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Abstract


Several recent studies have compared the relative e�ciency of alternative aw selection
strategies for partial-order causal link (POCL) planning. We review this literature, and
present new experimental results that generalize the earlier work and explain some of the
discrepancies in it. In particular, we describe the Least-Cost Flaw Repair (LCFR) strategy
developed and analyzed by Joslin and Pollack (1994), and compare it with other strategies,
including Gerevini and Schubert's (1996) ZLIFO strategy. LCFR and ZLIFO make very
di�erent, and apparently conicting claims about the most e�ective way to reduce search-
space size in POCL planning. We resolve this conict, arguing that much of the bene�t that
Gerevini and Schubert ascribe to the LIFO component of their ZLIFO strategy is better
attributed to other causes. We show that for many problems, a strategy that combines
least-cost aw selection with the delay of separable threats will be e�ective in reducing
search-space size, and will do so without excessive computational overhead. Although such
a strategy thus provides a good default, we also show that certain domain characteristics
may reduce its e�ectiveness.


1. Introduction


Much of the current research in plan generation centers on partial-order causal link (POCL)
algorithms, which descend fromMcAllester and Rosenblitt's (1991) SNLP algorithm. POCL
planning involves searching through a space of partial plans, where the successors of a node
representing partial plan P are re�nements of P . As with any search problem, POCL
planning requires e�ective search control strategies.


In POCL planning, search control has two components. The �rst, node selection, in-
volves choosing which partial plan to re�ne next. Once a partial plan has been selected for
re�nement, the planner must then perform aw selection, which involves choosing either a
threat to resolve or an open condition to establish.


Over the past few years, several studies have compared the relative e�ciency of alterna-
tive aw selection strategies for POCL planning and their extensions (Peot & Smith, 1993;
Joslin & Pollack, 1994; Srinivasan & Howe, 1995; Gerevini & Schubert, 1996; Williamson &
Hanks, 1996). These studies have been motivated at least in part by a tension between the
attractive formal properties of the POCL algorithms, and the limitations in putting them
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to practical use that result from their relatively poor performance. To date, the POCL
algorithms cannot match the e�ciency of the so-called industrial-strength planners such as
SIPE (Wilkins, 1988; Wilkins & Desimone, 1994) and O-Plan (Currie & Tate, 1991; Tate,
Drabble, & Dalton, 1994). Flaw selection strategy has been shown to have a signi�cant
e�ect on the e�ciency of POCL planning algorithms, and thus researchers have viewed
the design of improved aw selection strategies as one means of making POCL planning
algorithms more practical.


In this paper, we review the literature on aw selection strategies, and present new
experimental results that generalize the earlier work and explain some of the discrepancies
in it. In particular, we describe the Least-Cost Flaw Repair (LCFR) strategy developed
and analyzed by Joslin and Pollack (1994), and compare it with other strategies, including
Gerevini and Schubert's ZLIFO strategy (1996). LCFR and ZLIFO make very di�erent,
and apparently conicting claims about the most e�ective way to reduce search-space size
in POCL planning. We resolve this conict, arguing that much of the bene�t that Gerevini
and Schubert ascribe to the LIFO component of their ZLIFO strategy is better attributed
to other causes. We show that for many problems, a strategy that combines least-cost aw
selection with the delay of separable threats will be e�ective in reducing search-space size,
and will do so without excessive computational overhead. Although such a strategy thus
provides a good default, we also show that certain domain characteristics may reduce its
e�ectiveness.


2. Background


2.1 Node and Flaw Selection


Although the main ideas of POCL planning have been in the literature for more than
two decades, serious e�orts at comparing alternative plan generation algorithms have been
relatively recent. What made these comparisons possible was the development of a set
of clear algorithms with provable formal properties, notably TWEAK (Chapman, 1987),
and SNLP (McAllester & Rosenblitt, 1991). These algorithms were not intended to add
functionality to known planning methods, but rather to capture the essential elements of
these known methods in a readily analyzable fashion.


In analyzing POCL algorithms, researchers have found it useful to decouple the search
control strategy from the underlying plan re�nement process. Figure 1 is a generic POCL
algorithm, in which we highlight the two search decisions.1 Following convention, we use
CHOOSE to indicate that node selection is a backtracking point, and SELECT to indicate
that aw selection is not. A given node may not lead to a solution, and so it may be necessary
to backtrack and consider alternative nodes. On the other hand, if a node does lead to a
solution, that solution will be found regardless of the order in which its aws are selected.
See Weld's (1994) tutorial paper for more discussion of this di�erence.


The generic algorithmsketched in the �gure must be supplemented with search strategies
that implement the CHOOSE and SELECT operators. Most POCL algorithms perform
node selection using a best-�rst ranking that computes some function of the number of


1. Various versions of this well-known algorithm have appeared in the literature (Weld, 1994; Russell &
Norvig, 1995; Kambhampati, Knoblock, & Yang, 1995). The version we give corresponds most directly
to that given by Williamson and Hanks (1996).
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POCL (init,goal)
dummy-plan  make-skeletal-plan(init,goal).
nodes  f dummy-plan g.
While nodes is not empty do:


CHOOSE (and remove) a partial plan P from nodes. (Node Selection)
If P has no aws


then return P
else do:


SELECT a aw from P. (Flaw Selection)
Add all re�nements of P to nodes.


Return failure (because nodes has become empty without a aw-free plan being found.)


Figure 1: The Basic POCL Planning Algorithm


steps (denoted S), open conditions (OC), and unsafe conditions (UC, i.e., threats) in the
partial plan. Gerevini and Schubert (1996) have argued that, in general, only steps and
open conditions should be included in the ranking function, and we adopt that strategy in
our experiments, except where otherwise indicated.


Having chosen a node, a POCL planning algorithmmust then select a aw|open condi-
tion or threat|within that node to repair. Open conditions are repaired by establishment,
which consists either in adding a new step that has a unifying condition as an e�ect (along
with a causal link from that new step to the condition), or else in simply adding a new
causal link from an existing step with a unifying e�ect. We use the term repair cost to
denote the number of possible ways to repair a aw.


For an open condition o, the repair cost R(o) is I + S +N , where


I = the number of conditions in the initial state that unify with o given the
current binding constraints,


S = the number of conditions in the e�ects of existing plan steps that unify
with o given the current binding constraints, counting only existing plan
steps that are not constrained to occur after the step associated with o, and


N = the number of conditions in the e�ects of operators in the library that
unify with o given the current binding constraints.


Note that over time, the repair cost for an open condition that is not resolved may either
increase, as new steps that might achieve the condition are added to the plan, or decrease,
as steps already in the plan are constrained by temporal ordering or variable binding so
that they can no longer achieve the condition.


In considering the cost of threat repair, it is useful to distinguish between nonseparable
and separable threats. Nonseparable threats consist of a step S1 with e�ect E, and a
causal link � S2; F; S3 �, where E and F are complementary literals that necessarily unify:
either they are complementary ground literals (E � :F ), or else they are complementary
literals where each of E's variables is identical with, or forced by a binding constraint to be
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equivalent to the variable in the same position in F (e.g., E = p(x; y) and F = :p(x; z),
where there is currently a binding constraint that y = z).2


Nonseparable threats can be repaired in at most two ways: by promoting S1, requiring
it to occur after S3, or by demoting it, requiring it to occur before S2. Of course, already
existing temporal ordering constraints may block one or both or these repair options, which
is why there are at most two possible repairs.3 Over time, the repair cost for an unresolved
nonseparable threat can only decrease.


A separable threat consists of a step S1 with an e�ect E, and a causal link � S2; F; S3 �,
where E and F are complementary literals that can be uni�ed, but where such a uni�cation
is not forced (e.g., where E = p(x) and F = p(y) and there does not exist a binding
constraint x = y). In such circumstances, the threat may disappear if a subsequent variable
binding blocks the uni�cation. (A nonseparable threat may also disappear if a subsequent
ordering constraint has the e�ect of imposing promotion or demotion.) The repair cost
for a separable threat may be higher than that for an nonseparable threat: not only can
promotion and demotion be used, but so can separation, which involves forcing a variable
binding that blocks the uni�cation. Separation can introduce one repair for each unbound
variable in the threat. For example, if the e�ect P (x; y; z) threatens � S2;:P (t; u; v); S3 �,
there are three possible repairs: x 6= t, y 6= u, and z 6= v. As with nonseparable threats, the
repair cost for a separable threat that remains unresolved can only decrease over time.


2.2 Notation


The aw selection strategies that have been discussed in the literature typically have been
given idiosyncratic names (e.g., DUnf, LCFR, ZLIFO). It is useful, in comparing them,
to have a precise unifying notation. We therefore specify a aw strategy as a sequence of
preferences. A strategy begins by attempting to �nd a aw that satis�es its �rst preference;
if it is unable to do so, it then looks for a aw that satis�es the second preference; and
so on. To ensure that a POCL algorithm using the strategy is complete, the sequence of
preferences must be exhaustive: every aw must satisfy some preference. If a aw satis�es
more than one preference in a strategy, we assume that the �rst match is what counts.


In principle, a preference could identify any feature of a aw. In practice, however, aw
selection strategies have only made use of a small number of features: the type of a aw
(open condition, nonseparable threat, or separable threat), the number of ways it can be
repaired, and the time at which it was introduced into the plan. Often, more than one aw
will have a given feature, in which case a tie-breaking strategy may be speci�ed for choosing
among the relevant aws.


We therefore describe a preference using the following notation


faw typesgrepair cost rangetie-breaking strategy


2. An alternative approach also treats cases in which E � F as threats; this is required to make the planner
systematic, i.e., guaranteed never to generate the same node more than once (McAllester & Rosenblitt,
1991).


3. Conditional planners make use of an additional method of threat resolution|confrontation|but we
ignore that within this paper (Peot & Smith, 1992; Etzioni, Hanks, Weld, Draper, Lesh, & Williamson,
1992). Joslin (1996) provides a detailed account of generalizing the treatment of aws to other types of
planning decisions.
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which indicates a preference for any aw f of the speci�ed type or types, provided that the
repair cost for f falls within the range of values speci�ed. (If there are no restrictions on
repair cost, we omit the repair cost range.) If more than one aw meets these criteria, then
the tie-breaking strategy is applied to select among them.


We abbreviate aw type as \o" (for open condition), \n" (for nonseparable threat), and
\s" (for separable threat). We also use abbreviations for common tie-breaking strategies,
e.g., \LC" (least (repair) cost), \LIFO" and \R" (Random). In the case of LC, if a choice
must be made between aws that have the same repair cost, LIFO selection is used.


Thus, for example


fng0-1R


speci�es a preference for nonseparable threats with a repair cost of zero or one; if more than
one aw meets these conditions, a random selection will be made among them. We use the
term forced to describe aws with repair cost of one or less.


An example of a complete aw selection strategy is then:


fng0-1R / fogLIFO / fn,sgR


This strategy would begin by looking for a forced nonseparable threat; if more than one aw
meets this criterion, the strategy would select randomly among them. If there are no forced
nonseparable threats, it would then look for an open condition, with any repair cost, using a
LIFO scheme to select among them. Finally, if there are neither forced nonseparable threats
nor open conditions, it would randomly select either an unforced nonseparable threat or a
separable threat.


While we have distinguished between aw type and maximum repair cost, on the one
hand, and tie-breaking strategy, on the other, it is easy to describe strategies that use
something other than aw type as the main criterion for selection. For example, a pure
LIFO selection strategy would be encoded as follows. (Henceforth, we give the name of a
strategy in boldface preceding the speci�cation.)


LIFO fo,n,sgLIFO


3. Flaw Selection Strategies


We begin by reviewing the aw selection strategies that have been proposed and studied in
the literature to date.


3.1 Threat Preference and Delay


The original SNLP algorithm (McAllester & Rosenblitt, 1991) adopted a aw selection
strategy in which threats are resolved before open conditions, and early versions of the
widely used UCPOP planning system (Penberthy & Weld, 1992) did the same.4 SNLP
does not specify a principle for selecting among multiple threats or multiple opens; UCPOP
used LIFO for this purpose. Employing the notation above, we can describe the basic
UCPOP strategy as:


4. In the current version of UCPOP (v.4), the aw selection strategy that is run by default is the DSep
strategy, discussed just below. For historical reasons, we maintain the name DSep for that strategy, and
use UCPOP for the older default strategy.
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UCPOP fn,sgLIFO / fogLIFO


The �rst study of alternative aw selection strategies was done by Peot and Smith (1993),
who relaxed the requirement that threats always be resolved before open conditions, and
examined several strategies for delaying the resolution of some threats. They analyzed �ve
di�erent strategies for delaying the repair of threats; of these, two are provably superior:
DSep and DUnf.


DSep (Delay Separable Threats) was motivated by the observation that sometimes sep-
arable threats can simply disappear in the planning process as blocking variable bindings
are introduced. As we pointed out earlier, nonseparable threats may also \disappear",
but typically this is less frequent. Moreover, if the resolution of all threats|separable and
nonseparable|were delayed, then nonseparable threats would only disappear early as a side
e�ect of step reuse, making their disappearance even less frequent.


The DSep strategy therefore defers the repair of all separable threats until the very end of
the planning process. However, like UCPOP, it continues to give preference to nonseparable
threats:


DSep fngLIFO / fogLIFO / fsgLIFO


Actually, Peot and Smith do not specify a tie-breaking strategy for choosing among multiple
threats; we have here indicated this as LIFO. They explored three di�erent tie-breaking
strategies for selecting open conditions (FIFO, LIFO, and least-cost); here we list LIFO,
but one can also specify the alternatives:


DSep-LC fngLIFO / fogLC / fsgLIFO
DSep-FIFO fngLIFO / fogFIFO / fsgLIFO


Peot and Smith prove that the search space generated by a POCL planner using DSep will
never be larger than the search space generated using the UCPOP strategy. This result
holds when the tie-breaking strategy for open conditions is LIFO or FIFO, but not LC, a
point we will return to later in the paper.


Peot and Smith's second successful strategy is DUnf (Delay Unforced Threats). It makes
use of the notion of forced aws. As we stated earlier, a aw is forced if there is at most
one possible way to repair it. The DUnf strategy delays the repair of all unforced threats:


DUnf fn,sg0LIFO / fn,sg1LIFO / fogLIFO / fn,sg2-1LIFO


We can de�ne DUnf-LC and DUnf-FIFO in a manner analogous to that used for DSep-LC
and DSep-FIFO:


DUnf-LC fn,sg0LIFO / fn,sg1LIFO / fogLC / fn,sg2-1LIFO
DUnf-FIFO fn,sg0LIFO / fn,sg1LIFO / fogFIFO / fn,sg2-1LIFO


Peot and Smith proved that the DUnf strategy would never generate a larger search
space than either of the remaining two strategies that they examined. They also proved
that that DSep and DUnf are incomparable: there exist planning problems for which DSep
generates a smaller search space than DUnf, and other problems for which the reverse is
true.
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Peot and Smith support their theoretical results on DSep and DUnf with experiments
showing that, at least for the domains they examined, these strategies can result in signi�-
cant decrease in search-space size. The decrease in search is correlated with the di�culty of
the problem, and consequently, as the problems get more di�cult, these strategies reduce
search time as well as space. That is, on large enough problems, they \pay for" their own
overhead.


In follow-on work, Peot and Smith (1994) describe a strategy called DMin, which gener-
ates smaller search spaces than both DSep and DUnf. DMin combines a process of pruning
dead-end nodes with the process of aw selection. It gives preference to forced threats. If
there are no forced threats, it checks to see whether all the remaining nonseparable threats
could be repaired simultaneously. If so, it leaves them as threats, and selects an open con-
dition to repair; if there are no open conditions, then presumably it selects a remaining
unforced threat to repair. On the other hand, if it is impossible to repair all the unforced,
nonseparable threats, then the node is a dead end, and can be pruned from the search
space. Note that some dead-end nodes can be recognized immediately, even without doing
the complete consistency checking of DMin. This is because an unrepairable aw cannot
subsequently become repairable, hence, any node containing a aw with repair cost of zero
is a dead end. Consequently, all aw selection strategies should give highest priority to such
aws (Joslin & Pollack, 1996; Joslin, 1996).


3.2 Least-Cost Flaw Repair


Peot and Smith's work provided the foundation for our subsequent exploration of the least-
cost aw repair (LCFR) strategy (Joslin & Pollack, 1994). We hypothesized that the power
of the DUnf strategy might come not from its relative ordering of threats and open condi-
tions, but instead from the fact that DUnf has the e�ect of imposing a partial preference
for least-cost aw selection. DUnf will always prefer a forced threat, which, by de�nition
has a repair cost of at most one; thus, in cases in which there is a forced threat, DUnf will
make a low-cost selection. What about cases in which there are no forced threats? Then
DUnf will have to select among open conditions, assuming there are any. If our hypothe-
sis is correct, a version of DUnf that makes this selection using a least-cost strategy (i.e.,
DUnf-LC) ought to perform better than a version that uses one of the other strategies (i.e.,
bare DUnf or DUnf-FIFO). In fact, if it is the selection of low-cost repairs that is causing
the search-space reduction, then the idea of treating threat resolution di�erently from open
condition establishment ought to be abandoned. Instead, a strategy that always selects
the aw with minimal repair cost, regardless of whether it is a threat or an open condition,
ought to show the best performance. This is the Least-Cost Flaw Repair (LCFR) strategy:5


LCFR fo,n,sgLC


There are strong similarities between LCFR and certain heuristics that have been pro-
posed and studied in the literature on constraint satisfaction problems (CSPs). This is
perhaps not surprising, given that aw selection in POCL planning corresponds in some


5. The LCFR strategy is similar to the branch-1/branch-n search heuristics included in the O-Plan system
(Currie & Tate, 1991). The contribution of our original work on this topic was to isolate this strategy
and examine it in detail.
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fairly strong ways to variable selection in constraint programming. Flaws in a POCL plan-
ner represent decisions that are yet to be made, and that must be made before the plan
will be complete; unbound variables play a similar role in constraint satisfaction problems
(CSPs).6 Although there exist a number of heuristics for selecting a variable to branch on
in solving a CSP (Kumar, 1992), one well-known heuristic that is often quite e�ective is the
fail �rst principle, which picks the variable that is the \most constrained" when selecting
a variable to branch on. A simple and common implementation of the fail �rst principle
selects the variable with the smallest domain (Tsang, 1993).


The intuition behind the fail �rst principle is that one should prune dead-end regions
of the search as early as possible. The unbound variables that are most tightly constrained
are likely to be points at which the current partial solution is most \brittle" in some sense,
and by branching on those variables we hope to �nd a contradiction (if one exists) quickly.
Similarly, LCFR can be thought of as selecting the \most constrained" aws, resulting in
better pruning.


A similar heuristic has also been adopted in recent work on controlling search in hi-
erarchical task network (HTN) planning, in the Dynamic Variable Commitment Strat-
egy (DVCS). DVCS, like LCFR, is based on a minimal-branching heuristic. Experimental
analyses demonstrate that DVCS generally produces a well-focused search (Tsuneto, Erol,
Hendler, & Nau, 1996).


Our own initial experimental results, presented in Joslin and Pollack (1994), similarly
supported the hypothesis that a uniform least-cost aw repair strategy could be highly
e�ective in reducing the size of the search space in POCL planning. In those experiments,
we compared LCFR against four other strategies: UCPOP, DUnf, and DUnf-LC, as de�ned
above, and a new strategy, UCPOP-LC which we previously called LCOS (Joslin & Pollack,
1994):


UCPOP-LC fn,sgLIFO / fogLC


We included UCPOP-LC to help verify that search-space reduction results from a preference
for aws with minimal repair costs. If this is true, then UCPOP-LC ought to generate a
smaller search space then DUnf, even though it does not delay any threats. Our results were
as expected. UCPOP and DUnf, which do not do least-cost selection of open conditions,
generated the largest search spaces; UCPOP-LC generated signi�cantly smaller spaces; and
DUnf-LC and LCFR generated the smallest spaces.


At the same time, we observed that LCFR incurred an unwieldy overhead, often taking
longer to solve a problem than UCPOP, despite the fact that it was searching far fewer
nodes. In part this was due a particularly ine�cient implementation of LCFR that we were
using, but in part it resulted from the fact that computing repair costs is bound to take more
time than simply popping a stack (as in a LIFO strategy), or �nding a aw of a particular
type (as in a strategy that prefers threats). We therefore explored approximation strategies,
which reduce the overhead of aw selection by accepting some inaccuracy in the repair cost
calculation. For example, we developed the \Quick LCFR" (or QLCFR) strategy, which
calculates the repair cost of any aw only once, when that aw is �rst encountered. In
any successor node in which the aw remains unresolved, QLCFR assumes that its repair


6. When planning problems are cast as CSPs in the planner Descartes (Joslin & Pollack, 1996; Joslin,
1996), this correspondence is even more direct.
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cost has not changed. Our experiments with QLCFR showed it to be a promising means
of making a least-cost approach su�ciently fast to pay for its own overhead. Additional
approximation strategies were studied by Srinivasan and Howe (1995), who experimented
with three variations of LCFR, along with a fourth, novel strategy that moves some of the
control burden to the user.


3.3 Threat Delays Revisited


Recently, Gerevini and Schubert (1996) have revived the idea that a aw selection strategy
should treat open conditions and threats di�erently, and have suggested that LIFO should
be used as the tie-breaking strategy for deciding among open conditions. They combine
these ideas in their ZLIFO strategy:


ZLIFO fngLIFO / fog0LIFO / fog1New / fog2-1LIFO / fsgLIFO


The ZLIFO strategy gives highest priority to nonseparable threats, and then to forced open
conditions. If there are neither nonseparable threats nor forced open conditions, ZLIFO
will select an open condition using LIFO. It defers all separable threats to the end of the
planning process. The name ZLIFO is intended to summarize the overall strategy. The \Z"
stands for \zero-commitment", indicating that preference is given to forced open conditions:
in repairing these, the planner is not making any commitment beyond what must be made
if the node is ultimately to be re�ned into a complete plan. The \LIFO" indicates the
strategy used for selecting among unforced open conditions.


For open conditions with a repair cost of exactly one, the ZLIFO strategy uses a tie-
breaking strategy here called \New". It prefers the repair of an open condition that can only
be established by introducing a new action over the repair of an open condition that can only
be established by using an element of the start state. Gerevini and Schubert state that this
preference \gave improvements in the context of Russell's tire changing domain . . .without
signi�cant deterioration of performance in other domains" (1996, p. 104). However the
di�erence was apparently not dramatic, and Gerevini believes this to be an implementation
detail, though is open to the possibility that further study might show this preference to be
signi�cant (Gerevini, 1997).


Gerevini and Schubert make three primary claims about ZLIFO:


1. A POCL planner using ZLIFO will tend to generate a smaller search space than one
using a pure LIFO strategy.


2. The reduction in search space using ZLIFO, relative to LIFO, is correlated with the
complexity of the planning problem (where complexity is measured by the number of
nodes generated by the pure LIFO strategy).


3. ZLIFO performs comparably with LCFR on relatively easy problems, and generates
a smaller search space on harder problems.


The �rst two claims are consistent with what we found in the earlier LCFR studies.
While a LIFO strategy pays no attention to repair costs, ZLIFO does, at least indirectly,
both in its initial preference for nonseparable threats, which have a repair cost of no more
than two, and in its secondary preference for forced opens.
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The third claim is harder to square with our earlier LCFR study, in which the LIFO-
based strategies, such as UCPOP and DUnf, generated much larger search spaces than the
least-cost based strategies. What explains ZLIFO's performance? Gerevini and Schubert
answer this question as follows:


Based on experience with search processes in AI in general, [a LIFO] strategy
has much to recommend it, as a simple default. In the �rst place, its overhead
cost is low compared to strategies that use heuristic evaluation or lookahead to
prioritize goals. As well, it will tend to maintain focus on the achievement of a
particular higher level goal by regression . . . rather than attempting to achieve
multiple goals in a breadth-�rst fashion. [p. 103]


Their point about overhead is an important one. ZLIFO is a relatively inexpensive control
strategy, and a competing strategy that does a better job of pruning the search space may
end up paying excessive overhead. But it is the second point that addresses the question
we are asking here, namely, how ZLIFO could produce smaller search spaces. Gerevini and
Schubert go on to say that:


[m]aintaining focus on a single goal should be advantageous at least when
some of the goals to be achieved are independent. For instance, suppose that two
goals G1 and G2 can both be achieved in various ways, but choosing a particular
method of achieving G1 does not rule out any of the methods of achieving G2.
Then if we maintain focus on G1 until it is solved, before attempting G2, the
total cost of solving both goals will just be the sum of the costs of solving
them independently. But if we switch back and forth, and solutions of both
goals involve searches that encounter many dead ends, the combined cost can
be much larger. This is because we will tend to search any unsolvable subtree
of the G1 search tree repeatedly, in combination with various alternatives in the
G2 search tree . . . . [p. 103]


This is certainly a plausible explanation. A key remaining question, of course, is the ex-
tent to which this explanation carries over to the many planning problems that involve
interacting goals.


4. Experimental Comparison of Flaw Selection Strategies


As discussed in the previous section, several di�erent proposals have been made in the
literature about how best to reduce the size of the search space during POCL planning.
These include:


� giving preference to threats over open conditions;


� giving preference only to certain kinds of threats (either separable or forced threats),
and delaying other threats until after all open conditions have been resolved;


� giving preference to aws that have minimal repair cost;


� giving preference to the most recently introduced aws.
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Moreover, di�erent strategies have combined these preference schemes in di�erent ways,
and apparently conicting claims have been made about the e�ects of these preferences on
search-space size.


To resolve these conicts, we performed experimental comparisons of POCL planners
using a variety of aw selection strategies. We gave particular attention to the comparison
of LCFR and ZLIFO, because of the their apparently conicting claims. LCFR generates
its search space treating all aws uniformly, using a least-cost approach to choose among
them. ZLIFO distinguishes between aw types (non-separable threats, open conditions, and
separable threats), and uses a modi�ed LIFO approach to select among the aws in each
class. The original LCFR studies would have led us to predict that ZLIFO would generate
larger search spaces than did LCFR, but Gerevini and Schubert found just the opposite to
be true. We aimed, then, to explain this discrepancy.


Our principal focus was on search-space size, for two reasons. First, the puzzle raised
by LCFR and ZLIFO is one of space, not time. As we mentioned earlier, it is easy to see
why ZLIFO would be faster than LCFR, even on a per node basis. A least-cost strategy
must compute repair costs, while ZLIFO need only pop a stack containing the right type
of aws. The puzzle for us was not why ZLIFO was faster, but why it generated smaller
search spaces. Second, we believe that understanding the e�ect of search control strategies
on search-space size can lead to development of approximation techniques that produce
speed-up as well; the QLCFR strategy (Joslin & Pollack, 1994) and Srinivasan and Howe's
strategies (1995) are examples of this.


However, a secondary goal was to analyze the time requirements of the strategies we
compared, and we therefore collected timing data for all our experiments. As we discuss in
Section 4.6, the strategy that tends to generate the smallest search space achieves enough
of a reduction to pay for its own overhead, by and large.


4.1 Experimental Design


To conduct our comparison, we implemented a set of aw selection strategies in UCPOP
v.4.7 Table 1 lists the strategies that we implemented. Except for LCFR-DSep and DUnf-
Gen, which are discussed later, all the implemented strategies were described in Section
3.


We tested all the strategies on three problem sets, also used in our earlier work (Joslin
& Pollack, 1994) and in Gerevini and Schubert's (1996):


1. The Basic Problems, 33 problems taken from the test suite distributed with the
UCPOP system. These include problems from a variety of domains, including the


7. Note that the experiments in both our earlier LCFR paper (Joslin & Pollack, 1994) and Gerevini and
Schubert's (1996) ZLIFO paper were run using an earlier version (v.2) of UCPOP. As a result, the
number of nodes produced in our experiments sometimes di�ers from what is reported in these other
two papers. This appears to be largely due to the fact that UCPOP v.4 puts the elements of a new set
of open conditions onto the aw list in the reverse order of the way in which UCPOP v.2 does (Gerevini,
1997). As discussed below in Sections 4.3{4.5, we studied the inuence of this ordering change by also
collecting data using a modi�ed version of UCPOP v.4 in which we reversed the order of conditions
entered in the open list. While the resulting numbers are similar to those previously published, they
are not identical, leading us to conclude that there are additional subtle di�erences between v.2 and
v.4. However, because all the experiments on which we report here were run using the same version of
UCPOP, we believe this to be a fair comparison of the strategies.


233







Pollack, Joslin, & Paolucci


UCPOP fn,sgLIFO / fogLIFO


UCPOP-LC fn,sgLIFO / fogLC


DSep fngLIFO / fogLIFO / fsgLIFO


DSep-LC fngLIFO / fogLC / fsgLIFO


DUnf fn,sg0LIFO / fn,sg1LIFO / fogLIFO / fn,sg2-1LIFO


DUnf-LC fn,sg0LIFO / fn,sg1LIFO / fogLC / fn,sg2-1LIFO


DUnf-Gen fn,s,og0LIFO / fn,s,og1LIFO / fn,s,og2-1LIFO


LCFR fo,n,sgLC


LCFR-DSep fn,ogLC / fsgLC


ZLIFO fngLIFO / fog0LIFO / fog1New / fog2-1LIFO / fsgLIFO


Table 1: Implemented Flaw Selection Strategies


blocks world, the Monkeys and Bananas problem, Pednault's (1988) briefcase-and-
o�ce problem, Russell's (1992) tire changing world, etc.


2. The Trains Problems, three problems taken from the TRAINS transportation domain
(Allen, Schubert, & et al., 1995).


3. The Tileworld Problems, seven problems taken from the Tileworld domain (Pollack &
Ringuette, 1990).


We ran each strategy on each problem twice. The �rst time, we imposed a node limit,
of 10,000 nodes for the basic problems, and of 100,000 nodes for the Trains and Tileworld
problems. The second time, we imposed a time limit, of 100 seconds for the basic problems,
and of 1000 seconds for the Trains and Tileworld problems.


Gerevini and Schubert experimented with several di�erent node selection strategies for
the Trains and Tileworld domains, so to facilitate comparison we also used the same node
selection strategies as they did. For the basic problems, we used S +OC.


In reporting our results, we make use not only of raw counts of nodes generated and
computation time in seconds taken, but we also compute a measure of how badly a strategy
performed on a given problem or set of problems. We call this measure %-overrun, and
compute it as follows. Let m be the minimum node count on a given problem for any of
the strategies we tested, and let c be the node count for a particular strategy S. Then


%-overrun(S) = [(c�m)=m] � 100


Thus, for example, if the best strategy on a given problem generated 100 nodes, then a
strategy that generated 200 nodes would have a 100 %-overrun on that problem. The
strategy that does best on a given problem will have a %-overrun of 0 on that problem. In
Section 4.6, we make use of similarly computed %-overruns for computation time.


If a strategy hit the node limit, we set c to the relevant node limit (10,000 or 100,000)
to compute its node-count %-overrun.8 Similarly, if a strategy hit the time limit, we used
the relevant time limit (100 or 1000) to compute the computation-time %-overrun.


8. Because of the way in which UCPOP completes its basic iteration, it sometimes will go somewhat beyond
the speci�ed node limit before terminating the run. In such cases, we used the node limit value, rather
than the actual number of nodes generated, in our computation of %-overrun.
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Online Appendix A provides the raw data|node counts and computation-time taken|
for all the experiments we conducted; it also includes computed %-overruns.


In conducting experiments such as these, one has to set either a node- or time limit
cuto� for each strategy/problem pair. However, there is always a danger that these cuto�s
unfairly bias the data, if the limits are set in such a way that certain strategies that fail
would instead have succeeded were the limits increased slightly. We have carefully analyzed
our data to help eliminate the possibility of such a bias; details are given in Appendix A.


4.2 The Value of Least-Cost Selection


Having described our overall experimental design, we now turn to the analysis of the re-
sults. To begin, we sought to re-establish the claims we originally made in our earlier
work. Speci�cally, we wanted �rst to recon�rm, using a larger data set, that least-cost
aw selection is an e�ective technique for reducing the size of the search space generated
by a POCL planner. We therefore ran an experiment in which we compared the the node
counts for the �ve strategies we had earlier studied|LCFR, DUnf, DUnf-LC, UCPOP, and
UCPOP-LC|plus one new one, DUnf-Gen, explained below.


The results of this experiment are shown in Figures 2 and 3. The former is a log-log
scatter plot, showing the performance of each of the six strategies on the 33 problems in the
basic set. The problems were sorted by the minimal number of nodes generated on them
by any of the six strategies. Thus, the left-hand side of the graph includes the problems
that at least one of the six strategies found to be relatively easy, while the right-hand side
has the problems that were hard for all six strategies. We omitted problems that none
of the six strategies were able to solve. The actual number of nodes generated by each
strategy is plotted on the Y-axis, against the minimal number of nodes for that problem,
on the X-axis. LCFR's performance is highlighted with a line connecting its data points.
This graph shows that, in general, LCFR generates small search spaces on this problem set,
relative to the other strategies in this class. There were only six problems for which LCFR
was not within 10% of the minimum. Three of these are in the Get-Paid/Uget-Paid class
of problems|including two of the \hardest" problems (UGet-Paid3 and UGet-Paid4). We
discuss this class of problems more in Section 4.5.


An alternative view of the data is given in Figure 3, which shows the aggregate per-
formance of the six strategies, i.e., the average of their node-count %-overrun on the basic
problems. As can be seen, LCFR has the smallest average %-overrun.


Figures 4 and 5 present similar views of the data for the Tileworld domain, while Figure
6 gives the data for the Trains problems. On the Trains domain, these six strategies were
only able to solve the easiest problem (Trains1), so we simply show the actual node counts
in Figure 6. We have omitted two data points, because they were so extreme that their
inclusion on the graph made it impossible to see the di�erences among the other strategies:
LCFR and DUnf-Gen with S + OC + UC node selection took 28,218, and 35,483 nodes,
respectively, to solve the problem.


For the Tileworld and Trains problems, we observed the same sorts of interactions be-
tween node and aw selection strategies as were seen by Gerevini and Schubert. Speci�cally,
LCFR performs relatively poorly with S +OC on the Tileworld problems, and it performs
very poorly with S + OC + UC on the Trains problems. However, when paired with the
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Figure 2: Basic Problems: Node Counts for Strategies without Forced-Flaw Delay


other node-selection strategies, LCFR produces the smallest search spaces of any strategies
in this class.


In sum, LCFR does tend to produce smaller search spaces than the other strategies in
this class. But a question remains. LCFR uses a least-cost strategy, and a side e�ect of
this is that it will prefer forced aws, since forced aws are low-cost aws. It is therefore
conceivable that LCFR's performance is mostly or even fully due to its preference for forced
aws, and not (or not greatly) inuenced by its use of a least-cost strategy for unforced
aws. This same hypothesis could explain why DUnf-LC consistently outperforms DUnf,
and why UCPOP-LC consistently outperforms UCPOP.


It was to address this issue that we included DUnf-Gen in our experiment. DUnf-Gen is
a simple strategy that prefers forced aws of any kind, and otherwise uses a LIFO regime.
We would expect DUnf-Gen and LCFR to perform similarly, since they frequently make
the same decision. Speci�cally, they will both select the same aw in any node in which
there is a forced aw; they will di�er when there are only unforced aws, with DUnf-Gen
selecting a most recently introduced aw and LCFR selecting a least-cost aw.


In practice, DUnf-Gen's performance closely mimicked that of LCFR's. On the basic
problem set it did only marginally worse than LCFR. In fact, it does marginally better
when we reverse the order in which the planner adds the preconditions of each new step
to the open list (see Section 4.4). LCFR does somewhat better than DUnf-Gen on both
the Trains and Tileworld problems, and this is true regardless of the order in which the
preconditions were added to the open list, but the extent to which it does better varies.


Thus, the data is inconclusive about the value of using a least-cost strategy for unforced
aws. LCFR clearly bene�ts from selecting forced aws early (as a side e�ect of preferring
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least-cost aws), but it may not matter whether it continues to use a least-cost strategy for
the unforced aws. If indeed it is generally su�cient to use a least-cost strategy only for
forced aws, then ZLIFO's performance is somewhat less puzzling, since ZLIFO also prefers
forced aws. However the puzzle is not completely resolved. After all, DUnf-Gen, like
ZLIFO, prefers forced aws and and then makes LIFO-based decisions about unforced aws,
and while its performance is not clearly inferior to LCFR's, neither is it clearly superior.
Even if the use of LIFO for unforced aws does not obviously increase the search-space,
neither does it appear to decrease it.


4.3 Comparing LCFR and ZLIFO


We next turn to a direct comparison of LCFR and ZLIFO. Gerevini and Schubert compared
these strategies on only a few problems. To get a more complete picture of the performance
of both LCFR and ZLIFO, we ran them both on all the problems from our three problem
sets.


The data for the basic problem set is shown in Figure 7. We have sorted the problems
by the di�erence between the node counts produced by LCFR and ZLIFO. Thus, problems
near the left-hand side of the graph are those for which LCFR generated a smaller search
space, while problems near the right-hand side are the ones on which ZLIFO had a space
advantage. We omit problems which neither strategy could solve.


As can be seen, on some problems (notably R-Test2, Move-Boxes, and Monkey-Test2),
LCFR generates a much smaller search space than ZLIFO, while on other problems (notably
Get-Paid4, Hanoi, Uget-Paid4, and Uget-Paid3), ZLIFO generates a much smaller search
space. These are problems on which LCFR also did worse than the strategies mentioned
above in Section 4.2.


As we noted earlier, one of the major changes between UCPOP v.2 and v.4 is that
v.4 puts the elements of a new set of open conditions onto the aw list in the reverse
order from that of v.2. This ordering may make a di�erence, particularly for LIFO-based
strategies. Indeed, other researchers have suggested that one reason a LIFO-based strategy
may perform well is because it can exploit the decisions made by the system designers in
writing the domain operators, since it is in some sense natural to list the most constraining
preconditions of an operator �rst (Williamson & Hanks, 1996). We therefore also collected
data for a modi�ed version of UCPOP, in which the preconditions for each step are entered
onto the open condition in the reverse of the order in which they would normally be entered.
We discuss the results of this modi�cation in more detail in the next two sections, but for
now, we simply present the node counts for LCFR and ZLIFO with the reversed precondition
insertion, in Figure 8. As can be seen, there are a few problems on which reversing the
precondition ordering has a signi�cant e�ect (notably FIXB and MonkeyTest2), but by and
large LCFR and ZLIFO showed the same relative performance.


For the problems in the basic set, it is di�cult to discern an obvious pattern of perfor-
mance. In contrast to what Gerevini and Schubert suggest, there does not seem to be a clear
correlation between the di�culty of the problem, measured in terms of nodes generated,
and the relative performance of LCFR and ZLIFO. (In fact, it is a little di�cult to deter-
mine which strategy's node-count should serve as the measure of di�culty.) On the other
hand, it is true that in the aggregate, ZLIFO generates smaller search spaces than LCFR


239







Pollack, Joslin, & Paolucci


1


1 0


100


1000


10000


R
-T


E
S


T
2 


 


M
O


V
E


-B
O


X
E


S
  


M
O


N
K


E
Y


-T
E


S
T


2 
 


F
IX


A
  


R
A


T
-IN


S
U


LI
N


  


P
R


O
D


IG
Y


-S
U


S
S


  


M
O


N
K


E
Y


-T
E


S
T


1 
 


F
IX


3 
 


F
IX


1 
 


F
IX


2 
 


S
U


S
S


-A
N


O
M


  


R
-T


E
S


T
1 


 


G
E


T
-P


A
ID


  


F
IX


4 
 


F
IX


5 
 


R
O


A
D


-T
E


S
T


  


T
O


W
-I


N
V


4 
 


U
G


E
T-


P
A


ID
  


T
O


W
-I


N
V


3 
 


H
O


-D
E


M
O


  


U
G


E
T


-P
A


ID
2 


 


G
E


T
-P


A
ID


2 
 


TE
S


T-
FE


R
R


Y
  


G
E


T
-P


A
ID


3 
 


G
E


T
-P


A
ID


4 
 


H
A


N
O


I  


U
G


E
T


-P
A


ID
4 


 


U
G


E
T


-P
A


ID
3 


 


N
o


d
es


 G
en


er
at


ed
 (


L
o


g
)


 ZLIFO -Default


 LCFR -Default


Figure 7: Basic Problems: Node Counts for LCFR and ZLIFO
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Figure 8: Basic Problems: Node Counts for LCFR and ZLIFO with Reversed Precondition
Insertion
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on the basic problems. With the default precondition ordering, ZLIFO obtains an average
%-overrun of 212.62, while LCFR obtains 647.57. With reverse ordering, ZLIFO's average
%-overrun is 244.24, while LCFR's is 914.87. The fact that LCFR's relative performance is
worse when the preconditions are entered in the reverse direction results primarily from its
failure on MonkeyTest2 in the reverse direction.


The Trains data is scant. Neither LCFR nor ZLIFO can solve the hardest problem,
Trains3, regardless of whether the preconditions are entered in the default or the reverse
order. (In fact, none of the strategies we studied were able to solve Trains3.) But, at least
when the preconditions are entered in the default order, ZLIFO can solve Trains2, and
LCFR cannot. With reverse precondition insertion, neither strategy can solve Trains2. The
data are shown in Figure 9. Note that LCFR's performance is essentially the same for both
node-selection strategies shown.


Finally, the Tileworld data, for the default order of precondition insertion, is shown in
Figure 10. Here is the only place in which LCFR clearly generates smaller search spaces
than ZLIFO. We have not also plotted the data for reverse precondition insertion, because
most of the strategies are not a�ected by this change. There is however, one very notable
exception: with reversed insertion, ZLIFO (with S +OC + :1UC + F ) does much better|
indeed, it does as well as LCFR. We return to the inuence of precondition ordering on the
Tileworld problems in Section 4.5.


For now, however, it is enough to observe that our experiments show that ZLIFO does
tend to generate smaller search spaces than LCFR. It does so on the basic problem set,
regardless of the order of precondition insertion, it does so on Trains for one ordering (and
does no worse than LCFR on the other ordering), and it does as well as LCFR for the
Tileworld problems when the preconditions are inserted in the reverse order. The only
exception is the Tileworld problem set when the preconditions are inserted in default order:
there LCFR does better.


4.4 The Value of Separable-Threat Delay


Our �rst two analyses were essentially aimed at replicating earlier results from the literature,
namely the LCFR results and the ZLIFO results. We next address the question of how to
square these results with one another.


Recall that LCFR and ZLIFO di�er in two key respects. First, LCFR treats all aws
uniformly, while ZLIFO distinguishes among aw types, giving highest preference to non-
separable threats, medium preference to open conditions, and lowest preference to separable
threats. Second, while LCFR uniformly makes least-cost selections, ZLIFO uses a LIFO
strategy secondary to its aw-type preferences (but after giving preference to forced open
conditions). The comparisons made in Section 4.2 suggest that the use of a LIFO strategy
for unforced aws should at best make little di�erence in search-space size, and may possi-
bly lead to to the generation of larger search spaces. On the other hand, the �rst di�erence
presents an obvious place to look for a relative advantage for ZLIFO. After all, what ZLIFO
is doing is delaying separable threats, and Peot and Smith demonstrated the e�ectiveness
of that approach in their DSep strategy.


Peot and Smith's proof that DSep will never generate a larger search space than UCPOP
does not transfer to LCFR. There are planning problems for which LCFR will generate a
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Figure 9: Trains Problems: Node Counts for LCFR and ZLIFO
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Figure 10: Tileworld Problems: Node Counts for LCFR and ZLIFO
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smaller search space than DSep. Their proof relies on the fact that, in DSep, open conditions
will be selected in the same order, regardless of when threats are selected. But the selection
of a threat in LCFR can inuence the repair cost of an open condition (e.g., by promoting
an action so that it is no longer available as a potential establisher for some condition), and
this in turn can a�ect the order in which the remaining open conditions are selected.


Nonetheless, despite the fact that one can't guarantee that delaying separable threats
will lead to a reduction in search-space size, the motivation behind DSep is still appealing:
separable threats may often simply disappear during subsequent planning, which will nat-
urally lead to a reduction in search-space size. For this reason, we implemented a slightly
modi�ed version of LCFR, which we called LCFR-DSep, in which separable threats are
delayed. Note that it is relatively easy to do this in the UCPOP system, which provides
a switch, the dsep switch, which when turned on will automatically delay the repair of all
separable threats. As de�ned earlier in Table 1, the de�nition of LCFR-DSep is:


LCFR-DSep fn,ogLC / fsgLC


Our hypothesis was that if ZLIFO's reduction in search-space size were largely due to its
incorporating a DSep approach, then LCFR-DSep ought to be \the best of both worlds",
combining the advantages of LCFR's least-cost approach with the advantages of a DSep
approach.


On the basic problems, LCFR-DSep proved to have the smallest average node-count %-
overrun of on the basic problems of all of the strategies tested. Moreover, this was true even
when we reversed the order in which the preconditions of an operator were added to the open
list. Figure 11 gives the average node-count %-overruns for both the unmodi�ed UCPOP v.4
(labeled \default") and the modi�ed version in which we reversed the precondition ordering
(labeled \reverse"). Reversing the ordering does not e�ect the conclusion that LCFR-DSep
generates the smallest search spaces for these problems; in fact, in general it had very little
a�ect on the relative performance of the strategies at all. The only notable exception, which
we mentioned earlier, is that the relative performance of LCFR and DUnf-Gen ips.


For more detailed comparison, we plot node counts on the basic problems for LCFR,
ZLIFO, and the Separable-Threat Delay strategies in Figure 12. For ease of comparison, we
again show the data sorted by the di�erence between LCFR and ZLIFO's node counts. The
problems near the left-hand side of the graph are, again, those for which LCFR generated
a smaller search space than ZLIFO; the problems near the right are those for which it
generated a larger search space. As can be seen, LCFR-DSep nearly always does as well
as, or better than LCFR. It does much better than ZLIFO on the problems that LCFR is
good at. And it also does much better than LCFR on the problems that ZLIFO is good at.
However, ZLIFO still outperforms LCFR-DSep on this latter class of problems.


Another view of the data is given in Figure 13, the log-log scatter plot for the basic
problems, for all the strategies we studied. This time we have highlighted LCFR-DSep's
performance. Although there are some problems for which it does not produce a minimal
search space, its performance on the individual problems is actually quite good, consistent
with its good aggregate performance.


At least for the basic problems, augmenting the simple LCFR strategy with a delay of
separable threats reduces the search space as expected. This in turn suggests that when
LCFR generates a larger search space than ZLIFO, that is due in large part to the fact that
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Figure 11: Basic Problems: Aggregate Performance for all Strategies
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Figure 12: Basic Problems: Node Counts for LCFR, ZLIFO, and DSep Strategies
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Figure 13: Basic Problems: Node Counts for all Strategies


it does not delay separable threats. ZLIFO's primary advantage relative to LCFR seems
not to be its use of a LIFO strategy for unforced threats, but rather its separable-threat
delay component. Combining separable-threat delay with a least-cost approach yields a
strategy that tends to generate smaller search spaces than either strategy by itself for the
basic problem set. However, analysis of the Trains and Tileworld problem sets reveals the
situation to be a little more complicated than the comparison of the basic problems would
suggest, as we discuss in the next section.


4.5 The Need for Domain Information


The Tileworld and Trains domains problems challenge overly simple conclusions we might
draw from the basic problem sets. We consider each set of problems in turn.


4.5.1 The Tileworld Problems


The Tileworld domain involves a grid with tiles and holes, and the goal is to �ll each hole
with a tile. This goal can be achieved with a �ll operator, which has two preconditions:
the agent must be at the hole, and it must be holding a tile. In our encoding, an agent can
hold up to four tiles at a time. The go operator is used to achieve the (sub)goal of being
at a hole, while the pickup operator is used to achieve the (sub)goal of holding a tile. In
the normal way, go has a precondition of being at some location, namely whatever location
the agent will move from. Pickup has a precondition of being at the location of some tile.
The problems in the Tileworld problem set di�er from one another in the number of holes
that the agent must �ll: each problem adds another hole.
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Figure 14: Tileworld Problems: Node Counts for All Strategies


Figures 14 gives the log-log plot for the various strategies on the Tileworld problems,
when the preconditions were entered in the default order. Note that LCFR (S+OC+UC)
is the strategy highlighted. Three other strategies were almost indistinguishable from LCFR
(S + OC + UC), namely, LCFR (S + OC + :1UC + F ), DUnf-Gen (S + OC + UC) and
DUnf-Gen(S +OC + :1UC + F ). All the other strategies performed worse. This can more
easily be seen in Figure 15, which gives the aggregate performance for the leading strategies:
those that were able to solve all seven Tileworld problems. In fact, these leading strategies
were able to solve the seven Tileworld problems without generating more than 1800 nodes
for any problem. In contrast, the remaining strategies failed on at least one, and up to four,
of the seven problems, given the limit of 100,000 nodes generated.


What was originally surprising to us is that on the Tileworld problems, delaying separa-
ble threats actually seems to hurt performance. The strategies that did best were those like
LCFR and DUnf-Gen that do not delay separable threats. LCFR-DSep, ZLIFO, DSep-LC,
and DSep all generated larger search spaces, in contrast to what we would have predicted
given the experiments on the basic problem set.


To understand this result, we looked in detail at the planning trace for these problems.
What that revealed is that for the Tileworld domain, the early resolution of separable threats
has an important advantage: it imposes what turns out to be the correct temporal ordering
between the steps of going to up a tile (to pick it up), and carrying it to a hole. Virtually
all the strategies create subplans like the one shown in Figure 16. The goals involve �lling
holes, so the planners insert steps to go to and pick up a tile, and to go to the hole. At this
point, there are two separable threats: (1) the e�ect of going to the hole, :at(X), threatens
the link between going to the tile and picking it up (at(Z)), and (2) the e�ect of going to
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Figure 15: Tileworld Problems: Aggregate Performance for Leading Strategies


filled(H)FILL(H)
at(Y)
loc(H,Y)
holding(T)


PICKUP(T)
at(Z)
tile(T)
loc(T,Z)


GO(X,Y)at(X)


GO(W,Z)at(W)


~at(X)


~at(W)


Figure 16: Typical Partial Plan for the Tileworld Domain


the tile, :at(W ), threatens the link between going to the hole and �lling it (at(Y )). Both
threats are separable, because X and W will be unbound; the planner does not yet know
where it will be traveling from. But there is only one valid temporal ordering that will
resolve these threats: going to the tile must precede picking up the tile, which in turn must
precede going to the hole. Once this temporal ordering is determined, further planning goes
smoothly.


In contrast, if this ordering decision is not made, the planner can often \get lost",
attempting to �nd plans in which it goes from some location to the hole and then from the
hole to the tile. There are many ways to attempt this, because there are many di�erent
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Figure 17: Tileworld Problems: Node Counts with Reversed Precondition Insertion


tiles to select, and many di�erent locations to move among. The planner may try many
of these alternatives before determining that there is a fundamental inconsistency in these
plans, and that they are destined to fail. The larger the number of holes to be �lled, the
worse the situation becomes.


Sometimes the planner may make the right decision about temporal ordering even if it
has deferred separable threats. When faced with the partial plan in Figure 16, if the planner
does not select a threat, it will select from among several open conditions. It can attempt
to establish the precondition of going to the hole (at(X)) by reusing the e�ect of going to
the tile (at(Z)), or it can do the reverse, and attempt to establish the precondition of going
to the tile (at(W )) by reusing the e�ect of going to the hole (at(X)). Of course, the �rst
solution is the right one, and includes the critical temporal ordering constraint, while the
second will eventually fail.


The order in which the open conditions are selected will determine which of these two
choices the planner makes. When preconditions are entered in the default order, planners
that delay separable threats end up making the latter, problematic choice. In contrast,
when the preconditions are entered in the reverse order, the planners make what turns
out to be the correct choice. Thus, for the experiments in which we reversed precondition
insertion, we see a di�erent pattern of performance, as shown in Figures 17{18.9


When the preconditions are entered in the reverse order, a larger number of strategies
perform well, solving all the problems. In particular, with S + OC + :1UC + F node-


9. To preserve readability, in Figure 18, we have used \(1)" to denote S + OC, \(2)" for S + OC + UC,
and \(3)" for S +OC + UC + :1F .
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Figure 18: Tileworld Problems: Aggregate Performance for all Strategies with Reversed
Precondition Insertion
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Figure 19: Trains Problems: Node Counts


selection, the performance of LCFR, DUnf-Gen, ZLIFO, and LCFR-DSep is virtually indis-
tinguishable. It is important to note that the leading strategies that do not delay separable
threats|LCFR and DUnf-Gen|are not a�ected much by the reversal of precondition in-
sertion for the Tileworld problems; in fact, LCFR's performance is identical in both cases.
In contrast, the strategies that use separable-threat delay|LCFR-DSep, ZLIFO, and DSep-
LC|all perform much better when we reverse precondition insertion. This is explained by
our analysis above.


In sum, what is most important for the Tileworld domain is for the planner to recognize,
as early as possible, that there are certain required temporal orderings between some of the
steps in any successful plan. Every successful plan will involve going to a tile before going
to a hole, although there is exibility in the order in which multiple holes are visited, and
in the interleaving of picking up tiles and dropping them in holes. For the strategies we
studied, there were two di�erent methods that led to this temporal constraint being added
to the plan. It was added when the planner selected a separable threat to resolve, and it
was added when it selected one particular precondition to resolve before another.


4.5.2 The Trains and Get-Paid Problems


The Trains domain present a somewhat di�erent variation on our original conclusions. The
Trains domain involves a set of locations and objects, and the goal is to transport various
objects from speci�c starting locations to speci�ed destinations. Gerevini and Schubert
studied three Trains problems. All of our strategies failed to successfully complete the
hardest of these (Trains3) within either the 100,000 node or the 1000 second limit. Moreover,
many of them also failed on the second hardest (Trains2). Caution must therefore be taken
in interpreting the results, as there are a limited number of data points.
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Figure 19 gives the node counts for the Trains domain, with preconditions inserted in the
default order. We only show the strategies that were able to solve both Trains1 and Trains2.
These results are closer to what we would have predicted from the basic problem set than
were the results with the Tileworld. In particular, LCFR-DSep does very well, generating
much smaller search spaces than LCFR. However, it does slightly worse than ZLIFO.
Recall that we saw the same pattern of performance on a subset of the basic problems,
speci�cally on the Get-Paid/Uget-Paid problems. There, LCFR-DSep again improved on
LCFR, but did not generate as small search spaces as ZLIFO. It turns out that there are
similar factors inuencing both sets of problems, and it is instructive to consider in some
detail the planning done by ZLIFO and LCFR-DSep for the Get-Paid/Uget-Paid problems
to understand what is occurring.


Like the Trains domain problems, the Get-Paid/Uget-Paid problems involve moving
particular objects to speci�ed locations. In the Get-Paid/Uget-Paid domain there are three
objects: a paycheck, a dictionary, and a briefcase. As generally formulated, in the initial
state all three are at home, and the paycheck is in the briefcase. The goal is to deposit
the paycheck at the bank, bring the dictionary to work, and have the briefcase at home.
Both the dictionary and the paycheck can be moved only in the briefcase. For a human,
the solution to this problem is obvious. The dictionary must be put into the briefcase, and
it must then be carried to work, where the dictionary is taken out. The briefcase must then
be carried home. In addition, a stop must be made at the bank, either on the way to work
or on the way home, at which point the paycheck must be taken out of the briefcase and
deposited.


ZLIFO and LCFR-DSep take di�erent paths in solving this problem. ZLIFO begins by
forming plans to get the paycheck to the bank and the dictionary to work. These goals
are selected �rst because they are forced: there is only one way to get the paycheck to the
bank (carry it there), and similarly only one way to get the dictionary to the o�ce (carry
it there). In contrast, there are two possible ways to get the briefcase home: either by
leaving it there (i.e., reusing the initial state) or by carrying it there from somewhere else
(i.e., adding a new step). The LIFO mechanism then proceeds to complete the plans for
achieving the goals of getting the paycheck to the bank and the dictionary to work, before
beginning to work on the remaining goal, of getting the briefcase home. At this point, that
goal is easy to solve. All that is needed is to plan a route home from wherever the briefcase
is at the end of these two errands.


LCFR-DSep, like ZLIFO, begins by selecting the forced goals of getting the dictionary
to the o�ce and getting the paycheck to the bank. However, instead of next completing
the plans for these goals, LCFR-DSep continues to greedily select least-cost aws, and thus
begins to work on achieving the goal of getting the briefcase home. Unfortunately, at this
point it is not clear where the briefcase needs to be moved home from, and hence LCFR-
DSep begins to engage in a lengthy process of \guessing" where the briefcase will be at the
end of the other tasks, before it has planned for those tasks.10


10. The di�culty that LCFR-DSep encounters by greedily picking low-cost aws might be reduced by doing
a lookahead of several planning steps, to determine a more accurate repair cost. This is the approach
taken in the branch-n mechanism in O-Plan (Currie & Tate, 1991). Signi�cant overhead can be involved
in such a strategy, however.
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The key decision for the Get-Paid/Uget-Paid domain|and, as it turns out, for the Trains
domain|is related to, but subtly di�erent from the key decision in the Tileworld domain.
For Get-Paid/Uget-Paid and Trains, the key insight for the planner is again that there is
an important temporal ordering between goals. The goal of getting the briefcase home is
going to have to be achieved after the goal of taking the dictionary to work. However,
recognition of this constraint is not a�ected by separable-threat delay, as it was for the
Tileworld. Instead, what happens in these domains is that a higher-cost aw interacts with
a lower-cost one, causing the latter to become fully constrained.


It is tempting to think that here �nally is a case in which a LIFO-based strategy is
advantageous. After all, for this example, by completely determining what you will do to
achieve one goal, you make it much easier to know how to solve the another goal. But the use
of ZLIFO (or an alternative LIFO-based strategy) does not guarantee that the interactions
between high- and lower-cost aws will be exploited. In particular if the interactions are
among two or more unforced aws, then the order of the goals in the agenda can lead ZLIFO
to make an ine�cient choice. Thus, when we modi�ed the problem so that the briefcase was
at work in the initial state, ZLIFO and LCFR-DSep both solved the problem very quickly
(178 nodes for ZLIFO and 157 for LCFR-DSep). Note that this modi�cation removes the
problematic interaction between a low-cost and a high-cost aw.


Finally, note that the e�ectiveness of the LIFO strategies is again heavily dependent
on the the order in which preconditions are entered onto the open list. Figure 20 gives
the node counts for the Trains domain with reverse precondition insertion. We once again
plot only the strategies that can solve both Trains 1 and Trains2. In this case, there are
only two such strategies: LCFR-DSep and DSep-LC. The strategies that rely on LIFO for
open-condition selection, ZLIFO, DSep, DUnf-Gen, and UCPOP, all do signi�cantly worse
than they did when the preconditions were in the correct order. To the extent that LIFO
helps in such domains, it appears to be because of its ability to exploit the decisions made
by the system designers in writing the domain operators, as suggested by Williamson and
Hanks (1996).


4.6 Computation Time


We have now covered the key questions we set out to address: what are the relative e�ects
of alternative search-control strategies on search-space size, and, in particular, how can
we reconcile the apparently conicting approaches of LCFR and ZLIFO? We concluded
that LCFR-DSep combines the main advantages for reducing search-space size of these two
strategies, namely LCFR's use of a least-cost selection mechanism, at least for forced aws,
with ZLIFO's use of separable-threat delay. A �nal question concerns the price one has to
pay to use LCFR-DSep|or for that matter, any of the alternative strategies. To achieve a
reduction in search-space size, is it necessary to spend vastly more time in processing? Or
do these strategies pay for themselves?


To answer these questions, we collected timing data on all our experiments. Figures 21
and 22 gives this data for the basic problems, for both the experiments run with the node
limit and those run with the time limit. (As detailed in Appendix A, the results for the
experiments with the node limit and the time limit were very similar.) Because we saw
little inuence of precondition ordering on the basic problems, we analyze only the data for
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Figure 20: Trains Problems: Node Counts with Reversed Precondition Insertion
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Figure 21: Basic Problems: Aggregate Computation Time Performance for Leading Strate-
gies


the default precondition ordering. We show one graph with all the strategies, and another
that includes only the \leading strategies", to make it possible to see the distinctions among
them.
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Figure 22: Basic Problems: Aggregate Computation Time Performance


The timing data show that LCFR-DSep does, by and large, pay for its own overhead
on the basic problems by generating smaller search spaces (and therefore having to process
fewer nodes). When run with a time limit, LCFR-DSep's time performance is almost
identical with ZLIFO's, despite the fact that repair cost computations are more expensive
than the stack-popping of a LIFO strategy. When run with a node limit, LCFR-DSep does
show worse time performance than ZLIFO in aggregate, but still performs markedly better
than most of the other strategies. The change in relative performance results from the cases
in which both strategies fail at the node limit: LCFR-DSep takes longer to generate 10,000
nodes.


Another interesting observation is that DSep-LC has the best time performance of all
on the basic problem set. This should perhaps not be a surprise, because DSep-LC closely
approximates LCFR-DSep. It di�ers primarily in its preference for nonseparable threats,
which in any case will tend to have low repair costs. Whenever a node includes a nonsep-
arable threat, DSep-LC can quickly select that threat, without having to compute repair
costs. This speed advantage outweighs the cost of processing the extra nodes it sometimes
generates.


Figures 23{26 provide the timing data for the Trains and Tileworld domains.11 Here
there are no real surprises. The computation times taken parallel quite closely the size
of the search spaces generated. The strategies that generate the smallest search spaces
are also the fastest. With the Trains problems, we again see the DSep-LC can serve as


11. We have omitted the strategies that did very poorly, performing worse both on the node- and time-limit
experiments than did any of the strategies graphed. Note that we ran the reverse-order experiments only
with a node limit.
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Figure 23: Tileworld Problems: Aggregate Computation Time Performance for Leading
Strategies


a good approximation technique for LCFR-DSep. Although it generates more nodes than
LCFR-DSep, it is somewhat faster.12


5. Conclusion


In this paper, we have synthesized much of the previous work on aw selection for partial-
order causal link planning, showing how earlier studies relate to one another, and have
developed a concise notation for describing alternative aw selection strategies.


We also presented the results of a series of experiments aimed at clarifying the e�ects
of alternative search-control preferences on search-space size. In particular, we aimed at
explaining the comparative performance of the LCFR and ZLIFO strategies. We showed
that neither of these aw selection strategies consistently generates smaller search spaces,
but that by combining LCFR's least-cost approach with the delay of separable threats
that is included in the ZLIFO strategy, we obtain a strategy|LCFR-DSep|whose space
performance was nearly always as good as the better of LCFR or ZLIFO on a given problem.
We therefore concluded that much of ZLIFO's advantage relative to LCFR is due to its delay
of separable threats rather than to its use of a LIFO strategy. Although we were unable
to resolve the question of whether least-cost selection is required for unforced, as well as
forced aws, we found no evidence that a LIFO strategy for unforced aws was better. On
the other hand, separable-threat delay is clearly advantageous. An open question is exactly
why it is so advantageous. We have conducted preliminary experiments that suggest that


12. In interpreting the Trains timing data, it is important to note that some of the strategies shown|notably
UCPOP, UCPOP-LC, and Dunf, failed to solve Trains2 within either the node or the time limit.
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Figure 24: Tileworld Problems: Aggregate Computation Time Performance for Leading
Strategies with Reversed Precondition Insertion
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Figure 25: Trains Problems: Aggregate ComputationTime Performance for Leading Strate-
gies
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Figure 26: Trains Problems: Aggregate ComputationTime Performance for Leading Strate-
gies with Reversed Precondition Insertion
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much of the search-space reduction that results from delaying separable threats can also be
achieved by making separation systematic, something that UCPOP v.4 does not do.


We also considered the question of computation time, and showed that often LCFR-DSep
only requires computation time comparable to that of ZLIFO. LCFR-DSep can therefore be
seen as paying for its own computational overhead by its search-space reduction. Moreover,
Peot and Smith's DSep-LC provides a good approximation of LCFR-DSep: although it
produces somewhat larger search spaces, it does so more quickly.


These conclusions, however, are tempered by the fact that for certain clusters of prob-
lems, our combined strategy, LCFR-DSep, does not generate minimal search spaces. As
we saw, for the Tileworld problems, what is most important is to recognize the need for
a particular temporal ordering among plan steps, and this recognition can be obtained by
resolving separable threats early. For the Trains and Get-Paid/Uget-Paid domains, what
matters most is recognizing that a particular e�ect can in fact only be achieved in one
way, and this is only recognized when a particular aw is selected|a aw which happens
generally not to be the least cost aw available. The lesson to be learned from these sets of
problems is that although we now understand the reasons that LCFR and ZLIFO perform
the way they do, and how to combine the best features of both to create good default strate-
gies for POCL planning, it is clear that domain-dependent characteristics such as those we
identi�ed in the Trains and Tileworld domains must still be taken into account in settling
on a aw selection strategy for any domain.
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Appendix A: Ruling Out Ceiling E�ects


For the data collected using a node limit, we examined all the problems in which at least
one of the strategies hit the node limit. Table 27 gives the second worst node count for
all such problems. It shows that, for all the basic problems in which at least one strategy
failed, and at least one other succeeded, the second-worst strategy generally created fewer
than 7000 nodes.


Similarly, for the Trains and Tileworld problems, in all such cases except TW3, the
second-worst strategy took fewer than 50,000 nodes (and in TW3 it took 89,790). Recall
that the node limit for the basic problems was 10,000 nodes, while for the Trains and
Tileworld problems it was 100,000 nodes. It is thus clear that the strategies that hit the
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PROBLEM  Default Reverse
HANOI  2919 2952
R-TEST2  7567 5227
MONKEY-TEST2  3744 5200
MONKEY-TEST3  10000 10000
GET-PAID2  129 129
GET-PAID3  6431 6431
GET-PAID4  1625 1625
FIXIT  10000 10000
HO-DEMO  10000
FIXB  10000 3184
UGET-PAID2  175 175
UGET-PAID3  4725 4725
UGET-PAID4  2894 2894
PRODIGY-P22  8265 9264
MOVE-BOXES  4402 2687
MOVE-BOXES-1  10000 10000


TRAINS2 22351 29585
TRAINS3 100000 100000


TW-2 11620
TW-3 89790 401
TW-4 3844 1266
TW-5 49024 20345
TW-6 1722 3040


Figure 27: Second-Worst Node Counts on Problems with Failing Strategies


node limit are doing substantially worse than the strategies that succeed. Even if they were
to succeed by increasing the node limit slightly, their comparative performance would still
be poor.


Thus, by using the node limits we imposed, we are not making any strategies look worse
than they actually are. On the other hand, in computing %-overrun, we may be making
some strategies look better than they actually are, because we use a value of 10,000 (or
100,000) nodes generated when a strategy hits the limit, and the actual number of nodes it
might take, if run to completion, could be signi�cantly higher. This is why, in our analyses,
we considered both the absolute performance of strategies on individual problems, and their
aggregate performance, as measured by average %-overrun.


We also compared the experiments that were run with a time limit and those that were
run with a node limit. For the basic problem set, the time limit of 100 seconds was high
enough that, in most cases, strategies could compute signi�cantly more nodes than they
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could with the node cuto�. Nonetheless, the results were almost identical. In nearly all
cases, if a strategy failed with the node cuto�, it also failed with the time limit cuto�. There
were only four exceptions to this:


1. Hanoi: With the 10,000 nodes limit, DSep fails, while with the 100 second time limit,
it succeeds, taking 46,946 nodes.


2. Uget-Paid3: With the 10,000 node limit, UCPOP-LC fails, while with the 100 second
time limit, it succeeds, taking 37,951 nodes.


3. Uget-Paid4: With the 10,000 node limit, UCPOP-LC fails, while with 100 second
time limit, it succeeds, taking 23,885 nodes.


4. Fixit: With the 10,000 nodes limit, DSep-LC, UCPOP-LC, and ZLIFO fail, while
with the 100 second time limit, they succeed in 12,732, 13,510, and 20,301 nodes
respectively. All the other strategies fail to solve this problem under either limit.


There was a similarly strong correspondence between the results we obtained on the
Trains and Tileworld problems using a node limit and a time limit. In a few cases, a
strategy that was able to succeed within the 100,000 node limit was not able to succeed
within the 1,000 second time limit. The nature of these problems is that the computation
time per node can be very great. Speci�cally,


1. On TW3, DUnf succeeded in 56,296 nodes when run with a node limit, but failed
with the 1,000 second time limit.


2. On TW4, LCFR-DSep (with an S+OC node-selection strategy) succeeded in 69,843
nodes, but failed on the time limit.


3. On TW5, LCFR-DSep (with an S+OC+UC node-selection strategy) succeeded in
49,024, but failed on the limit.


4. On TW6, LCFR (with an S+OC node-selection strategy) succeeded in 4,506 nodes,
but failed with the time limit.


In only one case did a strategy fail under the node limit but succeed within the time limit:


1. On TW3, DSep (with an S+OC node-selection strategy) failed with a 100,000 node
limit, but succeeded with 134,951 nodes using a 100 second time limit. Note that
this is signi�cantly worse than the second worst strategy, which solved this problem
generating 89,790 nodes.


Given this close correspondence between the experiments with node and time limits, we
collected only node-limit data for the experiments in which we reversed the precondition
insertion.
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