Realization of Random Forest for |
Real- [ime Evaluation through Tree Framing

{sebastian.buschjaeger,kuan-hsun.chen,jian-jia.chen,katharina.morik }@tu-dortmund.de

Project setting

Goal Hardware-awareness of Machine Learning
Why does this matter?

e Reduce energy costs by reducing hardware
requirements

e Reduce training/prediction time by better
hardware utilization

Focus here How can we concurrently apply a given
model on a small device in real-time?

Implementation 1: Native Tree

Node t[] = {/* ... */};
bool predict(short const * x){
unsigned int i = 0O;
while(!t[i] .isLeaf) {
if (x[t[i].f] <= t[i].s) {

i = t[i].1;
} else {
i = t[i].r;

+
+

return t[i].pred;

Optimization for Native Tree

Compulsory cache misses

— Cache memory Is not enough to hold complete array
— Leaf-nodes only store the prediction. Pointer to children not necessary

Solution Store prediction directly in ‘parent’ node

Capacity and conflict cache misses

— Pre-fetching does not work, If nodes are discontinuously arranged
— Layout nodes In array so that they respect access pattern
Solution Greedily put nodes with highest probability in same cache set

Idea l|terate array of tree-nodes
+ Simple to implement
+ Small "Hot’-Code
- Requires D-Cache (array)
- Requires |-Cache (code)

- Requires indirect mem. access ¥

technische universitat
dortmund

Artificial Intelligence
Group

Ia computer
sclence 12

Abstract Example
Fact Random Forests are still one of the best o
blackbox learners available o 07
Question How to optimize RF execution? ! 2

oM 06 0. 08
Basic idea Utlilize the structure of trained tree ; y c .
— Branch-probability p;_,; 0.25 0.75 0. 039 0I5 0.85
— Path-probability p(7) = pry—sn, - - Pr,_i—m, 7 8 9 lo I 12
— Expected path length E[L] =) p(m) - || p((0,1,3)) = 0.3:-0.4-0.25=0.03
Idea Use E[L] to optimize memory-layout of trees p((0,2,6)) = 0.7-0.8-0.85=0.476

Implementation 2: If-Else Tree

bool predict(short const * x){
if(x[0] <= 8191){
if (x[1] <= 2048){
return true;
} else {
return false; . I .
) + Compiler optimizes aggresivly
} else {
if (x[2] <= 512){
return true;
} else {
return false;

Idea Unroll tree iInto if-else

+ No Indirect mem. access

+ Only |-Cache required

- Code does not fit I-Cache
}

- No ‘hot’-code

Optimization for If-Else Tree

Compulsory cache misses

— Cache memory is not enough to store all code

— Increase chance, that nodes with higher probabilities are in the cache
Solution Swap nodes if p(i — /(i) > p(i — r(i))

Capacity and conflict cache misses

— Cache memory is not enough to store all code
— Computation kernel of tree might fit into cache
Solution Compute computation kernel for budget 3

e Put the root node into current working set C. Set 1 =0
o If|C|<T:C=CUargmax(p(i = 1(1)),p(i = r(i)))
e Continue until |C| > 7T

e Place nodes in C continously In array

K = arg max {P(T)‘T CTst ZS(/) <B;

e’

e Start with the root node
e Greedily add nodes until budget exceeded

Note Estimate s(-) based on assembly analysis

Results on X86 CPUs

Results

Results on ARM CPUs

Results

I
—@— StandardNativeTree
—Jl— OptimizedNativeTree

k3 e Optimizations improve performance
StandardIfTree ||

4 | T —4— OptimizedIfTree 6

I
—@— StandardNativeTree
—Jl— OptimizedNativeTree
—A— StandardIfTree
—4&— OptimizedIfTree

e Optimizations improve performance

e if-else trees are clear winner

3| — | | Interpretation

e Large |-Cache (256 KiB) favors

e No clear winner for larger trees
Interpretation

e Smaller I-Cache (32 KiB) only fits

if-else small trees
, | e Compiler can utilize CISC architec- dl | e Smaller D-Cache (512 KiB) only fits
| | | | | ture for if-else oy | | | N small trees
0 5 10 15 20 e Native trees do not benefit from I- 0 5 10 15 20 e Requires more instructions than
Cache and CISC CISC
Conclusion References

Take-away T here are multiple ways of implementing Decision Trees on modern hardware

Thus Use code generator to automatically generate all possible implementations for a given architecture
We emperical evaluated our generator with a total of 1.800 experiments on 3 architectures

Results Speed-up around > 3 on all architectures (X86, ARM, PPC)

Future Research and Improvements

e Improve compilation time — Generate intermediate language code
e Reduce memory footprint — Re-use common tree parts (subtree matching)
e Mix different implementation types — Switch from if-else to native when branching to deep

Part of the work on this paper has been
supported by Deutsche Forschungsgemeinschaft
(DFG) within the Collaborative Research Cen-
ter SFB 876 "Providing Information by Resource-
Constrained Analysis", projects Al, B2 and C3.

Find us on bitbucket
https://bitbucket.org/
sbuschjaeger/arch-forest/

