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Abstract


We investigate the computational properties of the spatial algebra RCC-5 which is a restricted


version of the RCC framework for spatial reasoning. The satis�ability problem for RCC-5 is known


to be NP-complete but not much is known about its approximately four billion subclasses. We


provide a complete classi�cation of satis�ability for all these subclasses into polynomial and NP-


complete respectively. In the process, we identify all maximal tractable subalgebras which are four


in total.


1. Introduction


Qualitative spatial reasoning has received a constantly increasing amount of interest in the literature.
The main reason for this is, probably, that spatial reasoning has proved to be applicable to real-
world problems in, for example, geographical database systems (Egenhofer, 1991; Grigni, Papadias,
& Papadimitriou, 1995) and molecular biology (Cui, 1994). In both these applications, the size of
the problem instances can be huge, so the complexity of problems and algorithms is a highly relevant
area to study. However, questions of computational complexity have not received so much attention
in the literature; two notable exceptions are the results reported by Nebel (1995) and Renz and
Nebel (1997). In this article we take a small step towards a better understanding of complexity
issues in qualitative spatial reasoning.


A well-known framework for qualitative spatial reasoning is the so-called RCC approach (Randell
& Cohn, 1989; Randell, Cui, & Cohn, 1992). This approach is based on modelling qualitative spatial
relations between regions using �rst-order logic. Of special interest, from a complexity-theoretic
standpoint, are the two subclasses RCC-5 and RCC-8. It is well-known that both RCC-5 and
RCC-8 have quite weak expressive power. Although they can be used to describe spatial situations,
they are very general and should perhaps better be described as topological algebras. However, we
will denote these algebras as spatial algebras in order to avoid terminological confusion; the term
topological algebra has a well-established but completely di�erent meaning in mathematics (Mallios,
1986).


Bennett (1994) has shown the su�ciency of using propositional logics for reasoning about RCC-
5 and RCC-8. Hence, the reasoning becomes more e�cient when compared to reasoning in a full
�rst-order logic. Bennett's approach uses classical propositional logic for RCC-5 and intuitionistic
propositional logic for RCC-8. Unfortunately, these logics are known to be computationally hard.
The satis�ability problem for classical propositional logic and intuitionistic propositional logic is NP-
complete (Cook, 1971) and Pspace-complete (Statman, 1979) respectively. However, the complexity
of the underlying logic does not carry over in both cases; Renz and Nebel (1997) have shown that
the satis�ability problem for both RCC-5 and RCC-8 is NP-complete. The full proofs can be found
in (Renz, 1996).


These �ndings motivate the search for tractable subclasses of RCC-5 and RCC-8. Nebel (1995)
showed that reasoning with the basic relations in RCC-8 is a polynomial-time problem. Renz and
Nebel (1997) improved this result substantially by showing the following results:
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� There exists a large, maximal subclass of RCC-8, denoted bH8, which contains all basic relations
and is polynomial. bH8 contains 148 elements out of 256 (58%).


� There exists a large, maximal subclass of RCC-5, denoted bH5, which contains all basic relations
and is polynomial. bH5 contains 28 elements out of 32 (87%). Furthermore, this is the unique,
maximal subclass of RCC-5 containing all basic relations.


We will concentrate on RCC-5 in this article. The main result is a complete classi�cation of all
subclasses of RCC-5 with respect to tractability. The classi�cation makes it possible to determine
whether a given subclass is tractable or not by a simple test that can be carried out by hand or
automatically. We have thus gained a clear picture of the tractability borderline in RCC-5. As is
more or less necessary when showing results of this kind, the main proof relies on a case analysis
performed by a computer. The number of cases considered was roughly 4�104. The analysis cannot,
of course, be reproduced in a research paper or be veri�ed manually. Hence, we include a description
of the programs used. The programs are also available as an on-line appendix to this article.


The structure of the article is as follows: Section 2 de�nes RCC-5 and some auxiliary concepts.
Section 3 contains the tractability proofs for three subclasses of RCC-5. In Section 4 we show that
these subclasses together with bH5 are the only maximal tractable subclasses of RCC-5. The article
concludes with a brief discussion of the results.


2. The RCC-5 Algebra


We follow Bennett (1994) in our de�nition of RCC-5. RCC-5 is based on the notions of regions and
binary relations on them. A region p is a variable interpreted over the non-empty subsets of some
�xed set. It should be noted that we do not require the sets to be open sets in some topological
space. This is no limitation since it is impossible to distinguish interior points from boundary points
in RCC-5. Thus we can take any set X and use the discrete topology T = hX ; 2X i, where every
subset of X is an open set in T .


We assume that we have a �xed universe of variable names for regions. Then, an R-interpretation
is a function that maps region variables to the non-empty subsets of some set.


Given two interpreted regions, their relation can be described by exactly one of the elements of
the set B of �ve basic RCC-5 relations. The de�nition of these relations can be found in Table 1.
Figure 1 shows 2-dimensional examples of the relations in RCC-5. A formula of the formXBY where
X and Y are regions and B 2 B, is said to be satis�ed by an R-interpretation i� the interpretation
of the regions satis�es the relations speci�ed in Table 1.


To express inde�nite information, unions of the basic relations are used, written as sets of basic
relations, leading to 25 binary RCC-5 relations. Naturally, a set of basic relations is to be interpreted


as a disjunction of the basic relations. The set of all RCC-5 relations 2B is denoted by R5. Relations
of special interest are the null relation ? (also denoted by ?) and the universal relation B (also
denoted >).


A formula of the form XfB1; : : : ; BngY is called an RCC-5 formula. Such a formula is satis�ed
by an R-interpretation = i� XBiY is satis�ed by = for some i, 1 � i � n. A �nite set � of RCC-5
formulae is said to be R-satis�able i� there exists an R-interpretation = that satis�es every formula
of �. Such a satisfying R-interpretation is called an R-model of �. Given an R-interpretation =
and a variable v, we write =(v) to denote the value of v under the interpretation =.


The reasoning problem we will study is the following:


Instance: A �nite set � of RCC-5 formulae.
Question: Does there exist an R-model of �?
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XfDRgY i� X \ Y = ?
XfPOgY i� 9a; b; c : a 2 X; a 62 Y; b 2 X; b 2 Y; c 62 X; c 2 Y
XfPPgY i� X � Y


XfPPIgY i� X � Y


XfEQgY i� X = Y


Table 1: The �ve basic relations of RCC-5.


YX YX


X


Y


X


Y


Y X X Y


DR(X;Y ) PO(X;Y ) PP(X;Y ) PPI(X;Y ) EQ(X;Y )


Figure 1: Pictorial example of the relations in RCC-5.


We denote this problem by RSAT. In the following, we often consider restricted versions of RSAT
where the relations used in formulae in � are only from a subset S of R5. In this case we say that �
is a set of formulae over S and we use a parameter in the problem description to denote the subclass
under consideration, e.g., RSAT(S). Note that an RSAT problem instance can be represented by a
labelled directed graph, where the nodes are region variables and the arcs are labelled by relations
between variables. Given an instance � of RSAT, we say that such a graph is a graph representation
of �.


We continue by de�ning an algebra over the RCC-5 relations.


De�nition 2.1 Let B = fDR; PO; PP; PPI; EQg. The RCC-5 algebra consists of the set R5 = 2B


and the operations unary converse (denoted by ^), binary intersection (denoted by \) and binary
composition (denoted by �). They are de�ned as follows:


8X;Y : XR^Y i� Y RX


8X;Y : X(R \ S)Y i� XRY ^XSY
8X;Y : X(R � S)Y i� 9Z : (XRZ ^ ZSY )


If S is a subset of R5, S is said to be a subalgebra of RCC-5 i� S is closed under converse, intersection
and composition. It can easily be veri�ed that R � S =


S
fB �B0jB 2 R;B0 2 Sg, i.e., composition


is the union of the component-wise composition of basic relations.
Next, we introduce a closure operation. The closure operation transforms a given subclass of


R5 to one that is polynomially equivalent to the original subclass with respect to satis�ability. The
operation is similar to the closure operation for RCC-5 introduced by Renz (1996) but it does not
pose the same restrictions on the given subclass. (Renz's operation requires fEQg to be a member
of the subclass to be closed.)


De�nition 2.2 Let S � R5. Then we denote by S the closure of S, de�ned as the least subalgebra
containing S closed under converse, intersection and composition.


Observe that a subset S of R5 is a subalgebra i� S = S.
The next lemma is given without proof. A proof of the analogous result for Allen's algebra can


be found in Nebel and B�urckert (1995).
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Lemma 2.3 Let S � R5. Then RSAT(S) can be polynomially transformed to RSAT(S) and vice
versa.


Corollary 2.4 Let S � R5. RSAT(S) is polynomial i� RSAT(S) is polynomial. RSAT(S) is
NP-complete i� RSAT(S) is NP-complete.


3. Tractable Subclasses of RCC-5


We begin this section by de�ning four tractable subalgebras of RCC-5, which can be found in Table 2.
Later on, we show that these algebras are the only maximal tractable subalgebras of RCC-5. The
tractability of the �rst algebra, R28


5 , has been established by Renz and Nebel (1997). The name R28
5


reects the fact that the algebra contains 28 elements.


Theorem 3.1 RSAT(R28
5 ) is polynomial.


The tractability of our second algebra, R20
5 , can be settled quite easily. The algorithm can be found


in Figure 2.


Lemma 3.2 Let � be an instance of RSAT(R20
5 ). The algorithm A20 accepts on input � i� � has


an R-model.


Proof: if: We show the contrapositive, i.e., if A20 rejects then � has no R-model. Clearly, the
satis�ability of � is preserved under the transformations made in lines 7-10. Note that if XRX 2 �
then EQ 2 R if � is satis�able. Thus � is not satis�able if the algorithm rejects in line 5. Similarly,
� is not satis�able if the algorithm rejects in line 6.


only-if: Consider the set � after the completion of line 11. We denote this set by �0. Obviously, �0


is satis�able if the initial � was satis�able. Also observe that line 7 ensures that �0 does not relate
any variables with EQ. Furthermore, line 8 guarantees that there is at most one relation that relates
two variables.


Now, we construct an R-model M for �0 as follows: Let V be the set of variables in �0. Let
M assign non-empty sets that are pairwise disjoint to the members of V . Let U =


S
X2V M (X).


Introduce a set of values U 0 = f�X;Y j X;Y 2 V g satisfying the following:


1. �X;Y = �Z;W i� X = Z and Y = W ; and


2. for arbitrary X;Y 2 V , �X;Y 62 U .


For each relation of the type XfPOgY or XfPO; EQgY , extend the sets M (X) and M (Y ) with the
element �X;Y .


Clearly, two sets X;Y are disjoint (and are thus related by DR) under M unless XfPOgY or
XfPO; EQgY is in �. But in these cases, X and Y must not be disjoint. In fact, by introducing
�X;Y , we have forced XfPOgY to hold under M which satis�es formulae of the type XfPOgY as well
as formulae of the type XfPO; EQgY . Hence,M is an R-model of �0 which implies the R-satis�ability
of �. 2


Theorem 3.3 RSAT(R20
5 ) is polynomial.


Proof: Algorithm A20 correctly solves the RSAT(R20
5 ) problem by the previous lemma. Further-


more, the number of iterations is bounded from above by the number of variables and the number
of formulae in the given instance and the tests can easily be performed in polynomial time. 2


Next we show the tractability of RSAT(R17
5 ).
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R28
5 R20


5 R17
5 R14


5


? � � � �
fDRg � �
fPOg � �
fDR; POg � �
fPPg � �
fDR; PPg � �
fPO; PPg �
fDR; PO; PPg � �
fPPIg � �
fDR; PPIg � �
fPO; PPIg �
fDR; PO; PPIg � �
fPP; PPIg �
fDR; PP; PPIg � �
fPO; PP; PPIg � �
fDR; PO; PP; PPIg � � �
fEQg � � � �
fDR; EQg � � �
fPO; EQg � � �
fDR; PO; EQg � � �
fPP; EQg � � �
fDR; PP; EQg � � �
fPO; PP; EQg � �
fDR; PO; PP; EQg � � �
fPPI; EQg � � �
fDR; PPI; EQg � � �
fPO; PPI; EQg � �
fDR; PO; PPI; EQg � � �
fPP; PPI; EQg � �
fDR; PP; PPI; EQg � � �
fPO; PP; PPI; EQg � � �
> � � � �


Table 2: The maximal tractable subalgebras of RCC-5.


Theorem 3.4 RSAT(R17
5 ) is polynomial.


Proof: Consider the algorithm A17 in Figure 2. If there exist X;Y such that X?Y 2 � then �
is not satis�able. Otherwise, we can let all variables have the same value. Since EQ is a member of
every relation that occurs in �, this interpretation is an R-model of �. 2


We continue by proving that RSAT(R14
5 ) is a tractable problem. Let


R9
5 = ffPP; EQgg [ fR [ fPP; PPIg jR 2 R5g:


Using a machine-assisted proof, it can be shown that R14
5 = R9


5 so it is su�cient to prove the
tractability of RSAT(R9


5) by Corollary 2.4. The program that we used for showing this is available
as an on-line appendix to this article.


From now on, let � be an arbitrary instance of RSAT(R9
5) and G = hV;Ei be its graph represen-


tation. The following proofs are similar in spirit to some of the proofs appearing in Drakengren and
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1 algorithm A20


2 Input: An instance � of RSAT(R20
5 ).


3 repeat


4 �0  �
5 if 9X;R : XRX 2 � and EQ 62 R then reject


6 if 9X;Y : X?Y 2 � then reject


7 if 9X;Y : X 6= Y and XfEQgY 2 � then substitute Y for X in �
8 if 9X;Y;R; S : XRY 2 � and XSY 2 � then


9 � (� � fXRY;XSY g) [ fX(R \ S)Y g
10 if 9X;R : XRX 2 � and EQ 2 R then � �� fXRXg
11 until � = �0


12 accept


1 algorithm A17


2 Input: An instance � of RSAT(R17
5 ).


3 if 9X;Y such that X?Y 2 � then reject


4 else accept


1 algorithm A9


2 Input: An instance � of RSAT(R9
5) with graph representation G.


3 Let G0 be the graph obtained from G by removing arcs which are not labelled fPP; EQg.
4 Find all strongly connected components C in G0


5 for every arc e in G whose relation does not contain EQ do


6 if e connects two nodes in some C then reject


7 accept


Figure 2: Algorithms for RSAT(R20
5 ), RSAT(R17


5 ) and RSAT(R9
5).


Jonsson (1996). The algorithm itself is reminiscent of an algorithm by van Beek (1992) for deciding
satis�ability in the point algebra.


De�nition 3.5 A RCC-5 relation R is said to be an acyclic relation i� any cycle in any G with R
on every arc is never satis�able.


The relation PP is an example of an acyclic relation while fPP; EQg is not acyclic. We continue by
showing a few properties of acyclic relations.


Proposition 3.6 Let R be an acyclic relation. Then every relation R0 � R is acyclic.


Proof: Since taking subsets of R constrains satis�ability further, the result follows. 2


Proposition 3.7 Let R be an acyclic relation, and choose A such that A � fR0 jR0 � Rg. Then,
any cycle in G where every arc is labelled by some relation in A is unsatis�able.


Proof: Same argument as in the previous proposition. 2


The following de�nition is needed in the following proofs.


De�nition 3.8 Let I be an instance of the R-satis�ability problem,M a model for I, and r 2 R5


a relation between two region variables X and Y in I. Then r is said to be satis�ed as r0 in M for
any relation r0 � r, such that Xr0Y is satis�ed in M .
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The de�nition may seem a bit cumbersome but the essence should be clear. As an example, let X
and Y be region variables related by XfPO; PPgY , and M a model where X is interpreted as f1; 2g
and Y as f1; 2; 3g. Then in M , fPO; PPg is satis�ed as fPPg, but also as fPO; PPg.


Lemma 3.9 Let R be an acyclic relation, and A;A0 sets such that A � fR0 j R0 � Rg and A0 �
fa [ fEQg j a 2 Ag. Then, every cycle C labelled by relations in A [ A0 is satis�able i� it contains
only relations from A0. Furthermore, all relations in the cycle have to be satis�ed as EQ.


Proof: only-if: Suppose that a cycle C is satis�able and that it contains some relation from
A. Apply induction on the number n of arcs in the cycle. For n = 1, we get a contradiction by
Proposition 3.7. So, suppose for the induction that C contains n + 1 arcs. Let M be an R-model
for the relations in C. It cannot be the case that every relation in C is satis�ed in M as some
relation in A, by Proposition 3.7. Thus, some relation R0 in C has to be satis�ed as EQ. But then
we can collapse the two variables connected by R0 to one variable, and we have a cycle with n nodes
containing a relation from A. This contradicts the induction hypothesis.


if: Suppose that a cycle C contains only relations in A0. Then C can be satis�ed by choosing EQ on
every arc. Notice that the only-if part implies that C must be satis�ed by choosing EQ on every arc.
Hence, the variables are forced to be equal. 2


After having studied acyclic relations, we will now turn our attention to DAG-satisfying relations.
The formal de�nition is as follows.


De�nition 3.10 A basic relation B is said to be DAG-satisfying i� any DAG (directed acyclic
graph) labelled only by relations containing B is satis�able, i.e., if the corresponding RSAT problem
has a model.


A typical example of a DAG-satisfying relation is EQ. Given a DAG labelled only by relations con-
taining EQ, we can always satisfy these relations by assigning some non-empty set S to all variables.


We can now show that PP is a DAG-satisfying relation.


De�nition 3.11 Let G be an arbitrary DAG. A node v in G is said to be a terminal node i� there
are no arcs which start in v.


Lemma 3.12 The basic relation PP is DAG-satisfying.


Proof: Let G be a DAG labelled only by relations containing PP. We show that G is satis�ed
by some R-model M . Induction on n which is the number of nodes in G. The case when n = 1 is
trivial. Suppose that G has n+1 nodes and remove a terminal node g. By induction, the remaining
graph G0 = hV 0; E0i is satis�able by a model M 0. We shall now construct a model M of G, which
agrees with M 0 on every variable in G0. Let S =


S
fM 0(v) j v 2 V 0g and let � be an element not in


S. Let M (g) = S [ f�g. Obviously,M is a model of G. 2


We now state a simple result from Drakengren and Jonsson (1996).


Lemma 3.13 Let G be irreexive1 and have an acyclic subgraph D. Then those arcs of G which
are not in D can be reoriented so that the resulting graph is acyclic.


By specializing this result, we get the next lemma.


Lemma 3.14 Let G be irreexive with an acyclic subgraph D and let the arcs of D be labelled by
relations containing PP, and the arcs not in D being labelled by relations containing PP and PPI.
Then G is R-satis�able.


1. A graph is irreexive i� it has no arcs from a node v to the node v.
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Proof: Reorient the arcs of G such that the resulting graph is acyclic. This is always possible by
the previous lemma. Furthermore, whenever an arc is reoriented, also invert the relation on that
arc, so that G0 is satis�able i� G is. By this construction, only arcs containing both PP and PPI


have been reoriented, so every arc in the DAG G0 contains PP and, thus, since PP is DAG-satisfying
by Lemma 3.12, G0 is satis�able. Consequently, G is also satis�able. 2


Lemma 3.15 Algorithm A9 correctly solves RSAT(R9
5).


Proof: Assume that the algorithm �nds a strongly connected component ofG0 (which then contains
only the relation fPP; EQg), containing two nodes that in G are connected by an arc e that is labelled
by a relation R0 which does not contain EQ. Then there exists a cycle C in which the relation of
every arc contains EQ, such that e connects two nodes in that C but e is not part of that cycle. By
Lemma 3.9, C can be satis�ed only by choosing the relation EQ on every arc in C, and since R0 does
not admit EQ, C is unsatis�able.


Otherwise, every such strongly connected component can be collapsed to a single node, removing
all arcs which start and end in the collapsed node. This transformation retains satis�ability using the
same argument as above. After collapsing, the subgraph obtained by considering only arcs labelled
fPP; EQg will be acyclic. Since the remaining arcs are labelled by relations containing both PP and
PPI, the graph is R-satis�able by Lemma 3.14. (Note that the graph will be irreexive since every
node is contained in some strongly connected component.) 2


Lemma 3.16 Given a graph G = hV;Ei, algorithm A9 runs in O(jV j+ jEj) time.


Proof: Strongly connected components can be found in O(jV j+ jEj) time (Baase, 1988) and the
remaining test can also be made in O(jV j+ jEj) time. 2


Theorem 3.17 RSAT(R14
5 ) can be solved in polynomial time.


Proof: RSAT(R9
5) is polynomial by the previous two lemmata. Since R14


5 = R9
5, RSAT(R


14
5 ) can


be solved in polynomial time by Corollary 2.4. 2


4. Classi�cation of RCC-5


Before we can give the classi�cation of RCC-5 we need two NP-completeness results.


Theorem 4.1 RSAT(S) is NP-complete if


1. (Renz & Nebel, 1997) C1 = ffPOg; fPP; PPIgg � S, or


2. C2 = ffDR; POg; fPP; PPIgg � S.


Proof: The proof for C2 is by polynomial-time reduction from RSAT(C1). Let � be an arbitrary
instance of RSAT(C1). Construct the following set:


�0 = fXfPP; PPIgY jXfPP; PPIgY 2 �g [ fXfDR; POgY jXfPOgY 2 �g:


Clearly, �0 can be obtained from � in polynomial time and �0 is an instance of RSAT(C2). We show
that � is satis�able i� �0 is satis�able.


only-if: Assume that there exists an R-model I of �. It is not hard to see that I is also an R-model
of I0 since ifXfPOgY under I then XfDR; POgY under I. Thus �0 is R-satis�able if � is R-satis�able.


if: Assume the existence of an R-model I 0 that assigns subsets of some set U to the region variables
of �0. Let � be an element such that � 62 U . We construct a new interpretation I as follows:
I(x) = I0(x) [ f�g for every variable x in �0. It can easily be seen that the following holds for I:
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1. If xfDRgy under I0 then xfPOgy under I.


2. If xfPOgy under I0 then xfPOgy under I.


3. If xfPPgy under I0 then xfPPgy under I.


4. If xfPPIgy under I0 then xfPPIgy under I.


It is easy to see that if xfPP; PPIgy under I0 then xfPP; PPIgy under I. Similarly, if xfDR; POgy under
I 0 then xfPOgy under I. It follows that I is a model of � so � is R-satis�able if �0 is R-satis�able.


2


The main theorem can now be stated and proved.


Theorem 4.2 For S � R5, RSAT(S) is polynomial i� S is a subset of some member of RP =
fR28


5 ; R
20
5 ; R


17
5 ; R


14
5 g, and NP-complete otherwise.


Proof: if: For each R 2 RP , RSAT(R) is polynomial as was shown in the previous section.
only-if: Choose S � R5 such that S is not a subset of any algebra in RP . For each subalgebra
R 2 RP , choose a relation x such that x 2 S and x 62 R. This can always be done since S 6� R. Let
X be the set of these relations and note that X is not a subset of any algebra in RP . The set RP
contains four algebras so by the construction of X, jXj � 4. Observe that RSAT(S) is NP-complete
if RSAT(X) is NP-complete.


To show that RSAT(S) has to be NP-complete, a machine-assisted case analysis of the following
form was performed:


1. Generate all subsets of R5 of size � 4. There are
4X
i=0


�
32
i


�
= 41449 such subsets.


2. Let T be such a set. Test: T is a subset of some subalgebra in RP or Ci � T for some
i 2 f1; 2g.


The test succeeds for all T . Hence, RSAT(S) is NP-complete by Corollary 2.4. 2


The program used for showing the previous theorem appears in the on-line appendix of this article.


5. Discussion


The main problem of reporting tractability results for restricted classes of problems is the di�culty
of isolating interesting and relevant subclasses. The systematic approach of building complete clas-
si�cations is a way of partially overcoming this problem. If the problem class under consideration
is regarded relevant, then its tractable subclasses should be regarded relevant if the computational
problem is of interest. This is especially true in spatial reasoning where the size of the problem in-
stances can be extremely large; one good example is spatial reasoning in connection with the Human
Genome project (Cui, 1994).


Another advantage with complete classi�cations is that they are more satisfactory from a scienti�c
point of view; to gain a clear picture of the borderline between tractability and intractability has
an intrinsic scienti�c value. A common critique is that complete classi�cations tend to generate
certain classes which are totally useless. For instance, the subalgebra R17


5 is certainly of no use.
It must be made clear that such critique is unjusti�ed since the researcher who makes a complete
classi�cation does not deliberately invent useless classes. Instead, if useless classes appear in a
complete classi�cation, they are unavoidable parts of the classi�cation.
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The work reported in this article can be extended in many di�erent ways. One obvious extension
is to study other computational problems than the RSAT problem. Renz (1996) has studied two
problems, RMIN and RENT, on certain subclasses of RCC-5 and RCC-8. The RMIN problem is to
decide if a set of spatial formulae � is minimal, i.e., whether all basic relations in every formula of
� can be satis�ed or not. The RENT problem is to decide whether a formulaXRY is entailed by a
set of spatial formulae. Grigni et al. (1995) study a stronger form of satis�ability which they refer
to as realizability: A �nite set � of RCC-5 formulae is said to be realizable i� there exist regions
on the plane bounded by Jordan curves which satisfy the relations in �. Grigni et al. (1995) have
shown that the realizability problem is much harder than the satis�ability problem. For instance,
deciding realizability of formulae constructed from the two relations DR and PO is NP-complete while
the satis�ability problem is polynomial. Certainly, further studies of the realizability problem would
be worthwhile.


Another obvious research direction is to completely classify other spatial algebras, such as RCC-
8. RCC-8 contains 2256 � 1077 relations so the question whether this is feasible or not remains to
be answered.


6. Conclusions


We have studied computational properties of RCC-5. All of the 232 possible subclasses are clas-
si�ed with respect to whether their corresponding satis�ability problem is tractable or not. The
classi�cation reveals that there are four maximal tractable subclasses of the algebra.
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