
SIGKDD Explorations.  Volume 4, Issue 2   –   page 99 

One class SVM for Yeast Regulation Prediction 
Adam.Kowalczyk 

Telstra  Research Laboratories 
770 Blackburn Clayton, Victoria 3168, Australia 

Adam.Kowalczyk @team.telstra.com 

Bhavani.Raskutti 
Telstra  Research Laboratories 

770 Blackburn Clayton, Victoria 3168, Australia 

Bhavani.Raskutti @team.telstra.com 
 

 
ABSTRACT 

In this paper, we outline the main steps leading to the 
development of the winning solution for Task 2 of KDD Cup 
2002 (Yeast Gene Regulation Prediction). Our unusual solution 
was a pair of linear classifiers in high dimensional space 
(~14,000), developed with just 38 and 84 training examples, 
respectively, all belonging to the target class only. The classifiers 
were built using the support vector machine approach outlined in 
the paper. 
Keywords 

Support Vector Machines, One Class Learning, SVM, yeast gene. 

1. INTRODUCTION 
The Yeast Gene Regulation Prediction data, Task 2 of KDD Cup 
2002, was heavily unbalanced, with 38 and 84 ‘ target’  class 
examples only out of the total of 3018 examples in the training 
set. Most machine learning procedures for developing a 
discrimination in such a data will require some sort of re-
balancing of the priors, i.e., boosting the impact of examples from 
the minority class combined with diminishing the impact of 
examples from the majority class. Using cross-validation on the 
training set we have found that the optimal solution for our setting 
is obtained in the extreme case, when the majority class is 
completely eliminated.  

In this short paper, we present some details of our submission, 
including specifics of data representation and classification 
procedure as well as some results of cross-validation tests. 

2. DATA REPRESENTATION 
Each training and test gene was represented by a vector of binary 
attributes extracted from the data sources provided. Attributes 
were extracted by using only the entries from the data sources 
corresponding to the training genes.  

• Hierarchical information about function, protein classes and 
localization was converted to a vector per gene. For instance, 
the following two entries in the file function.txt 

 YGR072W  cytoplasm | SUBCELLULAR LOCALISATION 
YGR072W       nucleus     | SUBCELLULAR LOCALISATION 

 yielded three function attributes: “cytoplasm” , “subcellular 
localization”  and “nucleus”  each with a value of 1 for the 
gene “YGR072W” . This processing created 409 attributes: 42 
for localization, 213 for gene function and 154 for protein 
classes.  

• Textual information from all abstracts associated with a gene 
was converted to ‘word token’  presence vectors (‘a bag of 
words’ ). A ‘word token’ , in this context, is understood as any 
string of alphanumeric characters, which may and may not 

correspond to an ordinary word. Word tokens corresponding 
to words in a standard list of stop words, such as “ the” , “a”  
and “ in” , have been excluded. All ordinary words were 
stemmed using a standard Porter stemmer. This abstract 
processing resulted in 48,829 word token attributes. Around 
3/4th of these attributes were subsequently eliminated by 
discarding all those that occurred in only one training gene, 
and by discarding all those   which had a total frequency that 
was greater than one standard deviation from norm. After 
this processing, we were left with 12,480 word token 
attributes for the abstracts. 

• The gene-gene interaction file is symmetric. Hence, each 
entry in the file interaction.txt creates two attributes. For 
instance, the entry “YFL039C YMR092C”  creates the 
interaction attributes “YFL039C”  and “YMR092C” , and the 
attribute  “YFL039C”  is set to 1 for the gene “YMR092C”  
and vice-versa. Processing of the gene interactions file 
yielded a total of 1,447 attributes. 

Thus, the total number of binary attributes used by the learning 
algorithm was 14,336 (= 409 + 12,480 + 1,447). 

3. MODEL SELECTION 
We have used a linear support vector machine [4] with quadratic 
penalty.   This is a classifier allocating to each data sample 

14336RRx n =∈  the score bwxxf +⋅=)( , where the solution 

vector nRw∈ and the bias Rb ∈  are defined as minimisers of 
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Here n
i Rx ∈ are feature vectors and }1{±∈iy are bipolar labels 

of the training examples, 3018,...,1=i . The individual 

regularisation constants, 0≥iC , are defined as −= nCBCi /  if 

1−=iy  (the background class) and +−= nBCCi /)1(  if 

1+=iy  (the target class) with the balance factor 10 ≤≤ B and 

the regularization constant 0≥C being free parameters, and 

}84,38{∈+n and }2980,2934{∈−n  denoting the numbers of 

target and the background class examples, respectively. Thus the 
smaller the balance factor B , the smaller the impact of the 
background class and the more promoted are examples from the 
minority (target) class. In particular, 5.0=B represents the case 
of both classes with even balance of priors (ordinary 2-class 
learning); 0=B is the extreme case of learning from the target 
class examples only (1-class learning); 1=B is the opposite 
extreme, the case of learning from majority class examples only. 
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Figure 1: Mean AROC +/- std as a function of balance factor 
B (C = 5000). 

Some results of cross-validation experiments aimed at 
‘optimization’  of the balance factor B and the regularization 
constant C are shown in Figures 1 and 2. The figures show the 
mean AROC (area under ROC curve) with standard deviation as 
an envelope, where the means are computed on the validation set 
over 20 random splits of data into 70% : 30%, learning : 
validation. 

Figure 1 shows the impact of the balance factor B on accuracy. 
We have used 5000=C , and the cross-validation tests are 
performed using splits of the training data only.  Figure 2 shows 
the effect of the regularization constant C on AROC. Results are 
shown for 0=B  and 5.0=B , with cross-validation splits of 
the training data only in Figures 2A and 2B and combined 
training and test data in Figures 2C and 2D. Based on the results 
in Figures 1, 2A and 2B, the values 0=B  and 5000=C  were 
selected for the competition submission. This selection amounts to 
training ‘hard margin SVM’ with examples from a single (target) 
class only in the 14,336 dimensional feature space. 

An additional point to note is that cross-validation estimates of 
AROC from the training data and the combined training + test 
data are very close to each other.  Thus, in retrospect, the cross-
validation technique for model selection was a justified  step. 

4. DISCUSSION 
Our approach has a number of distinct features. 

Automatic pre-processing and large number of features for 
classification: We have used a minimal domain knowledge and 
passed a large number of features to the classifier. This follows 
from our previous experience in practical text categorisation 
systems where laborious manual interventions without a deep 
domain insight often produced mediocre, if any, improvements. 

One-class learning: A possibility of one class learning (with 
SVMs) has been explored previously [1,2,3]. In these 
experiments, while 1-class models performed reasonably, they 
were systematically outperformed by models developed using data 
from both classes.  To our knowledge, the experiments with Yeast 
Gene data set reported in this paper, is the only case where the 
contrary is true. 
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Figure 2: Mean AROC +/- std as a function of the 

regularization constant C. 

We have arrived at our 1-class solution through systematic 
investigation of priors. The open question still is why such a 
solution works so well on this data set. Our explanation is that this 
is the effect of a specific ‘ interaction’  of high dimensionality and 
sparsity of feature space with the noise in the data. Our recent 
experiments with this data and some other, artificial, data provide 
evidence that this happens for other data sets and classifiers. 
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