
Communication-efficient learning of traffic flow
in a network of wireless presence sensors

Marco Stolpe, Thomas Liebig, and Katharina Morik

TU Dortmund, Computer Science, LS 8, 44221 Dortmund, Germany

Abstract. Current traffic management systems learn global traffic flow
models based on measurements from a static mesh of hard-wired presence
sensors. The centralization of all data comes at the cost of limited scal-
ability, security and fault-tolerance. Modern traffic control could benefit
from a decentralized system of cheap wireless sensors. However, con-
strained devices pose challenges for data analysis, which must be com-
munication- and energy-efficient as well as secure. We hereby present a
privacy-preserving decentralized in-network algorithm which exchanges
space-time aggregated values between restricted sets of topological neigh-
boring nodes. The algorithm’s evaluation on real world traffic data demon-
strates its performance in terms of communication cost and accuracy.
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1 Introduction

Traffic flow prediction allows intelligent control of traffic lights and other traffic
signals. Individual mobility benefits from predictions as well, since they allow for
proactive, smart decisions on individual travel plans like the avoidance of likely
traffic hazards [9, 4]. Centralization of all data and control can easily account for
global traffic patterns and relationships. However, a single point of failure poses
high security risks facing natural disasters or intended devastation. The server-
side collection further may become a bottleneck for real-time processing and is
thus not scalable. The maintenance of cable networks is costly regarding mate-
rials and construction work. Moreover, the area of traffic management systems
is often limited by the political area of homogeneous network regulations.

Therefore, we propose a decentralized system of cheap battery-powered wire-
less presence sensors that work mostly autonomously and may easily be attached
to existing infrastructure like traffic lights, signs or buildings, increasing cov-
erage. Moreover, restricting learning to topologically close sensors could make
traffic control more robust facing disasters, as failures affect only confined parts
of the whole system. However, decentralized wireless networks pose their own
challenges by putting severe constraints on data analysis tasks. These involve
questions of streaming data, dynamic network changes, and concept drift. The
work at-hand extends our previous paper [5]. In this paper, we restrict ourselves
to the following questions:



– The energy and bandwidth of small battery-powered devices are highly lim-
ited. How can we reduce the amount of data communicated and what are
trade-offs in terms of accuracy?

– Increasing coverage and the network’s density bares the risk of identifying
individual persons and tracking them. How can we guarantee their privacy?

We present a distributed spatio-temporal in-network learning algorithm that
exchanges only space-time aggregated values between topologically close sensors,
reducing communication and providing k-anonymity by design. The algorithm
has been evaluated on real world traffic data from the city of Dublin, where the
focus is on the prediction of future traffic flow at junctions throughout the city.

2 Related Work

Distributed algorithms mostly focus on horizontally partitioned data, whereas
our data is vertically distributed. Here, privacy-preserving SVMs like [18] are not
scalable, as they send and process quadratic kernel matrices. Distributed opti-
mization algorithms like [1] iteratively exchange predictions for each observation,
potentially sending more than the entire dataset. Anomaly detection algorithms,
like [14], require a central coordinator. [3] trains local SVM models, but labels
are sent by a central coordinator.

Algorithms for learning traffic flow mostly work centrally as well. Simula-
tions [12] and imputation models [6] estimate traffic flow at unobserved loca-
tions, while our study focuses on predictions at sensor locations. The Krig-
ing approach [16] is based on spatial relations, like [7], whose approach gives
measured segments close to unmeasured ones a higher impact. We utilize this
idea to build local models based on their closest sensors. More complex ap-
proaches investigate neural networks or SVMs. A Gaussian Markov Model was
proposed in [13], and Spatio-Temporal-Random-Fields (STRFs) in [11]. The few
distributed approaches count and re-identify individual vehicles, while we use
aggregated quantities.

The task of learning from aggregated label information was first introduced
in [2]. Theoretical bounds have recently been proven in [17]. For further refer-
ences to actual learning algorithms, see [10]. In this paper, we adapt LLP [15],
that due to its linear running time and small memory footprint fits well to a
constraint scenario.

3 Distributed Learning of Spatio-Temporal Local Models

Given are m wireless sensor nodes i = 1, . . . ,m. Each node i delivers an infi-
nite series of real-valued raw measurements . . . , vt−1(i), vt(i), vt+1(i), . . ., where
t denotes the current time step t and t− 1/t+ 1 denote next and previous ones,
assuming a constant sample rate. Associated with each sensor is a spatial loca-
tion. Decisions on traffic signals often base on discrete flow categories, achieved
by a mapping d : R→ Y of raw measurements to categories Y = {Y1, . . . , Yl}.
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Fig. 1: Distributed Learning of Local Models

Let each node j provide a set D(j) for supervised offline learning, contain-
ing n pairs (xi(j), yi(j)) of training examples xi(j) ∈ Rp and labels yi(j) ∈ Y .
Each xi(j) is created by sliding a window of size p with step size 1 over the
stream of measurements at node j. When recording from time step s, obser-
vations xi(j) = [vs+i−1(j), . . . , vs+i−2+p(j)] are windows of measurements and
labels yi = d(vs+i−2+p+r(j)) are discretized measurements r time steps ahead.

For every node j, we restrict learning to j and c neighboring nodes with
indices n1(j), . . . , nc(j). Based on the datasets at j and its neighbors, we want to
learn a local model f(j) that, given current windows x(j), x(n1(j)), . . . , x(nc(j))
of sensor readings, predicts the traffic flow category y(j) at node j with horizon r
correctly. This situation is depicted in Fig. 1, showing node j with its neighbors
and an exemplary dataset. Interpreting measurement windows as features of a
single observation x, the data is vertically partitioned, since each neighboring
node of j only stores partial information about x, i.e. a subset of features.

One way to learn is to send measurements from neighbors to j, combine
the according windows with j’s labels and, based on this data, learn f(j) at j.
Another way is to combine windowed measurements at each neighbor with labels
from j, i.e. Dj(k) = {(xi(k), yi(j))}i=1,...,n, and learn models fj(k) at nodes
k = j, n1(j), . . . , nc(j) to predict y(j). Model f(j) could then be a majority vote
over predictions from j and its neighbors. The first approach may respect joint
dependencies between nodes, but isn’t privacy-preserving, because it sends raw
measurements. We opt for the latter approach, since a discretization of values
preserves privacy and saves communication by encoding the data in less bits.

However, privacy and communication can be improved even further. Given
a partitioning of observations x1, . . . , xn into batches Bu, u = 1, . . . , h and label
proportions πuv for each batch u and class Yv, algorithms for learning from label
proportions (see Sect. 2) learn model f : X → Y that assigns labels to individual
observations. Instead of sending all labels to neighbors, it might therefore suffice
to send only the counts of labels per batch.



A simple partitioning of the data into b-sized batches is a division over con-
secutive time intervals. Node j counts how often each class occurs in each batch
and sends these counts in a h × l matrix Q(j), h = dn/be, to its neighboring
nodes. These transform Q(j) into a label proportion matrix Π(j), yielding the
original problem of learning from label proportions at neighboring nodes of j.

In principle, arbitrary learners for the problem could be used. We have
adapted the LLP algorithm [15], since it fits to our constraint scenario and can
handle multiple classes. LLP first clusters all observations (k ≥ |Y |) and then
minimizes the mean squared error (MSE) between the given label proportions
and those as calculated by different label assignments to clusters. We abstain
from the evolutionary optimization of attribute weights as described in the orig-
inal paper. Further, we have replaced the exhaustive labeling strategy by a more
efficient local search with a multistart strategy, which still yields a sufficient
accuracy. This modified version will be called LLPms. The distributed learning
algorithm after preprocessing now works as follows:

For j = 1 to m do /* in parallel */

divide D(j) into batches B1, . . . , Bh

calculate label counts for each batch and store them in Q(j)

send Q(j) to nodes n1(j), . . . , nc(j)

For k = j, n1(j), . . . , nc(j) do /* in parallel */

calculate Π(j) from Q(j)

train LLPms model fj(k) at node k

Each node stores c+1 different models, for itself and each of its neighbors. All
models are local in the sense that learning is restricted to local neighborhoods.
Moreover, the algorithm works fully in-network, as no central coordinator is
needed for local synchronization and learning between peer nodes.

4 Experiments

Methods are evaluated on traffic flow data at junctions in the city of Dublin,
recorded by the Sydney Co-ordinated Adaptive Traffic System (SCATS)1 [8].
For January 2013, we average measurements at arms of a junction and aggre-
gate them over 15 minute intervals, resulting in 2,976 time slices at 296 sensor
locations. For learning traffic flow categories at the next 15 minutes, based on
previous time slices, we create datasets D(j) by sliding a window (p = 5, 75
minutes) over node j’s measurements. Labels are discretized traffic flow values
at horizon r = 1 according to ranges 0-5, 5-30, 30-60, 60-150 and 150-260.

LLPms is trained at j and six nearest nodes (according to Euclidean distance),
based on j’s label counts for batch sizes b = 25, 50, 75 and 100. As baseline,
we also use kNN (k = 15) with all labels and predictions from a global STRF
model [11]. As performance we take the average accuracy over all nodes, assessed
by a 10-fold cross validation per node.

1 Data is publicly available at http://dublinked.ie .
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Fig. 2: Trade-off between accuracy and payload sent for kNN and LLPms

The STRF outperforms kNN on the category of lowest traffic flow (83.3%
vs. 43.3% recall), while kNN outperforms the STRF when predicting the highest
traffic flow (77.3% vs. 70.5% recall). On average, however, kNN models outper-
form the STRF, as they achieve an average accuracy of 85.7% over all nodes,
whereas the STRF yields an accuracy of only 78.1%.

Figure 2 shows the trade-off between accuracy and payload sent for kNN
and LLPms trained on differently sized batches of aggregated labels. LLPms’s
accuracy decreases the more we aggregate, however, also the communication
costs decrease, by factors 3, 5 and 8.5 in comparison to sending each individual
label. For b = 75, the accuracy is still in the order achieved by the more complex
STRF model, though much less data needs to be communicated for learning.

5 Conclusions

In this paper, we have presented a privacy-preserving and communication-efficient
distributed in-network algorithm for spatio-temporal learning, together with an
evaluation of its accuracy and communication costs. Though the results look
promising, further questions need to be answered like that of streaming data
and concept drift. Moreover, the algorithm’s sensitivity to changing the number
of neighbors or other parameters needs to be investigated. Finally, we want to
evaluate the approach in the context of other applications.
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