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ABSTRACT 

In order to solve task 2 of the KDD Cup 2002, we exploited 
various available information sources. In particular, use of 
relational information describing the interactions among genes 
and information automatically extracted from scientific abstracts 
improves the accuracy of our predictions. 
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1. INTRODUCTION 
KDD Cup 2002 task 2 asked for models that predict some specific 
cellular activity (the AHR signaling pathway) of yeast after the 
knockout of certain genes. For the proteins encoded by the genes, 
information about function, localization, and protein classes were 
given, as well as data about pairwise interactions between them. 
In addition, several thousand abstracts of research papers on those 
genes and proteins were provided as a further source of data. 
More details on the task can be found in an overview article by 
Craven (this issue). 

Our solution is greatly benefiting from an approach to deal with 
relational information on the interaction of genes by a 
propositionalization algorithm [1]; we had used this same 
algorithm successfully for tasks 2 and 3 of the preceding KDD 
Cup 2001. We could achieve a further improvement by using an 
information extraction algorithm that allowed us to utilize the 
scientific abstracts effectively.  

2. PROPOSITIONALIZATION 
Propositionalization is the process of the transformation of a 
multi-relational representation of data – as it can be found in 
relational databases – into the form of a single table. RELAGGS 
(RELational AGGregationS) [3] computes several joins of the 
input tables according to their foreign key relationships. These 
joins are compressed using equivalent functions to SQL avg, 
count, max, min, and sum, specific to the data types of the table 
columns, such that there remains a single row for each example, 
here for each gene. Results of several such join compressions are 
concatenated example-wise. The result is an appropriate input for 
conventional data mining algorithms. 

For the task at hand, we designed a new schema of a database that 
could serve as input for RELAGGS. We designed a table “Gene” 
to contain the names of all genes that were spread over the 
original tables. Information contained in the names – cf. 
http://www.uni-frankfurt.de/fb15/mikro/euroscarf/stra_des.html – 
as well as the class labels were included in this table, see Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Data set representation as 6 linked tables 

Tables “Train-class”  and “Test-instances”  (with class information 
given after the Cup as “Test-class”) are in fact materialized views 
of table “Gene”, containing just the training and test examples, 
respectively. 

For information about function (5 levels of hierarchy), 
localization (2 levels), and protein class (4 levels), we introduced 
columns per level. These columns contain the appropriate values 
won from a split of the original representation of this information. 
In the original variant, values of different hierarchy level where 
concatenated in a special way. 

For interactions, we made symmetry explicit. We included a line 
to state that gene B interacts with gene A if there was the fact that 
A interacts with B contained in the original table. We also 
included rows for certain transitivity assumptions. For instance, 
for second level interactions, we included rows that express that 
gene A interacts with gene C, if there are entries for interactions 
between A and B and between B and C in the original table. 

RELAGGS produced joins of those tables along foreign links [4] 
(indicated by the arrows in Figure 1) and compressed these mainly 
by just counting the different possible values per training and test 
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gene/protein, respectively. It concatenated these results and thus 
finally output a table with about 1,000 columns for further 
analysis using Joachim’s SVM light [2]. 

3. TEXT MINING 
In order to exploit the abstracts provided for analysis, we 
experimented with two different approaches: text classification 
and information extraction. Since there were many missing values 
in the tables, the latter approach was especially intended to find 
more values for function, localization and protein classes. 

For text classification, we put together abstracts per gene, applied 
a stemming algorithm, and formed a TFIDF representation as an 
input to SVM light. The decision function values output by this 
learner served as an additional attribute for the corresponding 
RELAGGS results. 

For information extraction, we again merged the abstracts per 
gene and implemented a tool to efficiently find search terms. 
These were produced from the hierarchy files of possible values 
for function, localization, and protein classes according to a few 
simple rules, such as the addition of plural forms to the original 
lists, e.g. “nuclei”  in addition to “nucleus” . On finding values 
from our search term list, the corresponding original values were 
included in the appropriate input tables for RELAGGS. 

4. RESULTS 
As a solution for KDD Cup 2002 task 2, we handed in the results 
of a model for the so-called “narrow class problem” as one of the 
two subtasks of task 2 that included the additional name 
information, interaction information up to the second level, and 
results of information extraction. With these predictions, we could 
achieve the best result on this subtask, and with the very same 
predictions, the result on the “broad class problem” was still good 
enough for a good overall result. 

With class information for test examples available now, we tried 
to find out the influence of the different experimental conditions 
here. For the additional information from gene names as well as 
text classification information, we can not observe relevant 
differences. However, using interaction information and data from 
information extraction improved the predictive power of the 
models, cf. Fig. 2 and 3. 

5. CONCLUSION 
The approach of propositionalization in combination with text 
mining techniques seems promising as indicated by our 
experimental results. As an addition, we plan to perform 
experiments with a co-learning algorithm. 
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Figure 2. Influence of interaction information on ROCs. 
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Figure 3. Influence of information extraction on ROCs. 
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