Prediction from Quasi-Random Time Series

Lorenza Saitta

Dipartimento di Informatica Università del Piemonte Orientale Alessandria, Italy

The Problem

- Data
 - ORACLE DataBase structure:

< Client, #Order, Product, Quantity, Value, Lit/Euro >

Each order may contain more than one product, or the same product with different quantities and prices

- Time series representing the daily sells of 16,265 products, grouped into 1,004 categories
- Goal

– From years 1999, 2000, 2001 --> Predict year 2002

Pre-Processing

• Impossible to handle each product or each category separately

--> Necessity to group/select products/categories

• Impossible to handle groups of products/categories for each client

--> Necessity to group clients

Product Selection

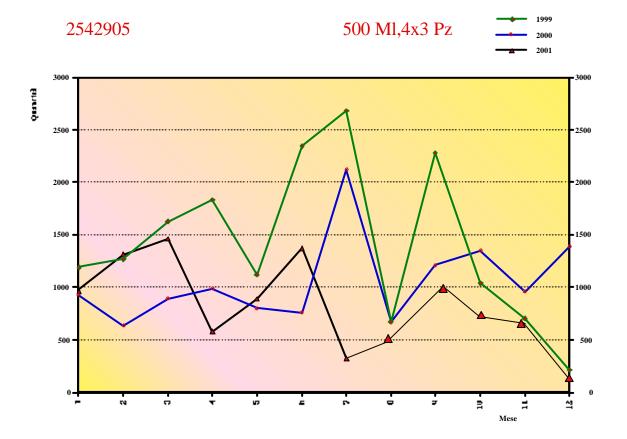
- For each year :
 - Order products according to decreasing revenue sharing
 - Order products according to decreasing sold quantity
 - Select select products that globally cover 80% of revenue (sold quantity)

Grouping Products by Revenue Sharing

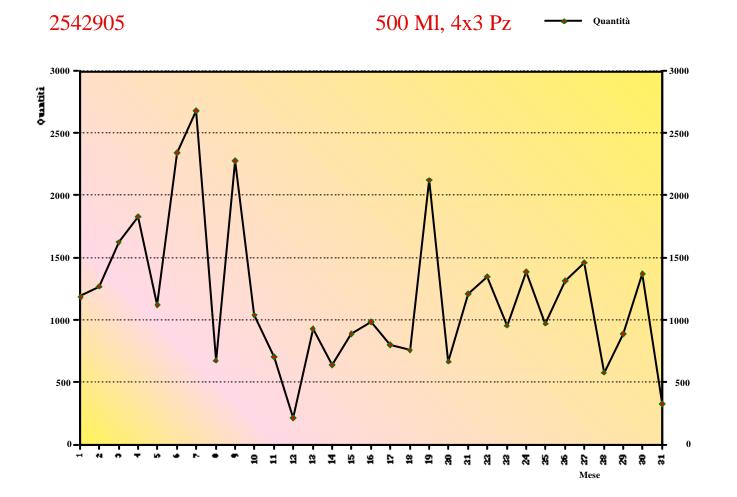
 Selection of those products that globally cover 80 % of revenue -> 53 Products

{3668995786, 9954462001, 5.3693} {3179208029, 9950062610, 10.0219} {2908553900, 9953071610, 14.2783} {2833938896, 9950242825, 18.4256} {2357611762, 9951252610, 21.8758} {2111514418, 9952991610, 24.9659} {2029888070, 9953091620, 27.9365}

{ Value, Code, Cumulative function }


{2331985486, 9956521850, 79.6994} {2325944507, 9952742830, 80.1763}

.


Annual Data

- Grouping by "days" or "weeks" produces apparently random time series
- Grouping starts being meaningful at the "month" level
- Necessity of correct alignment among years

Yearly Comparison

Overview of Analysis

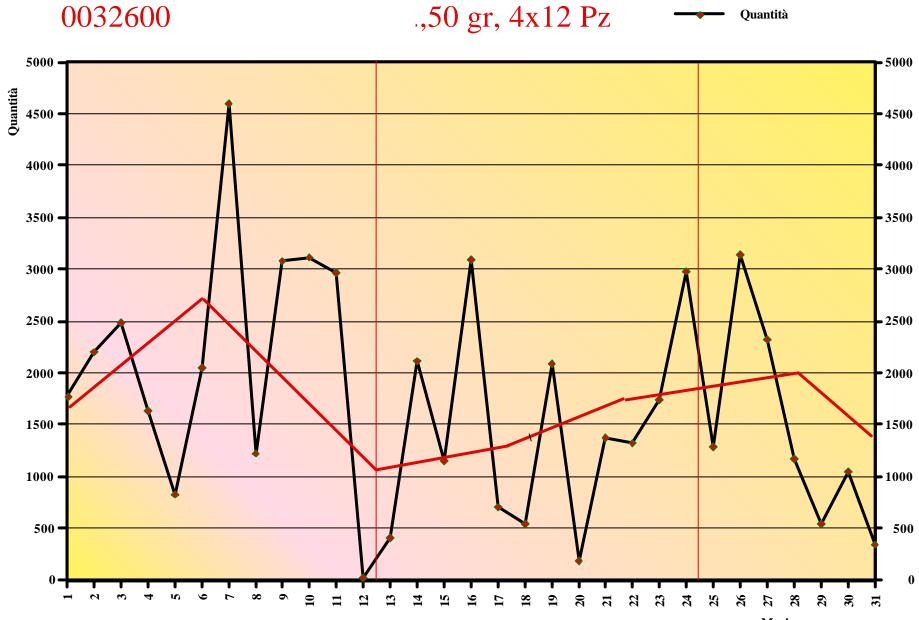
- Single Products
 - General statistical characteristics
 - Yearly analysis (monthly, trimester data)
 - Three-year sequences
 - Time series analysis (trend, periodicity, oscillations, noise)
 - Additive Model $Y_t = T_t + C_t + S_t + R_t$
 - Multiplicative Model $Y_t = T_t * C_t * S_t * R_t$
 - Model of the selling process
- Products hierarchies

General Observation

• There is no substantial difference in behavior between the single and aggregated product analysis

Statistical Analysis

- Autocorrelation Coefficient (ACF)
 95% Significativity Plot (No significant correlations)
- Partial Autocorrelation up to 6 points (PACF)
 95% Significativity Plot (No significant correlations)
- Smoothing (Simple moving average, Spencer's and Henderson's weighted moving averages, EWMA, 3RSS)


(Series are too short)

Statistical Analysis

- Periodgram (Fourier Analysis) (No clear seasonality)
- Randomness Test (Runs above and below median, Runs up and down, Box-Pierce test) (All serie pass every test)

Series Decomposition

- Trend, Seasonality, Cyclicity, Noise
 - Additive Model $Y_t = T_t + C_t + S_t + R_t$
 - Multiplicative Model $Y_t = T_t * C_t * S_t * R_t$
- Decomposition
 - Smooth the data using a moving average of length equal to the length of seasonality. This estimates the **trend-cycle**.
 - Divide the data by the moving average (if using the multiplicative method) or subtract the moving average from the data (if using the additive method). This estimates the **seasonality**.
 - Average the results for each season separately and rescale so that an average month equals 100 (multiplicative) or 0 (additive). This gives the seasonal indices.
 - Adjust the data for the estimated trend-cycle and seasonality, yielding the **irregular** or residual component.
 - Divide the original data values by the appropriate seasonal index if using the multiplicative method, or subtract the index if using the additive method. This gives the **seasonally adjusted data**.

Mesi

Trimester Analysis

- By aggregating data by trimesters, a more stable behavior emerges
- Eight typical patterns

QuickTime[™] and a Animation decompressor are needed to see this picture.

QuickTimeTM and a Animation decompressor are needed to see this picture.

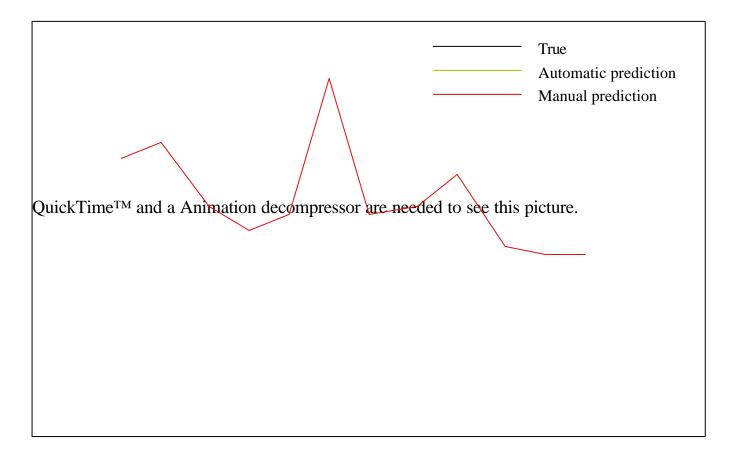
 $\mathsf{QuickTime^{TM}}$ and a Animation decompressor are needed to see this picture.

Trimester Analysis

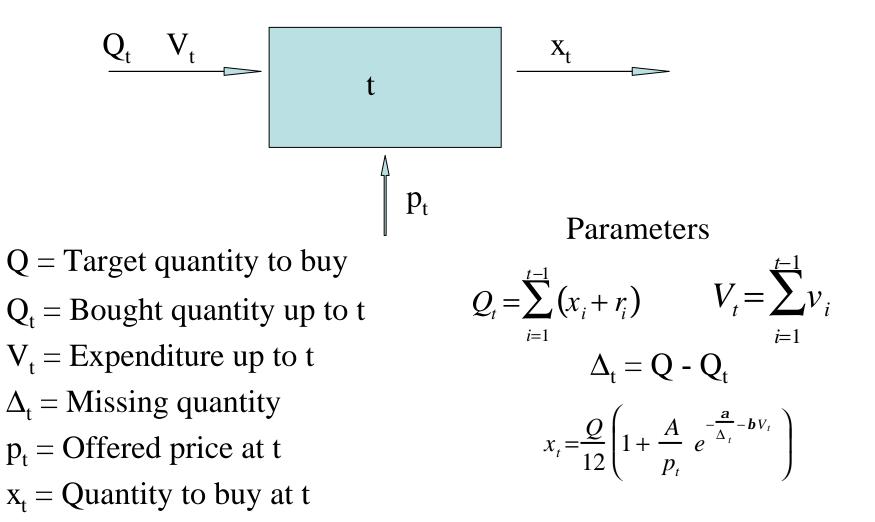
- All relevant variables values are compared on the trimester level, year by year
- A unique sequence is formed for better approximability

Cumulative Analysis by Year

QuickTime[™] and a Animation decompressor are needed to see this picture.


Global Time Series

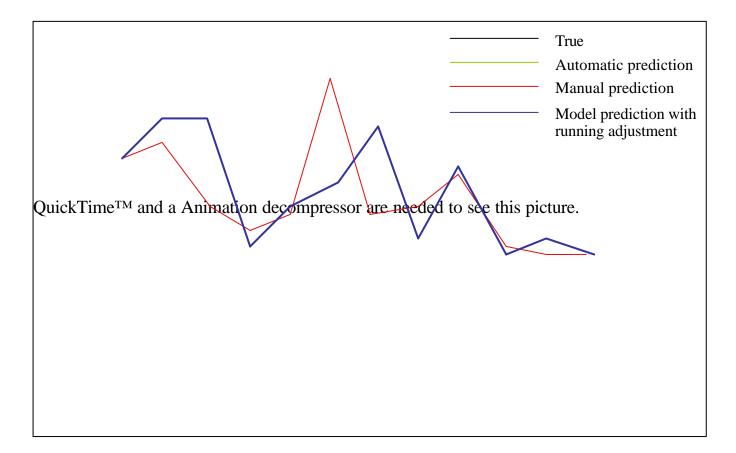
QuickTime[™] and a Animation decompressor are needed to see this picture.


Comparison on Cumulative Graphs

QuickTimeTM and a Animation decompressor are needed to see this picture.

Comparison on Differential Graphs

Model of the Selling Process



Prediction from Model

• Regression on Cumulative function

$$x_t = y(t) + \frac{A}{p_t} e^{-\frac{A}{\Delta_t} - b V_t}$$

Comparison on Differential Graphs

Conclusions

- Prediction below the monthly scale is impossible
- Prediction at the trimester scale is possible
- Real time adjustments can be made if a two months delay is acceptable
- Results can be used as a Min-Max strategy in Game Theory