil-system.

The standard approach to building such a diagnostic system is to put this belief network,
along with inference code, onto the car's computer; see Figure 2. We have encountered a
number of di�culties when using this approach to embody belief network technology in in-
dustrial applications. First, we were asked to provide the technology on multiple platforms.
For some applications, the technology had to be implemented in ADA to pass certain certi-
�cation procedures. In others, it had to be implemented on domain-speci�c hardware that
only supports very primitive programming languages. Second, memory was limited to keep

c1997 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.

Darwiche & Provan

alternator

oil-pressure
sensor

oil-pressure

fuel

sensorfuel

alternator
sensor

battery sensor

battery

fault

Figure 1: A simple belief network for car diagnosis.

the cost of a unit below a certain threshold to maintain product pro�tability. The dilemma
was the following: belief network algorithms are not trivial to implement, especially when op-
timization is crucial, and porting these algorithms to multiple platforms and languages would
have been prohibitively expensive, time-consuming and demanding of quali�ed manpower.

To overcome these di�culties, we have devised a very exible approach for implementing
belief network systems, which is based on the following observation. Almost all the work
performed by standard algorithms for belief networks is independent of the speci�c evidence
gathered about variables. For example, if we run an algorithm with the battery-sensor set
to low and then run it later with the variable set to dead, we �nd almost no algorithmic
di�erence between the two runs. That is, the algorithm will not branch di�erently on any
of the key decisions it makes, and the only di�erence between the two runs is the speci�c
arguments to the invoked numeric operations. Therefore, one can apply a standard inference
algorithm on a networkwith evidence being a parameter instead of being a speci�c value. The
result returned by the algorithm will then be an arithmetic expression with some parameters
that depend on speci�c evidence. This parameterized expression is what we call a Query
DAG, an example of which is shown in Figure 4.1

The approach we are proposing consists of two steps. First, given a belief network, a set
of variables about which evidence may be collected (evidence variables), and a set of vari-
ables for which we need to compute probability distributions (query variables), a Q-DAG
is compiled o�-line, as shown in Figure 3. The compilation is typically done on a sophisti-
cated software/hardware platform, using a traditional belief network inference algorithm in
conjunction with the Q-DAG compilation method. This part of the process is far and away
the most costly computationally. Second, an on-line system composed from the generated
Q-DAG and an evaluator speci�c to the given platform is used to evaluate the Q-DAG. Given
evidence, the parameterized arithmetic expression is evaluated in a straightforward manner
using simple arithmetic operations rather than complicated belief network inference. The

1. The sharing of subexpressions is what makes this a Directed Acyclic Graph instead of a tree.

148

A Practical Paradigm for Implementing Belief-Network Inference

N

L
I
N
E

O

0
N

L
I
N
E

L
I
N
E

F
F
O

Fault

Values

Traditional Approach Compiled Approach

Variables

Sensor

Variables

Causal Network
Inference
Software

Q-DAG
Evaluator

Compiler
Q-DAGCausal

Network

Query
DAG

Sensor

Probabilities

Fault

Figure 2: This �gure compares the traditional approach to exact belief-network inference
(shown on the left) with our new compiled approach (shown on the right) in the
context of diagnostic reasoning. In the traditional approach, the belief network
and sensor values are used on-line to compute the probability distributions over
fault variables; in the compiled approach, the belief network, fault variables and
sensor variables are compiled o�-line to produce a Q-DAG, which is then evaluated
on-line using sensor values to compute the required distributions.

computational work needed to perform this on-line evaluation is so straightforward that it
lends itself to easy implementations on di�erent software and hardware platforms.

This approach shares some commonality with other methods that symbolically manip-
ulate probability expressions, like SPI (Li & D'Ambrosio, 1994; Shachter, D'Ambrosio, &
del Favero, 1990); it di�ers from SPI on the objective of such manipulations and, hence,
on the results obtained. SPI explicates the notion of an arithmetic expression to state that
belief-network inference can be viewed as an expression-factoring operation. This allows
results from optimization theory to be utilized in belief-network inference. On the other
hand, we de�ne an arithmetic expression to explicate and formalize the boundaries between
on-line and o�-line inference, with the goal of identifying the minimal piece of software that
is required on-line. Our results are therefore oriented towards this purpose and they include:
(a) a formal de�nition of a Q-DAG and its evaluator; (b) a method for generating Q-DAGs
using standard inference algorithms | an algorithm need not subscribe to the inference-as-

149

Darwiche & Provan

Causal Network Query Variables

Query DAG Evidence

Q-DAG Evaluator

Q-DAG Compiler

On-line

Off-line

Evidence Variables

Figure 3: The proposed framework for implementing belief-network inference.

C B

A

a

ON

OFF

Pr(C=ON|a)

.5

.9

a Pr(B=ON|a)

ON

OFF

.25

.8

Pr(A=ON) = .3(a)

* *

+

*

+

* *

+

*

*

+

*

Pr(B=OFF, c)Pr(B=ON, c)

.075 .56 .225 .14

.5.1.9

(C,ON) (C,OFF)

(b)

Figure 4: A belief network (a); and its correspondingQuery-DAG (b). Here, C is an evidence
variable, and we are interested in the probability of variable B.

factoring view to be used for Q-DAG generation; and (c) computational guarantees on the
size of Q-DAGs in terms of the computational guarantees of the inference algorithm used
to generate them. Although the SPI framework is positioned to formulate related results, it
has not been pursued in this direction.

It is important to stress the following properties of the proposed approach. First, declar-
ing an evidence variable in the compilation process does not mean that evidence must be
collected about that variable on-line|this is important because some evidence values, e.g.,
from sensors, may be lost in practice|it only means that evidence may be collected. There-
fore, one can declare all variables to be evidence if one wishes. Second, a variable can be
declared to be both evidence and query. This allows one to perform value-of-information

150

A Practical Paradigm for Implementing Belief-Network Inference

computations to decide whether it is worth collecting evidence about a speci�c variable.
Third, the space complexity of a Q-DAG in terms of the number of evidence variables is no
worse than the time complexity of its underlying inference algorithm; therefore, this is not
a simple enumerate-all-possible-cases approach. Finally, the time and space complexity for
generating a Q-DAG is no worse than the time complexity of the standard belief-network
algorithm used in its generation. Therefore, if a network can be solved using a standard
inference algorithm, and if the time complexity of this algorithm is no worse than its space
complexity,2 then we can construct a Q-DAG for that network.

The following section explains the concept of a Q-DAG with a concrete example and
provides formal de�nitions. Section 3 is dedicated to the generation of Q-DAGs and their
computational complexity, showing that any standard belief-network inference algorithm
can be used to compile a Q-DAG as long as it meets some general conditions. Section 4
discusses the reduction of a Q-DAG after it has been generated, showing that such reduction
subsumes key optimizations that are typically implemented in belief network algorithms.
Section 5 contains a detailed example on the application of this framework to diagnostic
reasoning. Finally, Section 6 closes with some concluding remarks.

2. Query DAGs

This section starts our treatment of Q-DAGs with a concrete example. We will consider a
particular belief network, de�ne a set of queries of interest, and then show a Q-DAG that
can be used to answer such queries. We will not discuss how the Q-DAG is generated; only
how it can be used. This will allow a concrete introduction to Q-DAGs and will help us
ground some of the formal de�nitions to follow.

The belief network we will consider is the one in Figure 4(a). The class of queries we
are interested in is Pr(B j C), that is, the probability that variable B takes some value
given some known (or unknown) value of C. Figure 4(b) depicts a Q-DAG for answering
such queries, which is essentially a parameterized arithmetic expression where the values of
parameters depend on the evidence obtained. This Q-DAG will actually answer queries of
the form Pr(B;C), but we can use normalization to compute Pr (B j C).

First, a number of observations about the Q-DAG in Figure 4(b):

� The Q-DAG has two leaf nodes labeled Pr (B=ON ; c) and Pr(B=OFF ; c). These are
called query nodes because their values represent answers to the queries Pr(B=ON ; c)
and Pr(B=OFF ; c).

� The Q-DAG has two root nodes labeled (C;ON) and (C;OFF). These are called
Evidence Speci�c Nodes (ESNs) since their values depend on the evidence collected
about variable C on-line.

According to the semantics of Q-DAGs, the value of node (V; v) is 1 if variable V is
observed to be v or is unknown, and 0 otherwise. Once the values of ESNs are determined,
we evaluate the remaining nodes of a Q-DAG using numeric multiplication and addition.
The numbers that get assigned to query nodes as a result of this evaluation are the answers
to queries represented by these nodes.

2. Algorithms based on join trees have this property.

151

Darwiche & Provan

.9 0 .5 0

.2725 .2875 .0925.3475

.0675 .28 .2025 .07 .0075 .28 .0225 .07

.9 .5

1
0

0
1

0 .1 0 .5

.5.1

(a) (b)

*

.225

*

.14

+

*

+

* *

+

*

.5.9 .1

*

+

*

.56.075

*

.225

*

.14

+

*

+

* *

+

*

.5.9 .1

*

+

*

.56.075

(C,ON) (C,OFF) (C,ON) (C,OFF)

Pr(B=ON, c) Pr(B=OFF, c) Pr(B=ON, c) Pr(B=OFF, c)

Figure 5: Evaluating the Q-DAG in Figure 4 with respect to two pieces of evidence: (a)
C=ON and (b) C=OFF .

For example, suppose that the evidence we have is C =ON . Then ESN (C;ON) is
evaluated to 1 and ESN (C;OFF) is evaluated to 0. The Q-DAG in Figure 4(b) is then
evaluated as given in Figure 5(a), thus leading to

Pr(B=ON ; C=ON) = :3475;

and
Pr(B=OFF ; C=ON) = :2725;

from which we conclude that Pr(C=ON) = :62. We can then compute the conditional
probabilities Pr(B=ON j C=ON) and Pr (B=OFF j C=ON) using:

Pr(B=ON j C=ON) = Pr (B=ON ; C=ON)=Pr(C=ON);

Pr(B=OFF j C=ON) = Pr (B=OFF ; C=ON)=Pr(C=ON):

If the evidence we have is C=OFF , however, then (C;ON) evaluates to 0 and (C;OFF)
evaluates to 1. The Q-DAG in Figure 4(b) will then be evaluated as given in Figure 5(b),
thus leading to

Pr(B=ON ; C=OFF) = :2875;

and

Pr(B=OFF ; C=OFF) = :0925:

We will use the following notation for denoting variables and their values. Variables
are denoted using uppercase letters, such as A;B;C, and variable values are denoted by
lowercase letters, such as a; b; c. Sets of variables are denoted by boldface uppercase letters,
such as A;B;C, and their instantiations are denoted by boldface lowercase letters, such as
a;b; c. We use E to denote the set of variables about which we have evidence. Therefore,

152

A Practical Paradigm for Implementing Belief-Network Inference

we use e to denote an instantiation of these variables that represents evidence. Finally, the
family of a variable is the set containing the variable and its parents in a directed acyclic
graph.

Following is the formal de�nition of a Q-DAG.

De�nition 1 A Q-DAG is a tuple (V ; �; I;D;Z) where

1. V is a distinguished set of symbols (called evidence variables)

2. � is a symbol (called unknown value)

3. I maps each variable in V into a set of symbols (called variable values) di�erent from
�.

4. D is a directed acyclic graph where

- each non-root node is labeled with either + or �
- each root node is labeled with either

- a number in [0; 1] or

- a pair (V; v) where V is an evidence variable and v is a value

5. Z is a distinguished set of nodes in D (called query nodes)

Evidence variables V correspond to network variables about which we expect to collect
evidence on-line. For example, in Figure 5, C is the evidence variable. Each one of these
variables has a set of possible values that are captured by the function I. For example, in
Figure 5, the evidence variable C has values ON and OFF . The special value � is used
when the value of a variable is not known. For example, we may have a sensor variable with
values \low," \medium," and \high," but then lose the sensor value during on-line reasoning.
In this case, we set the sensor value to �.3 Query nodes are those representing answers to
user queries. For example, in Figure 5, B is the query variable, and leads to query nodes
Pr(B=ON ; c) and Pr(B=OFF ; c).

An important notion is that of evidence:

De�nition 2 For a given Q-DAG (V ; �; I;D;Z), evidence is de�ned as a function E that
maps each variable V in V into the set of values I(V) [f�g.

When a variable V is mapped into v 2 I(V), then evidence tells us that V is instantiated to
value v. When V is mapped into �, then evidence does not tell us anything about the value
of V .

We can now state formally how to evaluate a Q-DAG given some evidence. But �rst we
need some more notation:

1. Numeric-Node: n(p) denotes a node labeled with a number p 2 [0; 1];

2. ESN: n(V; v) denotes a node labeled with (V; v);

3. This is also useful in cases where a variable will be measured only if its value of information justi�es
that.

153

Darwiche & Provan

3. Operation-Node: n1
 : : :
 ni denotes a node labeled with � and having parents
n1; : : : ; ni;

4. Operation-Node: n1 � : : : � ni denotes a node labeled with + and having parents
n1; : : : ; ni.

The following de�nition tells us how to evaluate a Q-DAG by evaluating each of its nodes.
It is a recursive de�nition according to which the value assigned to a node is a function of
the values assigned to its parents. The �rst two cases are boundary conditions, assigning
values to root nodes. The last two cases are the recursive ones.

De�nition 3 For a Q-DAG (V ; �; I;D;Z) and evidence E, the node evaluator is de�ned as
a function ME that maps each node in D into a number [0; 1] such that:

1. ME [n(p)] = p

(The value of a node labeled with a number is the number itself.)

2. ME [n(V; v)] =

(
1; if E(V) = v or E(V) = �;
0; otherwise

(The value of an evidence-speci�c node depends on the available evidence: it is 1 if v
is consistent with the evidence and 0 otherwise.)

3. ME [n1
 : : :
 ni] =ME(n1) � : : : �ME(ni)
(The value of a node labeled with � is the product of the values of its parent nodes.)

4. ME [n1 � : : :� ni] =ME(n1) + : : :+ME(ni)
(The value of a node labeled with + is the sum of the values of its parent nodes.)

One is typically not interested in the values of all nodes in a Q-DAG since most of these
nodes represent intermediate results that are of no interest to the user. It is the query nodes
of a Q-DAG that represent answers to user queries and it is the values of these nodes that one
seeks when constructing a Q-DAG. The values of these queries are captured by the notion
of a Q-DAG output.

De�nition 4 The node evaluator ME is extended to Q-DAGs as follows:

ME((V ; �;I;D;Z)) = f(n;ME(n)) j n 2 Zg:

The set ME((V ; �; I;D;Z)) is called the Q-DAG output.

This output is what one seeks from a Q-DAG. Each element in this output represents a
probabilistic query and its answer.

Let us consider a few evaluations of the Q-DAG shown in Figure 4, which are shown in
Figure 5. Given evidence E(C)=ON , and assuming that Qnode(B=ON) and Qnode(B=
OFF) stand for the Q-DAG nodes labeled Pr (B=ON ; c) and Pr (B=OFF ; c), respectively,
we have

ME [n(C;ON)] = 1;

ME [n(C;OFF)] = 0;

ME [Qnode(B=ON)] = :075 � (:9 � 1 + :1 � 0) + :56 � (1 � :5 + :5 � 0) = :3475;

ME [Qnode(B=OFF)] = (:9 � 1 + :1 � 0) � :225+ (1 � :5 + :5 � 0) � :14 = :2725;

154

A Practical Paradigm for Implementing Belief-Network Inference

meaning that Pr (B=ON ; C=ON) = :3475 and Pr(B=OFF ; C=ON) = :2725. If instead the
evidence were E(C)=OFF , a set of analogous computations can be done.

It is also possible that evidence tells us nothing about the value of variable C, that is,
E(C) = �. In this case, we would have

ME [n(C;ON)] = 1;

ME [n(C;OFF)] = 1;

ME [Qnode(B=ON)] = :075 � (:9 � 1 + :1 � 1) + :56 � (1 � :5 + :5 � 1) = :635;

ME [Qnode(B=OFF)] = (:9 � 1 + :1 � 1) � :225 + (1 � :5 + :5 � 1) � :14 = :365;

meaning that Pr(B=ON) = :635 and Pr(B=OFF) = :365.

2.1 Implementing a Q-DAG Evaluator

A Q-DAG evaluator can be implemented using an event-driven, forward propagation scheme.
Whenever the value of a Q-DAG node changes, one updates the value of its children, and so
on, until no possible update of values is possible. Another way to implement an evaluator
is using a backward propagation scheme where one starts from a query node and updates
its value by updating the values of its parent nodes. The speci�cs of the application will
typically determine which method (or combination) will be more appropriate.

It is important that we stress the level of re�nement enjoyed by the Q-DAG propaga-
tion scheme and the implications of this on the e�ciency of query updates. Propagation in
Q-DAGs is done at the arithmetic-operation level, which is contrasted with propagation at
the message-operation level (used by many standard algorithms). Such propagation schemes
are typically optimized by keeping validity ags of messages so that only invalid messages
are recomputed when new evidence arrives. This will clearly avoid some unnecessary com-
putations but can never avoid all unnecessary computations because a message is typically
too coarse for this purpose. For example, if only one entry in a message is invalid, the
whole message is considered invalid. Recomputing such a message will lead to many un-
necessary computations. This problem will be avoided in Q-DAG propagation since validity
ags are attributed to arithmetic operations, which are the building blocks of message oper-
ations. Therefore, only the necessary arithmetic operations will be recomputed in a Q-DAG
propagation scheme, leading to a more detailed level of optimization.

We also stress that the process of evaluating and updating a Q-DAG is done outside of
probability theory and belief network inference. This makes the development of e�cient on-
line inference software accessible to a larger group of people who may lack strong backgrounds
in these areas.4

2.2 The Availability of Evidence

The construction of a Q-DAG requires the identi�cation of query and evidence variables. This
may give an incorrect impression that we must know up front which variables are observed
and which are not. This could be problematic in (1) applications where one may lose a sensor
reading, thus changing the status of a variable from being observed to being unobserved;

4. In fact, it appears that a background in compiler theory may be more relevant to generating an e�cient
evaluator than a background in belief network theory.

155

Darwiche & Provan

.3true
a Pr(a)

true
false

.1

.8

a Pr(B=true|a)B

A

+ + + +

.3 .2.9.1 (B,true) (B,false)

* ***

.8 .7

Pr(A=true,b) Pr(B=true,b) Pr(B=false,b) Pr(A=false,b)

Figure 6: A belief network and its corresponding Q-DAG in which variable B is declared to
be both query and evidence.

and (2) applications where some variable may be expensive to observe, leading to an on-line
decision on whether to observe it or not (using some value-of-information computation).

Both of these situations can be dealt with in a Q-DAG framework. First, as we mentioned
earlier, Q-DAGs allow us to handle missing evidence through the use of the � notation which
denotes an unknown value of a variable. Therefore, Q-DAGs can handle missing sensor
readings. Second, a variable can be declared to be both query and evidence. This means
that we can incorporate evidence about this variable when it is available, and also compute
the probability distribution of the variable in case evidence is not available. Figure 6 depicts a
Q-DAG in which variable A is declared to be a query variable, while variable B is declared to
be both an evidence and a query variable (both variables have true and false as their values).
In this case, we have two ESNs for variable B and also two query nodes (see Figure 6). This
Q-DAG can be used in two ways:

1. To compute the probability distributions of variables A and B when no evidence is
available about B. Under this situation, the values of n(B; true) and n(B; false) are
set to 1, and we have

Pr (A = true) = :3 � :1 + :3 � :9 = :3

Pr(A = false) = :8 � :7 + :7 � :2 = :7

Pr(B = true) = :3 � :1 + :8 � :7 = :59

156

A Practical Paradigm for Implementing Belief-Network Inference

Pr(B = false) = :3 � :9 + :7 � :2 = :41

2. To compute the probability of variable A when evidence is available about B. For
example, suppose that we observe B to be false. The value of n(B; true) will then be
set to 0 and the value of n(B; false) will be set to 1, and we have

Pr (A = true; B = false) = :3 � :9 = :27

Pr(A = false; B = false) = :7 � :2 = :14

The ability to declare a variable as both an evidence and a query variable seems to be
essential in applications where (1) a decision may need to be made on whether to collect
evidence about some variableB; and (2)making the decision requires knowing the probability
distribution of variable B. For example, suppose that we are using the following formula
(Pearl, 1988, Page 313) to compute the utility of observing variable B:

Utility Of Observing(B) =
X
b

Pr(B = bje) U(B = b);

where U(B = b) is the utility for the decision maker of �nding that variable B has value b.
Suppose that U(B = true) = $2:5 and U(B = false) = �$3. We can use the Q-DAG to
compute the probability distribution of B and use it to evaluate Utility Of Observing(B):

Utility Of Observing(B) = ($2:5 � :59)+ (�$3 � :41) = $0:24;

which leads us to observe variable B. Observing B, we �nd that its value is false. We can
then accommodate this evidence into the Q-DAG and continue with our analysis.

3. Generating Query DAGs

This section shows how Q-DAGs can be generated using traditional algorithms for exact
belief-network inference. In particular, we will show how Q-DAGs can be generated using the
clustering (join tree, Jensen, LS) algorithm (Jensen, Lauritzen, & Olesen, 1990; Shachter,
Andersen, & Szolovits, 1994; Shenoy & Shafer, 1986), the polytree algorithm, and cutset
conditioning (Pearl, 1988; Peot & Shachter, 1991). We will also outline properties that must
be satis�ed by other belief network algorithms in order to adapt them for generating Q-DAGs
as we propose.

3.1 The Clustering Algorithm

We provide a sketch of the clustering algorithm in this section. Readers interested in more
details are referred to (Shachter et al., 1994; Jensen et al., 1990; Shenoy & Shafer, 1986).

According to the clustering method, we start by:

1. constructing a join tree of the given belief network;5

5. A join tree is a tree of clusters that satis�es the following property: the intersection of any two clusters
belongs to all clusters on the path connecting them.

157

Darwiche & Provan

2. assigning the matrix of each variable in the belief network to some cluster that contains
the variable's family.

The join tree is a secondary structure on which the inference algorithm operates. We need
the following notation to state this algorithm:

- S1; : : : ; Sn are the clusters, where each cluster corresponds to a set of variables in the
original belief network.

- 	i is the potential function over cluster Si, which is a mapping from instantiations of
variables in Si into real numbers.

- Pi is the posterior probability distribution over cluster Si, which is a mapping from
instantiations of variables in Si into real numbers.

- Mij is the message sent from cluster Si to cluster Sj , which is a mapping from instan-
tiations of variables in Si \ Sj into real numbers.

- e is the given evidence, that is, an instantiation of evidence variables E.

We also assume the standard multiplication and marginalization operations on potentials.
Our goal now is to compute the potential Pr(X; e) which maps each instantiation x of

variable X in the belief network into the probability Pr(x; e). Given this notation, we can
state the algorithm as follows:

� Potential functions are initialized using

	i =
Y
X

PrX�X ;

where

{ X is a variable whose matrix is assigned to cluster Si;

{ PrX is the matrix for variable X : a mapping from instantiations of the family of
X into conditional probabilities; and

{ �X is the likelihood vector for variable X : �X(x) is 1 if x is consistent with given
evidence e and 0 otherwise.

� Posterior distributions are computed using

Pi = 	i

Y
k

Mki;

where Sk are the clusters adjacent to cluster Si.

� Messages are computed using

Mij =
X
SinSj

	i

Y
k 6=j

Mki;

where Sk are the clusters adjacent to cluster Si.

158

A Practical Paradigm for Implementing Belief-Network Inference

� The potential Pr(X; e) is computed using

Pr(X; e) =
X

SinfXg

Pi;

where Si is a cluster to which X belongs.

These equations are used as follows. To compute the probability of a variable, we must
compute the posterior distribution of a cluster containing the variable. To compute the
posterior distribution of a cluster, we collect messages from neighboring clusters. A message
from cluster Si to Sj is computed by collecting messages from all clusters adjacent to Si
except for Sj .

This statement of the join tree algorithm is appropriate for situations where the evidence
is not changing frequently since it involves computing initial potentials each time the evidence
changes. This is not necessary in general and one can provide more optimized versions of the
algorithm. This issue, however, is irrelevant in the context of generating Q-DAGs because
updating probabilities in face of evidence changes will take place at the Q-DAG level, which
includes its own optimization technique that we discuss later.

3.2 Generating Q-DAGs

To generate Q-DAGs using the clustering method, we have to go through two steps. First,
we have to modify the initialization of potential functions so that the join tree is quanti�ed
using Q-DAG nodes instead of numeric probabilities. Second, we have to replace numeric
addition and multiplication in the algorithm by analogous functions that operate on Q-DAG
nodes. In particular:

1. Numeric multiplication � is replaced by an operation
 that takes Q-DAG nodes
n1; : : : ; ni as arguments, constructs and returns a new node n with label � and parents
n1; : : : ; ni.

2. Numeric addition + is replaced by an operation � that takes Q-DAG nodes n1; : : : ; ni
as arguments, constructs and returns a new node n with label + and parents n1; : : : ; ni.

Therefore, instead of numeric operations, we have Q-DAG-node constructors. And instead
of returning a number as a computation result, we now return a Q-DAG node.

Before we state the Q-DAG clustering algorithm, realize that we now do not have evidence
e, but instead we have a set of evidence variables E for which we will collect evidence.
Therefore, the Q-DAG algorithm will not compute an answer to a query Pr (x; e), but instead
will compute a Q-DAG node that evaluates to Pr(x; e) under the instantiation e of variables
E.

In the following equations, potentials are mappings from variable instantiations to Q-
DAG nodes (instead of numbers). For example, the matrix for variable X will map each
instantiation of X 's family into a Q-DAG node n(p) instead of mapping it into the number
p. The Q-DAG operations
 and � are extended to operate on these new potentials in the
same way that � and + are extended in the clustering algorithm.

The new set of equations is:

159

Darwiche & Provan

� Potential functions are initialized using

	i =
O
X

n(PrX)

O
E

n(�E);

where

{ X is a variable whose matrix is assigned to cluster Si;

{ n(PrX) is the Q-DAG matrix forX : a mapping from instantiations of X 's family
into Q-DAG nodes representing conditional probabilities;

{ E is an evidence variable whose matrix is assigned to cluster Si; and

{ n(�E) is the Q-DAG likelihood vector of variable E: n(�E)(e) = n(E; e), which
means that node n(�E)(e) evaluates to 1 if e is consistent with given evidence
and 0 otherwise.

� Posterior distributions are computed using

Pi = 	i

O
k

Mki;

where Sk are the clusters adjacent to cluster Si.

� Messages are computed using

Mij =
M
SinSj

	i

O
k 6=j

Mki;

where Sk are the clusters adjacent to cluster Si.

� The Q-DAG nodes for answering queries of the form Pr(x; e) are computed using

Qnode(X) =
M

SinfXg

Pi;

where Si is a cluster to which X belongs.

Here Qnode(X) is a potential that maps each instantiation x of variable X into the Q-DAG
node Qnode(X)(x) which evaluates to Pr (x; e) for any given instantiation e of variables E.

Hence, the only modi�cations we made to the clustering algorithm are (a) changing
the initialization of potential functions and (b) replacing multiplication and addition with
Q-DAG constructors of multiplication and addition nodes.

3.3 An Example

We now show how the proposed Q-DAG algorithm can be used to generate a Q-DAG for
the belief network in Figure 4(a).

We have only one evidence variable in this example, C. And we are interested in gener-
ating a Q-DAG for answering queries about variable B, that is, queries of the form Pr(b; e).
Figure 7(a) shows the join tree for the belief network in Figure 4(a), where the tables contain
the potential functions needed for the probabilistic clustering algorithm. Figure 7(b) shows

160

A Practical Paradigm for Implementing Belief-Network Inference

AC ABA
S21S

Ψ1

Ψ2 .25 * .3
.8 * .7

.75 * .3

.2 * .7

B=OFFB=ONA

ON

OFF

A

OFF

ON .9
.5

.1

.5

C=OFFC=ON

AC ABA
S21S

Ψ2

Ψ1

B=OFFB=ONA

ON

OFF

A C=ON C=OFF

OFF

ON n(C,OFF)

n(C,OFF)n(.5)

n(.1)

n(C,ON)n(.5)

n(C,ON)n(.9)

n(.075)

n(.56) n(.14)

n(.225)

(a) (b)

Figure 7: A join tree quanti�ed with numbers (a), and with Q-DAG nodes (b).

the join tree again, but the tables contain the potential functions needed by the Q-DAG
clustering algorithm. Note that the tables are �lled with Q-DAGs instead of numbers.

We now apply the Q-DAG algorithm. To compute the Q-DAG nodes that will evaluate
to Pr(b; e), we must compute the posterior distribution P2 over cluster S2 since this is a
cluster to which variable B belongs. We can then sum the distribution over variable A to
obtain what we want. To compute the distribution P2 we must �rst compute the message
M12 from cluster S1 to cluster S2.

The message M12 is computed by summing the potential function 	1 of cluster S1 over
all possible values of variable C, i.e., M12 =

M
C

	1; which leads to:

M12(A=ON) = [n(:9)
 n(C;ON)]� [n(:1)
 n(C;OFF)];

M12(A=OFF) = [n(:5)
 n(C;ON)]� [n(:5)
 n(C;OFF)]:

The posterior distribution over cluster S2, P2, is computed using P2 = 	2
M12; which
leads to

P2(A=ON ; B=ON) = n(:075)
 [[n(:9)
 n(C;ON)]� [n(:1)
 n(C;OFF)]]

P2(A=ON ; B=OFF) = n(:225)
 [[n(:9)
 n(C;ON)]� [n(:1)
 n(C;OFF)]]

P2(A=OFF ; B=ON) = n(:56)
 [[n(:5)
 n(C;ON)]� [n(:5)
 n(C;OFF)]]

P2(A=OFF ; B=OFF) = n(:14)
 [[n(:5)
 n(C;ON)]� [n(:5)
 n(C;OFF)]]:

The Q-DAG node Qnode(b) for answering queries of the form Pr(b; e) is computed by
summing the posterior P2 over variable A, Qnode =

M
S2nfBg

P2; leading to

Qnode(B=ON) = [n(:075)
 [[n(:9)
 n(C;ON)]� [n(:1)
 n(C;OFF)]]]�

[n(:56)
 [[n(:5)
 n(C;ON)]� [n(:5)
 n(C;OFF)]]]

Qnode(B=OFF) = [n(:225)
 [[n(:9)
 n(C;ON)]� [n(:1)
 n(C;OFF)]]]�

[n(:14)
 [[n(:5)
 n(C;ON)]� [n(:5)
 n(C;OFF)]]];

161

Darwiche & Provan

which is the Q-DAG depicted in Figure 4(b). Therefore, the result of applying the algorithm
is two Q-DAG nodes, one will evaluate to Pr (B=ON ; e) and the other will evaluate to
Pr(B=OFF ; e) under any instantiation e of evidence variables E.

3.4 Computational Complexity of Q-DAG Generation

The computational complexity of the algorithm for generating Q-DAGs is determined by
the computational complexity of the clustering algorithm. In particular, the proposed al-
gorithm applies a �-operation precisely when the clustering algorithm applies an addition-
operation. Similarly, it applies a
-operation precisely when the clustering algorithm applies
a multiplication-operation. Therefore, if we assume that � and
 take constant time, then
both algorithms have the same time complexity.

Each application of � or
 ends up adding a new node to the Q-DAG. And this is the
only way a new node can be added to the Q-DAG. Moreover, the number of parents of each
added node is equal to the number of arguments that the corresponding arithmetic operation
is invoked on in the clustering algorithm. Therefore, the space complexity of a Q-DAG is
the same as the time complexity of the clustering algorithm.

In particular, this means that the space complexity of Q-DAGs in terms of the number
of evidence variables is the same as the time complexity of the clustering algorithm in those
terms. Moreover, each evidence variable E will add only m evidence-speci�c nodes to the
Q-DAG, where m is the number of values that variable E can take. This is important to
stress because without this complexity guarantee it may be hard to distinguish between the
proposed approach and a brute-force approach that builds a big table containing all possible
instantiations of evidence variables together with their corresponding distributions of query
variables.

3.5 Other Generation Algorithms

The polytree algorithm is a special case of the clustering algorithm as shown in (Shachter
et al., 1994). Therefore, the polytree algorithm can also be modi�ed as suggested above
to compute Q-DAGs. This also means that cutset conditioning can be easily modi�ed to
compute Q-DAGs: for each instantiation c of the cutset C, we compute a Q-DAG node for
Pr(x; c; e) using the polytree algorithm and then take the �-sum of the resulting nodes.

Most algorithms for exact inference in belief networks can be adapted to generate Q-
DAGs. In general, an algorithm must satisfy a key condition to be adaptable for computing
Q-DAGs as we suggested above. The condition is that the behavior of the algorithm should
never depend on the speci�c evidence obtained, but should only depend on the variables
about which evidence is collected. That is, whether variable E is instantiated to value v1
or value v2 should not a�ect the complexity of the algorithm. Only whether variable E is
instantiated or not should matter.

Most belief networks algorithms that we are aware of satisfy this property. The reason
for this seems to be the notion of probabilistic independence on which these algorithms
are based. Speci�cally, what is read from the topology of a belief network is a relation
I(X;Z;Y), stating that variables X and Y are independent given variables Z. That is,

Pr (x;y j z) = Pr(x j z)Pr(y j z)

162

A Practical Paradigm for Implementing Belief-Network Inference

for all instantiations x;y; z of these variables. It is possible, however, for this not to hold
for all instantiations of z but only for speci�c ones. Most standard algorithms we are aware
of do not take advantage of this instantiation{speci�c notion of independence.6 Therefore,
they cannot attach any computational signi�cance to the speci�c value to which a variable
is instantiated. This property of existing algorithms is what makes them easily adaptable to
the generation of Q-DAGs.

3.6 Soundness of the Q-DAG Clustering Algorithm

The soundness of the proposed algorithm is stated below. The proof is given in Appendix A.

Theorem 1 Suppose that Qnode(X) is a Q-DAG potential generated by the Q-DAG clus-
tering algorithm for query variable X and evidence variables E. Let e0 be an instantiation
of some variables in E, and let Q-DAG evidence E be de�ned as follows:

E(E) =

(
e; if evidence e0 sets variable E to value e;
�; otherwise.

then
ME(Qnode(X)(x)) = Pr(x; e0):

That is, the theorem guarantees that the Q-DAG nodes generated by the algorithm will
always evaluate to their corresponding probabilities under any partial or full instantiation
of evidence variables.

4. Reducing Query DAGs

This section is focused on reducing Q-DAGs after they have been generated. The main
motivation behind this reduction is twofold: faster evaluation of Q-DAGs and less space to
store them. Interestingly enough, we have observed that a few, simple reduction techniques
tend in certain cases to subsume optimization techniques that have been inuential in prac-
tical implementations of belief-network inference. Therefore, reducing Q-DAGs can be very
important practically.

This section is structured as follows. First, we start by discussing four simple reduction
operations in the form of rewrite rules. We then show examples in which these reductions sub-
sume two key optimization techniques known as network-pruning and computation-caching.

4.1 Reductions

The goal of Q-DAG reduction is to reduce the size of a Q-DAG while maintaining the
arithmetic expression it represents. In describing the equivalence of arithmetic expressions,
we de�ne the notion of Q-DAG equivalence:

De�nition 5 Two Q-DAGs are equivalent i� they have the same set of evidence-speci�c
nodes and they have the same output for all possible Q-DAG evidence.

6. Some algorithms for two{level binary networks (BN20 networks), and some versions of the SPI algorithm
do take advantage of these independences.

163

Darwiche & Provan

. .

.

.

Q 1

Q2 Q
3 Q 1

.

Q
3

*

Q 1

Q2 Q
3

b) numeric

 reduction

Q2 Q
3

**

Q 1 Q 1Q2

I Q p q

Q p q.

 merging

c) associative(a) Identity d) commutative
 merging

+

+

 elimination

Figure 8: The four main methods for Q-DAG reduction.

Figure 8 shows four basic reduction operations that we have experimented with:

1. Identity elimination: eliminates a numeric node if it is an identity element of its child
operation node.

2. Numeric reduction: replaces an operation node with a numeric node if all its parents
are numeric nodes.

3. Associative merging: eliminates an operation node using operation associativity.

4. Commutative merging: eliminates an operation node using operation commutativity.

These rules can be applied successively and in di�erent order until no more applications are
possible.

We have proven that these operations are sound in (Darwiche & Provan, 1995). Based
on an analysis of network structure and preliminary empirical results, we have observed
that many factors govern the e�ectives of these operations. The degree to which reduction
operations, numeric reduction in particular, can reduce the size of the Q-DAG depends on
the topology of the given belief network and the set of evidence and query variables. For
example, if all root nodes are evidence variables of the belief network, and if all leaf nodes
are query variables, then numeric reduction will lead to little Q-DAG reduction.

We now focus on numeric reduction, showing how it sometimes subsumes two optimiza-
tion techniques that have been inuential in belief network algorithms. For both optimiza-
tions, we show examples where an unoptimized algorithm that employs numeric reduction
yields the same Q-DAG as an optimized algorithm. The major implication is that opti-
mizations can be done uniformly at the Q-DAG level, freeing the underlying belief network
algorithms from such implementational complications.

The following examples assume that we are applying the polytree algorithm to singly-
connected networks.

164

A Practical Paradigm for Implementing Belief-Network Inference

C

B

A .6

.9

.5

.8

.3

.6

.9

.5

B

A ON

ON

OFF
ON

OFF
ON

ON
OFF

a P(a)

a P(B=ON|a)

b P(C=ON|b)

P(a)a

P(B=ON|a)a

(a) (b)

Figure 9: A simple belief network before pruning (a) and after pruning (b). The light-shaded
node, A, is a query node, and the dark-shaded node, B, is an evidence node.

*

* *

+

*

(a) Original Q-DAG (b) Reduced Q-DAG

*

P(A=ON,B=b)

+

*

.1.9+

.7.3

.1

P(A=ON,B=b)

+

.2.8

.9 (B,OFF)(B,ON)(B,OFF)(B,ON)

.6.6

Figure 10: A Q-DAG (a) and its reduction (b).

4.2 Network Pruning

Pruning is the process of deleting irrelevant parts of a belief network before invoking infer-
ence. Consider the network in Figure 9(a) for an example, where B is an evidence variable
and A is a query variable. One can prune node C from the network, leading to the network
in Figure 9(b). Any query of the form Pr (a j b) has the same value with respect to either
network. It should be clear that working with the smaller network is preferred. In general,
pruning can lead to dramatic savings since it can reduce a multiply-connected network to a
singly-connected one.

165

Darwiche & Provan

If we generate a Q-DAG for the network in Figure 9(a) using the polytree algorithm, we
obtain the one in Figure 10(a). This Q-DAG corresponds to the following expression,

Pr(A=ON ; e) = Pr(A=ON)
X
b

�B(b)Pr(b j A=ON)
X
c

Pr(c j b):

If we generate a Q-DAG for the network in Figure 9(b), however, we obtain the one in
Figure 10(b) which corresponds to the following expression,

Pr(A=ON ; e) = Pr(A=ON)
X
b

�B(b)Pr(b j A=ON):

As expected, this Q-DAG is smaller than the Q-DAG in Figure 10(a), and contains a subset
of the nodes in Figure 10(a).

The key observation, however, is that the optimized Q-DAG in Figure 10(b) can be
obtained from the unoptimized one in Figure 10(a) using Q-DAG reduction. In particular,
the nodes enclosed in dotted lines can be collapsed using numeric reduction into a single
node with value 1. Identity elimination can then remove the resulting node, leading to the
optimized Q-DAG in Figure 10(b).

The more general observation, however, is that prunable nodes contribute identity el-
ements when computing answers to queries. These contributions appear as Q-DAG nodes
that evaluate to identity elements under all instantiations of evidence. Such nodes can be
easily detected and collapsed into these identity elements using numeric reduction. Identity
elimination can then remove them from the Q-DAG, leading to the same e�ect as network
pruning.7 Whether Q-DAG reduction can replace all possible pruning operations is an open
question that is outside the scope of this paper.

4.3 Computation Caching

Caching computations is another inuential technique for optimizing inference in belief net-
works. To consider an example, suppose that we are applying the polytree algorithm to
compute Pr(c; b) in the network of Figure 11. Given evidence, say B=ON , the algorithm
will compute Pr(c; B=ON) by passing the messages shown in Figure 12. If the evidence
changes to B=OFF , however, an algorithm employing caching will not recompute the mes-
sage �B(a) (which represents the causal support fromA toB (Pearl, 1988)) since the value of
this message does not depend on the evidence on B.8 This kind of optimization is typically

7. Note, however, that Q-DAG reduction will not reduce the computational complexity of generating a Q-
DAG, although network pruning may. For example, a multiply{connected network may become singly-
connected after pruning, thereby, reducing the complexity of generating a Q-DAG. But using Q-DAG
reduction, we still have to generate a Q-DAG by working with a multiply-connected network.

8. This can be seen by considering the following expression, which is evaluated incrementally by the polytree
algorithm through its message passes:

Pr(c; e) =
X
b

Pr(c j b)�B(b)
X
a

Pr(b j a)Pr(a)| {z }
�B(a)| {z }

�C(b)

:

It is clear that the subexpression corresponding to the message �B(a) from A to B is independent of the
evidence on B.

166

A Practical Paradigm for Implementing Belief-Network Inference

B

C

A .6

.9

.5

.8

.3

ON

ON
OFF

ON
OFF

a Pr(a)

a Pr(B=ON|a)

Pr(C=ON|b)b

Figure 11: A simple belief network for demonstrating the relationship between Q-DAG re-
duction and computation caching. The light-shaded node, C, is a query node,
and the dark-shaded node, B, is an evidence node.

B

(b)π
C

C

A

(a)π
B

Figure 12: Message passing when C is queried and B is observed.

implemented by caching the values of messages and by keeping track of which messages are
a�ected by what evidence.

Now, consider the Q-DAG corresponding to this problem which is shown in Figure 13(a).
The nodes enclosed in dotted lines correspond to the message from A to B.9 These nodes do
not have evidence-speci�c nodes in their ancestor set and, therefore, can never change values
due to evidence changes. In fact, numeric reduction will replace each one of these nodes and
its ancestors with a single node as shown in Figure 13(b).

In general, if numeric reduction is applied to a Q-DAG, one is guaranteed the following:
(a) if a Q-DAG node represents a message that does not depend on evidence, that node will
not be re-evaluated given evidence changes; and (b) numeric reduction will guarantee this

9. More precisely, they correspond to the expression
P

a
Pr (b j a)Pr(a).

167

Darwiche & Provan

*

*

+

.8

+

.3

+

*

*

.74

*

* *

+

 .1

.26

**

*

.6
.6

.3

* *

.8

cached value

P(C=ON,B=b) P(C=ON,B=b)

(a) Original Q-DAG (b) Reduced Q-DAG

(B,OFF)(B,ON) (B,ON) (B,OFF)

.4.5
.5

.9
.4

Figure 13: A Q-DAG (a) and its reduction (b).

under any Q-DAG evaluation method since it will replace the node and its ancestor set with
a single root node.10

4.4 Optimization in Belief-Network Inference

Network pruning and computation caching have proven to be very inuential in practical
implementations of belief-network inference. In fact, our own experience has shown that
these optimizations typically make the di�erence between a usable and a non-usable belief-
network system.

One problem with these optimizations, however, is their algorithm-speci�c implemen-
tations although they are based on general principles (e.g., taking advantage of network
topology). Another problem is that they can make elegant algorithms complicated and hard
to understand. Moreover, these optimizations are often hard to de�ne succinctly, and hence
are not well documented within the community.

In contrast, belief{network inference can be optimized by generating Q-DAGs using un-
optimized inference algorithms, and then optimizing the generated Q-DAG through reduc-
tion techniques. We have shown some examples of this earlier with respect to pruning and
caching optimizations. However, whether this alternate approach to optimization is always
feasible is yet to be known. A positive answer will clearly provide an algorithm{independent

10. Note that Q-DAGs lead to a very re�ned caching mechanism if the Q-DAG evaluator (1) caches the value
of each Q-DAG node and (2) updates these cached values only when there is need to (that is, when the
value of a parent node changes). Such a re�ned mechanism allows caching the values of messages that
depend on evidence as well.

168

A Practical Paradigm for Implementing Belief-Network Inference

alternator

oil-pressure
sensor

oil-pressure

fuel

sensorfuel

alternator
sensor

battery sensor

battery

fault

Figure 14: A simple belief network for car diagnosis.

approach to optimizing belief{network inference, which is practically important for at least
two reasons. First, Q-DAG reduction techniques seem to be much simpler to understand
and implement since they deal with graphically represented arithmetic expressions, without
having to invoke probability or belief network theory. Second, reduction operations are ap-
plicable to Q-DAGs generated by any belief{network algorithm. Therefore, an optimization
approach based on Q-DAG reduction would be more systematic and accessible to a bigger
class of developers.

5. A Diagnosis Example

This section contains a comprehensive example illustrating the application of the Q-DAG
framework to diagnostic reasoning.

Consider the car troubleshooting example depicted in Figure 14. For this simple case
we want to determine the probability distribution for the fault node, given evidence on four
sensors: the battery-, alternator-, fuel- and oil-sensors. Each sensor provides information
about its corresponding system. The fault node de�nes �ve possible faults: normal, clogged-
fuel-injector, dead-battery, short-circuit, and broken-fuel-pump.

If we denote the fault variable by F , and sensor variables by E, then we want to build
a system that can compute the probability Pr(f; e); for each fault f and any evidence e.
These probabilities represent an unnormalized probability distribution over the fault variable
given sensor readings. In a Q-DAG framework, realizing this diagnostic system involves three
steps: Q-DAG generation, reduction, and evaluation. The �rst two steps are accomplished
o�-line, while the �nal step is performed on-line. We now discuss each one of the steps in
more detail.

5.1 Q-DAG Generation

The �rst step is to generate the Q-DAG. This is accomplished by applying the Q-DAG
clustering algorithm with the fault as a query variable and the sensors as evidence vari-

169

Darwiche & Provan

fuel
subtree
fuel
subtree
fuel
subtreesubtree
fuel

P(F=pump,e)

battery
alternator

alternator oil

P(F=normal,e)

P(F=pump)

 .05

P(F=normal)
 .90

(normal) (normal) (normal) (normal)(pump) (pump) (pump)

structure-sharing

fuel battery oil

(pump)

Figure 15: A partial Q-DAG for the car example, displaying two of the �ve query nodes,
broken fuel pump and normal. The shaded regions are portions of the Q-DAG
that are shared by multiple query nodes; the values of these nodes are relevant
to the value of more than one query node.

ables. The resulting Q-DAG has �ve query nodes, Qnode(F = normal ; e), Qnode(F =
clogged fuel injector ; e), Qnode(F = dead battery; e), Qnode(F = short circuit; e), and
Qnode(F = broken fuel pump; e). Each node evaluates to the probability of the correspond-
ing fault under any instantiation of evidence. The probabilities constitute a di�erential
diagnosis that tells us which fault is most probable given certain sensor values.

Figure 15 shows a stylized description of the Q-DAG restricted to two of the �ve query
nodes, corresponding to Pr (F = broken fuel pump; e) and Pr (F = normal ; e). The Q-DAG
structure is symmetric for each fault value and sensor.

Given that the Q-DAG is symmetric for these possible faults, for clarity of exposition
we look at just the subset needed to evaluate node Pr(F = broken fuel pump; e). Figure 16
shows a stylized version of the Q-DAG produced for this node. Following are some obser-
vations about this Q-DAG. First, there is an evidence-speci�c node for every instantiation
of sensor variables, corresponding to all forms of sensor measurements possible. Second, all
other roots of the Q-DAG are probabilities. Third, one of the �ve parents of the query node
Pr(F = broken fuel pump; e) is for the prior on F = broken fuel pump, and the other four
are for the contributions of the four sensors. For example, Figure 16 highlights (in dots) that
part of the Q-DAG for computing the contribution of the battery sensor.

5.2 Q-DAG Reduction

After generating a Q-DAG, one proceeds by reducing it using graph rewrite rules. Figure 16
shows an example of such reduction with a Q-DAG that is restricted to one query node
for simplicity. To give an idea of the kind of reduction that has been applied, consider the
partial Q-DAG enclosed by dots in this �gure. Figure 17 compares this reduced Q-DAG with
the unreduced one from which it was generated. Given our goal of generating Q-DAGs that
(a) can be evaluated as e�ciently as possible and (b) require minimal space to store, it is

170

A Practical Paradigm for Implementing Belief-Network Inference

F-S fuel-sensor

B-S battery-sensor

A-S alternator-sensor

O-S oil-sensor

KEY

empty)
ESN(F-S, ESN(B-S, ESN(B-S, ESN(O-S, ESN(O-S,ESN(F-S, ESN(A-S,

full) dead) charged) not-OK)
ESN(A-S,

OK) low) normal)
.4 .6 .36 .64 .45 .55 .27 .73

P(F=pump)

 .05

P(F=pump,e)

* *

+

*

* *

+

* *

+

* *

+

Figure 16: A partial Q-DAG for the car example.

* *

+

+

+

+

*

*

ESN(B-S,

P(B=charged|
F=pump)F=pump,B=charged)

*

*

ESN(B-S,

charged)

F=pump)

P(B-S=charged|

*

*

ESN(B-S,

F=pump)

P(B-S=dead|
F=pump,B=dead)

P(B=dead| P(B-S=dead|
F=pump,B=dead)

P(B=dead|

dead) dead)

ESN(B-S, ESN(B-S,

dead) charged)

.36 .64

 .2.8 .4 .6.6 .4.4.6

(a) Reduced Q-DAG

(b) Original Q-DAG

*

*

ESN(B-S,

charged)

P(B=charged|
F=pump)F=pump,B=charged)

P(B-S=charged|

Figure 17: Reduced and unreduced Q-DAGs for the car diagnosis example.

important to see, even in a simple example, how Q-DAG reduction can make a big di�erence
in their size.

171

Darwiche & Provan

5.3 Q-DAG Evaluation

Now that we have a reduced Q-DAG, we can use it to compute answers to diagnostic queries.
This section presents examples of this evaluation with respect to the generated Q-DAG.

Suppose that we obtain the readings dead, normal, ok and full for the battery, oil,
alternator and fuel sensors, respectively. And let us compute the probability distribution
over the fault variable. This obtained evidence is formalized as follows:

- E(battery sensor) = dead ,

- E(oil sensor) = normal ,

- E(alternator sensor) = ok ,

- E(fuel sensor) = full .

Evidence-speci�c nodes can now be evaluated according to De�nition 3. For example, we
have

ME [n(battery sensor ; charged)] = 0;

and
ME [n(battery sensor ; dead)] = 1:

The evaluation of evidence-speci�c nodes is shown pictorially in Figure 18(a). De�nition 3
can then be used to evaluate the remaining nodes: once the values of a node's parents
are known, the value of that node can be determined. Figure 18(b) depicts the results of
evaluating other nodes. The result of interest here is the probability 0.00434 assigned to the
query node Pr(fault = broken fuel pump; e).

Suppose now that evidence has changed so that the value of fuel sensor is empty instead
of full. To update the probability assigned to node Pr (fault = broken fuel pump; e), a brute
force method will re-evaluate the whole Q-DAG. However, if a forward propagation scheme
is used to implement the node evaluator, then only four nodes need to be re-evaluated in
Figure 18(b) (those enclosed in circles) instead of thirteen (the total number of nodes). We
stress this point because this re�ned updating scheme, which is easy to implement in this
framework, is much harder to achieve when one attempts to embed it in standard belief-
network algorithms based on message passing.

6. Concluding Remarks

We have introduced a new paradigm for implementing belief-network inference that is ori-
ented towards real-world, on-line applications. The proposed framework utilizes knowledge
of query and evidence variables in an application to compile a belief network into an arith-
metic expression called a Query DAG (Q-DAG). Each node of a Q-DAG represents a numeric
operation, a number, or a symbol that depends on available evidence. Each leaf node of a
Q-DAG represents the answer to a network query, that is, the probability of some event of
interest. Inference on Q-DAGs is linear in their size and amounts to a standard evaluation
of the arithmetic expressions they represent.

A most important point to stress about the work reported here is that it is not proposing
a new algorithm for belief-network inference. What we are proposing is a paradigm for

172

A Practical Paradigm for Implementing Belief-Network Inference

not-OK)
ESN(A-S, ESN(O-S,

normal)
ESN(B-S,
charged)

ESN(B-S,
dead)

.6

.60

not-OK)
ESN(A-S, ESN(O-S,

low)
ESN(O-S,
normal)

ESN(B-S,
charged)

ESN(B-S,
dead)

ESN(A-S,
OK)

ESN(F-S,
empty) full)

ESN(F-S,

.4 .6 0 10

Pr(F=pump,e)

.36 .64 .45 .55 .27 .730 1 1 0 1

*

Pr(F=pump)

*

+

* *

+

* *

+

* *

+.05

.36 0 0 .55 0 .73

.36 .55 .73

*

.0043362

ESN(O-S,
low)

ESN(A-S,
OK)

ESN(F-S,
empty) full)

ESN(F-S, ESN values

Pr(F=pump,e)

.4 .6 .36 .64 .45 .55 .27 .73

* *

+

* *

+

* *

+

* *

+.05

0 1 1 0 1 0 10

*

Pr(F=pump)

(a) Evaluating ESNs

ESN values

(b) Propagating probabilities

Figure 18: Evaluating the Q-DAG for the car diagnosis example given evidence for sensors.
The bar in (a) indicates the instantiation of the ESNs. The shaded numbers in
(b) indicate probability values that are computed by the node evaluator. The
circled operations on the left-hand-side of (b) are the only ones that need to be
updated if evidence for the fuel-system sensor is altered, as denoted by the circled
ESNs.

173

Darwiche & Provan

implementing belief-network inference that is orthogonal to standard inference algorithms
and is engineered to meet the demands of real-world, on-line applications. This class of
applications is typically demanding for the following reasons:

1. It typically requires very short response time, i.e., milliseconds.

2. It requires software to be written in specialized languages, such as ADA, C++, and
assembly before it can pass certi�cation procedures.

3. It imposes severe restrictions on the available software and hardware resources in order
to keep the cost of a \unit" (such as an electromechanical device) as low as possible.

To address these real-world constraints, we are proposing that one compile a belief network
into a Q-DAG as shown in Figure 3 on and use a Q-DAG evaluator for on-line reasoning. This
brings down the required memory to that needed for storing a Q-DAG and its evaluator. It
also brings down the required software to that needed for implementing a Q-DAG evaluator,
which is very simple as we have seen earlier.

Our proposed approach still requires a belief-network algorithm to generate a Q-DAG,
but it makes the e�ciency of such an algorithm less of a critical factor.11 For example,
we show that some standard optimizations in belief-network inference, such as pruning and
caching, become less critical in a Q-DAG framework since these optimizations tend to be
subsumed by simple Q-DAG reduction techniques, such as numeric reduction.

The work reported in this paper can be extended in at least two ways. First, further Q-
DAG reduction techniques could be explored, some oriented towards reducing the evaluation
time of Q-DAGs, others towards minimizing the memory needed to store them. Second, we
have shown that some optimization techniques that dramatically improve belief-network
algorithms may become irrelevant to the size of Q-DAGs if Q-DAG reduction is employed.
Further investigation is needed to prove formal results and guarantees on the e�ectiveness
of Q-DAG reduction.

We close this section by noting that the framework we proposed is also applicable to
order-of-magnitude (OMP) belief networks, where multiplication and addition get replaced
by addition and minimization, respectively (Goldszmidt, 1992; Darwiche & Goldszmidt,
1994). The OMP Q-DAG evaluator, however, is much more e�cient than its probabilistic
counterpart since one may evaluate a minimization node without having to evaluate all its
parents in many cases. This can make considerable di�erence in the performance of a Q-DAG
evaluator.

Acknowledgements

Most of the work in this paper was carried out while the �rst author was at Rockwell Science
Center. Special thanks to Jack Breese, Bruce D'Ambrosio and to the anonymous reviewers
for their useful comments on earlier drafts of this paper.

11. We have shown how clustering and conditioning algorithms can be used for Q-DAG generation, but other
algorithms such as SPI (Li & D'Ambrosio, 1994; Shachter et al., 1990) can be used as well.

174

A Practical Paradigm for Implementing Belief-Network Inference

Appendix A. Proof of Theorem 1

Without loss of generality, we assume in this proof that all variables are declared as evidence
variables. To prove this soundness theorem, all we need to show is that each Q-DAG po-
tential will evaluate to its corresponding probabilistic potential under all possible evidence.
Formally, for any cluster S and variables X , the matrices of which are assigned to S, we
need to show that

ME(
O
X

n(PrX)
 n(�X)) =
Y
X

PrX�X (1)

for a given evidence E . Once we establish this, we are guaranteed that Qnode(X)(x) will
evaluate to the probability Pr(x; e) because the application of
 and � in the Q-DAG algo-
rithm is isomorphic to the application of � and + in the probabilistic algorithm, respectively.

To prove Equation 1, we will extend the Q-DAG node evaluatorME to mappings in the
standard way. That is, if f is a mapping from instantiations to Q-DAG nodes, then ME(f)
is de�ned as follows:

ME(f)(x) =def ME(f(x)):

That is, we simply apply the Q-DAG node evaluator to the range of mapping f .
Note that ME(f
 g) will then be equal to ME(f)ME(g). Therefore,

ME(
O
X

n(PrX)
 n(�X))

=
Y
X

ME(n(PrX))ME(n(�X))

=
Y
X

PrXME(n(�X)) by de�nition of n(PrX):

Note also that by de�nition of n(�X), we have that n(�X)(x) equals n(X; x). Therefore,

ME(n(�X))(x) = ME(n(�X)(x))

= ME(n(X; x))

=

(
1; if E(X) = x or E(X) = �
0; otherwise

= �X(x):

Therefore,
ME(

O
X

n(PrX)
 n(�X)) =
Y
X

PrX�X :

References

Darwiche, A., & Goldszmidt, M. (1994). On the relation between kappa calculus and proba-
bilistic reasoning. In Proceedings of the Tenth Conference on Uncertainty in Arti�cial
Intelligence (UAI), pp. 145{153.

Darwiche, A., & Provan, G. (1995). Query DAGs: A practical paradigm for implementing
on-line causal-network inference. Tech. rep. 95-86, Rockwell Science Center, Thousand
Oaks, CA.

175

Darwiche & Provan

Goldszmidt, M. (1992). Qualitative probabilities: A normative framework for commonsense
reasoning. Tech. rep. R-190, University of California at Los Angeles, Ph.D. thesis.

Jensen, F. V., Lauritzen, S., & Olesen, K. (1990). Bayesian updating in recursive graphical
models by local computation. Computational Statistics Quarterly, 4, 269{282.

Li, Z., & D'Ambrosio, B. (1994). E�cient Inference in Bayes Networks as a Combinatorial
Optimization Problem. International Journal of Approximate Reasoning, 11, 55{81.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. Morgan Kaufmann Publishers, Inc., San Mateo, California.

Peot, M. A., & Shachter, R. D. (1991). Fusion and propagation with multiple observations
in belief networks. Arti�cial Intelligence, 48 (3), 299{318.

Shachter, R., Andersen, S., & Szolovits, P. (1994). Global Conditioning for Probabilistic
Inference in Belief Networks. In Proc. Tenth Conference on Uncertainty in AI, pp.
514{522 Seattle WA.

Shachter, R., D'Ambrosio, B., & del Favero, B. (1990). Symbolic Probabilistic Inference in
Belief Networks. In Proc. Conf. on Uncertainty in AI, pp. 126{131.

Shenoy, P. P., & Shafer, G. (1986). Propagating belief functions with local computations.
IEEE Expert, 1 (3), 43{52.

176

