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ABSTRACT 

In this paper, we describe techniques that can be used to predict 
the effects of gene deletion.  We will focus mainly on the creation 
of predictive variables, and then briefly discuss different modeling 
techniques that have been used successfully on this data. 
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1. INTRODUCTION 
The 2002 KDD Cup was an exercise in our ability to predict the 
effects of gene deletion.  Given to the contestants were a series of 
relational tables as well as numerous abstracts discussing many of 
the genes.  By using text mining algorithms and relational 
algorithms, we built a series of 1000 variables that could 
potentially predict the narrow and broad classes of the problem.  
Because the data was sparse, we had to come up with a way to 
select the best variables, combine those variables into group 
variables, and apply a low complexity model to avoid over-fitting. 

2. INDEPENDENT VARIABLE CREATION 
The tables included information on three specific properties for 
the genes.  The properties included location of the gene action in 
relation to the cell structure (e.g. cell membrane or nucleus), the 
protein class of the protein produced or activated by the gene (e.g. 
actins or cyclins), and the function of the protein produced as it 
related to cellular function (e.g. metabolic or energy related).  The 
properties for each gene lay within multilevel architecture or 
hierarchy.  These hierarchical tables also were available.  In 
addition, tables of gene-to-gene interactions and gene aliases were 
given with dependent variables (the narrow and broad positive 
classes) for the training set.  Finally, abstracts and tables relating 
the gene aliases were provided for mining.  We used text-mining 
algorithms to convert this text into a set of numeric variables that 
would likely be predictive of the two classes. 

2.1 Gene Characteristics 
The creation of gene characteristic variables was conducted in 
such a fashion as to allow the processing between the gene 
specific characteristics and the hierarchal structure of the three 
gene characteristics.  Several variables would be created for each 
gene and its action location characteristics.  These variables 
would reflect the specific location as well as any sub grouping 
characteristics the gene contained as a result of the hierarchy of 
the location table.  All variable and hierarchal levels were 
designed to be binary for each potential level of location, protein 
and protein function.  An example of this variable set for gene 
YOR113W and protein class would equal 1 for Proteases, 
Transcription factors, Zinc-coordinating DNA-binding domains, 
and Cys2His2 zinc-finger and zero for all other groups and 
subgroups of protein classes. 

2.2 Gene Name Variables 
More variable creation was derived by concatenating the naming 
nomenclature of the alias names to derive several variables from 
the text nomenclature itself.  Examples for gene YOR113W 
would be Y, YOR, OR, 1, 13, 113, and W.  This was done to 
identify any naming nomenclature characteristics that could offer 
predictive values.  High frequency gene aliases also were 
examined in this fashion. 

2.3 Text Mining Variables 
Most of the key variables did not come from the data tables that 
were given.  The key variables were generated based on a text-
mining algorithm searching a database of 15,234 abstracts 
discussing these genes.  Our first step was to browse through 
several articles containing narrow and broad class genes, and to 
compile a list of words that intuitively appeared like they could be 
predictive key words.  The final list contained 23 words:  change, 
chromosome, delete, direct, elusive, ethanol, FK506, glucose, 
Hst1, ime2, inhibit, interact, molecular, ndt80, promoter, 
radioactive, rapamycin, repress, sensitive, Set3C, signal 
transduction, transcription, and tumor.  We also equated plurals, 
past tense, and other forms of the same word to be interpreted in 
the same way.  For each of these key words, we generated 3 
variables, as we were not sure which would be more predictive: 1) 
A count of how many times a key word appeared in the same 
article as a gene, 2) A count of how many times a key word 
appeared within 100 characters of the gene, and 3) A count of 
how many times a key word appeared within 60 characters of the 
gene.  As it turned out, there was no general rule of which of the 3 
were more predictive, as it varied from one key word to another.  
The strongest predictors out of the entire data set were based on 
the key words: complex, mutation, interact, and essential.  Of the 
630 genes that appeared in an abstract containing the word 
“ interact” , 21 were narrow class genes, and 11 were broad class 
genes.  This single variable narrows down more than half of the 
narrow class genes in a little more than one fifth of the data set.  It 
should also be noted that sorting the test set by this variable alone 
yields an ROC area of 0.6516, enough to rank 3rd on the narrow 
positive class in the KDD Cup. 

2.4 Interaction Variables 
The first idea is obvious:  Check to see which genes interact with 
the target genes.  This idea quickly is disregarded as one finds that 
not a single gene interacts with more than one gene in the 
predicted classes, thus wiping out the possibility of any statistical 
significance for the predictability of an interaction with a single 
gene.  Additionally, it can also be seen that about one out of four 
genes in the predicted classes have any interactions at all, so at 
best the presence of interactions can be one fourth of the solution.  
The total number of interactions was a strong predictor.  5.5% of 
the 128 genes with 10 or more interactions were in the narrow 
class (compared to 1.1% of the remaining genes).  Furthermore, 
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by evaluating various groups of genes interacting with the target 
genes (primarily the narrow partition), some strong patterns were 
observed.  How did we determine which groups of genes to 
evaluate for interactions?  We used all of our 500 variables as 
groups and generated 500 interaction variables, each representing 
the number of interactions with genes having that variable’s value 
greater than 0.  The most predictive interaction was evaluating 
interaction with essential genes.  Out of 260 genes interacting 
with this group, 12 were targets in the narrow class (out of only 
15 total narrow class genes with any interactions at all). 

3. MODELING TECHNIQUES 
The biggest problem in modeling this data was the sparseness of 
the data.  There were very low frequencies of target values, and 
none of the variables were extremely predictive.  This required a 
model of extremely low complexity to avoid over-fitting.  
Furthermore, we felt that one could not split out a validation/test 
set since further dilution of the frequencies would both weaken 
the model significantly and give an unreliable test set result.  
Given more time, re-sampling methods could have been used to 
test the reliability of our models.  However, our time limitations 
led us to decide to design a single model, and try as best we could 
to avoid over-fitting.  To demonstrate how quickly over-fitting 
could occur with this data, we ran linear regression on the best 6 
variables.  For the narrow class, the ROC area was 0.6350 (on the 
test set), which is less than the ROC area when sorting by the 
single best variable.  In section 3.1, we discuss the techniques 
actually used for our submission in the KDD Cup.  In section 3.2, 
we discuss ideas for improvement after taking away the time 
constraints of the competition. 

3.1 Decision Tree and results 
First, we sorted our variables by correlation to the dependent 
variable, and chose 0.08 as a cutoff, since that included 54 
variables, which was more than enough to work with.  Within that 
group, we evaluated subsets of the dataset where each of the 
variables was greater than 0, and also the subset where the value 
was greater than 1.  Within each of these subsets, we decided 
upon which ones had significantly high percentages of the 
dependent value.  13 variable ranges appeared the best.  We then 
created a variable that was a count of these ranges, and named it 
“GoodVar1” .  Of the 141 genes that had a “GoodVar1”  value of 3 
or greater, 14 were in the narrow class.  This became the first key 
split of our decision tree, which we further split based on 
combinations of variables that appeared to show the highest 
predictability.  In the subset that did not have a “GoodVar1”  value 
of 3 or more, we ran a similar variable selection process, and 
combined a second set of 25 variables into a variable named 
“GoodVar2.”   Variables with a “GoodVar2”  value of 5 or more 
proved to be highly predictive, so that became our second key 
decision cut point.  In further decision tree splits, we did not use 
an automated algorithm, due to the sparseness of the data relative 
to the complexity of an automated decision tree.  Each cut point 
was manually decided upon based on looking at statistics of the 
predictability of variables within the decision tree node, and then 
checking to see which ones were backed up by predictability over 
the entire data set.  If we had not done this check, there would 
have been no statistically significant predictors within our nodes, 
due to the tendency of decision trees to make data progressively 
more sparse.  As we found ourselves very close to the deadline for 
submitting our entry, we did not create combination variables for 

the broad class.  We simply used “GoodVar1” , “GoodVar2” , and 
the highly correlated variables to the broad class.  We then used 
the same decision tree technique that we used for the narrow class. 

3.2 Retrospective Improvements 
For purposes of the KDD Cup, time constraints prevented many 
teams from utilizing the best possible model, but rather a quick 
modeling technique.  For purposes of this paper, we made a few 
modeling improvements and applied a second model (narrow 
partition only) to the test set to give a better idea of what the 
potential of the data set could be.  Under the time constraints, 
variables with the highest correlation to the dependent variables 
were the ones considered, as this is a quick and easy calculation.   
However, there are better techniques for variable selection that 
could have been used that would be less influenced by random 
patterns.  In our case, we examined subsets of the data where 
independent variables were greater than 0, and greater than 1.  
Within these subsets, we defined a measure that evaluated the size 
of the predictive value minus a penalty for potential noise.  This 
measure we defined as NNP – E(NNP) – SD[E(NNP)].  NNP 
represents the number of occurrences of the narrow partition 
within the subset.  E(NNP) represents the expected number of 
occurrences, based on the frequency within the entire dataset.  
SD[E(NNP)] is the standard deviation of this expected number of 
occurrences.  When remodeling using this measure of 
predictability, we also created 4 groups of variables similar to the 
principle of “GoodVar1”  and “GoodVar2”  discussed in the 
previous section.  We applied this model, and obtained a test set 
result of 0.70, a large improvement from our previous result. 

4. DISCUSSION 
Due to the sparse data, and lack of solid variables, it was 
important to have a very low complexity model.  We 
accomplished this by combining several predictive variables into 
grouped variables.  We also kept the model as simple as possible 
by manually partitioning a decision tree.  We scraped for more 
data by forfeiting a test set.  We also improved the power of our 
variables by creating the 500 interaction variables (that is, gene 
interactions, not data mining interactions) . 
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