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Abstract


An algorithm that learns from a set of examples should ideally be able to exploit the
available resources of (a) abundant computing power and (b) domain-speci�c knowledge to
improve its ability to generalize. Connectionist theory-re�nement systems, which use back-
ground knowledge to select a neural network's topology and initial weights, have proven to
be e�ective at exploiting domain-speci�c knowledge; however, most do not exploit avail-
able computing power. This weakness occurs because they lack the ability to re�ne the
topology of the neural networks they produce, thereby limiting generalization, especially
when given impoverished domain theories. We present the Regent algorithm which uses
(a) domain-speci�c knowledge to help create an initial population of knowledge-based neu-
ral networks and (b) genetic operators of crossover and mutation (speci�cally designed for
knowledge-based networks) to continually search for better network topologies. Experi-
ments on three real-world domains indicate that our new algorithm is able to signi�cantly
increase generalization compared to a standard connectionist theory-re�nement system, as
well as our previous algorithm for growing knowledge-based networks.


1. Introduction


Many scienti�c and industrial problems can be better understood by learning from samples
of the task. For this reason, the machine learning and statistics communities devote con-
siderable research e�ort to inductive-learning algorithms. Often, however, these learning
algorithms fail to capitalize on a number of potentially available resources, such as domain-
speci�c knowledge or computing power, that can improve their ability to generalize. Using
domain-speci�c knowledge is desirable because inductive learners that start with an approx-
imately correct theory can achieve improved \generalization" (accuracy on examples not
seen during training) with signi�cantly fewer training examples (Ginsberg, 1990; Ourston
& Mooney, 1994; Pazzani & Kibler, 1992; Towell & Shavlik, 1994). Making e�ective use of
available computing power is desirable because, for many applications, it is more important
to obtain concepts that generalize well than it is to induce concepts quickly. In this arti-
cle, we present an algorithm, called Regent (RE�ning, with Genetic Evolution, Network
Topologies), that utilizes available computer time to extensively search for a neural-network
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topology that best explains the training data while minimizing changes to a domain-speci�c
theory.


Inductive learning systems that utilize a set of approximately correct, domain-speci�c
inference rules (called a domain theory) which describe what is currently known about
the domain, are called theory-re�nement systems. Making use of this knowledge has been
shown to be important since these rules may contain insight not easily obtainable from
the current set of training examples (Ourston & Mooney, 1994; Pazzani & Kibler, 1992;
Towell & Shavlik, 1994). For most domains, an expert who created the theory is willing
to wait for weeks, or even months, if a learning system can produce an improved theory.
Thus, given the rapid growth in computing power, we believe it is important for learning
techniques to be able to trade o� the expense of large numbers of computing cycles for gains
in predictive accuracy. Analogous to anytime planning techniques (Dean & Boddy, 1988),
we believe machine learning researchers should create better anytime learning algorithms.
Such learning algorithms should produce a good concept quickly, then continue to search
concept space, reporting the new \best" concept whenever one is found.


We concentrate on connectionist theory-re�nement systems, since they have been shown
to frequently generalize better than many other inductive-learning and theory-re�nement
systems (Fu, 1989; Lacher, Hruska, & Kuncicky, 1992; Towell, 1991). Kbann (Towell &
Shavlik, 1994) is an example of such a connectionist system; it translates the provided
domain theory into a neural network, thereby determining the network's topology, and
then re�nes the reformulated rules using backpropagation (Rumelhart, Hinton, & Williams,
1986). However, Kbann, and other connectionist theory-re�nement systems that do not
alter their network topologies, su�er when given impoverished domain theories { ones that
are missing rules needed to adequately learn the true concept (Opitz & Shavlik, 1995;
Towell & Shavlik, 1994). TopGen (Opitz & Shavlik, 1995) is an improvement over these
systems; it heuristically searches through the space of possible network topologies by adding
hidden nodes to the neural representation of the domain theory. TopGen showed statistically
signi�cant improvements overKbann in several real-world domains (Opitz & Shavlik, 1995);
however, in this paper we empirically show that TopGen nevertheless su�ers because it only
considers simple expansions of the Kbann network.


To address this limitation, we broaden the types of topologies that TopGen considers
by using genetic algorithms (GAs). We choose GAs for two reasons. First, GAs have
been shown to be e�ective optimization techniques because of their e�cient use of global
information (Goldberg, 1989; Holland, 1975; Mitchell, 1996). Second, GAs have an inherent
quality which makes them suitable for anytime learning. In \o�-line" application mode
(DeJong, 1975), GAs simulate many alternatives and output the best alternative seen so
far.


Our new algorithm, Regent, proceeds by �rst trying to generate, from the domain
theory, a diversi�ed initial population. It then produces new candidate networks via the
genetic operators of crossover and mutation, after which these networks are trained using
backpropagation. Regent's crossover operator tries to maintain the rule structure of the
network, while its mutation operator adds nodes to a network by using the TopGen al-
gorithm. Hence, our genetic operators are specialized for connectionist theory re�nement.
Experiments reported herein show that Regent is better able to search for network topolo-
gies than TopGen.
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The rest of the paper is organized as follows. In the next section, we briey argue for
the importance of e�ectively exploiting data, theory, and available computer time in the
learning process. We then review the Kbann and TopGen algorithms. We present the
details of our Regent algorithm in Section 4. This is followed by empirical results from
three Human Genome Project domains. In Section 6, we discuss these results, as well as
future work. We then review related work before concluding.


2. Using Data, Prior Knowledge, and Available CPU Cycles


A system that learns from a set of labeled examples is called an inductive learner (alter-
nately, a supervised, empirical, or similarity-based learner). The output for each example
is provided by a teacher, and the set of labeled examples given to a learner is called the
training set. The task of inductive learning is to generate from the training set a concept
description that correctly predicts the output of all future examples, not just those from
the training set. Many inductive-learning algorithms have been previously studied (e.g.,
Michalski, 1983; Quinlan, 1986; Rumelhart et al., 1986). These algorithms di�er both
in their concept-representation language, and in their method (or bias) for constructing a
concept within this language. These di�erences are important since they determine which
concepts a classi�er will induce.


An alternative to the inductive learning paradigm is to build a concept description not
from a set of examples, but by querying experts in the �eld and directly assembling a set of
rules that describe the concept (i.e., build an expert system; Waterman, 1986). A problem
with building expert systems is that the theories derived from interviewing the experts tend
to be only approximately correct. Thus, while the expert-provided domain theory is usually
a good �rst approximation of the concept to be learned, inaccuracies are frequently exposed
during empirical testing.


Theory-re�nement systems (Ginsberg, 1990; Ourston &Mooney, 1994; Pazzani & Kibler,
1992; Towell & Shavlik, 1994) are systems that revise a theory on the basis of a collection of
examples. These systems try to improve the theory by making minimal repairs to the theory
to make it consistent with the training data. Changes to the initial domain theory should
be kept to a minimum because the theory presumably contains useful information, even if
it is not completely correct. These hybrid learning systems are designed to learn from both
theory and data, and empirical tests have shown them to achieve high generalization with
signi�cantly fewer examples than purely inductive-learning techniques (Ourston & Mooney,
1994; Pazzani & Kibler, 1992; Towell & Shavlik, 1994). Thus, an ideal inductive-learning
system should be able to incorporate any background knowledge that is available in the
form of a domain theory to improve its ability to generalize.


As indicated earlier, available computer time is also an important resource since (a) com-
puting power is rapidly increasing, and (b) for most problems an expert is willing to wait a
lengthy period for an improved concept. For these reasons, one should develop \anytime"
learning algorithms that can continually improve the quality of their answer over time. Dean
and Boddy (1988) de�ned the criteria for an anytime algorithm to be: (a) the algorithm can
be suspended and then resumed with minimal overhead, (b) the algorithm can be stopped
at any time and return an answer, and (c) the algorithm must return answers that improve
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Figure 1: This is a classical regression example where a smooth function (the solid curve)
that does not �t all of the noisy data points (the x's) is probably a better predictor
than a high-degree polynomial (the dashed curve).


over time. While these criteria were created for planning and scheduling algorithms, they
can apply to inductive learning algorithms as well.1


Most standard inductive learners, such as backpropagation (Rumelhart et al., 1986) and
ID3 (Quinlan, 1986), are unable to continually improve their answers (at least until they
receive additional training examples). In fact, if run too long, these algorithms tend to
\over�t" the training set (Holder, 1991). Over�tting occurs when the learning algorithm
produces a concept that captures too much information about the training examples, and
not enough about the general characteristics of the domain as a whole. While these concepts
do a great job of classifying the training instances, they do a poor job of generalizing to
new examples { our ultimate measure of success. To help illustrate this point, consider
the typical regression case shown in Figure 1. Here, �tting noisy data with a high-degree
polynomial is likely to lead to poor generalization.


The general framework we use for encouraging our algorithm to improve its answer
over time is quite simple. We spend our computer time considering many di�erent possible
concept descriptions, scoring each possibility, and always keeping the description that scores
the best. Our framework is anytime with respect to the scoring function. The scoring
function is only an approximate measure of generalization and is obviously still prone to the
problems of over�tting; thus there is no guarantee that generalization will monotonically
decrease over time. Nevertheless, assuming an accurate scoring function, then as long as we
are considering a wide range of good possibilities, the quality of our best concept is likely
to improve for a longer period of time.


1. Our use of the term anytime learning di�ers from that of Grefenstette and Ramsey (1992); they use it
to mean continuous learning in a changing environment.
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3. Review of KBANN and TopGen


The goal of this research is to exploit both prior knowledge and available computing cycles
to search for the neural network that is most likely to generalize the best. We proceed
by choosing, as an initial guess, the network de�ned by the Kbann algorithm. We then
continually re�ne this topology to �nd the best network for our concept. Before presenting
our new algorithm (Regent), we give an overview of the Kbann algorithm as well as our
initial approach of re�ning a Kbann-created network's topology (TopGen).


3.1 The KBANN Algorithm


Kbann (Towell & Shavlik, 1994) works by translating a domain theory consisting of a set of
propositional rules directly into a neural network (see Figure 2). Figure 2a shows a Prolog-
like rule set that de�nes membership in category a. Figure 2b represents the hierarchical
structure of these rules, with solid lines representing necessary dependencies and dotted lines
representing prohibitory dependencies. Figure 2c represents the network Kbann creates
from this translation. It sets the biases so that nodes representing disjuncts have an output
near 1 only when at least one of their high-weighted antecedents is satis�ed, while nodes
representing conjuncts must have all of their high-weighted antecedents satis�ed (i.e., near
1 for positive links and near 0 for negative links). Otherwise activations are near 0. Kbann
creates nodes b1 and b2 in Figure 2c to handle the two rules disjunctively de�ning b. The
thin lines in Figure 2c represent low-weighted links that Kbann adds to allow these rules
to add new antecedents during backpropagation training. Following network initialization,
Kbann uses the available training instances to re�ne the network links. Refer to Towell
(1991) or Towell and Shavlik (1994) for more details.


Kbann has been successfully applied to several real-world problems, such as the control
of a chemical plant (Scott, Shavlik, & Ray, 1992), protein folding (Maclin & Shavlik, 1993),


(a) (b) (c)
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b c


d e f g h i j k
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b1 b2


a :− b, not c.
b :− d, f, g.


b :− d, not f, i.


c :− h, j, k.


Figure 2: KBANN's translation of a knowledge base into a neural network. Panel (a) shows
a sample propositional rule set in Prolog (Clocksin & Mellish, 1987) notation,
panel (b) illustrates this rule set's corresponding and/or dependency tree, and
panel (c) shows the resulting network created by Kbann's translation.
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�nding genes in a sequence of DNA (Opitz & Shavlik, 1995; Towell & Shavlik, 1994), and
ECG patient monitoring (Watrous, Towell, & Glassman, 1993). In each case, Kbann was
shown to produce improvements in generalization over standard neural networks for small
numbers of training examples. In fact, Towell (1991) favorably compared Kbann with
a wide variety of algorithms, including purely symbolic theory-re�nement systems, on a
version of the promoter and splice-junction tasks that we include as testbeds in Section 5.


While training the Kbann-created network alters the antecedents of existing rules, it
does not have the capability of inducing new rules because it does not add any additional
hidden nodes during training. For instance, Kbann is unable to add a third rule for
inferring b in Figure 2's example. To help illustrate this point, consider the following
example. Assume that Figure 2's target concept consists of Figure 2a's domain theory plus
the rule:


b :- not d, e, g.


Although we trained the Kbann network shown in Figure 2c with all possible examples of
this target concept, it was unable to completely learn the conditions under which a is true.
The topology of the Kbann network must be modi�ed in order to learn this new rule.


Studies show (Opitz & Shavlik, 1995; Towell, 1991) that while Kbann is e�ective at
removing extraneous rules and antecedents in an expert-provided domain theory, its gen-
eralization ability su�ers when given \impoverished" domain theories { theories that are
missing rules or antecedents needed to adequately learn the true concept. An ideal con-


nectionist theory-re�nement algorithm, therefore, should be able to dynamically expand the


topology of its network during training.


3.2 The TopGen Algorithm


TopGen (Opitz & Shavlik, 1995) addresses Kbann's limitation by heuristically searching
through the space of possible expansions to a knowledge-based neural network { a network
whose topology is determined by the direct mapping of the dependencies of a domain theory
(e.g., a Kbann network). TopGen proceeds by �rst training the Kbann network, then
placing it on a search queue. In each cycle, TopGen takes the best network from the search
queue, estimates where errors occur in the network, adds new nodes in response to these
estimates, trains these new networks, then places them back on the queue. TopGen judges
where errors occur in a network by using training examples to increment two counters for
each node, one for false negatives and one for false positives.


Figure 3 illustrates the possible ways TopGen can add nodes to one of its networks. In a
symbolic rule base that uses negation-by-failure, one can decrease false negatives by either
dropping antecedents from existing rules or adding new rules to the rule base. Kbann


is e�ective at removing antecedents from existing rules, but is unable to add new rules;
therefore, TopGen adds nodes, intended for decreasing false negatives, in a fashion that is
analogous to adding a new rule to the rule base. If the existing node is an or node, TopGen
adds a new node as its child (see Figure 3a), and fully connects this new node to the input
nodes. When the existing node is an and node, TopGen creates a new or node that is
the parent of the original and node and another new node that TopGen fully connects to
the inputs (see Figure 3c); TopGen moves the outgoing links of the original node (A in
Figure 3c) to become the outgoing links of the new or node.
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Figure 3: Possible ways to add new nodes to a knowledge-based neural network (arcs in-
dicate AND nodes). To decrease false negatives, we wish to broaden the appli-
cability of the node. Conversely, to decrease false positives, we wish to further
constrain the node.


In a symbolic rule base, one can decrease false positives by either adding antecedents
to existing rules or removing rules from the rule base. Kbann can e�ectively remove
rules, but it is less e�ective at adding antecedents to rules and is unable to invent (i.e.,
constructively induce; Michalski, 1983) new terms as antecedents. Thus TopGen adds new
nodes, intended to decrease false positives, in a fashion that is analogous to adding new
constructively induced antecedents to the network. Figures 3b and 3d illustrates how this is
done (analogous to Figures 3a and 3c explained above). Refer to Opitz and Shavlik (1993;
1995) for more details.


TopGen showed statistically signi�cant improvements over Kbann in several real-world
domains, and comparative experiments with a simpler approach to adding nodes veri�ed
that new nodes must be added in an intelligent manner (Opitz & Shavlik, 1995). In this
article, however, we increase the number of networks TopGen considers during its search
and show that the increase in generalization is primarily limited to the �rst few networks
considered. Therefore, TopGen is not so much an \anytime" algorithm, but rather is a �rst
step towards one. This is mostly due to the fact that TopGen only considers larger net-
works that contain the original Kbann network as subgraphs; however, as one increases the
number of networks considered, one should also increase the variety of networks considered
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during the search. Broadening the range of networks considered during the search through


topology space is the major focus of this paper.


4. The REGENT Algorithm


Our new algorithm, Regent, tries to broaden the types of networks that TopGen considers
with the use of GAs. We view Regent as having two phases: (a) genetically searching
through topology space, and (b) training each network using backpropagation's gradient
descent method. Regent uses the domain theory to aid in both phases. It uses the theory
to help guide its search through topology space and to give a good starting point in weight
space.


Table 1 summarizes the Regent algorithm. Regent �rst sets aside a validation set
(from part of the training instances) for use in scoring the di�erent networks. It then per-
turbs the Kbann-produced network to create an initial set of candidate networks. Next,
Regent trains these networks using backpropagation and places them into the popula-
tion. In each cycle, Regent creates new networks by crossing over and mutating networks
from the current population that are randomly picked proportional to their �tness (i.e.,
validation-set correctness). It then trains these new networks and places them into the
population. As it searches, Regent keeps the network that has the lowest validation-set
error as the best concept seen so far, breaking ties by choosing the smaller network in an
application of Occam's Razor. A parallel version of Regent trains many candidate net-
works at the same time using the Condor system (Litzkow, Livny, & Mutka, 1988), which
runs jobs on idle workstations.


A diverse initial population will broaden the types of networks Regent considers during
its search; however, since the domain theory may provide useful information that may not be
present in the training set, it is still desirable to use this theory when generating the initial
population. Regent creates diversity around the domain theory by randomly perturbing
the Kbann network at various nodes. Regent perturbs a node by either deleting it, or by
adding new nodes to it in a manner analogous to one of TopGen's four methods for adding


GOAL: Search for the best network topology describing the domain theory and data.


1. Set aside a validation set from the training instances.


2. Perturb the Kbann-produced network in multiple ways to create initial networks, then train
these networks using backpropagation and place them into the population.


3. Loop forever:


(a) Create new networks using the crossover and mutation operators.


(b) Train these networks with backpropagation, score with the validation set, and place into
the population.


(c) If a new network is the network with the lowest validation-set error seen so far (breaking
ties by preferring the smallest network), report it as the current best concept.


Table 1: The REGENT algorithm.
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Crossover Two Networks:


GOAL: Crossover two networks to generate two new network topologies.


1. Divide each network's hidden nodes into sets A and B using DivideNodes.


2. Set A forms one network, while set B forms another. Each new network is created as follows:


(a) A network inherits weight wji from its parent if nodes i and j either are also inherited
or are input or output nodes.


(b) Link unconnected nodes between levels with near-zero weights.


(c) Adjust node biases to keep original and or or function of each node (see text for expla-
nation).


DivideNodes:


GOAL: Divide the hidden nodes into sets A and B, while probabilistically maintaining each
network's rule structure.


While some hidden node is not assigned to set A or B:


(i) Collect those unassigned hidden nodes whose output is linked only to either previously-
assigned nodes or output nodes.


(ii) If set A or set B is empty:
For each node collected in part (i), randomly assign it to set A or set B.


Else
Probabilistically add the nodes collected in part (i) to set A or set B. Equation 1
shows the probability of being assigned to set A. The probability of being assigned
to set B is one minus this value.


Table 2: REGENT's method for crossing over networks.


nodes. (Should there happen to be multiple theories about a domain, all of them can be
used to seed the population.)


4.1 REGENT's Crossover Operator


Regent crosses over two networks by �rst dividing the nodes in each parent network into
two sets, A and B, then combining the nodes in each set to form two new networks (i.e., the
nodes in the two A sets form one network, while the nodes in the two B sets form another).
Table 2 summarizes Regent's method for crossover and Figure 4 illustrates it with an
example. Regent divides nodes, one level2 at a time, starting at the level nearest the
output nodes. When considering a level, if either set A or set B is empty, it cycles through
each node in that level and randomly assigns it to either set. If neither set is empty, nodes
are probabilistically placed into a set. The following equation calculates the probability of


2. Although one can de�ne level several di�erent ways, we de�ne a node's level as the longest path from it
to an output node.
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Figure 4: REGENT's method for crossing over two networks. The hidden nodes in each
original network are divided into the sets A and B; the nodes in the two A sets
form one new network, while the nodes in the two B sets form another. Grey lines
represent low-weighted links that are added to fully connect neighboring levels.


a given node being assigned to set A:


Prob(node i 2 setA) =


P
j2A jwjij


P
j2A jwjij+


P
j2B jwjij


; (1)


where j 2 A means node j is a member of set A and wji is the weight value from node i
to node j. The probability of belonging to set B is one minus this probability. With these
probabilities, Regent tends to assign to the same set those nodes that are heavily linked
together. This helps to minimize the destruction of the rule structure of the crossed-over
networks, since nodes belonging to the same syntactic rule are connected by heavily linked
weights. Thus, Regent's crossover operator produces new networks by crossing-over rules,
rather than simply crossing-over nodes.


Regent must next decide how to connect the nodes of the newly created networks.
First, a new network inherits all weight values from its parents on links that (a) connect
two nodes that are both inherited by the new network, (b) connect an inherited hidden
node and an input or output node, or (c) directly connect an input node to an output node.
It then adds randomly set, low-weighted links between unconnected nodes on consecutive
levels.


Finally, it adjusts the bias of all and or or nodes to help maintain their original function.
For instance, if Regent removes a positively weighted incoming link for an and node,
it decrements the node's bias by subtracting the product of the link's magnitude and the
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average activation (over the set of training examples) entering that link. We do this because
the bias for an and node needs to be slightly less than the sum of the positive weights on
the incoming links (see Towell and Shavlik, 1994 for more details). Regent increments the
bias for an or node by an analogous amount when it removes negatively weighted incoming
links (since the bias for an or node should be slightly greater than the sum of the negative
weights on the incoming links so that the node is inactive only when all incoming negatively
weighted linked nodes are active and all positively weighted linked nodes are inactive).


4.2 REGENT's Mutation Operator


Regent mutates networks by applying a variant of TopGen. Regent uses TopGen's
method for incrementing the false-negatives and false-positives counters for each node. Re-
gent then adds nodes, based on the values of these counters, the same way TopGen does.
Since neural learning is e�ective at removing unwanted antecedents and rules from KNNs
(see Section 3.1), Regent only considers adding nodes, and not deleting them, during mu-
tation. Thus, this mutation operator adds diversity to a population, while still maintaining
a directed, heuristic-search technique for choosing where to add nodes; this directedness is
necessary because we currently are unable to evaluate more than a few thousand possible
networks per day.


4.3 Additional Details


Regent adds newly trained networks to the population only if their validation-set cor-
rectness is better than or equal to an existing member of the population. When Regent
replaces a member, it replaces the member having the lowest correctness (ties are broken
by choosing the oldest member). Other techniques (Goldberg, 1989), such as replacing the
member nearest the new candidate network, can promote diverse populations; however, we
do not want to promote diversity at the expense of decreased generalization. As a future
research topic, we plan to investigate incorporating diversity-promoting techniques once we
are able to consider tens of thousands of networks.


Regent can be considered a Lamarckian3, genetic-hillclimbing algorithm (Ackley, 1987),
since it performs local optimizations on individuals, then passes the successful optimizations
on to o�spring. The ability of individuals to learn can smooth the �tness landscape and
facilitate subsequent learning. Thus, Lamarckian learning can lead to a large increase in
learning speed and solution quality (Ackley & Littman, 1994; Farmer & Belin, 1992).


5. Experimental Results


In this section, we test Regent on three real-world Human Genome Project problems
that aid in locating genes in DNA sequences (recognizing promoters, splice-junctions, and
ribosome-binding sites). In these domains, the input is a short segment of DNA nucleotides
(about 100 elements long) and the task is learn to predict if this DNA subsequence contains a
biologically important site. Each domain is also accompanied by a domain theory generated
by a DNA expert (M. Noordewier).


3. Lamarckian evolution is a theory based on the inheritance of characteristics acquired during a lifetime.
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The promoter domain contains 234 positive examples, 702 negative examples, and 31
rules. The splice-junction domain contains 1,200 examples distributed equally among three
classes, and 23 rules. Finally, the ribosome binding sites (RBS) domain, contains 366
positive examples, 1,098 negative examples, and 17 rules. (Note that the promoter data set
and domain theory is a later version of the one that appears in Towell, 1994.) These domains
are available at the University of Wisconsin Machine Learning (UW-ML) site via the World
Wide Web (ftp://ftp.cs.wisc.edu/machine-learning/shavlik-group/datasets/) or
anonymous ftp (ftp.cs.wisc.edu, then machine-learning/shavlik-group/datasets).


We �rst directly compare Regent with TopGen and Kbann. We then perform a
lesion study4 on Regent. In particular, we investigate the value of adding randomly
created networks to Regent's initial population and examine the utility of Regent's
genetic operators.


5.1 Experimental Methodology


All results in this article are from ten-fold cross validation runs. For each ten-fold cross
validation the data set is �rst partitioned into ten equal-sized sets, then each set is in turn
used as the test set while the classi�er trains on the other nine sets. In each fold, Regent is
run with a population size of 20. Each network is trained using backpropagation. Parameter
settings for the neural networks include a learning rate of 0.10, a momentum term of 0.9,
and the number of training epochs of 20; the �rst two are standard settings and while 20
epochs may be fewer than typically found in the neural network literature, we set it at 20
to help avoid over�tting. We set aside a validation set consisting of 10% of the training
examples for Regent to use as its scoring function.


5.2 Generalization Ability of REGENT


This section's experiments compare the test-set accuracy (i.e., generalization) of Regent
with TopGen's. Figure 5 shows the test-set error of Kbann, TopGen, and Regent as they
search through the space of network topologies. The horizontal line in each graph results
from the Kbann algorithm. We drew a horizontal line for the sake of visual comparison;
recall that Kbann only considers a single network. The �rst point of each graph, after
one network is considered, is nearly the same for all three algorithms, since they all start
with the Kbann network; however, TopGen and Regent di�er slightly from Kbann since
they must set aside part of the training set to score their candidate networks. Notice that
TopGen stops improving after considering 10 to 30 networks and that the generalization
ability of Regent is better than TopGen's after this point. The reason for the occasional
upward movements in Figure 5 is due to the fact that a validation set (or any scoring
function) is an inexact estimate of the true generalization error (as are the results of the
ten-fold cross validation).


Figure 6 presents the test-set error of TopGen and Regent after they each consider
500 candidate topologies. The standard neural network results are from a fully connected,
single-layer, feed-forward neural network; for each fold, we trained 20 networks containing
up to 100 hidden nodes and used a validation set to choose the best network. Our results


4. A lesion study is one where components of an algorithm are individually disabled to ascertain their
contribution to the full algorithm's performance (Kibler & Langley, 1988).
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Figure 5: Error rates on the three Human Genome problems.
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show Kbann generalizes much better than the best of these standard networks, thus further
con�rming Kbann's e�ectiveness in generating good network topologies. While TopGen is
able to improve on the Kbann network, Regent is able to signi�cantly decrease the error
rate over both Kbann and TopGen. (For benchmark purposes, Regent has an error rate
of 3.9% from a ten-fold cross validation on the full Splice Junction dataset of 3190 examples
commonly used by machine learning researchers.)


Table 3 contains the number of hidden nodes in the �nal networks produced by Kbann,
TopGen, and Regent. The results demonstrate that Regent produces networks that are
larger than both Kbann's and TopGen's networks (even though TopGen only adds nodes
during its search). While Regent's networks are larger, it does not necessarily mean that
they are more \complex." We inspected sample networks and found that there are large
portions of the network that are either not used (e.g., their weights are insigni�cantly small)
or are functional duplications of other groups of hidden nodes.


One could prune weights and nodes during Regent's search; however, such pruning can
prematurely reduce the variety of structures available for recombination during crossover
(Koza, 1992). Real-life organisms, for instance, have superuous DNA that are believed
to enhance the rate of evolution (Watson, Hopkins, Roberts, Argetsinger-Steitz, & Weiner,
1987). However, while pruning network size during genetic search may be unwise, one
could prune Regent's �nal network using, say, Hassibi and Stork's (1992) Optimal Brain
Surgeon algorithm. This post-pruning process may increase the future classi�cation speed
of the network, as well as increase its comprehensibility and possibly its accuracy.


5.3 Lesion Study of REGENT


In this section, we describe a lesion study we performed on Regent. Since a single run
of Regent takes about four CPU days to consider 500 networks, a single ten-fold cross
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Figure 6: Test-set error rates after TopGen and REGENT each consider 500 networks. Pair-
wise, one-tailed t-tests indicate that Regent di�ers from Standard NN, Kbann,
and TopGen at the 95% con�dence level on all three problems.
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Domain Kbann TopGen Regent


RBS 18 42.1 (9.3) 70.1 (25.1)
Splice Junction 21 28.4 (4.1) 32.4 (12.2)
Promoters 31 40.2 (3.3) 74.9 (38.9)


Table 3: Number of hidden nodes in the networks produced by KBANN, TopGen, and
REGENT. The columns show the mean number of hidden nodes found within
these networks. Standard deviations are contained within parentheses; we do not
report standard deviations for Kbann since it uses only one network.


validation takes (a minimum of) 40 CPU days. Therefore, given the inherent similarity
of investigating various aspects of Regent over multiple datasets, it is not feasible to
run all experiments in this section until a 95% con�dence level is reached in all cases
(assuming that such a level actually exists). Nonetheless, these results convey important
information about various components of Regent, and, as shown in the previous section,
the complete Regent algorithm does generate statistically signi�cant improvements over
existing algorithms.


5.3.1 Including Non-KNNs in REGENT's Population


The correct theory may be quite di�erent from the initial domain theory. Thus, in this
section we investigate whether one should include, in the initial population of networks,
a variety of networks not obtained directly from the domain theory. Currently, Regent
creates its initial population by always perturbing theKbann network. To include networks
that are not obtained from the domain theory, we �rst randomly pick the number of hidden
nodes to include in a network, then randomly create all of the hidden nodes in this network.
We do this by adding new nodes to a randomly selected output or hidden node using one
of TopGen's four methods for adding new nodes (refer to Figure 3). Adding nodes in this
manner creates random networks whose node structure is analogous to dependencies found
in symbolic rule bases, thus creating networks suitable for Regent's crossover and mutation
operators.


Table 4 shows the test-set error of Regent with various percentages of knowledge-based
neural networks (KNNs) present in the initial population. The �rst row contains the results
of initializingRegent with a purely random initial population (i.e., the population contains
no KNNs). The second row lists the results when Regent creates half its population with
the domain theory, and the other half randomly. Finally, the last row contains the results
of seeding the entire population with the domain theory.


These results suggest that including, in the initial population, networks that were not
created from the domain theory increases Regent's test-set error on all three domains.
This occurs because the randomly generated networks are not as correct as the KNNs, and
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RBS Splice Junction Promoters


0% KNN 9.7% 6.3% 5.1%
50% KNN 8.6% 4.3% 4.6%


100% KNN 8.2% 4.1% 4.2%


Table 4: Test-set error after considering 500 networks. Each row gives the pergentage of
KNNs present in the initial population. Pairwise, one-tailed t-tests indicate that
initializingRegent with 100% KNNs di�ers from 0% KNNs at the 95% con�dence
level on all three domains; however, the di�erence between the runs of 50% and
100% KNNs is not signi�cant at this level.


thus o�spring of the original KNN quickly replace the random networks. Hence, diver-
sity in the population su�ers compared to methods that start with a whole population of
KNNs. Assuming the domain theory is not \malicious," it is therefore better to seed the
entire population from the Kbann network. Should the domain theory indeed be malicious
and contain information that promotes spurious correlations in the data, it would then be
reasonable to randomly create the \whole" population. Running Regent both with and
without the domain theory allows one to investigate the utility of that theory.


These results are also interesting from a GA point of view. Forrest and Mitchell (1993)
showed that GAs perform poorly on complex problems where the basic building blocks either
(a) are non-trivial to �nd or (b) get split during crossover. Seeding the initial population
with a domain theory (as Regent does) can help de�ne the basic building blocks for these
problems.


5.3.2 Value of REGENT's Mutation


Typically with GAs, mutation is a secondary operation that is only sparingly used (Gold-
berg, 1989); however, Regent's mutation is a directed approach that heuristically adds
nodes to KNNs in a provenly e�ective manner (i.e., it uses TopGen). It is therefore rea-
sonable to hypothesize that one should apply the mutation operator more frequently than
traditionally done in GAs. The results in this section test this hypothesis.


Figure 7 presents the test-set error of Regent with varying percentages of mutation
(versus crossover) when creating new networks in step 3a of Table 1. Each graph plots four
curves: (a) 0% mutation (i.e., Regent only uses crossover), (b) 10% mutation, (c) 50%
mutation, and (d) 100% mutation. Performing no mutations tests the value of solely using
crossover, while 100% mutation tests the e�cacy of the mutation operator by itself. Note
that 100% mutation is just TopGen with a di�erent search strategy; instead of keeping
an OPEN list for heuristic search, a population of KNNs are generated and members of
the population are improved proportional to their �tness. The other two curves (10% and
50% mutation) test the synergy between the two operators. Performing 10% mutation is
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Figure 7: Error rates of REGENT with di�erent fractions of mutation versus crossover
after considering 500 networks. Arguably due to the inherent similarity of the
algorithms, and the limited number of runs due to their computational complexity,
the results are not signi�cant at the 95% con�dence level.
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closer to the traditional GA viewpoint that mutation is a secondary operation, while 50%
mutation means that both operations are equally valuable. (Previous experiments in this
section used 50% mutation and 50% crossover.)


While the di�erences are not all statistically signi�cant, the results nevertheless suggest
that a synergy exists between the two operations. Except for the middle portion of the
promoter domain, the results show that, qualitatively, using both operations at the same
time is better than using either operation alone. In fact, equally mixing the mutation and
crossover operator is better than the other three curves on all three domains once Regent
has considered 500 networks. This result is particularly pronounced on the splice-junction
domain.


5.3.3 Value of REGENT's Crossover


Regent tries to cross over the rules in the networks, rather than just blindly crossing over
nodes. It does this by probabilistically dividing the nodes in the network into two sets
where nodes belonging to the same rule tend to belong to the same set. In this section,
we test the e�cacy of Regent's crossover by comparing it to a variant of itself where it
randomly assigns nodes to two sets (rather than using DivideNodes in Table 2).


Table 5 contains the results of this test after 250 networks were considered. In the
�rst row, Regent-random-crossover, Regent randomly breaks its hidden nodes into
two sets, while in the second row, Regent assigns nodes to two sets according to Table
2. In both cases, Regent creates half its networks with its mutation operator, and the
other half with crossover operator. Although the di�erences are not statistically signi�cant,
the results suggest that keeping the rule structure of the networks intact during crossover
is important; otherwise, the basic building blocks of the networks (i.e., the rules) get split
during crossover, and studies have shown the importance of keeping intact the basic building
blocks during crossover (Forrest & Mitchell, 1993; Goldberg, 1989).


Promoters Splice Junction RBS


Regent-random-crossover 4.6% 4.7% 9.1%
Regent 4.4% 4.1% 8.8%


Table 5: Test-set error of two runs of REGENT: (a) randomly crossing over \nodes" in
the networks, and (b) one with crossing over \rules" in the network (de�ned by
Equation 1). Both runs considered 250 networks and used half crossover, half
mutation. The results are not signi�cant at the 95% con�dence level; there is only
a slight di�erence between the learning algorithms and the long run-times limited
runs to a ten-fold cross validation.


6. Discussion and Future Work


Towell (1991) showed Kbann generalized better than many other machine learning algo-
rithms on the promoter and splice-junction domains (the RBS dataset did not exist then).
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Despite this success, Regent is able to e�ectively use available computer cycles to signi�-
cantly improve generalization over both Kbann and our previous improvement to Kbann,
the TopGen algorithm. Regent reduces Kbann's test-set error by 12% for the RBS do-
main, 22% for the splice-junction domain, and 33% for the promoter domain; it reduces
TopGen's test-set error by 10% for the RBS domain, 17% for the splice-junction domain, and
21% for the promoter domain. Also, Regent's ability to use available computing time is
further aided by being inherently parallel, since we can train many networks simultaneously.


Further results show that Regent's two genetic operators complement each other. The
crossover operator considers a large variety of network topologies by probabilistically com-
bining rules contained within two \successful" KNNs. Mutation, on the other hand, makes
smaller, directed improvements to members of the population, while at the same time adding
diversity to the population by adding new rules to the population. Equal use of both op-
erators, therefore, allows a wide variety of topologies to be considered as well as allowing
incremental improvements to members of the population.


Since Regent searches through many candidate networks, it is important for it to be
able to recognize the networks that are likely to generalize the best. With this in mind, our
�rst planned extension of Regent is to develop and test di�erent network-evaluation func-
tions. We currently use a validation set; however, validation sets have several drawbacks.
First, keeping aside a validation set decreases the number of training instances available
for each network. Second, the performance of a validation set can be a noisy approximator
of the true error (MacKay, 1992; Weigend, Huberman, & Rumelhart, 1990). Finally, as
we increase the number of networks searched, Regent may start selecting networks that
over�t the validation set. In fact, this explains the occasional upward trend in test-set error,
from both TopGen and Regent, in Figure 5.


To avoid the problem of over�tting the data, a common regression trick is to have a cost
function that includes a \smoothness" term along with the error term. The best function,
then, will be the smoothest function that also �ts the data well. For neural networks, one
can add to the estimated error a smoothness component that is a measure of the complexity
of the network. The complexity of the network cannot simply be estimated by counting
the number of possible parameters, since there tends to be signi�cant duplication in the
function of each weight in a network, especially early in the training process (Weigend,
1993). Two techniques that try to take into account the e�ective size of the network are
Generalized Prediction Error (Moody, 1991) and Bayesian methods (MacKay, 1992).


Quinlan and Cameron-Jones (1995) propose adding an additional term to the accuracy
and smoothness term that takes into account length of time spent searching. They coin the
term \oversearching" to describe the phenomenon where more extensive searching causes
lower predictive accuracy. Their claim is that oversearching is orthogonal to over�tting, and
thus these complexity-based methods alone cannot prevent oversearching. As we increase
the number of networks we consider during a search, we too may start oversearching, and
thus plan to investigate adding an oversearching penalty term as well.


As indicated earlier, Regent is Lamarckian in that it passes local optimizations of indi-
viduals (i.e., the trained weights of a network) to o�spring. A viable alternative, called the
Baldwin e�ect (Ackley & Littman, 1992; Baldwin, 1896; Belew & Mitchell, 1996; Hinton &
Nowlan, 1987), is to have local search still change the �tness of an individual (backpropaga-
tion learning in this case), but then not pass these changes on to the o�spring (this form of
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evolution is Darwinian in nature). Even though what is learned is not explicitly coded into
the genetic material, individuals who are best able to learn will have the most o�spring;
thus learning still impacts evolution. In fact this form of evolution can sometimes outper-
form forms of Lamarckian evolution that employ the same local search strategy (Whitley,
Gordon, & Mathias, 1994). Future work is to investigate the utility of the Baldwin e�ect
on Regent. In this case we would not cross over the trained networks, but instead cross
over the initial weight settings before backpropagation learning took place.


Finally, often times there are multiple, even conicting, theories about a domain. Fu-
ture work, then, is to investigate ways of using all of these domain theories to seed the
initial population. Although the results in Section 5.3.1 show that including randomly gen-
erated networks degrades generalization performance, seeding the population with multiple
approximately correct theories should not degrade generalization, assuming the networks
will have about the same initial correctness. Thus Regent should be able to naturally
combine good parts of multiple theories. Also, for a given domain theory, there are many
di�erent but equivalent ways to represent that theory using a set of propositional rules.
Each representation leads to a di�erent network topology, and even though each network
starts with the same theory, some topologies may be more conducive to neural re�nement.


7. Related Work


Regent mainly di�ers from previous work in that it is an\anytime" theory-re�nement sys-
tem that continually searches, in a non-hillclimbingmanner, for improvements to the domain
theory. In summary, our work is unique in that it provides a connectionist approach that
attempts to e�ectively utilize available background knowledge and available computer cycles
to generate the best concept possible. We have broken the rest of this section into four parts:
(a) connectionist theory-re�nement algorithms, (b) purely symbolic theory-re�nement al-
gorithms, (c) algorithms that �nd an appropriate domain-speci�c neural-network topology,
and (d) optimization algorithms wrapped around induction algorithms.


7.1 Connectionist Theory-Re�nement Techniques


We begin our discussion with connectionist theory-re�nement systems. These systems have
been developed to re�ne many types of rule bases. For instance, a number of systems
have been proposed for revising certainty-factor rule bases (Fu, 1989; Lacher et al., 1992;
Mahoney & Mooney, 1993), �nite-state automata (Maclin & Shavlik, 1993; Omlin & Giles,
1992), push-down automata (Das, Giles, & Sun, 1992), fuzzy-logic rules (Berenji, 1991;
Masuoka, Watanabe, Kawamura, Owada, & Asakawa, 1990), and mathematical equations
(Roscheisen, Hofmann, & Tresp, 1991; Scott et al., 1992). Most of these systems work like
Kbann by �rst translating the domain knowledge into a neural network, then modifying
the weights of this resulting network. Few attempts (which we describe next) have been
made to dynamically adjust the resulting network's topology during training (as Regent
does).


Like both TopGen and Regent, Fletcher and Obradovic (1993) present an approach
that adds nodes to a Kbann network. Their system constructs a single layer of nodes, fully
connected between the input and output nodes, \o� to the side" of the Kbann network.
They generate new hidden nodes using a variant of Baum and Lang's (1991) constructive
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algorithm. Baum and Lang's algorithm �rst divides the feature space with hyperplanes.
They �nd each hyperplane by randomly selecting two points from di�erent classes, then
localizing a suitable split between these points. Baum and Lang repeat this process until
they generate a �xed number of hyperplanes. Fletcher and Obradovic then map each of
Baum and Lang's hyperplanes into one new hidden node, thus de�ning the weights between
the input layer and that hidden node. Fletcher and Obradovic's algorithm does not change
the weights of the Kbann portion of the network, so modi�cations to the initial rule base
are solely left to the constructed hidden nodes. Thus, their system does not take advantage
of Kbann's strength of removing unwanted antecedents and rules from the original rule
base. In fact, TopGen compared favorably to a similar technique that also added nodes o�
to the side of Kbann (Opitz & Shavlik, 1993) and Regent outperformed TopGen in this
article's experiments.


Rapture (Mahoney & Mooney, 1994) is designed for domain theories containing proba-
bilistic rules. Like most connectionist theory-re�nement systems, Rapture �rst translates
the domain theory into a neural network, then re�nes the weights of the network with a
modi�ed backpropagation algorithm. Like Regent, Rapture is then able to dynamically
re�ne the topology of its network. It does this by using the Upstart algorithm (Frean,
1990) to add new nodes to the network. Aside from being designed for probabilistic rules,
Rapture di�ers from Regent in that it adds nodes with the intention of completely
learning the training set, not generalizing well. Thus, while Rapture hillclimbs until the
training set is learned, Regent continually searches topology space looking for a network
that minimizes the scoring function's error. Also, Rapture initially only creates links that
are speci�ed in the domain theory, and only explicitly adds links through ID3's (Quinlan,
1986) information-gain metric. Regent, on the other hand, fully connect consecutive layers
in their networks, allowing each rule the possibility of adding antecedents during training.


The Daid algorithm (Towell & Shavlik, 1992) is an extension to Kbann that uses the
domain theory to help train the Kbann network. Since Kbann is more e�ective at drop-
ping antecedents than adding them, Daid tries to �nd potentially useful inputs features
not mentioned in the domain theory. It does this by backing-up errors to the lowest level of
the domain theory, then computing correlations with the features. Daid then increases the
weight of the links from the potentially useful input features based on these correlations.
Daid mainly di�ers from Regent in that it does not re�ne the topology of the Kbann net-
work. Thus, whileDaid addressesKbann's limitation of not e�ectively adding antecedents,
it is still unable to introduce new rules or constructively induce new antecedents. Daid will
therefore su�er with impoverished domain theories. Also notice that since Daid is an im-
provement for training KNNs, Regent can use Daid to train each network it considers
during its search (however, we have not done so).


Opitz and Shavlik (1996) used a variant of Regent as their learning algorithm when
generating a neural network \ensemble." A neural-network ensemble is a very successful
technique where the outputs of a set of separately trained neural networks are combined
to form one uni�ed prediction (Drucker, Cortes, Jackel, LeCun, & Vapnik, 1994; Hansen
& Salamon, 1990; Perrone, 1993). Since Regent considers many networks, it can select a
subset of the �nal population of networks as an ensemble at minimal extra cost. Previous
work, though, has shown that an ideal ensemble is one where the networks are both accurate
and make their errors on di�erent parts of the input space (Hansen & Salamon, 1990;
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Krogh & Vedelsby, 1995). As a result, Opitz and Shavlik (1996) changed the scoring
function of Regent so that a \�t" network was now one that was both accurate and
disagreed with the other members of the population as much as possible. In addition,
their algorithm (Addemup) actively tries to generate good candidates by emphasizing the
current population's erroneous examples during backpropagation training. As a result of
these alterations, Addemup is able to create enough diversity among the population of
networks to be able to e�ectively exploit the knowledge of the domain theory. Opitz and
Shavlik (1996) show that Addemup is able to generate a signi�cantly better ensemble
using the domain theory than either running Addemup without the bene�t of the theory
or simply combining Regent's �nal population of networks. Actively searching for a highly
diverse population, however, does not aid in searching for the single best network. In fact,
the single best network produced by Addemup is signi�cantly worse than Regent's single
best network on all three domains.


7.2 Purely Symbolic Theory-Re�nement Techniques


Additional work related to Regent includes purely symbolic theory-re�nement systems
that modify the domain theory directly in its initial form. Systems such as Focl (Pazzani
& Kibler, 1992) and Forte (Richards & Mooney, 1995) are �rst-order, theory-re�nement
systems that revise predicate-logic theories. One drawback to these systems is that they
currently do not generalize as well as connectionist approaches on many real-world problems,
such as the DNA promoter task (Cohen, 1992).


There have been several genetic-based, �rst-order logic, multimodal concept learners
(Greene & Smith, 1993; Janikow, 1993). Giordana and Saitta (1993) showed how to inte-
grate one of these system, Regal (Giordana, Saitta, & Zini, 1994; Neri & Saitta, 1996),
with the deductive engine of ML-SMART (Bergadano, Giordana, & Ponsero, 1989) to help
re�ne an incomplete or inconsistent domain theory. This version works by �rst using an au-
tomated theorem prover to recognize unresolved literals in a proof, then uses the GA-based
Regal to induce corrections to these literals. Regent, on the other hand, use genetic
algorithms (along with neural learning) to re�ne the whole domain theory at the same time.


Dogma (Hekanaho, 1996) is a recently proposed GA-based learner that can use back-
ground knowledge to learn the same description language as Regal. Current restrictions,
however, force the representation language of the domain theory to be propositional rules.
Dogma converts a \at" set of background rules (i.e., it does not handle intermediate
conclusions) into individual bitstrings that are used as building blocks for a higher-level
concept. Dogma does not focus on theory re�nement, rather it builds a completely new
theory using substructures from the background knowledge. They term their approach as
being more theory-suggested than theory-guided (Hekanaho, 1996).


Several systems, including ours, have been proposed for re�ning propositional rule bases.
Early such approaches could only handle improvements to overly speci�c theories (Danyluk,
1989) or specializations to overly general theories (Flann & Dietterich, 1989). Later systems
such as Rtls (Ginsberg, 1990), Either (Ourston & Mooney, 1994), Ptr (Koppel, Feldman,
& Segre, 1994), and Tgci (Donoho & Rendell, 1995) were later able to handle both types
of re�nements. We discuss the Either system as a representative of these propositional
systems.
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Either has four theory-revision operators: (a) removing antecedents from a rule, (b)
adding antecedents to a rule, (c) removing rules from the rule base, and (d) inventing new
rules. Either uses these operators to make revisions to the domain theory that correctly
classify some of the previously misclassi�ed training examples without unde�ning any of
the correctly classi�ed examples. Either uses inductive learning algorithms to invent new
rules; it currently uses ID3 (Quinlan, 1986) as its induction component.


Even though Regent's mutation operator add nodes in a manner analogous to how
a symbolic system adds antecedents and rules, its underlying learning algorithm is \con-
nectionist." Towell (1991) showed that Kbann outperformed Either on the promoter
task, and Regent outperformed Kbann in this article. Kbann's power on this domain
is largely attributed to its ability to make \�ne-grain" re�nements to the domain theory
(Towell, 1991). Because of Either's di�culty on this domain, Ba�es and Mooney (1993)
presented an extension to it called Neither-MofN that is able to learn M -of-N rules {
rules that are true if M of the N antecedents are true. This improvement generated a
concept that more closely matches Kbann's generalization performance.


While we want to minimize changes to a theory, we do not want to do it at the ex-
pense of accuracy; however, Donoho and Rendell (1995) demonstrate that most existing
theory-re�nement systems, such as Either, su�er in that they are only able to make small,
local changes to the domain theory. Thus, when an accurate theory is signi�cantly far in
structure from the initial theory, these systems are forced to either become trapped in a
local maximum similar to the initial theory, or are forced to drop entire rules and replace
them with new rules that are inductively created purely from scratch. Regent does not
su�er from this in that it translates the theory into the less restricting representation of
neural networks (Donoho & Rendell, 1995). Also, Regent is able to further recon�gure
the structure of the domain with genetic algorithms.


Many authors have reported results using varying subsets of the splice junction domain
(e.g., Donoho and Rendell 1995; Mahoney 1996; Neri and Saitta 1996, and Towell and Shav-
lik 1994). While these authors used di�erent training set sizes, it is nevertheless worthwhile
to qualitatively discuss some of their conclusions here. Towell and Shavlik (1994) compared
Kbann with numerous machine learning algorithms where each learning algorithm was
given a training set of 1000 examples; Kbann's generalization ability compared favorably
with these algorithms on the splice domain and Regent, in turn, compared favorably with
Kbann in this article. Donoho and Rendell (1995) showed their purely symbolic approach
converged to the performance of Kbann at around 200 examples. Mahoney (1996) showed,
using training set sizes of up to 400 examples, that his Rapture algorithm generalized
better than Kbann on this domain; his results look similar to those of Regent. Finally,
Neri and Saitta (1996) showed that the generalization ability of the GA-based Regal com-
pares favorably to other purely symbolic, non-GA based techniques; while they used slightly
di�erent training set sizes than we did in this article, Regent compares well to the results
reported in their paper.


7.3 Finding Appropriate Network Topologies


Our third area of related work covers techniques that attempt to �nd a good domain-
dependent topology by dynamically re�ning their network's topology during training. Many
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studies have shown that the generalization ability of a neural network depends on the topol-
ogy of the network (Baum & Haussler, 1989; Tishby, Levin, & Solla, 1989). When trying
to �nd an appropriate topology, one approach is to construct or modify a topology in an
incremental fashion. Network-shrinking algorithms start with too many parameters, then
remove nodes and weights during training (Hassibi & Stork, 1992; Le Cun, Denker, &
Solla, 1989; Mozer & Smolensky, 1989). Network-growing algorithms, on the other hand,
start with too few parameters, then add more nodes and weights during training (Blanziere
& Katenkamp, 1996; Fahlman & Lebiere, 1989; Frean, 1990). The most obvious di�er-
ence between Regent and these algorithms is that Regent uses domain knowledge and
symbolic rule-re�nement techniques to help determine the network's topology. Also, these
other algorithms restructure their network based solely on training-set error, while Regent
minimized validation-set error.


Instead of incrementally �nding an appropriate topology, one can mount a \richer"
search than hillclimbing through the space of topologies. One common approach is to
combine genetic algorithms and neural networks (as Regent does). Genetic algorithms
have been applied to neural networks in two di�erent ways: (a) to optimize the connection
weights in a �xed topology, and (b) to optimize the topology of the network. Techniques
that solely use genetic algorithms to optimize weights (Montana & Davis, 1989; Whitley
& Hanson, 1989) have performed competitively with gradient-based training algorithms;
however, one problem with genetic algorithms is their ine�ciency in �ne-tuned local search,
thus the scalability of these methods are in question (Yao, 1993). Kitano (1990b) presents
a method that combines genetic algorithms with backpropagation. He does this by using
the genetic algorithm to determine the starting weights for a network, which are then
re�ned by backpropagation. Regent di�ers from Kitano's method in that we use a domain
theory to help determine each network's starting weights and genetically search, instead,
for appropriate network topologies.


Most methods that use genetic algorithms to optimize a network topology are similar
to Regent in that they also use backpropagation to train each network's weights. Of
these methods, many directly encode each link in the network (Miller, Todd, & Hegde,
1989; Oliker, Furst, & Maimon, 1992; Schi�mann, Joost, & Werner, 1992). These methods
are relatively straightforward to implement, and are good at �ne tuning small networks
(Miller et al., 1989); however, they do not scale well since they require very large matrices
to represent all the links in large networks (Yao, 1993). Other techniques (Dodd, 1990;
Harp, Samad, & Guha, 1989; Kitano, 1990a) only encode the most important features of
the network, such as the number of hidden layers, the number of hidden nodes at each
layer, etc. These indirect encoding schemes can evolve di�erent sets of parameters along
with the network's topology and have been shown to have good scalability (Yao, 1993).
Some techniques (Koza & Rice, 1991; Oliker et al., 1992) evolve both the architecture and
connection weights at the same time; however, the combination of the two levels of evolution
greatly increases the search space.


Regent mainly di�ers from genetic-algorithm-based training methods in that it is de-
signed for knowledge-based neural networks. Thus Regent uses domain-speci�c knowledge
and symbolic rule-re�nement techniques to aid in determining the network's topology and
initial weight setting. Regent also di�ers in that it does not explicitly encode its networks;
rather, in the spirit of Lamarkian evolution, it passes trained network weights to the o�-
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spring. A �nal di�erence is that most of these other algorithms restructure their network
based solely on training-set error, while Regent minimizes validation-set error.


7.4 Wrapping Optimization Around Learning


We end our related work discussion with a brief overview of methods that combine global and
local optimization strategies. Local search algorithms iteratively improve their estimate of
the minimum by searching in only a local neighborhood of the current solution; local minima
are not guaranteed to be global minima. (Many inductive learning methods are often
equated with local optimization techniques; Rumelhart et al., 1986.) Global optimization
methods (such as GAs), on the other hand, perform a more sophisticated search across
multiple local minima and are good at �nding regions of the search space where near-
optimal solutions can be found; however, they are usually not as good at re�ning a solution
(once it is close to a near-optimal solution) as local optimization strategies (Hart, 1994).
Recent research has shown that it is desirable to emply both a global and local search
strategy (Hart, 1994).


Hybrid GAs (such as Regent) combine local search with a more traditional GA. While
we focus on hybrid-GA algorithms in this section, this two-tiered search strategy has been
employed by other researchers as well (Kohavi & John, 1997; Provost & Buchanan, 1995;
Scha�er, 1993). GAs have been combined with many local search methods (Bala, Huang,
Vafaie, DeJong, & Wechsler, 1995; Belew, 1990; Hinton & Nowlan, 1987; Turney, 1995).
Neural networks are the most common choice for the local search strategy of hybrid GA
systems and we discussed GA/neural-network hybrids in the Section 7.3. There are two
common forms of hybrid GAs: Lamarckian-based evolution and Darwinian-based evolu-
tion (the Baldwin e�ect). Lamarckian evolution encodes its local improvements directly
into its genetic material, while Darwinian evolution leaves the genetic material unchanged
after learning. As discussed in Section 6, most authors use Lamarckian local search tech-
niques and many have shown numerous cases where Lamarckian evolution outperforms
non-Lamarckian local search (Belew, McInerney, & Schraudolph, 1992; Hart, 1994; Judson,
Colvin, Meza, Hu�a, & Gutierrez, 1992).


8. Conclusion


An ideal inductive-learning algorithm should be able to exploit the available resources of
extensive computing power and domain-speci�c knowledge to improve its ability to gen-
eralize. Kbann (Towell & Shavlik, 1994) has been shown to be e�ective at translating
a domain theory into a neural network; however, Kbann su�ers in that it does not alter
its topology. TopGen (Opitz & Shavlik, 1995) improved the Kbann algorithm by using
available computer power to search for e�ective places to add nodes to the Kbann network;
however, we show empirically that TopGen su�ers from restricting its search to expansions
of the Kbann network, and is unable to improve its performance after searching beyond
a few topologies. Therefore TopGen is unable to exploit all available computing power to
increase the correctness of an induced concept.


We present a new algorithm, Regent, that uses a specialized genetic algorithm to
broaden the types of topologies considered during TopGen's search. Experiments indicate
that Regent is able to signi�cantly increase generalization over TopGen; hence, our new
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algorithm is successful in overcoming TopGen's limitation of only searching a small portion
of the space of possible network topologies. In doing so, Regent is able to generate a
good solution quickly, by using Kbann, then is able to continually improve this solution as
it searches concept space. Therefore, Regent takes a step toward a true anytime theory
re�nement system that is able to make e�ective use of problem-speci�c knowledge and
available computing cycles.
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