Iterative Optimization and Simplification of
Hierarchical Clusterings

Technical Report CS-95-01
Doug Fisher

Department of Computer Science
Box 1679, Station B
Vanderbilt University
Nashville, TN 37235

dfisher@vuse.vanderbilt.edu
http://www.vuse.vanderbilt.edu/~dfisher/dfisher.html
(615) 343-4111

Abstract: Clustering is often used for discovering structure in data. Clustering systems
differ in the objective function used to evaluate clustering quality and the control strategy
used to search the space of clusterings. Ideally, the search strategy should consistently
construct clusterings of high quality, but be computationally inexpensive as well. In general,
we cannot have it both ways, but we can partition the search so that a system inexpensively
constructs a ‘tentative’ clustering for initial examination, followed by iterative optimization,
which continues to search in background for improved clusterings. Given this motivation, we
evaluate an inexpensive strategy for creating initial clusterings, coupled with several control
strategies for iterative optimization, each of which repeatedly modifies an initial clustering
in search of a better one. One of these methods appears novel as an iterative optimization
strategy in clustering contexts. Once a clustering has been constructed it is judged by
analysts — often according to task-specific criteria. Several authors have abstracted these
criteria and posited a generic performance task akin to pattern completion, where the error
rate over completed patterns is used to ‘externally’ judge clustering utility. Given this
performance task we adapt resampling-based pruning strategies used by supervised learning
systems to the task of simplifying hierarchical clusterings, thus promising to ease post-
clustering analysis. Finally, we propose a number of objective functions, based on attribute-
selection measures for decision-tree induction, that might perform well on the error rate and
simplicity dimensions.

Keywords: clustering, iterative optimization, cluster validation, resampling, pruning, ob-
jective functions.

1 Introduction

Clustering is often used for discovering structure in data. Clustering systems differ in the
objective function used to evaluate clustering quality and the control strategy used to search
the space of clusterings. Ideally, the search strategy should consistently construct clusterings
of high quality, but be computationally inexpensive as well. Given the combinatorial com-
plexity of the general clustering problem, a search strategy cannot be both computationally
inexpensive and give any guarantee about the quality of discovered clusterings across a di-
verse set of domains and objective functions. However, we can partition the search so that an
initial clustering is inexpensively constructed, followed by iterative optimization procedures
that continue to search in background for improved clusterings. This allows an analyst to
get an early indication of the possible presence and form of structure in data, but search can
continue as long as it seems worthwhile. This seems to be a primary motivation behind the
design of AUTOCLASS (Cheeseman, et. al., 1988).

This paper describes and evaluates three strategies for iterative optimization, one inspired
by the iterative ‘seed’ selection strategy of CLUSTER (Michalski & Stepp, 1983), one is a
common form of optimization that iteratively reclassifies single observations, and a third
method appears novel in the clustering literature. This latter strategy was inspired, in
part, by macro-learning strategies (Iba, 1989) — collections of observations are reclassified en
masse, which appears to mitigate problems associated with local maxima as measured by
the objective function. For evaluation purposes, we couple these strategies with a simple,
inexpensive procedure used by systems like COBWEB (Fisher, 1987a,b) and a system by
Anderson and Matessa (1991), which constructs an initial hierarchical clustering. None of the
iterative optimization strategies, however, are tied to this particular method for constructing
initial clusterings.

Once a clustering has been constructed it is judged by analysts — often according to task-
specific criteria. Several authors (Fisher, 1987a,b; Cheeseman, et. al., 1988; Anderson &
Matessa, 1991) have abstracted these criteria into a generic performance task akin to pattern
completion, where the error rate over completed patterns can be used to ‘externally’ judge
the utility of a clustering. In each of these systems, the objective function has been selected
with this performance task in mind. Given this performance task we adapt resampling-based
pruning strategies used by supervised learning systems to the task of simplifying hierarchical
clusterings, thus easying post-clustering analysis. Experimental evidence suggests that hi-
erarchical clusterings can be greatly simplified with no increase in pattern-completion error
rate.

Our experiments with clustering simplification suggest ‘external’ criteria of simplicity
and classification cost, in addition to pattern-completion error rate, for judging the relative
merits of differing objective functions in clustering. We suggest several objective functions
that are adaptations of selection measures used in supervised, decision-tree induction, which
may do well on the dimensions of simplicity and error rate.

2 Generating Hierarchical Clusterings

Clustering is a form of unsupervised learning that partitions observations into classes or
clusters (collectively, called a clustering). An objective function or quality measure guides
this search, ideally for a clustering that is optimal as measured by the objective function. A
hierarchical clustering system creates a tree-structured clustering, where each set of sibling
clusters partitions the observations covered by their common parent. This section briefly
summarizes a very simple strategy, called hierarchical sorting, for creating hierarchical clus-
terings. Section 3 describes several iterative optimization strategies that we apply to clus-
terings created through hierarchical sorting.

2.1 An Objective Function

We assume that an observation is a vector of nominal values, V;; along distinct variables,
A;. A measure of category utility (Gluck & Corter, 1985; Corter & Gluck, 1992),

CU(Cr) = P(Cr) 32 3 _[P(Ai = Vij|Cx)* = P(As = Vi),

has been used extensively by a system known as COBWEB (Fisher, 1987a) and many related
systems (e.g., Gennari, et. al., 1989; McKusick & Thompson, 1990; Reich & Fenves, 1991;
Iba & Gennari, 1991; McKusick & Langley, 1991; Kilander, 1994; Ketterlin, Gancarski, &
Korczak, 1995; Biswas, Weinberg, & Li, 1994). This measure rewards clusters, Cj, that
increase the predictability of variable values within C} relative to their predictability in the
population as a whole. This measure is similar in form to the Gint Indez, which has been used
in supervised systems that construct decision trees (Mingers, 1989a; Weiss & Kulikowski,
1991). The Gini Index is typically intended to address the issue of how well the values of
a variable, A;, predict a priori known class labels in a supervised context. The summation
over Gini Indices reflected in CU addresses the extent that a cluster predicts the values of
all the variables. C'U rewards clusters, Cy, that most reduce the collective impurity over all
variables.

In Fisher’s (1987a) COBWEB system, C'U is used to measure the quality of a partition
of data, PU({C1,Cy,...Cn}) = 3, CU(Ck)/N or the average category utility of clusters in
the partition. Sections 3.5 and 5.2 note some nonoptimalities with this measure of partition
quality, and suggest some alternatives. Nonetheless, this measure is commonly used, we will
take this opportunity to note its problems, and none of the techniques that we describe is
tied to this measure.

2.2 The Structure of Clusters

As in COBWEB, AUTOCLASS (Cheeseman, et. al., 1988), and other systems (Anderson
& Matessa, 1991), we will assume that clusters, Cy, are described probabilistically: each
variable value has an associated conditional probability, P(A; = V;;|Ck), which reflects the
proportion of observations in ' that exhibit the value, V};, along variable A;. In fact, each

Size sma 0.50 med 0.25 lar 0.25
Shape squ 0.50 sph 0.50 P(root)=1.0
Color blu 0.25 gre 0.25 red 0.50
P(Cl|root)=0.50 P(C2|root)=0.50
sma 1.00 med 0.50 lar 0.50
squ 1.00 sph 1.00
blu 0.50 gre 0.50 red 1.00
sma 1.00 sma 1.00 med 1.00 lar 1.00
squ 1.00 squ 1.00 sph 1.00 sph 1.00
blu 1.00 gre 1.00 red 1.00 red 1.00

P(C3|C1)=0.50

P(C4|C1)=0.50

P(C5|C2)=0.50

P(C6/C2)=0.50

Figure 1: A probabilistic categorization tree.

variable value is actually associated with the number of observations in the cluster having
that value; probabilities are computed ‘on demand’ for purposes of evaluation.

Probabilistically-described clusters arranged in a tree form a hierarchical clustering known
as a probabilistic categorization tree. Each set of sibling clusters partitions the observations
covered by a common parent. There is a single root cluster, identical in structure to other
clusters, but covering all observations and containing frequency information necessary to
compute P(A; = V;;)’s as required by category utility. Figure 1 gives an example of a prob-
ablistic categorization tree (i.e., a hierarchical clustering) in which each node is a cluster of
observations summarized probabilistically. Observations are at leaves and are described by
three variables: Size, Color, and Shape.

2.3 Hierarchical Sorting

Our strategy for initial clustering is sorting, which is a term adapted from a psychological task
that requires subjects to perform roughly the same ‘clustering’ procedure that we describe
here (e.g., Ahn & Medin, 1989). Given an observation and a current partition, sorting
evaluates the quality of new clusterings that result from placing the observation in each of
the existing clusters, and the quality of the clustering that results from creating a new cluster
that only covers the new observation; the option that yields the highest quality score (e.g.,
using PU) is selected. The clustering grows incrementally as new observations are added.
This procedure is easily incorporated into a recursive loop that builds tree-structured
clusterings: given an existing hierarchical clustering, an observation is sorted relative to the

Size sma 0.50 med 0.33 lar 0.17
Shape squ 0.33 sph 0.33 pyr 0.33 | P(root)=1.0
Color blu 0.17 gre 0.33 red 0.50
P(Cl|root)=0.50 P(C2|root)=0.50
sma 1.00 med 0.67 lar 0.33
squ 0.67 pyr 0.33 sph 0.67 pyr 0.33
blu 0.33 gre 0.67 red 1.00
P(C4|C1)=0.67
sma 1.00 smal1.00 med 1.00 med 1.00 lar 1.00
squ 1.00 sgr 0.50 pyr 0.50 sph 1.00 pyr 1.00 sph 1.00
blu 1.00 gre 1.00 red 1.00 red 1.00 red 1.00
P(C3|C1)=0.33 P(C5|C2)=0.33 P(C7|C2)=0.33 P(C6/C2)=0.33
New Object
sma 1.00 smal00 | New Object
squ 1.00 pyr 1.00
gre 1.00 gre 1.00
P(C7|C4)=0.50 P(C8|C4)=0.50

Figure 2: An updated probabilistic categorization tree.

top-level partition (i.e., children of the root); if an existing child of the root is chosen to
include the observation, then the observation is sorted relative to the children of this node,
which now serves as the root in this recursive call. If a leaf is reached, the tree is extended
downward. The maximum height of the tree can be bounded, thus limiting downward growth
to fixed depth. Figure 2 shows the tree of Figure 1 after two new observations have been
added to it through hierarchical sorting: one observation extends the left subtree downward,
while the second is made a new leaf at the deepest, existing level of the right subtree.

This sorting strategy is identical to that used by Anderson and Matessa (1991). The chil-
dren of each cluster partition the observations that are covered by their parent, though the
measure, PU, used to guide sorting differs from that of Anderson and Matessa. The observa-
tions themselves are stored as singleton clusters at leaves of the tree. Other hierarchical-sort
based strategies augment this basic procedure in a manner described in Section 3.3 (Fisher,

1987; Hadzikadic & Yun, 1989; Decaestecker, 1991).

3 Iterative Optimization

Hierarchical sorting quickly constructs a tree-structured clustering, but one which is typi-
cally nonoptimal. In particular, this control strategy suffers from ordering effects: different
orderings of the observations may yield different clusterings (Fisher, Xu, & Zard, 1992).
Thus, after an initial clustering phase, a (possibly offline) process of iterative optimization
seeks to uncover better clusterings.

3.1 Seed Selection, Reordering, and Reclustering

Michalski and Stepp’s (1983a,b) CLUSTER seeks the optimal K-partitioning of data. The
first step selects K random ‘seed’ observations from the data. These seeds are ‘attractors’
around which the K clusters are grown from the remaining data. Since seed selection can
greatly impact clustering quality, CLUSTER selects K new seeds that are ‘centroids’ of the
K initial clusters. Clustering is repeated with these new seeds. This process iterates until
there is no further improvement in the quality of generated clusterings.

Ordering effects in sorting are related to effects that arise due to differing fixed-K seed
selections: the initial observations in an ordering establish initial clusters that ‘attract’ the
remaining observations. In general, sorting performs better if the initial observations are from
diverse areas of the observation-description space, since this facilitates the establishment of
initial clusters that reflect these different areas. Fisher, Xu, and Zard (1992) showed that
ordering data so that consecutive observations were dissimilar based on Euclidean distance
led to good clusterings. Biswas et al (1994) adapted this technique in their ITERATE system
with similar results. In both cases, sorting used the PU score described above.

This procedure presumes that observations that appear dissimilar by Euclidean distance
tend to be placed in different clusters using the objective function. Taking the lead from
CLUSTER, a measure-independent idea first sorts using a random data ordering, then ex-
tracts a biased ‘dissimilarity’” ordering from the hierarchical clustering, and sorts again. The
function of Table 1 outlines the reordering procedure. It recursively extracts a list of obser-
vations from the most probable (i.e., largest) cluster to the least probable, and then merges
(i.e., interleaves) these lists, before exiting each recursive call — at each step, an element from
the most probable cluster is placed first, followed by an element of the second most proba-
ble, and so forth. Whatever measure guides clustering, observations in differing clusters have
been judged dissimilar by the measure. Thus, this measure-independent procedure returns
a measure-dependent dissimilarity ordering by placing observations from different clusters
back-to-back.

Following initial sorting, we extract a dissimilarity ordering, recluster, and iterate, until
there is no further improvement in clustering quality.

3.2 Iterative Redistribution of Single Observations

A common form of iterative optimization moves single observations from cluster to cluster in
search of a better clustering. This process has been used in one form or another by numerous

Table 1: A procedure for creating a ‘dissimilarity’ ordering of data.

Function ORDER(Root)
If Root is a leaf Then Return(observations covered by Root)
Else Order children of Root from those covering the most
observations to those covering the least.
For each child, Cy, of Root (in order) Do Ly «— ORDER(C})
L «— MERGE({ Li/|list of objects constructed by ORDER(C})})
Return(L)

sort-based algorithms (Fisher et al, 1993). The idea behind iterative redistribution (Biswas,
Weinberg, Yang, & Koller, 1991) is simple: observations in a single-level clustering are
‘removed’ from their original cluster and resorted relative to the clustering. If a cluster
contains only one observation, then the cluster is ‘removed’ and its single observation is
resorted. This process continues until two consecutive iterations yield the same clustering.

This strategy is conceptually simple, but is limited in its ability to overcome local maxima
— the reclassification of a particular observation may be in the true direction of a better
clustering, but it may not be perceived as such when the objective function is applied to the
clustering that results from resorting the single observation.

3.3 Iterative Hierarchical Redistribution

An iterative optimization strategy that appears novel in the clustering literature is iterative
hierarchical redistribution. This strategy is rationalized relative to single-observation itera-
tive redistribution: even though moving a set of observations from one cluster to another
may lead to a better clustering, the movement of any single observation may initially re-
duce clustering quality, thus preventing the eventual discovery of the better clustering. In
response, hierarchical redistribution considers the movement of observation sets, represented
by existing clusters in a hierarchical clustering.

Given an existing hierarchical clustering, a recursive loop examines sibling clusters in the
hierarchy in a depth-first fashion. For each set of siblings, an inner, iterative loop examines
each, removes it from its current place in the hierarchy (along with its subtree), and resorts
the cluster relative to the entire hierarchy. Removal requires that the various counts of
ancestor clusters be decremented. Sorting the removed cluster is done based on the cluster’s
probabilistic description, and requires a minor generalization of the procedure for sorting
individual observations: rather than incrementing certain variable value counts by 1 at a
cluster to reflect the addition of a new observation, a ‘host’ cluster’s variable value counts
are incremented by the corresponding counts of the cluster being classified. A cluster may
return to its original place in the hierarchy, or as Figure 3 illustrates, it may be sorted to an
entirely different location.

The inner loop reclassifies each sibling of a set, and repeats until two consecutive iterations

Figure 3: Hierarchical redistribution: the left subfigure indicates that cluster J has just been
removed as a descendent of D and B, thus producing D’ and B’, and is about to be resorted
relative to the children of the root (A). The rightmost figure shows J has been placed as a
new child of C.

lead to the same set of siblings. The recursive loop then turns its attention to the children
of each of these remaining siblings. Eventually, the individual observations represented by
leaves are resorted (relative to the entire hierarchy) until there are no changes from one
iteration to the next. Finally, the recursive loop may be applied to the hierarchy several
times, thus defining an outermost (iterative) loop that terminates when no changes occur
from one pass to the next.

There is one modification to this basic strategy that was implemented for reasons of cost:
if there is no change in a subtree during a pass of the outermost loop through the hierarchy,
then subsequent passes do not attempt to redistribute any clusters in this subtree unless
and until a cluster (from some other location in the hierarchy) is placed in the subtree, thus
changing the subtree’s structure. In addition, there are cases where the PU scores obtained
by placing a cluster, C' (typically a singleton cluster), in either of two hosts will be the same.
In such cases, the algorithm prefers placement of C' in its original host if this is one of the
candidates with the high PU score. This policy avoids infinite loops stemming from ties in
the PU score.

In sum, hierarchical redistribution takes large steps in the search for a better clustering.
Similar to macro-operator learners (Iba, 1989) in problem-solving contexts, moving an obser-
vation set or cluster bridges distant points in the clustering space, so that a desirable change
can be made that would not otherwise have been viewed as desirable if redistribution was
limited to movement of individual observations. The redistribution of increasingly smaller,
more granular clusters (terminating with individual observations) serves to increasingly refine
the clustering.

To a large extent hierarchical redistribution was inspired by Fisher’s (1987a) COBWEB
system, which is fundamentally a hierarchical-sort-based strategy. However, COBWEB is
augmented by operators of merging, splitting, and promotion. Merging combines two sibling

clusters in a hierarchical clustering if to do so increases the quality of the partition of which
the clusters are members; splitting can remove a cluster and promote its children to the
next higher partition; a distinct promotion operator can promote an individual cluster to
the next higher level. In fact, these could be regarded as ‘iterative optimization’ operators,
but in keeping with COBWEB’s cognitive modeling motivations, the cost of applying them
is ‘amortized’ over time: as many observations are sorted, a cluster may migrate from one
part of the hierarchical clustering to another through the collective and repeated application
of merging, splitting, and promotion. A similar view is expressed by McKusick and Langley
(1991), whose ARACHNE system differs from COBWEB, in part, by the way that it exploits
the promotion operator. Unfortunately, in COBWEB, and to a lesser extent in ARACHNE,
merging, splitting, and promotion are applied locally and migration through the hierarchy
is limited in practice. In contrast, hierarchical redistribution resorts each cluster, regardless
of its initial location in the tree, through the root of the entire tree, thus more vigorously
pursuing migration and more globally evaluating the merits of such moves.!

The idea of hierarchical redistribution is most closely related to a strategy reflected in
the HIERARCH system (Nevins, 1995), which is an incremental clustering system. Given
an existing hierarchical clustering and a new observation, the system conducts a branch-
and-bound search through the clustering, looking for the cluster that ‘best matches’ the
observation. When the best host is found, clusters in the ‘vicinity’ of this best host are
reclassified using branch-and-bound with respect to the entire hierarchy. These clusters
need not be singletons, and their reclassification can spawn other reclassifications until a
termination condition is reached.

It is unclear how expensive this procedure is and how it scales up to large data sets;
the number of experimental trials and the size of test data sets is considerably less than we
describe shortly. Nonetheless, the importance of bridging distant regions of the clustering
space by reclassifying observation sets en masse in made explicit. Like COBWEB, HIERARCH
is incremental, changes to a hierarchy are triggered along the path that classifies a new ob-
servation, and these changes may move many observations simultaneously, thus ‘amortizing’
the cost of optimization over time. In contrast, hierarchical redistribution is motivated by a
philosophy that sorting (or some other method) can produce a tentative clustering over all
the data quickly, followed by iterative optimization procedures in background that revise the
clustering intermittently. While hierarchical redistribution reflects many of the same ideas
implemented in HIERARCH, COBWEB, and related systems, it appears novel as an iterative
optimization strategy that is decoupled from any particular initial clustering strategy.

3.4 Comparisons between Iterative Optimization Strategies

This section compares iterative optimization strategies under two experimental conditions.
In the first condition, a random ordering of observations is generated and hierarchically

!Considering global changes also motivated redistribution of individual observations in ITERATE. As
Nevins (1995) notes in commentary on experimental comparisons between of ITERATE and CoBWEB (Fisher
et al, 1992), even global movement of single observations typically did not perform as well as local movement
of sets of observations simultaneously, as implemented by COBWEB’s merging and splitting operators.

sorted. Each of the optimization strategies is then applied independently to the resultant
hierarchical clustering. These experiments assume that the primary goal of clustering is
to discover a single-level partitioning of the data that is of optimal quality. Thus, the
objective function score of the first-level partition is taken as the most important dependent
variable. An independent variable is the height of the initially-constructed clustering; this can
effect the granularity of clusters that are used in hierarchical redistribution. A hierarchical
clustering of height 2 corresponds to a single level partition of the data at level 1 (the root
is at level 0), and leaves corresponding to individual observations reside at level 2.

In addition to experiments on clusterings derived by sorting random initial orderings,
each redistribution strategy was tested on exceptionally poor initial clusterings generated by
nonrandom orderings. Just as ‘dissimilarity’ orderings lead to good clusterings, ‘similarity’
orderings lead to poor clusterings (Fisher, Xu, & Zard, 1992). Intuitively, a similarity
ordering samples observations within the same region of the data description space, before
sampling observations from differing regions. The reordering procedure of Section 3.1 is
easily modified to produce similarity orderings by ranking each set of siblings in a hierarchical
clustering from least to most probable, and appending rather than interleaving observation
lists from differing clusters as the algorithm pops up the recursive levels. A similarity ordering
is produced by applying this procedure to an initial clustering produced by an earlier sort
of a random ordering. Another clustering is then produced by sorting the similarity-ordered
data, and the three iterative optimization strategies are applied independently. We do not
advocate that one build clusterings from similarity orderings in practice, but experiments
with such orderings better test the robustness of the various optimization strategies.

Table 2 shows the results of experiments with random and similarity orderings of data
from four databases of the UCI repository.? These results assume an initial clustering of
depth 2 (i.e., a top-level partition + observations at leaves). Each cell represents an average
and standard deviation over 20 trials. The first cell (labeled ‘sort’) of each domain is the
mean PU scores initially obtained by sorting. Subsequent rows under each domain reflect
the mean scores obtained by the reordering/resorting procedure of Section 3.1, iterative
redistribution of single observations described in Section 3.2, and hierarchical redistribution
described in Section 3.3.

The main findings reflected in Table 2 are:

1. Initial hierarchical sorting from random input does reasonably well; PU scores in this
case are generally much closer to the scores of optimized trees, than to the poorest
scores obtained after sorting on similarity orderings. This weakly suggests that initial
sorting on random input takes a substantial step in the space of clusterings towards
discovery of the final structure.

2. Hierarchical redistribution achieves the highest mean PU score in both the random
and similarity case in 3 of the 4 domains. The small soybean domain is the exception.

2A reduced mushroom data set was obtained by randomly selecting 1000 observations from the original
data set.

10

Table 2: ITterative optimization strategies with initial clusterings generated from sorting ran-
dom and similarity ordered observations. Tree height is 2. Averages and standard deviations

of PU scores over 20 trials.

Soybean (small)
(47 obs, 36 vars)

Soybean (large)
(307 obs, 36 vars)

House

(435 obs, 17 vars)

Mushroom

(1000 obs, 23 vars)

Random Similarity
sort 1.53 (0.11) | 103 (0.18)
reorder/resort | 1.61 (0.02) | 1.56 (0.08)
iter. redist. 1.54 (0.10) | 1.34 (0.20)
hier. redist. 1.60 (0.05) | 1.50 (0.08)
sort 0.89 (0.08) | 0.66 (0.14)
reorder/resort | 0.97 (0.04) | 0.96 (0.05)
iter. redist. 0.92 (0.07) | 0.84 (0.10)
hier. redist. 1.06 (0.02) | 1.06 (0.01)
sort 1.22 (0.30) | 0.83 (0.16)
reorder/resort | 1.66 (0.09) | 1.57 (0.18)
iter. redist. 1.24 (0.28) | 1.06 (0.19)
hier. redist. 1.68 (0.00) | 1.68 (0.00)
sort 1.10 (0.13) | 0.73 (0.22)
reorder/resort | 1.10 (0.08) | 1.16 (0.08)
iter. redist. 1.10 (0.12) | 0.95 (0.19)
hier. redist. 1.27 (0.00) | 1.24 (0.10)

11

Table 3: Hierarchical redistribution with initial clusterings generated from sorting random
and similarity ordered observations. Tree height is 4. Averages and standard deviations of
PU scores over 20 trials.

Random ‘ Similarity ‘
Soybean (small) ‘ 1.62 (0.00) ‘ 1.62 (0.00) ‘
Soybean (large) | 1.07 (0.02) | 1.07 (0.01) |
House | 1.68 (0.00) | 1.68 (0.00) |
Mushroom | 1.27 (0.00) | 1.27 (0.00) |

3. In the House domain (random and similarity case) and the Mushroom domain (ran-
dom case only), the standard in PU scores of clusterings optimized by hierarchical
redistribution is 0.00, indicating that it has always constructed clusterings of the same
PU score in all 20 trials.

4. Reordering and reclustering comes closest to hierarchical redistribution’s performance
in all cases, bettering it in the Small Soybean domain.

5. Single-observation redistribution modestly improves an initial sort, and is substantially
worse than the other two optimization methods.

Note that with initial hierarchical clusterings of height 2, the only difference between
iterative hierarchical redistribution and redistribution of single observations is that hierar-
chical redistribution considers ‘merging’ clusters of the partition (by reclassifying one with
respect to the others) prior to redistributing single observations during each pass through
the hierarchy.

Section 3.3 suggested that the expected benefits of hierarchical redistribution might be
greater for deeper initial trees with more granular clusters. Table 3 shows results on the same
domains and initial orderings when tree height is 4 for hierarchical redistribution. There is
modest improvement across the board. This is reflected in the 0.00 standard deviations of
most domains,® and a significant increase in the mean PU score of optimized trees in the
small soybean domain when initial sorting was performed on similarity orderings.

Experiments with reorder/resort and iterative distribution of single observations also
were varied with respect to tree height (e.g., height 3). In the case of iterative redistribution
of single observations, the deepest set of clusters in the initial hierarchy above the leaves,
was taken as the initial partition. Reordering/resorting scores remained roughly the same
as the height 2 condition, but clusterings produced by single-observation redistribution had
PU scores that were considerably worse than those given in Table 2.

3A standard deviation of 0.00 indicates that the standard deviation was non-0, but not observable at the
2nd (or 3rd in our case) decimal place after rounding.

12

Table 4: Time requirements (in seconds) of hierarchical sorting and iterative optimization
strategies with initial clusterings generated from sorting random and similarity ordered ob-
servations. Tree height is 2. Averages and standard deviations over 20 trials.

Soybean (small)
(47 obs, 36 vars)

Soybean (large)
(307 obs, 36 vars)

House

(435 obs, 17 vars)

Mushroom

(1000 obs, 23 vars)

Random Similarity
sort 6.98 (1.43) 721 (L31)
reorder/resort | 14.82 (2.60) 18.27 (6.00)
iter. redist. 9.00 (5.94) 15.51 (7.72)
hier. redist. 6.99 (1.28) 8.87 (3.58)
sort 50.62 (6.11) | 54.00 (13.25)
reorder/resort | 141.36 (46.99) | 153.22 (43.59)

iter. redist.
hier. redist.

166.53 (55.53)

307.59 (160.66)

79.00 (19.23)

87.27 (19.64)

sort

reorder /resort
iter. redist.
hier. redist.

31.99 (7.55)

39.15 (7.60)

87.78 (23.94)

97.63 (29.54)

177.75 (94.53)

320.43 (124.78)

55.90 (11.92)

73.54 (10.05)

sort
reorder /resort
iter. redist.

111.47 (19.19)

119.33 (25.86)

301.34 (100.56)

391.80 (211.54)

162.58 (85.20)

hier. redist.

(
390.11 (191.62)
(

91.87 (29.50) 151.45 (48.89)

We also recorded execution time for each method. Table 4 shows the time required
for each method in seconds.? In particular, for each domain, Table 4 lists the mean time
for initial sorting, and the mean additional time for each optimization method. Ironically,
these experiments demonstrate that even though hierarchical redistribution ‘bottoms-out’
in an single-observation form of redistribution, the former is consistently faster than the
latter — reclassifying a cluster simultaneously moves a set of observations, which would
otherwise have to be repeatedly evaluated for redistribution individually with increased time
to stabilization.®

Table 4 assumes the tree constructed by initial sorting is bounded to height 2. Table 5
gives the time requirements of hierarchical sorting and hierarchical redistribution when the
initial tree is bounded to height 4. As the tree gets deeper the cost of hierarchical redistri-
bution grows substantially. For reasons of cost, we adopt a tree construction strategy that
builds a hierarchical clustering three levels at a time (with hierarchical redistribution) in the
experiments of Section 4.

“Routines were implemented in SUN Common Lisp, compiled, and run on a SUN 3/60.

5Similar timing results occur in other computational contexts as well. Consider the relation between
insertion sort and Shell sort. Shell sort’s final ‘pass’ of a table is an insertion sort that is limited to moving
table elements between consecutive table locations at a time. The large efficiency advantage of Shell Sort
stems from the fact that previous passes of the table have moved elements large distances, thus by the final
pass, the table is nearly sorted.

13

Table 5: Time requirements (in seconds) of hierarchical sorting and hierarchical redistribu-
tion with initial clusterings generated from sorting random and similarity ordered observa-
tions. Tree height is 4. Averages and standard deviations over 20 trials.

‘ Random ‘ Similarity
Soybean (small) sort 18.32 (1.78) 20.61 (2.39)
hier. redist. | 93.84 (27.54) 132.72 (27.89)
Soybean (large) sort 142.38 (10.24) 151.84 (10.85)
hier. redist. | 436.33 (138.85) | 575.84 (260.00)
House sort 104.32 (8.74) 119.61 (11.60)
hier. redist. | 355.04 (71.07) 425.36 (105.37)
Mushroom sort 406.56 (64.16) 442.82 (64.78)
hier. redist. | 1288.19 (457.64) | 1368.33 (335.43)

3.5 Discussion of Iterative Optimization Methods

Our experiments demonstrate the relative abilities of three iterative optimization strategies,
which have been coupled with the PU objective function and hierarchical sorting to generate
initial clusterings. Importantly, none of these optimization techniques is strongly tied to a
particular initial sorting strategy or objective function. For example, hierarchical redistribu-
tion can also be applied to hierarchical clusterings generated by an agglomerative strategy
(Fisher, Xu, & Zard, 1992), which uses a bottom-up procedure to construct hierarchical
clusterings by repeatedly ‘merging’ observations and resulting clusters until an all-inclusive
root cluster is generated. Agglomerative methods do not suffer from ordering effects, but
they are greedy algorithms, which are susceptible to the limitations of local decision making
generally, and would thus likely benefit from iterative optimization.

However, while the optimization strategies can be applied regardless of objective func-
tion, the relative benefits of these methods undoubtedly varies with objective function. For
example, the PU function has the undesirable characteristic that it may, under very partic-
ular circumstances, view two partitions that are very close in form as separated by a ‘cliff’

(Fisher, 1987b; Fisher, 1993). Consider a partition of M observations involving only two,

roughly equal-sized clusters; its PU score has the form PU({Cy,Cy}) = w

create a partition of three clusters by removing a single observation from, say Cy, and creat-

3 7
ing a new singleton cluster, Cs we have PU({Cy,C},Cs}) = M If M is relatively
large, CU(C5) will have a very small score due to the term, P(C5) = 1/M (see Section 2.1).
Because we are taking the average C'U score of clusters, the difference between PU({C4, C3})
and PU({Cy,C%,Cs}) may be quite large, even though they differ in the placement of only
one observation. Thus, limiting experiments to the PU function may exaggerate the general

. I we

advantage of hierarchical redistribution relative to the other two optimization methods. This
statement is simultaneously a positive statement about the robustness of hierarchical redis-

14

tribution in the face of an objective function with cliffs, and a negative statement about PU
for defining such discontinuities. Nonetheless, PU has been universally adopted in systems
that fall within the COBWEB family (e.g., Gennari, et. al., 1989; McKusick & Thompson,
1990; Reich & Fenves, 1991; Iba & Gennari, 1991; McKusick & Langley, 1991; Kilander,
1994; Ketterlin, Gancarski, & Korczak, 1995; Biswas, Weinberg, & Li, 1994). Section 5.2
suggests some alternative objective functions.

Beyond the nonoptimality of PU, our findings should not be taken as the best that these
strategies can do when they are engineered for a particular clustering system. We could in-
troduce forms of randomization or systematic variation to any of the three strategies. For ex-
ample, while Michalski and Stepp’s seed-selection methodology inspires reordering/resorting,
the former approach selects ‘border’ observations when the selection of ‘centroids’ fails to
improve clustering quality from one iteration to the next; this is an example of the kind of
systematic variations that one might introduce in pursuit of better clusterings. In contrast,
AUTOCLASS may take large heuristically-guided ‘jumps’ away from a current clustering.
This approach might, in fact, be viewed as a somewhat less systematic (but perhaps equally
successful) variation on the macro-operator theme that inspired hierarchical redistribution,
and is similar to HIERARCH’s approach as well. In any case, neither CLUSTER or AUTO-
CLASS ‘gives up’ when it fails to improve clustering quality from one iteration to the next. In
addition, one or more strategies might be combined to advantage. For example, Biswas et al
(1994) adapt Fisher, Xu, and Zard’s dissimilarity ordering strategy to preorder observations
prior to clustering. After sorting using PU, their ITERATE system then applies iterative
redistribution of single observations using a category match measure by Fisher and Langley
(1990).

The combination of preordering and iterative redistribution appears to yield good results
in ITERATE. However, the use of three different measures — distance, PU, and category
match — during clustering may be unnecessary and adds undesirable coupling in the design
of the clustering algorithm. If, for example, one wants to experiment with the merits of
differing objective functions, it is undesirable to worry about the ‘compatibility’ of this
function with two other measures. In contrast, reordering/resorting generalizes Fisher et als
ordering strategy; this generalization and the iterative redistribution strategy we describe
assume no auxiliary measures beyond the objective function. In fact, the final evaluation
of ITERATE clusterings is made using still two other measures of partition quality. It is not
clear why this system exploits five different measures during the generation and evaluation
of clusterings; if the final two evaluative measures do indeed measure the desirable aspects
of a clustering, then undoubtedly they can be combined into a single objective function to
be used exclusively during the clustering process.

Reordering/resorting and iterative redistribution of single observations could be combined
in a manner similar to ITERATE’s exploitation of certain specializations of these procedures.
Our results suggest that reordering/resorting would put a clustering in a good ‘ballpark’,
while iterative redistribution would subsequently make modest refinements. We have not
combined strategies, but in a sense conducted the inverse of an ‘ablation’ study, by evalu-
ating the capabilities of individual strategies in isolation. In the limited number of domains

15

explored in Section 3.4, however, it appears difficult to better hierarchical redistribution.
Finally, our experiments applied various optimization techniques after all data was sorted.
It may prove desirable to apply the optimization procedures at intermittent points during
sorting. This may improve the quality of final clusterings using reordering/resorting and
redistribution of single observations, as well as reduce the overall cost of constructing final
optimized clusterings using any of the methods, including hierarchical redistribution, which
already appears to do quite well on the quality dimension. In fact, HIERARCH can be
viewed as performing something akin to a restricted form of hierarchical redistribution after
each observation. This is probably too extreme — if iterative optimization is performed
too often, the resultant cost can outweigh any savings gleaned by maintaining relatively well
optimized trees throughout the the sorting process. Utgoff (1994) makes a similar suggestion
for intermittent restructuring of decision trees during incremental, supervised induction.

4 Simplifying Hierarchical Clusterings

A hierarchical clustering can be grown to arbitrary height. If there is structure in the data,
then ideally the top layers of the clustering reflect this structure (and substructure as one
descends the hierarchy). However, lower levels of the clustering may not reflect meaningful
structure. This is the result of overfitting, which one finds in supervised induction as well.
Inspired by certain forms of retrospective (or post-tree-construction) pruning in decision-
tree induction, we use resampling to identify ‘frontiers’ of a hierarchical clustering that are
good candidates for pruning. Following initial hierarchy construction and iterative optimiza-
tion, this simplification process is a final phase of search through the space of hierarchical
clusterings intended to ease the burden of a data analyst.

4.1 Identifying Variable Frontiers by Resampling

Several authors (Fisher, 1987a; Cheeseman, et. al., 1988; Anderson & Matessa, 1991) moti-
vate clustering as a means of improving performance on a task akin to pattern completion,
where the error rate over completed patterns can be used to ‘externally’ judge the utility of
a clustering. Given a probablistic categorization tree of the type we have assumed, a new
observation with an unknown value for a variable can be classified down the hierarchy using
a small variation on the hierarchical sorting procedure described earlier.® Classification is
terminated at a selected node (cluster) along the classification path, and the variable value
of highest probability at that cluster is predicted as the unknown variable value of the new
observation. Naively, classification might always terminate at a leaf (i.e., an observation),
and the leaf’s value along the specified variable would be predicted as the variable value of
the new observation. Our use of a simple resampling strategy known as holdout (Weiss &
Kulikowski, 1991) is motivated by the fact that a variable might be better predicted at some

6Classification is identical to sorting except that the observation is not added to the clustering and
statistics at each node encountered during sorting are not permanently updated to reflect the new observation.

16

______________ =~

frontier of A,

i Sl A D Y o Gelbulis) St GellieD S - = of Ag

Figure 4: Frontiers for three variables in a hypothetical clustering.

internal node in the classification path. The identification of ideal-prediction frontiers for
each variable suggests a pruning strategy for hierarchical clusterings.

Given a hierarchical clustering and a validation set of observations, the validation set is
used to identify an appropriate frontier of clusters for prediction of each variable. Figure 4
illustrates that the preferred frontiers of any two variables may differ, and clusters within a
frontier may be at different depths. For each variable, A;, the objects from the validation set
are each classified through the hierarchical clustering with the value of variable A; ‘masked’
for purposes of classification; at each cluster encountered during classification the observa-
tion’s value for A; is compared to the most probable value for A; at the cluster; if they are
the same, then the observation’s value would have been correctly predicted at the cluster. A
count of all such correct predictions for each variable at a cluster is maintained. Following
classification for all variables over all observations of the validation set, a preferred frontier
for each variable is identified that maximizes the number of correct counts for the variable.
This is a simple, bottom-up procedure that insures that the number of correct counts at a
node on the variable’s frontier is greater than or equal to the sum of correct counts for the
variable over each set of mutually-exclusive, collectively-exhaustive descendents of the node.

The identification of variable-specific frontiers facilitates a number of pruning strategies.
For example, a node that lies below the frontier of every variable offers no apparent advan-
tage in terms of pattern-completion error rate; such a node probably reflects no meaningful
structure and it (and its descendents) may be pruned. However, if an analyst is focusing
attention on a subset of the variables, then frontiers might be more flexibly exploited for
pruning.

4.2 Experiments with Validation

To test the validation procedure’s promise for simplifying hierarchical clusterings, each of the
data sets used in the optimization experiments of Section 3.4 was randomly divided into three
subsets: 40% for training, 40% for validation, and 20% for test. A hierarchical clustering

17

Table 6: Characteristics of optimized clusterings before and after validation. Average and
standard deviations over 20 trials.

Unvalidated ‘ Validated ‘

Soybean (small)

Leaves 18.00 (0.00) | 13.10 (1.59)
Accuracy 0.85 (0.01) 0.85 (0.01)
Ave. Frontier Size | 18.00 (0.00) | 2.75 (1.17)

Soybean (large)

Leaves 122.00 (0.00) | 79.10 (5.80)
Accuracy 0.83 (0.02) 0.83 (0.02)
Ave. Frontier Size | 122.00 (0.00) | 17.01 (4.75)
House

Leaves 174.00 (0.00) | 49.10 (7.18)
Accuracy 0.76 (0.02) 0.81 (0.01)
Ave. Frontier Size | 174.00 (0.00) | 9.90 (5.16)
Mushroom

Leaves 400.00 (0.00) | 96.30 (11.79)
Accuracy 0.80 (0.01) 0.82 (0.01)
Ave. Frontier Size | 400.00 (0.00) | 11.07 (4.28)

is first constructed by sorting the training set in randomized order. This hierarchy is then
optimized using iterative hierarchical redistribution. Actually, because of cost considerations,
a hierarchy is constructed three levels at a time. The hierarchy is initially constructed
to height 4, where the deepest level is the set of training observations. This hierarchy is
optimized using hierarchical redistribution. Clusters at the bottommost level (i.e., 4) are
removed as children of level 3 clusters, and the subset of training observations covered by
each cluster of level 3 is hierarchically sorted to a height 4 tree and optimized. The roots of
these subordinate clusterings are then substituted for each cluster at depth 3 in the original
tree. The process is repeated on clusters at level 3 of the subordinate trees and subsequent
trees thereafter until no further decomposition is possible. The final hierarchy, which is not
of constant-bounded height, decomposes the entire training set to singleton clusters, each
containing a single training observation. The validation set is then used to identify variable
frontiers within the entire hierarchy.

During testing of a validated clustering, each variable of each test observation is masked
in turn; when classification reaches a cluster on the frontier of the masked variable, the
most probable value is predicted as the value of the observation; the proportion of correct
predictions for each variable over the test set is recorded. For comparative purposes, we
also use the test set to evaluate predictions stemming from the unvalidated tree, where all
variable predictions are made at the leaves (singleton clusters) of this tree.

18

Table 6 shows results from 20 experimental trials using optimized, unvalidated and vali-
dated clusterings generated as just described from random orderings. The first row of each
domain lists the average number of leaves (over the 20 experimental trials) for the unval-
idated and validated trees. The unvalidated clusterings decompose the training data to
single-observation leaves — the number of leaves equals the number of training observations.
In the validated clustering, we assume that clusters are pruned if they lie below the frontiers
of all variables. Thus, a leaf in a validated clustering is a cluster (in the original clustering)
that is on the frontier of at least one variable, and none of its descendent clusters (in the
original clustering) are on the frontier of any variable. For example, if we assume that the
tree of Figure 4 covers data described only in terms of variables A;, Ay, and Aj, then the
number of leaves in this validated clustering would be 7.

Prediction accuracies in the second row of each domain entry are the mean proportion
of correct predictions over all variables over 20 trials. Predictions were generated at leaves
(singleton clusters) in the unvalidated hierarchical clusterings and at appropriate variable
frontiers in the validated clusterings. In all cases, validation/pruning substantially reduces
clustering size and it does not diminish accuracy.

The number of leaves in the validated case, as we have described it, assumes a very
coarse pruning strategy; it will not necessarily discriminate a clustering with uniformly deep
frontiers from one with a single or very few deep frontiers. We have suggested that more
flexible pruning or ‘attention’ strategies might be possible when an analyst is focusing on
one or a few variables. We will not specity such strategies, but the statistic given in row 3 of
each domain entry suggests that clusterings can be rendered in considerably simpler forms
when an analyst’s attention is selective. Row 3 is the average number of frontier clusters per
variable. This is an average over all variables and all experimental trials.” In the validated
tree of Figure 4 the average frontier size is (1 + 6 +4)/3 = 3.67.

Intuitively, a frontier cluster of a variable is a ‘leaf’ as far as prediction of that variable
is concerned. The ‘frontier size’ entry for unvalidated clusterings is simply given by the
number of leaves, since this is where all variable predictions are made in the unvalidated
case. Our results suggest that when attention is selective, a partial clustering that captures
the structure involving selected variables can be presented to an analyst in very simplified
form.

4.3 Discussion of Validation

The resampling-based validation method is inspired by earlier work by Fisher (1989), which
identified variable frontiers within a strict incremental context: as each observation was
hierarchically sorted using COBWEB, it was used to predict values for each variable of an
observation, update ‘correct’ counts at each node for all correctly anticipated variables,
and then the observation was used to permanently update the variable values counts at a
node. In Fisher (1989) variable values were not masked during sorting — knowledge of each

"The ‘standard deviations’ given in Row 3 are actually the mean of the standard deviations over the
frontier sizes for individual variables.

19

variable value was used during sorting, thus helping to guide classification, and validation. In
addition, the hierarchy changed during sorting/validation. While this incremental strategy
led to desirable results in terms of pattern-completion error rate, it is likely that the variable
frontiers identified by the incremental method are less desirable than frontiers identified with
holdout, where we strictly segregate the training and validation sets of observations.

Our method of validation and pruning is inspired by retrospective pruning strategies in
decision tree induction such as reduced error pruning (Quinlan, 1987; Mingers, 1989b). In a
Bayesian clustering system such as AUTOCLASS, the expansion of a hierarchical clustering is
mediated by a tradeoff between prior belief in the existence of further structure and evidence
in the data for further structure. We will not detail this fundamental tradeoff, but suffice it
to say that expansion of a hierarchical clustering will cease along a path when the evidence
for further structure in the data is insufficient in the face of prior bias. Undoubtedly, the
Bayesian approach can be adapted to identify variable-specific frontiers, and thus be used
in the kind of flexible pruning and focusing strategies that we have implied, but to date we
know of no work other than Fisher (1989) that identifies these frontiers.®

Our experimental results suggest the utility of resampling for validation, the identification
of variable frontiers, and pruning. However, the procedure described is not a method per
se of clustering over all the available data, since it requires that a validation set be held
out during initial hierarchy construction.? There are several options that seem worthy of
experimental evaluation in adapting this validation strategy as a tool for simplification of
hierarchical clusterings. One strategy would be to hold out a validation set, cluster over a
training set, identify variable frontiers with the validation set, and then sort the validation
set relative to the clustering. This single holdout methodology has its problems, however,
for reasons similar to those identified for single holdout in supervised settings (Weiss &
Kulikowski, 1991).

A better strategy might be one akin to n-fold-cross-validation: a hierarchical clustering
is constructed over all available data, then each observation is removed,!® it is used for
validation with respect to each variable, and then the observation is reinstated in its original
location (together with the original variable value statistics of clusters along the path to this
location).

5 General Discussion

The evaluation of the various strategies discussed in this paper reflect two paradigms for
validating clusterings. Internal validation is concerned with evaluating the merits of the
control strategy that searches the space of clusterings: to evaluate the extent that the search

8Fisher (1987b) and Fisher and Schlimmer (1988) use a very different method to identify something
similar in spirit to frontiers as defined here.

9For purposes of evaluating the merits of our validation strategy in terms of error rate, we also held out
a separate test set. Having demonstrated the point, however, we would not require that a separate test set
be held out when using resampling as a validation strategy.

10The observation is physically removed, and variable value statistics at clusters that lie along the path
from root to the observation are decremented.

20

strategy uncovers clusterings of high quality as measured by the objective function. Internal
validation was the focus of Section 3.4. FExternal validation is concerned with determining
the utility of a discovered clustering relative to some performance task. We have noted
that several authors point to minimization of error rate in pattern completion as a generic
performance task that motivates their choice of objective function. External validation was
the focus of Section 4.2.

This section explores validation issues more closely, identifies both error rate and simplic-
ity (or ‘cost’) as necessary external criteria for discriminating clustering utility, suggests a
number of alternative objective functions that might be usefully compared using these exter-
nal criteria, and speculates that these external validation criteria (taken collectively) reflect
reasonable criteria that data analysts may use to judge the utility of discovered clusterings.

5.1 A Closer Look at External Validation Criteria

Ideally, clustering quality as measured by the objective function should be well correlated
with clustering utility as determined by a performance task: the higher the quality of a
clustering as judged by the objective function, the greater the performance improvement
(e.g., reduction of error rate), and the lower the quality, the less that performance improves.
However, several authors (Fisher, Xu, Zard, 1992; Nevins, 1995; Devany & Ram, 1993) have
pointed out that PU scores do not seem well-correlated with error rates. More precisely,
hierarchical clusterings (constructed by hierarchical sorting) in which the top-level partition
has a low PU score lead to roughly the same error rates as hierarchies in which the top-level
partition has a high PU score, when variable-value predictions are made at leaves (singleton
clusters). Apparently, even with poor partitions at each level as measured by PU, test
observations are classified to the same or similar observations at the leaves of a hierarchical
clustering. Pattern-completion error rate under these circumstances seems insufficient to
discriminate what we might otherwise consider to be good and poor clusterings.

Our work on simplification in Section 4 suggests that in addition to error rate, we might
choose to judge competing hierarchical clusterings based on simplicity or some similarly-
intended criterion. Both criteria are used to judge classifiers in supervised contexts. We
have seen that holdout can be used to substantially ‘simplify’ a hierarchical clustering. The
question we now ask is whether hierarchical clusterings that have been optimized relative to
PU can be simplified more substantially than unoptimized clusterings with no degradation
in pattern-completion error rate?

To answer this question we repeated the validation experiments of Section 4.2 under
a second experimental condition: hierarchical clusterings were constructed from similarity
orderings of the observations using the hierarchical sorting procedure of Section 2. We saw
in Section 3.4 that similarity orderings tend to result in clusterings judged poor by the PU
function. We do not optimize these hierarchies using hierarchical optimization. Table 7
shows accuracies, number of leaves, and average frontier sizes, for unoptimized hierarchies
constructed from similarity orderings, in the case where they have been subjected to holdout-
based validation and in the case where they have not. These results are given under the
heading ‘Unoptimized’. For convenience, we copy the results of Table 6 under the heading

21

Table 7: Characteristics of unoptimized and optimized clusterings before and after validation.
Average and standard deviations over 20 trials.

Optimized
H Unvalidated ‘ Validated ‘

Unoptimized
Unvalidated ‘ Validated

Soybean (small)

Leaves 18.00 (0.00) | 15.35 (1.81) || 18.00 (0.00) | 13.10 (1.59)
Accuracy 0.84 (0.18) 0.85 (0.01) 0.85 (0.01) 0.85 (0.01)
Ave. Frontier Size | 18.00 (0.00) | 3.97 (1.62) 18.00 (0.00) | 2.75 (1.17)
Soybean (large)

Leaves 122.00 (0.00) | 88.55 (4.46) || 122.00 (0.00) | 79.10 (5.80)
Accuracy 0.82 (0.02) 0.82 (0.02) 0.83 (0.02) 0.83 (0.02)
Ave. Frontier Size | 122.00 (0.00) | 24.74 (7.52) 122.00 (0.00) | 17.01 (4.75)
House

Leaves 174.00 (0.00) | 68.95 (8.15) 174.00 (0.00) | 49.10 (7.18)
Accuracy 0.76 (0.02) 0.81 (0.02) 0.76 (0.02) 0.81 (0.01)
Ave. Frontier Size | 174.00 (0.00) | 17.72 (7.81) 174.00 (0.00) | 9.90 (5.16)
Mushroom

Leaves 100.00 (0.00) | 145.50 (20.64) || 400.00 (0.00) | 96.30 (11.79)
Accuracy 0.80 (0.01) 0.82 (0.01) 0.80 (0.01) 0.82 (0.01)
Ave. Frontier Size | 400.00 (0.00) | 22.85 (8.75) 400.00 (0.00) | 11.07 (4.28)

22

‘Optimized’.

As in the optimized case, identifying and exploiting variable frontiers in unoptimized
clusterings appears to simplify a clustering substantially with no degradation in error rate.
Of most interest here, however, is that optimized clusterings are simplified to a substantially
greater extent than unoptimized clusterings with no degradation in error rate.

Thus far, we have focused an the criteria of error rate and simplicity, but in many
applications, our real interest in simplicity stems from a broader interest in minimizing
the expected cost of exploiting a clustering during classification: we expect that simpler
clusterings have lower expected classification costs. We can view the various distinctions
between unvalidated /validated and unoptimized/optimized clusterings in terms of expected
classification cost. Table 8 shows some additional data obtained from our experiments with
validation. In particular, the table shows:

Leaves (L) The mean number of leaves before and after validation (assuming the coarse
pruning strategy described in Section 4.2) in both the optimized and unoptimized cases

(copied from Table 7).

EPL The mean weighted path length; this is the sum of (weighted) depths of leaves in the
tree, where each depth is weighted by the proportion of training observations at that

depth.

. SR EPL
Depth (D) The average depth of a leaf in the tree, which is computed by =7=.

Breadth (B) The average branching factor of the tree. Given that B” = L, B = V/L or

logy L
B =m~1p for any m.

Cost (C) The expected cost of classifying an observation from the root to a leaf in terms
of the number of nodes (clusters) examined during classification. At each level we
examine each cluster and select the best. Thus, cost is the product of the number of
levels and the number of clusters per level. So C' = B x D.

Table 8 illustrates that the expected cost of classification is less for optimized clusterings
than for unoptimized clusterings in both the unvalidated and validated cases. However,
these results should be taken with a grain of salt, and not simply because they are estimated
values. In particular, we have expressed cost in terms of the expected number of nodes that
would need to be examined during classification. An implicit assumption is that cost of
examination is constant across nodes. In fact, the cost per examination roughly is constant
(per domain) across nodes in our implementation and many others: at each node, all variables
are examined. Consider that by this measure of cost, the least cost (unvalidated) clustering
is one that splits the observations in half at each node, thus forming a perfectly-balanced
binary tree, regardless of the form of structure in the datal

Of course, if such a tree does not reasonably capture structure in data, then we might
expect this to be reflected in error rate and/or post-validation simplicity. Nonetheless,
there are probably better measures of cost available. In particular, Gennari (1989) observed

23

Table 8: Cost characteristics of unoptimized and optimized clustering before and after val-
idation. Average and standard deviations over 20 trials. Characteristics that are *ed are
computed from the mean values of ‘Leaves’ and EPL.

Unoptimized Optimized
Unvalidated ‘ Validated H Unvalidated ‘ Validated

Soybean (small)
Leaves 18.00 (0.00) 15.35 (1.81) 18.00 (0.00) 13.10 (1.59)
EPL 40.90 (3.64) 31.90 (6.94) 54.20 (4.74) 34.50 (6.49)
Depth* 2.27 2.08 3.01 2.63
Breadth* 3.57 3.72 2.61 2.66
Cost* 8.10 7.74 7.86 7.00
Soybean (large)
Leaves 122.00 (0.00) 88.55 (4.46) 122.00 (0.00) 79.10 (5.80)
EPL 437.20 (34.74) 280.40 (28.07) 657.65 (28.38) | 380.65 (43.63)
Depth* 3.58 3.17 5.39 4.81
Breadth* 3.82 4.11 2.44 2.48
Cost* 13.68 13.03 13.15 11.93
House
Leaves 174.00 (0.00) 68.95 (8.15) 174.00 (0.00) 49.10 (7.18)
EPL 664.65 (41.16) 196.20 (35.32) 1005.10 (27.42) | 217.25 (39.75)
Depth* 3.82 2.85 5.78 4.42
Breadth* 3.86 4.42 2.44 2.41
Cost* 14.75 12.60 14.10 10.65
Mushroom
Leaves 400.00 (0.00) 145.50 (20.64) 400.00 (0.00) 96.30 (11.79)
EPL 2238.20 (123.63) | 660.90 (117.86) || 2608.85 (56.01) | 503.40 (72.22)
Depth* 5.60 4.54 6.52 5.23
Breadth* 2.92 3.00 2.51 2.39
Cost* 16.35 13.62 16.37 12.50

24

that when classifying an observation one need not evaluate the objective function over all
variables. Rather, evaluation over a subset of variables is often sufficient to categorize an
observation relative to the same cluster that would have been selected if evaluation had
occurred over all variables. Under ideal circumstances, when clusters of a partition are well
separated, testing a very few ‘critical’ variables may be sufficient to advance classification.

Gennari implemented a focusing algorithm that sequentially evaluated the objective func-
tion over the variables, one additional variable at a time from most to least ‘critical’, until
a categorization with respect to one of the clusters could be made unambiguously. Using
Gennari’s procedure, examination cost is not constant across nodes.!! Carnes and Fisher
(Fisher, et al, 1993) adapted Gennari’s procedure to good effect in a diagnosis task, where
the intent was to minimize the number of probes necessary to diagnose a fault.

The results of Table 8 are simply intended to illustrate the form of an expected classification-
cost analysis. We might have also measured cost as time directly using a test set. In fact,
comparisons between the time requirements of sorting in the random and similarity ordering
conditions of Tables 4 and 5 suggest cost differences between good and poor clusterings in
terms of time as well. Regardless of the form of analysis, however, it seems desirable that
one express branching factor and cost in terms of the number of variables that need be tested
assuming a focusing strategy such as Gennari’s. It is likely that this will tend to make better
distinctions between clusterings.

5.2 Evaluating Objective Functions: Getting the Most Bang for the Buck

The results of Section 5.1 suggest that the PU function is useful in identifying structure
in data: clusterings optimized relative to this function were simpler and as accurate as
clusterings that were not optimized relative to the function. Thus, PU leads to something
reasonable along the error rate and simplicity dimensions, but can other objective functions
do a better job along these dimensions? Based on earlier discussion on the limitations of
PU, notably that averaging C'U over the clusters of a partition introduced ‘cliffs’ in the
space of partitions, it is likely that better objective functions can be found. For example, we
might consider Bayesian variants like those found in AUTOCLASS (Cheeseman, et al, 1988)
and Anderson and Matessa’s (1991) system. We do not evaluate alternative measures such
as these here, but do suggest a number of other candidates.

Section 2.1 noted that the C'U function could be viewed as a summation over Gini Indices,
which measured the collective impurity of variables conditioned on cluster membership.
Intuition may be helped further by an information-theoretic analog to C'U (Corter & Gluck,
1992):

P(Ci) 32> [P(Ai = Vi|Cr)log, P(Ai = V;|Cy) — P(Ai = Vij)log, P(Ai = Vij)].

1Tn fact, cost is not constant across observations, even those that are classified along exactly the same
path — the number of variables that one need test depends on the observation’s values along previously
examined variables.

25

This function and CU rank clusters similarly. The information-theoretic analog can be
understood as a summation over information gain values, where information gain is an often
used selection criterion for decision tree induction (Quinlan, 1986): it rewards clusters, Cy,
that maximize the sum of information gains over the individual variables, A;.

Both the Gini and Information Gain measures are often-used bases for selection measures
of decision tree induction. They are used to measure the expected decrease in impurity or
uncertainty of a class label, conditioned on knowledge of a given variable’s value. In a
clustering context, we are interested in the decrease in impurity of each variable’s value
conditioned on knowledge of cluster membership — thus, we use a summation over suitable
Gini Indices or alternatively, information gain scores. However, it is well known that in the
context of decision tree induction, both measures are biased to select variables with more legal
values. Thus, various normalizations of these measures or different measures altogether, have
been devised. In the clustering adaptation of these measures normalization is also necessary,
since YN, CU alone or its information-theoretic analog will favor a clustering of greatest
cardinality, in which the data are partitioned into singleton clusters, one for each observation.
Thus, PU normalizes the sum of Gini indices by averaging.

A general observation is that many selection measures used for decision tree induction
can be adapted as objective functions for clustering. There are a number of selection mea-
sures that suggest themselves as candidates for clustering, in which normalization is more
principled than averaging. Two candidates are Quinlan’s (1986) Gain Ratio and Lopez de

Mataras’ (1991) normalized information gain.?

Y., P(Ai=Vi;)) [P(Cr|Ai=Vij)log, P(Cr|Ai=Vi;)—P(Cy)log, P(Cy)]
— 2, P(Ai=Vi;) logy P(Ai=Vy)

(Quinlan, 1986)

Yo, P(Ai=Vij))) [P(Cx|Ai=Vij) logy P(Ck|Ai=Vi;)=P(Cx)log, P(Cx)]
— E] Zk P(CrnA;=V;;)]og, P(CrAAi=Vi5)

(Lopez de Mantaras, 1991)

From these we can derive two objective functions for clustering:

Z- Ek P(Ck) E] [P(A;=V;;|Cx)logy P(A;=Vi;|Ck)—P(A;=Vi;)logy P(A;=V;5)]
v — Zk P(Cy)log, P(Cy)

5 D, P(Cr)) [P(Ai=Vy;|Cy) logy P(Ai=Vi;|Cy)—P(Ai=Vi;)log, P(Ai=V;)]
i =2 i 2, P(4i=Vi;ACy) logy P(A;i=V;;ACk)

The latter of these clustering variations was defined in Fisher and Hapanyengwi (1993).
Our nonsystematic experimentation with Lopez de Mantaras’ normalized information gain
variant suggests that it mitigates the problems associated with PU, though conclusions about
its merits must await further experimentation. In general, there are a wealth of promising

121 thank Jan Hajek for pointing out the various relationships between these and standard con-
cepts/measures/terms in Information Theory.

26

objective functions based on decision tree selection measures that we might consider. We
have described two, but there are others such as Fayyad’s (1992) ORT function. We have not
compared these or Bayesian measures as yet, but have proposed pattern-completion error
rate, simplicity, and classification cost as external, objective criteria that could be used in
such comparisons.

5.3 Final Comments on External Validation Criteria

An underlying assumption of this work is that the ‘simplest’ hierarchical clustering of minimal
error rate will be deemed of high utility by a data analyst in a variety of contexts. Clusterings
that seem to facilitate accurate inferences may better promote activities such as hypothesis
generation and hypothesis verification, and the simpler the clustering the less cost or effort
required on an analyst’s part to extract meaningful structure. It is likely that such clusterings
will be deemed of high quality from the standpoint of traditional criteria such as intra-cluster
cohesion (i.e., observations within the same clusters are similar) and inter-cluster coupling
(i.e., observations in differing clusters will be dissimilar) across a range of possible cohesion
and coupling measures. In fact, several authors (Fisher, 1987a; Cheeseman et al, 1988;
Anderson & Matessa, 1991) argue or imply that concerns with cohesion, coupling, similarity,
and dissimilarity are best rationalized relative to the goal of minimizing pattern-completion
error rate.

Of course, we have computed error rate and identified variable frontiers given a simplified
performance task: each variable was independently masked and predicted over test obser-
vations. This is not an unreasonable generic method for computing error rate, but different
domains may suggest different computations, since often many variables are simultaneously
unknown and/or an analyst may be interested in a subset of the variables. In addition,
we have proposed simplicity (i.e., the number of leaves) and expected classification cost as
external validation criteria. Section 5.1 suggests that one of the latter criteria is probably
necessary, in addition to error rate, to discriminate ‘good’ and ‘poor’ clusterings as judged
by the objective function. In general, desirable realizations of error rate, simplicity, and cost
will likely vary with domain and the interpretation tasks of an analyst.

In short, an analyst’s task is largely one of making inferences from a clustering, for which
there are error-rate and cost components. It is probably not the case that we have expressed
these components in precisely the way that they are cognitively-implemented in an analyst.
We can only hope that our expression of these factors leads to informative views of data.

5.4 Other Issues

There are many important issues in clustering that we will not address in depth. One of
these is the possible advantage of overlapping clusters (Lebowitz, 1987; Martin & Billman,
1994). We have assumed tree-structured clusterings, which store each observation in more
than one cluster, but these clusters are related by a proper subset-of relation as one descends
a path in the tree. In many cases, lattices (Wilcox & Levinson, 1986; Carpineto & Romano,
1993), or more generally, directed acyclic graphs (DAG) may be a better representation

27

scheme. These structures allow an observation to be included in multiple clusters, where
one such cluster need not be a subset of another. As such, they may better provide an
analyst with multiple perspectives of the data. For example, animals can be partitioned into
clusters corresponding to mammals, birds, reptiles, etc., or they may be partitioned into
clusters corresponding to carnivores, herbivores, or omnivores. A tree would require that
one of these partitions (e.g., carnivore, etc.) be ‘subordinate’ to the other (e.g., mammals,
birds, etc.); Classes of the subordinate partition would necessarily be ‘distributed’ across
descendents (e.g., carnivorous-mammal, omnivorous-mammal, carnivorous-reptile, etc.) of
top level clusters, which ideally would represent clusters of the other partition. A DAG
allows both perspectives to coexist in relative equality, thus making both perspectives more
explicit to an analyst.

We have also assumed that variables are nominally valued. There have been numerous
adaptations of the basic PU function, other functions, and discretization strategies to ac-
commodate numeric variables (Michalski & Stepp, 1983a,b; Gennari et al, 1989; Reich &
Fenves, 1991; Cheeseman, et al, 1988; Biswas et al, 1994). The basic sorting procedure and
the iterative optimization techniques can be used with data described in whole or part by
numerically-valued variables regardless of which approach one takes. The identification of
numeric variable frontiers using holdout can be done by using the mean value for a variable
at a node for generating predictions, and identifying a variable’s frontier as the set of clusters
that collectively minimize a measure of error such as mean-squared error.

6 Concluding Remarks

We have partitioned the search through the space of hierarchical clusterings into three phases.
These phases, together with an opinion of their desirable characteristics from a data analysis
standpoint, are (1) inexpensive generation of an initial clustering that suggests the form
of structure in data (or its absence), (2) iterative optimization (perhaps in background) for
clusterings of better quality, and (3) retrospective simplification of generated clusterings. We
have evaluated three iterative optimization strategies that operate independent of objective
function. All of these, to varying degrees, are inspired by previous research, but hierarchical
redistribution appears novel as an iterative optimization technique for clustering; it also
appears to do quite well.

Another novel aspect of this work is the use of resampling as a means of validating
clusters and of simplifying hierarchical clusterings. The experiments of Section 5 indicate
that optimized clusterings provide greater data compression than do unoptimized clusterings.
This is not surprising, given that PU compresses data in some reasonable manner; whether
it does so ‘optimally’ though is another issue.

We have made several recommendations for further research.

1. We have suggested experiments with alternative objective functions, including Bayesian
measures, and some that are inspired by variable-selection measures of decision tree
induction.

28

2. There may be cost and quality benefits to applying optimization strategies at inter-
mittent points during hierarchical sorting.

3. The holdout method of identifying variable frontiers and pruning suggests a strategy
akin to n-fold-cross validation that clusters over all the data, while still identifying
variable frontiers and facilitating pruning.

4. Analyses of classification cost for purposes of external validation are probably best
expressed in terms of the expected number of variables using a focusing method such
as Gennari’s.

In sum, this paper has proposed criteria for internal and external validation, and has
made experimental comparisons between various approaches along these dimensions. Ide-
ally, as researchers explore other objective functions, search control strategies, and pruning
techniques, the same kind of experimental comparisons (particularly along external criteria
such as error rate, simplicity, and classification cost) that are de rigueur in comparisons of
supervised systems, will become more prominent in unsupervised contexts.

Acknowledgements

This work was supported by grant NAG 2-834 from NASA Ames Research Center.

29

References

Anderson, J. R., & Matessa, M. (1991). An interative Bayesian algorithm for categorization.
In D. Fisher & M. Pazzani (Eds.), Concept formation: Knowledge and experience in
unsupervised learning. San Mateo, CA: Morgan Kaufmann.

Ahn, W., & Medin, D. L. (1989). A two-stage categorization model of family resemblance
sorting. Proceedings of the Eleventh Annual Conference of the Cognitive Science Society
(pp. 315-322). Ann Arbor, MI: Lawrence Erlbaum.

Biswas, G., Weinberg, J., & Li, C. (1994). ITERATE: A conceptual clustering method for
knowledge discovery in databases. In B. Braunschweig and R. Day (Eds.) Innovative
Applications of Artificial Intelligence in the Oil and Gas Industry. Editions Technip.

Biswas, G., Weinberg, J. B., Yang, Q., & Koller, G. R. (1991). Conceptual clustering and
exploratory data analysis. Proceedings of the Eighth International Machine Learning
Workshop (pp. 591-595). Evanston, II: Morgan Kaufmann.

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and Regression
Trees. Belmont, CA: Wadsworth.

Carpineto, C., & Romano, G. (1993). GALOIS: An order-theoretic approach to conceptual
clustering. Proceedings of the Tenth International Conference on Machine Learning

(pp. 33-40), Ambherst, MA: Morgan Kaufmann.

Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W., & Freeman, D. (1988). AutoClass:
A Bayesian classification system. Proceedings of the Fifth International Machine Learn-
ing Conference (pp. 54-64). Ann Arbor, MI: Morgan Kaufmann.

Corter, J., & Gluck, M. (1992). Explaining basic categories: feature predictability and
information. Psychological Bulletin, 111, 291-303.

Decaestecker, C. (1991). Description contrasting in incremental concept formation. In Yves
Kodratoff (Ed.) Machine Learning — EWSL-91, No. 482, Lecture Notes in Artificial
Intelligence, pp. 220-233, Springer-Verlag.

Devaney, M. & Ram, A. (1993). Personal communication, Oct. 1993.

Fayyad, U. (1991). On the Induction of Decision Trees for Multiple Concept Learning.
(Doctoral Dissertation). Ann Arbor, MI: Department of Computer Science and Engi-
neering, University of Michigan.

Fisher, D. H. (1987a). Knowledge acquisition via incremental conceptual clustering. Ma-
chine Learning, 2, 139-172.

30

Fisher, D. H. (1987b). Knowledge acquisition via incremental conceptual clustering (Doc-
toral Dissertation). Irvine, CA: Department of Information and Computer Science,
University of California.

Fisher, D. H. (1989). Noise-tolerant conceptual clustering. Proceedings of the Interna-
tional Joint Conference Artificial Intelligence (pp. 825-830). Detroit, MI: Morgan
Kaufmann.

Fisher, D. (1993). Ordering Effects in Clustering. In Proceedings of the AAAI Symposium

on Training Issues in Incremental Learning.

Fisher, D., & Hapanyengwi, G. (1993). Database management and analysis tools of machine
induction. Journal of Intelligent Information Systems, 2, 5—38.

Fisher, D. H., & Langley, P. (1990). The structure and formation of natural categories.
In G. H. Bower (Ed.), The Psychology of Learning and Motivation. San Diego, CA:

Academic Press.

Fisher, D., & Pazzani, M. (1991). Computational models of concept learning. In D. Fisher
& M. Pazzani (Eds.), Concept formation: Knowledge and experience in unsupervised
learning. San Mateo, CA: Morgan Kaufmann.

Fisher, D. H. & Schlimmer, J. (1988). Concept simplification and prediction accuracy.
Proceedings of the Fifth International Conference on Machine Learning (pp. 22-28).
Ann Arbor, MI: Morgan Kaufmann.

Fisher, D., Xu, L., Carnes, J., Reich, Y., Fenves, S., Chen, J., Shiavi, R., Biswas, G., &
Weinberg, J. (1993). Applying Al clustering to engineering tasks. [EEE Expert, 8,
51-60.

Fisher, D., Xu, L., & Zard, N. (1992). Ordering effects in clustering. Proceedings of the
Ninth International Conference on Machine Learning (pp. 163-168). Aberdeen, UK:
Morgan Kaufmann.

Gennari, J. (1989). Focused concept formation. Proceedings of the Sixth International
Workshop on Machine Learning (pp. 379-382). Ithaca, NY: Morgan Kaufmann.

Gennari, J., Langley, P., & Fisher, D. (1989). Models of incremental concept formation.
Artificial Intelligence, 40, 11-62.

Gluck, M. A., & Corter, J. E. (1985). Information, uncertainty, and the utility of categories.
Proceedings of the Seventh Annual Conference of the Cognitive Science Society (pp.
283-287). Irvine, CA: Lawrence Erlbaum.

Hadzikadic, M., & Yun, D. (1989). Concept formation by incremental conceptual clustering.
Proceedings of the International Joint Conference Artificial Intelligence (pp. 831-836).
Detroit, MI: Morgan Kaufmann.

31

Iba, G. (1989). A heuristic approach to the discovery of macro operators. Machine Learn-
ing, 3, 285-317.

Iba, W., & Gennari, J. (this volume). Learning to Recognize Movements. In D. Fisher
& M. Pazzani (Eds.), Concept formation: Knowledge and experience in unsupervised
learning. San Mateo, CA: Morgan Kaufmann.

Ketterlin, A., Gangarski, P., J. Korczak (1995). Hierarchical clustering of composite objects
with a variable number of components. Preliminary papers of the Fifth International
Workshop on Artificial Intelligence and Statistics (pp. 303-309), Ft. Lauderdale,
Florida.

Kilander, F. (1994). Incremental Conceptual Clustering in an On-Line Application. (Doc-
toral Dissertation, Report No. 94-014). Department of Computer and Systems Sci-
ences, Stockholm University.

Lebowitz, M. (1987). Experiments with incremental concept formation: UNIMEM. Machine
Learning, 2, 103—-138.

Lopez de Mantaras, R. (1991). A distance-based attribute selection measure for decision
tree induction. Machine Learning, 6, 81-92.

Martin, J., & Billman, D. (1994). Acquiring and combining overlapping concepts. Machine
Learning, 16, 121-155.

McKusick, K., & Langley, P. (1991). Constraints on tree structure in concept formation.
Proceedings of the International Joint Conference on Artificial Intelligence (pp. 810-
816). Sydney, Australia: Morgan Kaufmann.

McKusick, K., & Thompson, K. (1990). COBWEB/3: A portable implementation (Tech.
Rep. No. FIA-90-6-18-2). Moffett Field, CA: Al Research Branch, NASA Ames

Research Center.

Michalski, R. S., & Stepp, R. (1983a). Automated construction of classifications: concep-
tual clustering versus numerical taxonomy. [EFEE Transactions on Pattern Analysis
and Machine Intelligence, 5, 219-243.

Michalski, R. S., & Stepp, R. (1983b). Learning from observation: conceptual clustering.
In R. S. Michalski, J. G. Carbonell, & T. M. Mitchell (Eds.), Machine learning: An
artificial intelligence approach. San Mateo, CA: Morgan Kaufmann.

Mingers, J. (1989a). An empirical comparison of selection measures for decision-tree induc-
tion. Machine Learning, 3, 319-342.

Mingers, J. (1989b). An empirical comparison of pruning methods for decision-tree induc-
tion. Machine Learning, 4, 227-243.

32

Nevins, A. J. (1995). A branch and bound incremental conceptual clusterer. Machine
Learning, 18(1), 5-22.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81-106.

Quinlan, J. R. (1987). Simplifying decision trees. International Journal of Man-machine
Studres, 27, 221-234.

Reich, Y., & Fenves, S. (1991). The formation and use of abstract concepts in design.
In D. Fisher & M. Pazzani (Eds.), Concept formation: Knowledge and experience in
unsupervised learning. San Mateo, CA: Morgan Kaufmann.

Utgoff, P. (1994). An improved algorithm for incremental induction of decision trees. Pro-
ceedings of the Eleventh International Conference on Machine Learning (pp. 318-325).
New Brunswick, NJ: Morgan Kaufmann.

Weiss, S., & Kulikowski, C. (1991). Computer Systems that Learn. San Mateo, CA: Morgan

Kaufmann Publishers.

Wilcox, C. S., & Levinson, R. A. (1986). A self-organized knowledge base for recall, design,
and discovery in organic chemistry. In T. H. Pierce & B. A. Hohne (Eds.) Artificial
Intelligence Applications in Chemistry. Washington, DC: American Chemical Society.

33

