
Artificial Intelligence
Group

Realization of Random Forest for
Real-Time Evaluation through Tree Framing
{sebastian.buschjaeger,kuan-hsun.chen,jian-jia.chen,katharina.morik}@tu-dortmund.de

Project setting
Goal Hardware-awareness of Machine Learning
Why does this matter?

• Reduce energy costs by reducing hardware
requirements

• Reduce training/prediction time by better
hardware utilization

Focus here How can we concurrently apply a given
model on a small device in real-time?

Abstract
Fact Random Forests are still one of the best
blackbox learners available

Question How to optimize RF execution?

Basic idea Utilize the structure of trained tree

→ Branch-probability pi→j
→ Path-probability p(π) = pπ0→π1 · . . . · pπL−1→πL
→ Expected path length E[L] =

∑
π p(π) · |π|

Idea Use E[L] to optimize memory-layout of trees

Example

0

2

6

1211

0.15 0.85

5

109

0.1 0.9

0.2 0.8

1

43

87

0.25 0.75

0.4 0.6

0.3 0.7

p((0, 1, 3)) = 0.3 · 0.4 · 0.25 = 0.03
p((0, 2, 6)) = 0.7 · 0.8 · 0.85 = 0.476

Implementation 1: Native Tree
Node t[] = {/* ... */ };

bool predict(short const * x){

unsigned int i = 0;

while(!t[i].isLeaf) {

if (x[t[i].f] <= t[i].s) {

i = t[i].l;

} else {

i = t[i].r;

}

}

return t[i].pred;

}

Idea Iterate array of tree-nodes

+ Simple to implement

+ Small ‘Hot’-Code

- Requires D-Cache (array)

- Requires I-Cache (code)

- Requires indirect mem. access

Implementation 2: If-Else Tree
bool predict(short const * x){

if(x[0] <= 8191){

if(x[1] <= 2048){

return true;

} else {

return false;

}

} else {

if(x[2] <= 512){

return true;

} else {

return false;

}

}

}

Idea Unroll tree into if-else

+ No indirect mem. access

+ Compiler optimizes aggresivly

+ Only I-Cache required

- Code does not fit I-Cache

- No ‘hot’-code

Optimization for Native Tree
Compulsory cache misses
→ Cache memory is not enough to hold complete array
→ Leaf-nodes only store the prediction. Pointer to children not necessary
Solution Store prediction directly in ‘parent’ node

Capacity and conflict cache misses
→ Pre-fetching does not work, if nodes are discontinuously arranged
→ Layout nodes in array so that they respect access pattern
Solution Greedily put nodes with highest probability in same cache set

• Put the root node into current working set C. Set i = 0
• If |C| ≤ τ : C = C ∪ argmax(p(i → l(i)), p(i → r(i)))

• Continue until |C| ≥ τ
• Place nodes in C continously in array

Optimization for If-Else Tree
Compulsory cache misses
→ Cache memory is not enough to store all code
→ Increase chance, that nodes with higher probabilities are in the cache
Solution Swap nodes if p(i → l(i)) ≥ p(i → r(i))

Capacity and conflict cache misses
→ Cache memory is not enough to store all code
→ Computation kernel of tree might fit into cache
Solution Compute computation kernel for budget β

K = argmax
{
p(T)

∣∣∣T ⊆ T s.t.∑
i∈T

s(i) ≤ β
}

• Start with the root node
• Greedily add nodes until budget exceeded

Note Estimate s(·) based on assembly analysis

Results on X86 CPUs

0 5 10 15 20

1

2

3

4

StandardNativeTree
OptimizedNativeTree

StandardIfTree
OptimizedIfTree

Results

• Optimizations improve performance
• if-else trees are clear winner

Interpretation

• Large I-Cache (256 KiB) favors
if-else

• Compiler can utilize CISC architec-
ture for if-else

• Native trees do not benefit from I-
Cache and CISC

Results on ARM CPUs

0 5 10 15 20

1

2

3

4

5

6

StandardNativeTree
OptimizedNativeTree

StandardIfTree
OptimizedIfTree

Results

• Optimizations improve performance
• No clear winner for larger trees

Interpretation

• Smaller I-Cache (32 KiB) only fits
small trees

• Smaller D-Cache (512 KiB) only fits
small trees

• Requires more instructions than
CISC

Conclusion
Take-away There are multiple ways of implementing Decision Trees on modern hardware

Thus Use code generator to automatically generate all possible implementations for a given architecture

We emperical evaluated our generator with a total of 1.800 experiments on 3 architectures

Results Speed-up around ≥ 3 on all architectures (X86, ARM, PPC)

Future Research and Improvements

• Improve compilation time → Generate intermediate language code

• Reduce memory footprint → Re-use common tree parts (subtree matching)

• Mix different implementation types → Switch from if-else to native when branching to deep

References
Part of the work on this paper has been
supported by Deutsche Forschungsgemeinschaft
(DFG) within the Collaborative Research Cen-
ter SFB 876 "Providing Information by Resource-
Constrained Analysis", projects A1, B2 and C3.

Find us on bitbucket
https://bitbucket.org/
sbuschjaeger/arch-forest/

