Prof. Dr. Katharina Morik, Prof. Dr. Claus Weihs,
Dr. Wouter Duivesteijn, M.Sc. Sarah Schnackenberg, B.Sc. Melanie Dagge

Dortmund, 07.05.14
Abgabe: bis Do, 14.05.2015, an wouter.duivesteijn@tu-dortmund.de und/oder in den Briefkasten "Duivesteijn" im OH12, R4.005

Übungen zur Vorlesung Wissensentdeckung in Datenbanken

Sommersemester 2015

Blatt 4

Aufgabe 4.1 (6 Punkte)

Last week, we have used the Apriori algorithm to find frequent sets of films, visited by viewers z_{1}, \ldots, z_{10}, in the transaction database extracted from the following table:

Rep.	Titel	Jahr	z_{1}	z_{2}	z_{3}	z_{4}	z_{5}	z_{6}	z_{7}	z_{8}	z_{9}	z_{10}
a	Star Wars	1977	1	1	0	0	1	0	1	0	1	1
b	E.T. der Ausserirdische	1982	1	1	0	1	1	0	1	0	1	1
c	Indiana Jones	1989	1	1	1	0	0	0	1	0	1	1
d	Otto - der Ausserfriesische	1989	0	0	0	0	0	0	1	0	1	1
e	Wayne's World	1992	1	1	0	1	0	1	0	1	0	1
f	Bang Boom Bang	1999	1	1	0	1	1	0	0	0	1	1
g	Bridget Jones	2001	1	0	0	1	0	0	0	1	0	0
h	Simpsons (Film)	2007	0	0	0	1	1	0	0	0	0	1

1. (1 Punkt) Which set of films is the closure of $\{$ Simpsons (Film) $\}$?
2. (3 Punkte) Last week, we have seen that with a minimum support of $\frac{3}{5}$, the frequent itemsets are (using the one-letter representation of the films as provided by the first column): $a, b, c, e, f,\{a, b\},\{b, f\}$. Which of these itemsets are closed?

An itemset S is called free if S is not included in the closure of any proper subset of S. Formally, S is free if and only if:

$$
S^{\prime} \subset S \Rightarrow S \nsubseteq \operatorname{closure}\left(S^{\prime}\right)
$$

3. (2 Punkte) Which of the itemsets $\{a, b\},\{b, c\},\{b, f\}$ are free?

Aufgabe 4.2 (4 Punkte)

Consider the following web graph:

1. (1 Punkt) What are the Clustering Coefficients C_{A} and C_{D} of nodes A and D ?

On this web graph, we are going to study part of the HIT procedure (Hyperlink-Induced Topic search). Assume that at the start of the procedure, every node i in the web graph has hubness value $h_{i}=1$ and authority value $a_{i}=1$.
3. (2 Punkte) Compute for all nodes in the graph the hubness and authority values after one iteration.
4. (1 Punkt) If the initial hubness of node D would have been $h_{D}=2$ instead of 1 , which nodes would have a higher authority value after one iteration? What would happen to the authority values of the other nodes?

