
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 65, NO. 1, JANUARY 2018 209

Decision Tree and Random Forest Implementations
for Fast Filtering of Sensor Data

Sebastian Buschjäger and Katharina Morik

Abstract— With increasing capabilities of energy efficient
systems, computational technology can be deployed, virtually
everywhere. Machine learning has proven a valuable tool for
extracting meaningful information from measured data and
forms one of the basic building blocks of ubiquitous computing.
In high-throughput applications, measurements are rapidly taken
to monitor physical processes. This brings modern communi-
cation technologies to its limits. Therefore, only a subset of
measurements, the interesting ones, should be further processed
and possibly communicated to other devices. In this paper,
we investigate architectural characteristics of embedded systems
for filtering high-volume sensor data before further processing.
In particular, we investigate implementations of decision trees
and random forests for the classical von-Neumann comput-
ing architecture and custom circuits by the means of field
programmable gate arrays.

Index Terms— Field programmable gate arrays (FPGA),
Internet of Things (IoT), machine learning (ML), decision trees,
random forest.

I. INTRODUCTION

INFORMATION technology is more and more integrated
into every part of life, with applications ranging from

factory monitoring, scientific experiments to serving consumer
needs. Based on networking protocols and small, energy
efficient, embedded systems it is now possible to measure and
process data at virtually every place, at any time. In addition,
combining multiple embedded systems creates one large ubiq-
uitous computing system [1].

Once measurements are taken, one can either process infor-
mation locally at the sensing sensor or transmit measurements
to a central server. The first approach requires some processing
power on the local sensor nodes, whereas the second approach
requires a large network bandwidth.

In many applications, the interesting events are rare com-
pared to the volume of sensor measurements. One example
of such a high-throughput application arises in the context
of smart factories, where the current state of machinery is
concurrently monitored: Usually, a machine operates within its
operating characteristics and produces measurements accord-
ing to this normal state. These measurements only inform
about the machine working as expected. Once the machine

Manuscript received December 13, 2016; revised May 12, 2017; accepted
May 29, 2017. Date of publication June 29, 2017; date of current ver-
sion January 5, 2018. This paper was recommended by Associate Editor
A. Sangiovanni Vincentelli. (Corresponding author: Sebastian Buschjäger.)

The authors are with the Computer Science 8–Artificial Intelligence
Unit, TU Dortmund University, 44227 Dortmund, Germany (e-mail: sebastian.
buschjaeger@tu-dortmund.de; katharina.morik@tu-dortmund.de).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSI.2017.2710627

reaches a state outside its operating characteristics, measure-
ments suddenly become very valuable to detect what happened
to the machinery.

Another example for such applications can be found in
modern astro-physics experiments, e.g. the First G-APD
Cherenkov Telescope (FACT) for which we develop methods.1

By analysing the gamma beams emitted by celestial objects,
physicists can derive further insight about the characteristics of
these objects. One challenge is the gamma-hadron separation,
where only 1 in 1000 or even 10000 measurements account
for an interesting gamma event, whereas the rest is produced
by background noise [2].

Both applications illustrate a skewed distribution. In order
to detect interesting events, a high sampling rate is required.
However, communication throughput is limited at the sensing
node and thus measurements need to be pre-filtered before
transmission to a central server, where data can be examined
more thoroughly.

The filtering of interesting vs. uninteresting events can
be viewed as a binary classification problem and therefore
Machine Learning seems to be a good fit for this problem [2].
In the presented context, we are interested in model application
and not model learning. Pre-filtering is a crucial step in
every application and thus needs to be trusted. Prediction
models produced by Machine Learning such as Neural Net-
works or the SVM can be difficult to interpret and thus cannot
be validated by a domain expert such as the machine operator
or the physicist in the above examples [3].

Decisions trees, on the other hand, are easy to interpret
and form a simple model, which can be reviewed by domain
experts [4]. Combining multiple decision trees in a random
forest [5] maintains this interpretability, but offers state-of-
the-art prediction accuracies. Therefore, we focus on random
forests for pre-filtering.

Sensor data are usually normalized as they can suffer from
offset errors as well as scaling errors (see e.g. [6]). In contrast,
decision trees can be trained on unnormalized data. This allows
us to filter out unwanted events based on raw data, without
prior feature processing. Only the reduced volume of the
filtered data is then normalized and used for further feature
processing on the central computation node.

Computation resources including energy can always be
viewed as limited resource. The more energy a computational
system needs, the more costly is its operation. The more
computational resources a given computation needs, the longer

1https://sfb876.de/fact-tools/

1549-8328 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

210 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 65, NO. 1, JANUARY 2018

the system needs to run and thus requires more energy leading
to increased costs.

Today’s hardware landscape offers a variety of small, energy
efficient devices with different computational architectures.
Application specific integrated circuits (ASIC) offer high
throughput with small energy consumption, but suffer from
static behaviour. In contrast, normalization constants depend
on the environment, e.g. the temperature. Consequently, deci-
sion trees as well as these constants may change due to
environmental changes. We identify ASICs as a non viable
option for massive sensor streams, because their behaviour
cannot be adapted to new situations.

Programmable hardware components, such as field pro-
grammable gate arrays (FGPAs), can be re-programmed during
runtime and thus can alter their functionality. Alternatively,
central processing units (CPU) in a von-Neumann computation
model interpret instructions, which can also be changed during
runtime. Therefore, we identify classical CPUs as well as
FPGAs as viable options for pre-filtering sensor data in small,
embedded systems [7].

Now, how to organize the analysis of massive sensor
streams, so that pre-filtering can be executed already on the
sensing devices? More specifically, which computing archi-
tecture enables a high throughput for filtering of raw sensor
data in resource-restricted computation nodes? In this paper
we investigate the relationship between Machine Learning and
hardware architecture for the analysis of sensor data. Our
contributions are the following.

• Comparison of FPGAs and CPUs: We compare FPGAs
and von-Neumann CPUs including those which offer
single instruction multiple data operations. We consider
a simple computational model for both architectures that
covers the specific characteristics of each architecture.

• Random Forests on FPGAs and CPUs: Based on
these computational models, we compare different imple-
mentations of random forests on both architectures. The
runtime of each implementation is derived on a theoretical
basis taking the skewed data distribution of wanted vs.
unwanted events into account.

• Architectural dependent code generation: We present
an architectural dependent code generation tool and
use this tool to validate the presented theoretical
model. We make our implementation available at https://
bitbucket.org/sbuschjaeger/arch-forest.

• Filtering in astro-particle physics: We recommend a
combination of hardware architecture and implementation
that is well suited for filtering sensor data directly where
they are measured. We illustrate our approach by a
real-world application, namely the FACT telescope that
recognizes gamma rays.

The paper is organized as follows. In section II we will
present related work. Then, we will introduce our notation for
skewed distributions in the context of decision trees, as well
as random forests.

In section IV, we will explain the von-Neumann architec-
ture, as well as FPGAs. Additionally, we present a simple
theoretical model to measure clock cycles and resources used
by different implementations.

After that, we will show different implementations of
decision trees and random forests for CPUs and FPGAs
in sections V and VI. Last, we will compare our theoretical
model to real world hardware and give a recommendation for
a combination of hardware and implementation in the context
of FACT in section VII. The paper concludes with a discussion
in section IX.

II. RELATED WORK

Random forests and decision trees have been studied in the
context of CPUs and FPGAs, already. Narayanan et al. present
in [8] a method to compute the Gini score for decision tree
induction on FPGAs with a speed-up factor up to 5.5 com-
pared to a software implementation for CPUs. Unfortunately,
Narayanan et al. do not consider the application of learnt
models, but focus on model learning.

Van Essen et al. present in [9] a comprehensive study of dif-
ferent architectures for implementing random forests on CPUs,
FPGAs and GPUs. Based on the CATE algorithm for forest
induction presented in [10], the authors train a random forest
with decision trees of fixed height. By utilizing fixed-size
trees, the authors show an effective pipelining approach for
tree application on CPUs, FPGAs and GPUs. Unfortunately,
the authors only consider energy-hungry hardware, which can
be found in desktop and server systems, but not in embedded
systems. Additionally, the authors do not take modern CPU
vectorization units into account.

In [11], Saqib et al. present a hardware-software co-design
approach in which a software implementation of decision trees
is improved by an FPGA decision tree hardware accelerator.
The authors show a speed improvement in classification of
around 3.5 compared to a software-only solution. Even though
the authors propose a theoretical analysis of their FPGA imple-
mentation, they lack a thorough comparisons with CPUs. More
specifically, the authors compare their implementation against
a slow clocked Microblaze CPU without vectorization unit,
which does not represent the state-of-the-art in CPU hardware.

Barbareschi et al. present in [12] an implementation scheme
for random forests on FPGAs focusing on the fusion rule of a
random forest. The authors present a fast and energy efficient
way of computing a majority vote on FPGAs. Additionally,
they introduce an early prediction function, which estimates
the number of logic cells needed for a decision tree during tree
induction. The author do not compare their findings against a
software implementation.

Kim et al. present in [13] an implementation for binary
search trees using vectorization units on Intel CPUs and
compare their implementation against a GPU implementation.
The authors provide insight in how to tailor an implementation
to Intel CPUs by taking into account register sizes, cache
sizes as well as page sizes. A comparison with other CPU
manufactures or with FPGAs is missing.

III. DECISION TREES AND RANDOM FORESTS

We consider the filtering of sensor data a binary classifi-
cation problem. In binary classification problems, we want
to find a prediction model ̂f : X → {0, 1}, which predicts

BUSCHJÄGER AND MORIK: DECISION TREE AND RANDOM FOREST IMPLEMENTATIONS FOR FAST FILTERING 211

Fig. 1. Simple binary decision tree for 3-dimensional inputs. Classification
is performed by starting in the root node and compare the feature x2 of the
current input �x . If x2 ≤ 10 holds to be true, classification is continued at the
next level where the next comparison is performed. This process is continued
until a leaf node is reached.

the class ̂f (�x) for a given observation �x . In the following,
we assume that observations are generated using sensors con-
verting an analog measurement to an unnormalized unsigned
integer. Therefore, we assume that sensor measurements are
represented by a d-dimensional vector �xi ∈ N

d , where each
dimension represents a random variable, in other words, a
feature. Decision trees can be learnt form labelled training
data (�xi , yi)(i=1,...,N) where each tupel (�xi , yi) consists of an
observation �xi ∈ X and the corresponding label yi ∈ {0,+1}
using one of many existing algorithms such as CART,
ID3, C4.5 [14]–[16].

In decision trees, the function ̂f is represented by a simple
tree structure, where comparisons are performed on each layer
and predictions are associated with leaf nodes. Starting from
the root node, one starts to compare the feature x j of the
current observation �x with a split value s j . Depending on the
outcome of this comparison, one either follows the left or right
path of the current node. This process is repeated until a leaf
node is reached and the prediction associated with the leaf is
returned. An example can be found in Figure 1.

To analyse the expected runtime of different decision tree
implementations, we want to use the following notation:
We assign a unique identifier to each node, so that we decide
at node i to either go to the left node j or right node k. Let
M denote the number of leafs in a decision tree, then there
are M different paths from the root node to a leaf. Every
observation takes exactly one path l(�x) from the root node
to one leaf. Please note, that all comparisons performed on a
path depend on each other: at one node, we decide at which
child to look in order to know which comparison we need to
evaluate next.

The number of comparisons performed during a path effec-
tively indicates the classification speed: The less comparisons
we need to perform, the faster we can classify the given obser-
vation �x . By assuming a certain distribution of observations,
we can calculate the expected number of comparisons needed
for a given tree.

We consider the comparison at node i a Bernoulli experi-
ment in which we will take the path towards the left child j
with probability pi→ j . The probability to take the path towards
the right child k is then given by pi→k . The probabilities pi→ j

and pi→k can be estimated during training by simply counting
the number of examples at each node i taking the left and right
path. Furthermore, it holds that pi→ j = 1 − pi→k . Hence,
following a path consists of a series of Bernoulli experiments
l = (p0→i1 , pi1→i2 , pi2→i3 , . . . , piL−1→iL). The probability to
take path l for a given observation �x is then given by

p(l) = p0→i1 · · · · · piL−1,L =
L

∏

j=0

l j

Please note, that we drop the argument �x of l if we are
not interested in one specific observation �x . Since a tree
has multiple paths, we again use a unique identifier i to
denote a specific path li in the tree with their associated
probability p(li). In this notation, path li has length Li .
Therefore, the expected number of comparisons in a tree is
given by

E[L] =
M

∑

i=1

p(li) · Li

Decision trees tend to overfit, i.e., they learn a way to
represent the presented data effectively, without extracting
real knowledge. In the extreme case, a decision tree classifies
exactly one training data point per layer and thus has a height
of N . On the training data, the decision tree will never give
a wrong prediction. However, new, yet unseen observations
seldomly match the training data and thus often receive a
wrong prediction. In order to deal with this problem, decision
tree induction algorithms such as CART, ID3 or C4.5 also
include some pruning strategy.

Additionally, it can be shown that the combination of mul-
tiple, different models into one larger model also prevents the
method from overfitting. These ensembles of many, relatively
weak classifiers outperform a larger, more complex model.
Random Forests combine decision trees with ensembles by
training NT rees decision trees, each on a different subset
of features and observations. Thus, Random Forests do not
suffer from over-fitting and offer state-of-the art classification
accuracies on real-world problems [5].

Alternatively, one can use techniques such as bag-
ging or boosting to create a forest of decision trees with sim-
ilar characteristics also offering state-of-the-art classification
accuracy [17], [18].

In order to produce a single prediction from multiple trees,
one can use a suitable fusion rule. In this paper, we consider
the majority vote, which returns the class that most individual
classifiers predict.

IV. COMPUTATIONAL ARCHITECTURES

Today’s hardware landscape offers many different proces-
sors and embedded computing devices with different char-
acteristics and unique strengths and weaknesses. A thorough
analysis of this landscape can only be performed for a specific
task taking given requirements into account. Additionally,
hardware manufactures are releasing new hardware every year
making such an analysis quickly outdated.

In order to keep the following discussion as general as
possible, we present a simple model of computation and use

212 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 65, NO. 1, JANUARY 2018

Fig. 2. Sketch of the von-Neumann architecture. The communication bus
connects main memory and cache, which again is connected with the CPU.
The CPU performs arithmetic logical operations on register values using the
arithmetic logical unit (ALU). Vectorization instructions are performed by
the vectorization unit on special vector registers. A control logic administers
register accesses and instruction execution.

it throughout this paper to assess different implementations of
decision trees and random forests.

We first present a theoretical model for von-Neumann CPUs
and then for FPGAs.

A. Von-Neumann Architecture

The vast majority of CPUs are implemented using the von-
Neumann architecture, in which code and data resides in the
same memory. A comprehensive study of von-Neumann CPUs
can be found in [7]. A sketch of the von-Neumann architecture
is depicted in Figure 2. Code and data are fetched using a
common communication bus. The control logic of the CPU
decodes instructions and loads data into registers, accordingly.
Operations are performed on these registers and results are
written back into the main memory using the communication
bus if needed. Since the common communication bus is used
for data and instruction codes, it forms the bottleneck of
the von-Neumann architecture. Moreover, an effect known as
memory wall manifested over the years: With increasing man-
ufacturing capabilities, CPUs have become faster and faster
nearly doubling their processing power every 2 years. Memory
access speed as well as memory transfer rates, however, could
not keep up with this rapid speed-up, making access to main
memory a magnitude slower than data processing inside the
CPU (see [19]).

In a classical von-Neumann architecture, instructions are
clocked, i.e., the execution of each instruction is synchronized
to a common clock. von-Neumann CPUs are inherently a
single instruction, single data (SISD) system, in which one

instruction performs one operation on one data item per
clock. In order to cope with data and computation intensive
applications several extensions for von-Neumann CPUs have
been introduced. In our theoretical model we will consider the
following ones.

• Memory hierarchy: Memory is arrange in hierarchies,
so that instructions and data can be fetched from different
hierarchy levels. On the lower hierarchy levels, small but
fast memory such as caches can be found, whereas on
higher hierarchy levels, larger but slower memory such
as main memory is placed.

• Parallelized memory access: CPUs perform operations
on packs of bits called words. The word-size of a CPU
thus denotes how fine-grained a CPU can access indi-
vidual bits. In order to reduce address lookup, memory
access is performed on packs of words in which each
memory access loads neighbouring words.

• Vectorization: With more and more transistors available,
more specialized hardware can be added to the same
CPU circuit. Therefore, many CPUs offer additional
single instruction multiple data operations (SIMD). These
vectorization units use special registers and instructions,
which perform a single operation on multiple data items,
at the same time.

Given these optimizations in CPUs, we can formulate a
more up to date theoretical model for the von-Neumann
architecture found in today’s hardware. We formalize the
instructions available to this theoretical CPU together with the
number of clocks needed to execute the instructions. Although
we tried to keep this theoretical instruction set architecture
close to existing real-world hardware, we do not restrict
ourselves to instructions that are available in every CPU.
A comparison between our theoretical model and real-world
hardware can be found in section VII-A.

The CPU is connected via a common communication bus to
main memory as well as peripheral devices. The CPU operates
on words of size sw and has registers of the same size. A cache
with size Mc is used, which is organised in cache lines with
size sc which are a multiple of sw .

The vectorization unit operates on vectorization registers
with size sv = v · sw, where v denotes the degree of
vectorization. load and store instructions can be used load
and store values from the cache. In case of vectorization units,
the load operation can only load continuous memory from the
cache into the vector register.

If we want to load values from different, non-continuous
memory locations, we first need to store the corresponding
memory addresses into one vector register using the load
instruction. Once the addresses are present in one register,
we can use a gather instruction to load the values placed at the
different memory addresses into one vector register. In order
to extract scalar values from the vector registers, we can load
specific lanes from the register unit.

The results of vector comparisons are saved into the vector
register. Since the outcome of a single comparison can be
saved using one bit, we only need v bits to save the vector
comparison. In order to access these v comparison bits, we use
an extract instruction, loading the v comparison bits into

BUSCHJÄGER AND MORIK: DECISION TREE AND RANDOM FOREST IMPLEMENTATIONS FOR FAST FILTERING 213

Fig. 3. Configurable logic blocks (CLB) of FPGAs. The logic block shown
consists of a look-up table with 4 inputs and one flip-flop. Thus, it can
represent any boolean function with 4 inputs or save 1 bit.

a scalar register. For arrays, we assume that they are stored in
continuous memory. Memory access on arbitrary indices can
also be performed with a single load operation, if the specific
index is saved in a register.

Our theoretical CPU is also clocked. We denote the clock
frequency with CC PU . To further simplify our analysis,
we assume that the complete random forest will fit into the
cache and we will operate only on elements saved in the regis-
ters as well as in the cache. Additionally, we use the following
cost model:

• load: Accessing a specific word of size sw already
present in the cache takes one clock cycle. Loading
continuous memory into a vector register also takes one
clock cycle. Loading words smaller than sw require one
load instruction and an additional lane access to extract
smaller words.

• gather: The gather instruction takes one clock cycle.
• store: Saving one data item of size sw or smaller inside

the cache takes one clock cycle. Saving a vector register
into continuous memory also takes one clock cycle.

• compare: Comparisons in von-Neumann architectures
consists of two operations. First, the comparison is per-
formed taking one clock cycle. Then, a conditional jump
to the next instruction based on the outcome of the
comparison is executed, taking another cycle.

• arithmetic and logic operations: Boolean operations,
as well as accessing specific parts of vectorization regis-
ters take one clock cycle.

B. Custom Architectures

FPGAs are reconfigurable hardware, i.e., their functionality
is encoded in hardware which can be reprogrammed before
and even during execution.

Logic gates are combined with flip-flops into configurable
logic cells (cf. Figure 3). Each logic cell contains a truth table
of size 2t saving a boolean function f : {0, 1}t → {0, 1}.
By programming the logic table, a logic block can image every
boolean function of size t . Alternatively, a configurable logic
block (CLB) can be configured to act as memory, if necessary.

In order to achieve more complex circuits, the CLBs are
connected to each other by signal routes. Signal routing
between logic cells is performed by flip-flops and transistors
that statically enable or disable signal routes (see Figure 4).

Fig. 4. Signal routing in FPGAs. Each crossing has 6 transistor attached to
it, which control each of the lanes. Transistors are programmed using a 1 bit
SRAM cell.

The functional logic of the FPGA can be fully specified
by programming the look-up tables and flip-flops for signal
routing, effectively making the FPGA a reconfigurable circuit.
FPGAs are functional complete [20].

FPGAs are essentially free to image every architecture
needed for a given problem. This freedom, however, comes
along with two major disadvantages. FPGAs only have lim-
ited resources and must mimic logic gates with truth tables.
Therefore, even though FPGAs are functional complete in
theory, they cannot express every function due to resource
constraints. Second, FPGAs perform operations at a much
lower speed than CPUs do, since they do not implement
logic gates directly. In order to cope with these limitations
several extensions for FPGAs have been introduced, from
which we will cover the following ones in our theoretical
model (cf. [21], [22]):

• Block memory: Configurable logic blocks are a valu-
able processing resources, they should not be used as
memory, if possible. Therefore, FPGAs usually contain
an additional block memory which can be used to save
intermediate values. Access speed is similar to caches in
CPUs.

• DSP units: Often, standard tasks such as addition or mul-
tiplication must be performed. Therefore, FPGAs offer
dedicated digital signal processing units (DSP) perform-
ing these kinds of tasks if desired to save logic blocks.

Since FPGAs can be used to build any hardware architec-
ture, they do not operate on fixed words. Data access and
computation can be tailored specifically for the given task at
hand. Additionally, it is not required that FPGAs are clocked.
Note, however, that block memory as well as DSP units are
implemented in fixed hardware and thus use a standardized
clocked interface.

For a fair comparison, we take into account that the CLBs
are a scarce resource. We model the accesses to block ram
also with load instructions, which - in case of a CPU - are
already given by the instruction set architecture of the CPU.
In case of FPGAs, these instructions need to be implemented.
Assuming we want to access a specific entry i inside an array
arr [i], we need to compute the address of that element first
in order to issue the corresponding load instruction.

214 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 65, NO. 1, JANUARY 2018

Given the array is stored continuously in the block ram
starting at address arr and it contains data items of size
s, the address of arr [i] is given by arr + i · s. Thus,
we need to implement summation and multiplication for
address resolution. Integer summation and multiplication is
a well-studied problem in literature and many solutions such
as carry-look-ahead adder, Ladner-fisher adder or Wallce trees
exist (see e.g. [7, Appendix I] or [23, Ch. 12]). Additionally,
the FPGAs DSP elements may already offer a corresponding
multiply-accumulate operation in fixed hardware. Therefore,
we assume that we can implement the address resolution
mechanism with a constant delay of one clock cycle using
at most raddr CLB resources.

If we want to compare a single bit against a constant value
0 or 1, we can utilize the fact, that FPGAs can address arbitrary
bit length. More formally, we need to realise a function
eq : {0, 1}2 → {0, 1}, which can be implemented using req = 1
CLBs given that t ≥ 2.

In order to compute the inequality a ≤ b of two unsigned
integers a = (a1a2 . . . asw) and b = (b1b2 . . . bsw) we need to
implement a boolean function le : {0, 1}2sw → {0, 1}. To do
so, we can observe, that the comparisons between ai and bi

is independent from any other comparison of a j and b j in a
and b, given i �= j . Therefore, we can build a tree structure,
in which packs of t/2 bits of a and t/2 bits of b are fed into
the same CLB. Then, we can merge the output of the t CLBs
and feed its output into the next layer. We repeat the process
until the remaining inputs fit into one CLB.

More precisely, we build a tree with nl = � 2·sw
t 	 leafs and

t children per node. The number of inner nodes ni can be
determined by observing:

ni − nl =
logt (nl)−1

∑

k=0

= tlogt (l) − 1 = nl − 1

Therefore, the number of internal nodes is ni = 2 ·nl −1. This
leads to a total of

rle = ni + nl = 2 ·
⌈

2 · sw

t

⌉

+ 1 +
⌈

2 · sw

t

⌉

=
⌈

6 · sw

t

⌉

+ 1

CLBs required to implement the comparison of two sw-bit
unsigned integers.

In CPUs, we need to perform conditional jumps based on
the outcome of the comparisons. In the case of FPGAs, we can
use the 1-bit output of the comparison to control the functional
units directly. Thus, the comparison combined with branching
a only need one clock cycle in FPGAs. Realising a register
of size sw takes sw CLBs, as each CLB can store up to one
bit. Realising a constant of sw bit can be achieved using

⌈ sw
t

⌉

truth tables.
In summary, we assume that the FPGA is running with

a clock frequency C F PG A and the following operations are
available:

• load: Loading a specific word of size sw from the block
memory takes two clock cycle (address resolution and
actual memory access) and uses raddr resources.

• load: Loading arbitrary words from registers realised with
CLBs take one clock.

• load: Loading constant words takes zero clocks.
• store: Storing a specific word of size sw in the block

memory takes two clock cycle and uses raddr resources.
• store: Storing arbitrary words in register realised with

CLBs take one clock cycle.
• store: Storing a sw-bit constant value in a register is

performed in zero clock cycles and requires sw CLBs
(on CLB saves one bit).

• compare: Comparisons are performed using one clock
cycle. Comparison against a constant single-bit value
needs req CLBs, whereas comparison of two sw-bit
integers rle CLBs require.

The reader might wonder why loading a constant word
inside the FPGA takes zero clock cycles. In order to execute
a specific operation, the corresponding functional unit needs
to load the desired operands first. If, however, one operand
is a constant value, we can directly hard-wire this constant
value into the functional unit. Therefore, loading of constant
operands is not required leading to a clock delay of zero
clocks.

Because FPGAs do not offer the possibility to perform
address resolution combined with loading in one instruction,
the access to block memory is slower compared to CPUs.
In contrast, FPGAs offer the possibility to perform multiple
instructions in parallel. To encourage this property, we will
allow up to two concurrent accesses to block memory in one
clock.

V. IMPLEMENTATION OF RANDOM FORESTS ON

VON-NEUMANN ARCHITECTURES

It goes without saying, that when implementing random
forests effectively on the given hardware, one has to consider
the underlying computational model. We will first focus on
implementing decision trees and then discuss the implemen-
tation of a majority vote.

A. Naive Implementation

Decision trees are closely related to binary search trees and
thus implementations can be found in nearly every entry level
computer science book (see e.g. [24]). Typically, the nodes of a
tree are represented as a single entity containing the split value,
a pointer to the children, as well as the prediction. An exam-
ple of this entity can be found in Figure 5. We explicitly
denote the corresponding data types to model the size of the
node.

boolean_t denotes a boolean data type. All other types
represent an unsigned integer of necessary size. Since loading
words smaller than sw requires an extra lane access, we align
the size of each data type towards sw. Thus, if values below
2sw need to be represented, they are stored inside a variable
of size sw . If values above 2sw need to be represented, we can
store them in the next smallest multiple of sw necessary.

The complete size of a node is given by sn = 2·boolean_t+
f eature_t+spli t_t+2·node_t . For the following, we assume
that data types fit into scalar registers of size sw , thus only
one load instruction is necessary to access each field of a
node.

BUSCHJÄGER AND MORIK: DECISION TREE AND RANDOM FOREST IMPLEMENTATIONS FOR FAST FILTERING 215

Fig. 5. Implementation of single decision tree node for the naive imple-
mentation. Please note, that the fields leftChild and rightChild point
towards the next entry in the tree array.

Fig. 6. Implementation of the prediction for a single decision tree based on
a naive approach.

A tree is represented by all its nodes, which can be saved
in a simple array structure. The variables le f tChild and
rightChild point to the next index in that array.

For prediction, one can traverse the tree starting from index
zero until a leaf is reached. Let tree[i] denote node i in the
array tree, then we may access may access a field of node
i by writing tree[i]. f ield . Please note, that if i is already
present inside a register, we allow load instructions directly
on tree[i]. f ield with one clock cycle.

A naive approach implementation can be found in Figure 6.
First we initialize the intermediate register i to zero and

load the field tree[0].isLeaf into another intermediate
register r1 (line 2 and 3). Then we compare the contents of
register r1 against false (line 4). If we have not reached
a leaf yet, we start to execute the while-loop. In essence,
we need to compare the current split point tree[i].spli t
with the corresponding feature value x[tree[i]. f eature].
In order to access x[tree[i]. f eature], we first need to load
tree[i]. f eature into register r1 and then load x[r1] into the
same register (line 5 − 6). Additionally, we load tree[i].spli t
into register r2. Once r1 and r2 contain the desired values,
we can compute the comparison and branch accordingly
(line 8 − 11). Depending on the outcome of the
branch, we update i either with tree[i].le f tChild or
tree[i].rightChild . In the end of each loop iteration, we need
to update the content of register r1 with tree[i].i sLea f
(line 13).

Fig. 7. Implementation of the prediction for a single decision tree based
on unfolding the complete tree in its if-else structure. Please note, that
c_1,c_2,s_1,s_2 are constants in the source code.

Once a leaf node is reached, the corresponding prediction
is returned. The number of clock cycles needed for each
instruction is depicted at the end of each line. Notice, that
we either need to update register i with the left or right child
taking the same time and. Thus one pass through the loop
uses a total of 9 clock cycles. Given the expected number of
comparisons E[L] we see that one prediction for a tree takes

cNaive
C PU = 9 · E[L] + 3

clock cycles in total.

B. If-Else-Trees

In the naive implementation, the CPU indirectly accesses
the field tree[i]. f eature to load the corresponding feature
value from x . This increases the number of clocks needed,
reducing the overall throughput.

Hence, we exploit the observation, that tree[i]. f eature and
tree[i].threshold are already known at compile time, which
enables us to unroll the tree in its if-else structure and
replacing tree[i]. f eature and tree[i].threshold respectively
by their constant values c_i and s_i . Now, the CPU does
not need to access tree[i]. f eature, but can directly load the
necessary feature x[c_i]. Figure 7 shows a scheme of this
approach.

This approach does not require intermediate values to be
saved, but only two registers are needed for every compar-
ison (see line 2, 3 or line 5, 6). Since c_i is a constant,
there is no need to compute the address for accessing x ,
but the CPU can directly load the array entry x[c_i] needed.
Once the corresponding split value s_i is also loaded into
an intermediate register, the comparison can be performed
(line 4 and line 7). After this, both registers are free to be
used by the next i f −branch. Once a leaf node is reached, the
prediction is given by a constant true or false which is
loaded into an register for the functions caller to use.

For every i f −branch taken, there are 4 operations and
thus 4 clocks needed. Taking the expected height of the tree

216 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 65, NO. 1, JANUARY 2018

Fig. 8. Implementation of single decision tree node for a SIMD implemen-
tation. Each node saves the v child nodes on the most probable prediction
path as well as its splits and feature values.

Fig. 9. Implementation of the prediction for a single decision tree based on
a naive approach.

into account, we see that if-else trees are expected to need

ci f −else
C PU = 4 · E[L] + 1

clock cycles.

C. SIMD Implementation

If-trees reduce memory accesses, but still need to per-
form E[L] comparisons to traverse the tree. The vectorization
unit of the CPU can perform up to v comparisons in one
clock cycle and thus offers the possibility to traverse a tree
in only E[L]

v cycles in the best case. As already mentioned,
Kim et al. presented a SIMD implementation in [13], which
we will use a basis here.

In order to utilize vector the instructions, we store up to v
feature indices, v split values and v children in one node
as shown in Figure 8. Since we built these structures during
compile-time, we can place them in continuous memory and
thus load them into the vectorization register in just one cycle.

Figure 9 shows how the prediction can be performed. First,
one loads the v split values as well as the indices for the
features into vector register v1 and v2. Second, we need
to load all the corresponding feature values from �x into
another register v2. Since we cannot guarantee that we need
a continuous part of �x , we need to gather different parts of �x
using the gather instruction. Third, we can perform the actual
comparison, which is saved into an vector register of size sv .
Since we are only interested into the v bits corresponding to
the comparison, we can use the extract instruction to extract

a bitmask of size v. Last, we can reinterpret this bitmask as
index and use it to access the next child node in the tree.
Unfortunately, we cannot access tree[i].nextChildren[mask]
directly, since we would need to perform two array look-ups in
one instruction. Thus, we need to split this indirect access and
first load the base address tree[i].nextChildren into register
r1 and then perform the actual lookup depending on r1.

One pass through the while−loop takes 10 cycles. Initial-
ization takes again 2 cycles and returning the prediction takes
another clock cycles. The question remains, how many loop
iterations are expected to be performed for a tree.

1) Depth-First Comparison: Given we have a skewed dis-
tribution of positive and negative labels inside the decision
tree, there might be a path l from the root node to a leaf
node which is taken the majority of the time. In other words,
the probability of using a path l may be much higher than any
other path, thus p(l) >> p(l ′) ∀l ′ �= l.

We can utilize this fact, by performing v comparisons on the
most probable path l. Then, in the best case, we can skip up to
v comparisons if the first v nodes of l match the first v nodes
in l(�x). However, in sub-optimal cases where only the first
u < v nodes of both paths match, we can only skip the first
u nodes. In the worst case, only the first nodes in both paths
match and thus we effectively performed only one comparison.
Therefore, we call this type of comparison strategy a depth-
first comparison, in which we always perform v comparisons
on the most probable path of the tree.

The number of loop iterations we expect to perform can be
expressed as the number of successful Bernoulli experiments
in a row. Let l denote the most probable path in the tree and
let l[0 : i] denote the sub-path of l which is given by the first
i comparisons, then the number of expected loop iterations is
given by the sum of every sub-path in l:

ES I M D[l] =
L

∑

i=1

pl[0:i] · i

This leads us to an expected number of clock cycles needed:

cdepth− f irst
C PU = 10 · E[L]

min(v, ES I M D)

2) Breadth-First Comparison: In a depth-first comparison,
we try to skip up to v comparisons in one clock cycle. This
approach works well, if there are only a few paths in the tree
which are taken the majority of the time. If the decision tree
is more balanced, we are more likely to take different paths
with each observation �x and thus will effectively only perform
one comparison per clock.

In order to utilize SIMD instructions in a more controlled
way, we can perform multiple comparisons on different paths
in the same instruction. We can do this, because each node in
the tree has only 2 children. Regardless of the outcome of the
comparison at a parent node, we will have to perform one of
the two comparisons given by the children.

Thus, if we perform the comparison at the current node,
as well as both children with one vectorization instruction,
we make sure, that two of tree comparisons are useful. More
formally, we are guaranteed to skip at least �log2(v+1)
 com-
parisons with one instruction. In case v is not a exponential

BUSCHJÄGER AND MORIK: DECISION TREE AND RANDOM FOREST IMPLEMENTATIONS FOR FAST FILTERING 217

Fig. 10. Implementation of a majority vote.

of 2, we still have some comparison entries left in the vectors.
We can use the remaining m = v − (2�log2(v+1)
 − 1) slots
in the vectorization units and use them to perform the most
probable comparisons on the next layer. Given the highest
probabilities p1, . . . , pm of that layer, we will match one of
the comparisons needed with expectation

∑m
i=1 pi . This leads

us in total to an expected number clock cycles needed for a
breadth-first approach of

cbreadth− f irst
C PU = 10 · E[L]

�log2(v + 1)
 + ∑m
i=1 pi

D. Random Forest Implementation

So far, we discussed the implementation of decision trees.
We can use these implementations as building blocks to
implement a random forest, by performing every prediction
successively and by keeping track of the current vote count.

Figure 10 shows the implementation of a majority vote.
First, we create an array with 2 elements for counting every
single vote and initialize it with zeros (line 3 − 4). Then,
we perform the prediction using the first tree and save the
result in an intermediate register r1 (lines 5 and 6). The
prediction of this tree is used to address the array location for
the vote count and update the count accordingly (lines 7 − 8).
This procedure is repeated for every tree in the random forest.
In the end, we need to load the two vote counts and compare
them with each other (line 14 − 16). Please note, that in case
we have equal vote counts, we will predict false, meaning
we do not want to filter the given data item �x , but further
process it.

Let cm
i denote the number of cycles needed for method m

and tree i , then we need a total number of cycles for the
majority vote of:

Ctotal
C PU = 2 +

Ntrees
∑

i=1

cm
i + 3 = 5 +

Ntrees
∑

i=1

cm
i

VI. IMPLEMENTATION OF RANDOM FORESTS ON FPGAs

Field programmable gate arrays offer reconfigurable hard-
ware and thus do not offer any computing architecture, but are
free to mimic every architecture needed. In an naive approach,
we can simply reuse the implementations presented to far and
find the same theoretical conclusions as discussed.

This however, would not take the very flexible nature of
FPGAs into account. First, it has to be noted, that register
accesses do not need to be aligned towards given word sizes
sw or vector sizes sv , but they can exactly be tailored to the
problem at hand. Thus, we can use the same node entity
depicted in Figure 5, but can also tailor the corresponding
data sizes exactly to the specific problem at hand.

Similar to the CPU implementation, we assume that the
complete random forest fits into block ram on the FPGA and
thus, we only operate on block memory or the logic blocks of
the FPGA.

A. Naive Implementation

First, we analyse the naive implementation shown
in Figure 6 for FPGAs. The initialization before the
while−loop can be executed during power-on of the FPGA
and thus takes no time (line 2 − 3).

Unlike for the CPU, we can issue two load instructions at
the same time on the FPGA, but each load takes two clock
cycles because of address resolution. Thus, we can perform the
first load operations on r1 and r2 in parallel (line 5 and 6).
However, the remaining load instructions depend on each
other and thus need to be executed in sequence, leading to
a sequence of 4 load instructions inside the while−loop.
Additionally, two comparisons are performed (line 4 and 8),
which take 1 clock cycle each, leading to:

C Naive
F PG A = (0 + 2 · 4 + 2) · E[L] + 1 = 10 · E[L] + 1

In order to estimate the resources used by this implemen-
tation, we observer that two functional units for comparisons
and two functional units for address resolution are needed.
Additionally, 3 registers are needed giving a total of

r Naive = 2 · raddr + 3 · sw + req + rle

resources used by this implementation.

B. If-Else Implementation

In the naive implementation we observer, that memory
access is a costly operation since we have to perform
address resolution first. Similar to the CPU implementation,
we can bypass this problem if we unroll the tree in its
i f − else−structure as depicted in Figure 7.

We observe, that we need to access a constant s_i , which
is known at compile time. Similar we see, that we need to
access x[c_i], where c_i is also a constant. Thus, the memory
address of x[c_i] is known at compile time and no address
resolution unit is required.

So far, we implicitly assumed that the observation �x has
already been copied into the CPUs cache and the FPGAs block
memory. It is reasonable to assume, that we could instead
copy it directly into the FPGA CLBs cells, because we need

218 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 65, NO. 1, JANUARY 2018

to communicate with the FPGAs in any case.2 Then, we can
hard-wire the entries in �x and their split values s_i directly
into the corresponding comparators. This way, the operands for
comparison do not need to be loaded, but only the comparison
itself need to be performed taking 1 clock cycle in total:

ci f −else
F PG A = E[L] + 1

Since we hard-wire constants into the comparison blocks,
we cannot reuse any comparison unit and thus have to imple-
ment the comparison of every node of the complete tree.
Additionally, we need to store all split values s_i as well as
the entire observation �x inside the CLBs of the FPGA.Given
we implement a tree with n nodes, we need

r i f −else
F PG A = n · rle + n ·

⌈sw

t

⌉

+ d · sw

resources.

C. SIMD Implementation

FPGAs are well suited for vector operations and thus the
SIMD implementation of the CPU can directly be mapped
onto the FPGA as presented in Figure 9. In order to access v
features at once, we again store the complete tree using the
FPGAs CLBs. However, unlike i f − else trees, we need to
keep track of the current node i and issue load instructions
towards the memory generated using CLBs. Thus, memory
access still has a delay of two clock cycles.

Again, the number of expected loop iteration depends on the
comparison strategy. However, the number of clock cycles per
iteration is different. The two load operations before entering
the while−loop can be performed during power-on and thus
require no clock cycles (line 2, 3). Loading values into register
v1 and v2 can be performed in parallel (line 5, 6) taking
2 cycles. Additionally, we need to gather the entries in x ,
taking another 2 cycles. The comparisons in line 4 and 8
can be performed and one clock cycle each. Generating the
corresponding bitmask from the comparison is for free on the
FPGA, since we can hard-wire the comparison bits directly it
into the next functional unit. After that, 3 loading operations
are performed in sequence, leading to a total of 12 clock
cycles.

Looking at the resource consumption of this implementa-
tion, we can observer that we need a total of v functional units
for address lookup, since the gather instructions performs v
lookups in parallel. Also, we need to perform v comparisons
using v comparators. Additional, another comparator, which
compares r1 against a fixed value is required. Last, we need
to materialize all nodes, as well as the vector registers and
r1 and i with the FPGAs logic cells leading to a total of:

r S I M D
F PG A = v · raddr + v · rle + v · req + n · nodet + 2 · v · sw

+2 · sw + d · sw

D. DNF Implementation

So far, we mapped CPU implementations on FPGAs, not
taking the FPGAs flexible nature into account. To do so,

2Assuming �x is always copied into the block ram due to hardware
constraints, we can load it into the FPGAs CLBs in d

2 clock cycles.

Fig. 11. Implementation of a decision tree by its DNF structure.

we can formulate an extreme case of the SIMD trees, in which
we perform all comparisons in one clock cycle.

This can be done, by observing two things: First, the com-
parisons in a tree do not depend on each other. Only once
we perform the actual prediction, we need to traverse the tree.
Thus, we can perform all comparisons given �x first and then
traverse the tree given the pre-computed comparisons. Second,
a tree can be represented by a disjunctive normal form (DNF).
In a disjunctive normal form, a boolean function is represented
as a series of conjunctions connected by disjunctions. We can
view the comparison performed at node i as boolean variable,
which is either true or false. Then, a particular path from
the root node to a leaf is represented as conjunction of all -
possibly inverted - comparisons on that path.

Let ci denote the comparison for node i , the DNF of the tree
depicted in Figure 1 is for example cx2 ∨ (¬cx2 ∧¬cx3 ∧ cx1).

The DNF for a given tree is independent of the specific
observation �x , but only depends on the structure of the
tree. Thus, we can pre-compute the DNF formula for a tree
and possibly optimize it by the means of boolean function
minimization using e.g. the Quine-McCluskey algorithm [25].

Figure 11 shows an implementation of this approach. Simi-
lar to the i f −else trees, we can store the observation �x inside
the FPGAs CLBs and hard-wire the split values and features
directly into the comparators.

Thus, given n nodes in the tree, we have to perform n
comparisons in parallel taking only 1 clock cycles. The DNF
computation of a tree thus consists of three operations. First,
necessary variables need to be inverted, then conjunctions
are computed and finally the disjunction can be evaluated.
In an naive approach this takes 3 clock cycles, but since the
tree structure is known, we can directly encode this into the
look-up tables of the FPGA in a similar fashion as explained
in sectionVI-B. Thus, computing the DNF takes only one clock
cycle. Adding another clock cycle for returning the prediction
value, we see, that DNF-Trees only need

cDN F
F PG A = 3

clock cycles.
In order to traverse the complete tree in only one clock

cycle, we traded run-time for space. In short, we need n
comparators performing comparisons in parallel. Additionally,
we need n sw bits to materialize all split values using the
FPGAs CLBs and d · sw bits to store the observation �x .

Computing the DNF for the tree can be viewed as
computing a boolean function with 2E[L] input variables
DN F : {0, 1}n → {0, 1}. As already explained in section IV-B,
we can distribute this across multiple logic blocks. In total, this

BUSCHJÄGER AND MORIK: DECISION TREE AND RANDOM FOREST IMPLEMENTATIONS FOR FAST FILTERING 219

implementations needs

r DN F
S I M D = n · rle + n · sw + d · sw +

⌈

6 · n

t

⌉

+ 1

resources.

E. Random Forest Implementation

For FPGAs we will follow the same general procedure as
for von-Neumann CPUs shown in Figure 10 to implement the
majority vote. However, unlike CPUs, FPGAs do not need to
execute trees in sequence, but can execute the trees in fully
parallel.

Every tree computes a prediction either corresponding to
true or f alse, which can be stored in a single bit, which
then can be interpreted as bit vector with NT rees bits. In order
to compute the majority vote, we need to count the number
of 1-bits inside this bit vector. This is known as the hamming
weight of a bit vector and has been studied in literature [26].

Similar to comparing two integers, the hamming weight of
a bit vector with NT rees bits can be implemented using rham =
�log2(NT rees + 1)	 CLBs, taking one clock cycle to complete
its operation. After that, we can compare the value against
⌊ NT rees

2

⌋

, also taking one clock cycle requiring rle resources.
Thus, the total clock delay of a random forest given method
m is given by:

C F PG A
total = Cm

F PG A + 2

The amount of resources used is given by:

r F PG A
total = rm + rham + rle

VII. EVALUATION

In this section, we want to evaluate our findings and present
a recommendation for FACT.

First of all, it has to be noted that the theoretical model
presented can be used to compare different implementations
in terms of resources and clock cycles needed, but does not
entirely reflect the run-time on real-world hardware.

von-Neumann CPUs are usually pipelined and thus may
perform multiple instructions at the same time. Addition-
ally, we did not incorporate caching effects into the model.
In case of FPGAs, our model is closer to real-world hardware.
However, it has to be mentioned that it is possible to imple-
ment circuits, which theoretical fit onto the FPGA, but cannot
be routed by the synthesis tool. Our model does not reflect this.
Also, we do not include boolean optimizations performed by
the synthesis tool in our model.

A. From Theory to Real-World Hardware

In this section, we want to provide evidence, that our
theoretical model matches real-world hardware. To do so,
we shortly discuss the specifics of selected real world hardware
and compare it against the theoretical model we presented.

1) X86 CPUs: A large portion of CPUs available today
implement the X86 instruction set architecture (ISA), which
mainly targets server and desktop systems. An overview of the
X86 instruction set architecture supported by Intel CPUs can
be found in [27].

In today’s X86 implementations, we find scalar registers
with 64 bit and vectorization register ranging from 128 bit
up to 512 bit. Loading values into scalar register is achieved
using the M OV instruction, which supports address resolution
for memory access in one clock cycle. Similar, vectorization
registers are loaded using one of the many vectorial coun-
terparts of the M OV instruction, e.g. M OV DQ A in the
SSE extension.

Performing scalar comparison is achieved by first perform-
ing a comparison using the C M P instruction and then by
performing the corresponding jump to the next code segment,
e.g. using the je (jump-if-equal) instruction.

Performing vectorial comparisons can be implemented by
using the corresponding vector instructions - in case of SSE for
example PC M PGT B . The resulting bitmask can be extracted
using the M OV M SK PS instruction in SSE.

The support for gather instructions is available with the
Advanced Vector Extensions 2 (AVX 2), which is for example
implemented in Intel Haswell CPUs. Concluding this short
summary, we are confident, that our theoretical model captures
the characteristics of X86 CPUs.

2) ARM CPUs: The majority of CPUs used in mobile and
embedded systems implement the ARM instruction set archi-
tecture which is specifically designed for embedded systems.
An overview of the ARM ISA can be found in [28].

Until 2011 the ARM ISA supported 32 bit, but switched
then towards 64 bit registers. A vectorization extension called
NEON with 128 bit registers is also available.

Similar to the X86 architecture, M OV instructions are used
to load memory content into registers. The M OV instruction
may perform address resolution and thus can also load memory
content in one clock cycle.

In order to load content into the vectorization registers,
the V L D instruction can be used. Comparisons work the
same as in X86 CPUs: First the comparison is performed
using the C M P instruction and then a conditional jump
is performed, e.g. using the B LT instruction. In case of
vector comparison, the NEON extension provides a V C M P
instruction. Unfortunately, there is no dedicated instruction
to extract the comparisons bitmask. This instruction must be
emulated with individual lane accesses on the registers. Also,
there is no gather instruction in NEON. In summary, we think
that the proposed model captures most of the characteristics
of modern ARM CPUs. However, it has to be noted, that
vectorization instructions do not match exactly.

3) Xilinx FPGAs: As one of the largest FPGA manufac-
tures, Xilinx offers variety of different FPGA models [22].

Xilinx combines 4 look-up tables with 6 inputs and 1 output
into one CLB and offers models with 2000 to 33650 CLBs.
Additionally, between 720kb to 13140kb block memory is
available. Block memory is implemented in 36kb dual-port
memory cells, meaning two separate 18 kb address spaces
can be accessed at the same time.

Adding to this, 40 to 740 DSP elements including an pre-
adder, a multiplier, an adder as well as an accumulator are
available.

Therefore, we are confident, that the presented theoretical
model captures the characteristics of modern FPGAs.

220 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 65, NO. 1, JANUARY 2018

VIII. ARCHITECTURAL DEPENDENT CODE GENERATION

In this section, we briefly discuss a code generator which
generates code for the presented implementation. As ARM
is prominent in embedded systems, we will focus on
native−trees, i f − else− trees and DN F−trees.

A. Code Generator

Given a trained decision tree classifier or random forest
classifier, we wish to generate an efficient implementation
of that classifier for a given architecture, without changing
its accuracy. For CPUs, we can either use the ISA of a
processor directly by the means of assembler or use a higher
level language such as C/C++. Since compiler optimization
can help improving the overall throughput we generate C++
code for a given architecture and compile this for the specific
processor at hand.

For FPGAs we can either directly generate VHDL
code or use C/C++ code as a basis and perform high level
synthesis. VHDL offers fine control over the generated code
and gives us full control over the FPGAs resources. C/C++
on the other hand lets the high level synthesis tool utilize the
block ram and DPS units to the fullest, as it generates board
specific code. Additionally, we can structure the generated
C/C++ code so that the high level synthesis tool is able to
perform further optimizations (c.f. [29]). Thus, as a first step
we will use C/C++ code in combination with a high level
synthesis tool for FPGA code generation. We implemented the
code generator in python with code templates in C/C++.
The code generator loads a decision tree or random forest from
sklearn3 into an internal structure and automatically detects
necessary data ranges for features and splits. Additionally, it is
possibly to load trees and forests directly from JSON files.

The generated implementation can then be compiled using
a standard C/C++ compiler or the high level synthesis tool.

B. Recommendation for FACT

So far, we presented and discussed all implementations
independent from each other. In this section, we want to
shortly compare the implementations with each other and
provide a hardware and implementation recommendation for
filtering of sensor data in the context of FACT.

The FACT telescope performs 300 measurements per sec-
ond with 1440 sensors, each with a 12−bit resolution [2]
resulting in a data rate of 4.944 Mbps. For filtering-out
unwanted events, we trained a random forest classifiers with
NT rees = 50 decision trees on N = 6000 training instances
containing unnormalized raw data. To improve the quality
of the trees, we prepared the training data to contain 50%
of background noise and 50% wanted events. We used the
sklearn-learn library for tree induction. Each tree contains an
average of 1349 nodes and roughly 675 different paths from
the root node to a leaf node. A 10-fold cross-validation shows,
that the trained ensemble offers a prediction accuracy close to
80% for gamma-hadron separation.

However, for filtering we are more interested in the number
of correctly filtered events. Since we do not want filter-out

3http://scikit-learn.org/

interesting events, we only discard an element, if the random
forest classifiers is certain in its classification. We interpret
the number of positive and negative labels in the leafs of a
decision tree as the probability of the respective class. For
the forest, we can average this probability for all trees, giving
a prediction reliability for the class. Thus, we only filter out
events, in which the predicted class receives a probability of
at least 0.68.

This way, we can filter out roughly 12% of the data
before further processing, while performing no misclassifica-
tion reducing the data rate to 4.35 Mbps.

The question remains, which hardware and which imple-
mentation would be the best fit for the trees given. First we will
compare the implementations based on the theoretical analysis:

Judging by the number of clock cycles, the FPGA clearly
seems to be at an advantage, if we either implement i f − else
trees or one of the SIMD derivatives. For i f − else trees we
need n · rle + n · ⌈ sw

t

⌉ + d · sw = 1349 · (⌈ 6·12
6

⌉ + 1) + 1349 ·
12 + 1440 ·12 = 51005 CLBs per tree. Therefore, we identify
that i f − else simply will not fit into smaller FPGAs.

In case of SIMD derivatives, we see that dn f − trees will
also not fit, since they use more CLBs compared to i f −
else trees. The amount of resources needed by a SIMD tree
depends on v. Using v = 8, we see that a tree needs 8 ·
raddr + 8 · (

⌈ 6·12
6

⌉ + 1) + 8 · 1 + 1348 · node_t + 2 cdot2 ·
12 + 2 ·12 + 1440 ·12 = 8 · raddr + 1348 ·nodet + 17464 logic
blocks. Since we have 1348 nodes in a tree, we need at least
11 bits to index each node. In order to index 1440 features,
we also need 11 bits. Thus we can assume, that node_t ≈ 47.
Therefore, a SIMD implementation on FPGAs needs at least
1348 · 47 + 17464 = 80820 CLBs, which is also unlikely to
fit on smaller FPGAs.

Thus, we conclude, that for the particular problem at
hand, FPGAs cannot be employed. In case of a classical
CPU, we find that i f − else trees offer a fast and reliable
clock delay. For the presented trees, we see that we need
4 · 13 + 1 = 53 clock cycles on average, leading to a total
of 2650 clocks needed to compute the complete forest. Since
300 measurements are needed to be evaluated per second,
we need a processor with at least 795000 H z = 0.795 Mhz.
Thus, a small, embedded system with ≈ 1 Mhz clock speed
will do the job.

C. Experiments for FACT

In order to critically evaluate the presented theoretical
model, we compare three different implementations for FACT
using the Zedboard4 The Zedboard contains an ARM Cortex-
A9 with 666 Mhz, 512 Mb DDR RAM and 512 Kb cache.
Additionally, this board contains a Xilinx Artix-7 Z-7020
FPGA with 53200 lookup tables, 106400 flip-flops (FF) in
total combined with 4.9 Mb block ram and 220 DSP units. The
Zedboard contains four Adavanced eXtensibel Interface (AXI)
ports, each running at 142 Mhz with 32 bit word sizes leading
to a aggregated bandwidth up to 3.8 GB/s.

We used the software SDSoC in version 2016.2 to
run and compile the experiments. Power consumption was

4http://zedboard.org/

BUSCHJÄGER AND MORIK: DECISION TREE AND RANDOM FOREST IMPLEMENTATIONS FOR FAST FILTERING 221

TABLE I

THROUGHPUT COMPARISON FOR DIFFERENT IMPLEMENTATIONS OF
RANDOM FORESTS AND DECISION TREES. LARGER IS BETTER

TABLE II

RESOURCE COMPARISON FOR DIFFERENT IMPLEMENTATIONS OF

RANDOM FORESTS AND DECISION TREES. SMALLER IS BETTER

estimated using Vivado in version 2016.2. All experi-
ments where performed in the standalone mode of this board,
so that no operating system is involved during measurements.
We activated the most aggressive optimizations -O3. FPGA
implementations are clocked with 100 Mhz giving an actual
bandwidth of up to 1.6 GB/s.

Table I depicts the average classification throughput in
measurments per millisecond for a random forest and for a
single decision tree. All tests were repeated 20 times.

One can observe that the i f − else trees offer the highest
throughput for single trees, as well as for random forests.
Native tree implementations also do fairly well on the CPU,
whereas dn f − trees offer the smallest throughput.

Looking at the FPGA, we first see that the random forest
implementations did not fit onto the FPGA. Thus, the cor-
responding entries in Table I are missing. The decision tree
implementations all fit on the FPGA with a throughput ranging
from 1100 to 1480, where i f − else trees are the fastest and
dn f −trees the slowest implementation.

Table II depicts the resource usage of all implementations.
For the FPGA we depict the resource usage reported by the
synthesis tool. For the CPU, we present the binary size, which
is loaded by the first-stage bootloader directly after power-
on of the board. Please note, that since the board is used in
standalone mode, the binary contains all necessary libraries,
e.g. functions for time measurements and output over UART.

One can see, that the native−tree uses the least resources
fitting up to 40 trees of a random forest onto the FPGA. The
dn f -trees as well as i f − else trees also fit nicely on the
FPGA, but use more resources than native-trees. With this
implementation, one could roughly fit 5 trees on the FPGA.

Looking at the CPU, one can observe that the binary sizes
are around 1.3 MB to 2.4 MB. The dn f -tree forest implemen-
tation is an exception in this regard with 6.8 MB. Last, table
III displays the power consumption of all models. It is well

TABLE III

POWER CONSUMPTION FOR DIFFERENT RANDOM FORESTS AND
DECISION IMPLEMENTATIONS. SMALLER IS BETTER

established that the complete zedboard uses around 4 − 6 W
in total [30], [31]. This also takes peripheral devices such
audio controller or VGA controller into account, which are
not needed during deployment for FACT. Therefore, we want
to focus on the energy consumption of the ARM processor as
well as the FPGA. Direct measuring of these quantities is diffi-
cult, because these parts are integrated on the board, so that we
will rely on the estimations of the power consumption given
by the synthesis tool. We report all estimates for the maximum
power consumption during full load. The complete chip uses in
total less than 2 W in all configurations, from which the ARM
processor uses 1.53 W. The FPGA implementations greatly
vary in power consumption ranging from 0.008W to 0.068W,
but are all two to three magnitudes lower than what the ARM
processor needs.

Using the throughput measurements from table I, we com-
pute the amount of energy needed to process one measurement.
Here one can observe, that on the ARM the i f − else
implementation offers smallest power consumption because of
the large throughput of this implementation. On the FPGA
however, the native implementation dominates, as this also
uses the least resources. All in all, we see that the FPGA -
despite smaller throughput - wins in terms of energy per
element for all implementations.

IX. DISCUSSION

In this paper, we investigated when to use FPGAs and
when to use CPUs. We evaluated the classical von-Neumann
CPU architecture and presented a simple model of computa-
tion. In a similar fashion, we examined the characteristics of
FPGAs and formulated a theoretical model also for them.

We specifically focused on random forests and decision
trees and presented different implementation schemes for each
architecture. Based on our theoretical model, it is now possible
to estimate the number of clock cycles needed for a given tree
taking the distribution of observations into account.

This theoretical model is the first step towards the analysis
of different algorithms on an architectural basis without the
need of implementing or synthesising the algorithms directly.
In future work we plan to extend this model taking caching
effects and multi-threading into account.

We applied our theoretical analysis in the context of
astro-particle physics, namely for the FACT telescope. Here,
we showed, that the learned random forests do not fit onto
FPGAs. In contrast, a small embedded system clocked at
roughly 1Mhz offers enough computational power to filter

222 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS–I: REGULAR PAPERS, VOL. 65, NO. 1, JANUARY 2018

the FACT data, if all trees are unrolled into their i f − else
structure.

We validated our theoretical model with experiments on real
world hardware. The experiments’ results largely follow our
theoretical model, but also display potential for further work.

First, the presented theoretical model does not exactly match
the throughput measured, but it underestimates the CPU.
As argued, the evaluation of i f − else trees for the ran-
dom forest need 2650 clock cycles. Looking at the achieved
throughput, we see that the implementation only needs around
854 clock cycles, which is roughly 3 times faster than
expected. The difference can be explained by the lack of
pipelining in our theoretical model. Further work is to enhance
the model accordingly. It has to be noted, however, that our
model still captures the relative differences between imple-
mentations and thus still can be used to determine the fastest
implementation.

Second, in terms of the FPGAs resource usage, our model
also needs some adjustments with respect to the optimizations
of the synthesis tool, which we did not consider in our model.
Additionally, one can argue that parts of a tree can be reused
in some fashion, e.g. reusing feature indices, which is also not
reflected by our model.

Last, we have seen that FPGAs are clearly the best approach
in terms of energy consumption per element. The reasons
for this are quite clear, as the FPGA is slower clocked and
does not need to decode or fetch instructions, but perform
classifications directly. From this point of view, FPGAs are
a good alternative for implementing decision trees, when it
comes to energy consumption per element, if they can keep
up with the high volume of data.

Therefore, we conclude this paper with the following rec-
ommendations:

• high-throughput application: We showed that von-
Neumann CPUs combined with an i f − else imple-
mentation offers the highest throughput with reasonable
energy consumption per element. Hence, we recommend
this approach for applications with an emphasis on
throughput.

• low power application: We showed, that FPGAs com-
bined with a native implementation offer the smallest
power consumption per element with acceptable through-
put. Thus, we recommend this approach for applications
with an emphasis on power consumption.

REFERENCES

[1] M. Weiser, “The computer for the 21st century,” Sci. Amer., vol. 265,
no. 3, pp. 94–104, 1991.

[2] C. Bockermann et al., “Online analysis of high-volume data streams in
astroparticle physics,” in Proc. Eur. Conf. Mach. Learn. (ECML), 2015,
pp. 100–115.

[3] A. Vellido, J. D. Martín-Guerrero, and P. J. Lisboa, “Making machine
learning models interpretable,” in Proc. ESANN, vol. 12. 2012,
pp. 163–172.

[4] C. Apté and S. Weiss, “Data mining with decision trees and decision
rules,” Future Generat. Comput. Syst., vol. 13, no. 2, pp. 197–210, 1997.

[5] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[6] R. Isermann and M. Münchhof, Identification of Dynamic Systems: An
Introduction with Applications. Springer, 2011.

[7] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach. Amsterdam, The Netherlands: Elsevier, 2011.

[8] R. Narayanan, D. Honbo, G. Memik, A. Choudhary, and J. Zambreno,
“An FPGA implementation of decision tree classification,” in Proc.
Design, Autom. Test Europe Conf. Exhibit. (DATE), 2007, pp. 1–6.

[9] B. van Essen, C. Macaraeg, M. Gokhale, and R. Prenger, “Accelerating a
random forest classifier: Multi-core, GP-GPU, or FPGA?” in Proc. IEEE
20th Annu. Int. Symp. Field-Program. Custom Comput. Mach. (FCCM),
May 2012, pp. 232–239.

[10] R. Prenger, B. Chen, T. Marlatt, and D. Merl, “Fast
map search for compact additive tree ensembles (CATE),”
Lawrence Livermore Nat. Lab. (LLNL), Livermore, CA, USA,
Tech. Rep., 2013.

[11] F. Saqib, A. Dutta, J. Plusquellic, P. Ortiz, and M. S. Pattichis, “Pipelined
decision tree classification accelerator implementation in FPGA
(DT-CAIF),” IEEE Trans. Comput., vol. 64, no. 1, pp. 280–285,
Jan. 2015.

[12] M. Barbareschi, S. Del Prete, F. Gargiulo, A. Mazzeo, and C. Sansone,
“Decision tree-based multiple classifier systems: An FPGA perspective,”
in Proc. Int. Workshop Multiple Classifier Syst., 2015, pp. 194–205.

[13] C. Kim et al., “FAST: Fast architecture sensitive tree search on modern
CPUs and GPUs,” in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2010, pp. 339–350.

[14] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Cart:
Classification and Regression Trees. Belmont, CA, USA, Wadsworth,
1984.

[15] J. R. Quinlan, “Induction of decision trees,” Mach. Learn., vol. 1, no. 1,
pp. 81–106, 1986.

[16] J. R. Quinlan, C4.5 Programs for Machine Learning. Amsterdam,
The Netherlands: Elsevier, 2014.

[17] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2,
pp. 123–140, 1996.

[18] Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of
on-line learning and an application to boosting,” in Proc. Eur. Conf.
Comput. Learn. Theory, 1995, pp. 23–37.

[19] S. Borkar and A. A. Chien, “The future of microprocessors,” Commun.
ACM, vol. 54, no. 5, pp. 67–77, May 2011.

[20] S. Hauck and A. DeHon, Reconfigurable Computing: The Theory
And Practice of FPGA-Based Computation. San Mateo, CA, USA:
Morgan Kaufmann, 2008.

[21] D. F. Bacon, R. Rabbah, and S. Shukla, “FPGA programming for the
masses,” Commun. ACM, vol. 56, no. 4, pp. 56–63, 2013.

[22] 7 Series FPGAS Overview, accessed on Dec. 2016. [Online]. Avail-
able: https://www.xilinx.com/support/documentation/data_sheets/ds180
_7Series_Overview.pdf

[23] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective, 4th ed. New York, NY, USA: Addison-Wesley, 2010.

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. Cambridge, MA, USA: MIT Press, 2009.

[25] E. J. McCluskey, “Minimization of Boolean functions,” Bell System
Tech. J., The, vol. 35, no. 6, pp. 1417–1444, Nov. 1956.

[26] V. Sklyarov and I. Skliarova, “Digital Hamming weight and distance
analyzers for binary vectors and matrices,” Int. J. Innov. Comput., Inf.
Control, vol. 9, no. 12, pp. 4825–4849, 2013.

[27] Intel Intrinsics, accessed on Dec. 2016. [Online]. Available:
https://software.intel.com/sites/landingpage/IntrinsicsGuide/

[28] Arm Neon Instructions, accessed on Dec. 2016. [Online].
Available: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.
doc.dui0489c/CJAJIIGG.html

[29] Xilinx. Ug902 Vivado High Level Synthesis, accessed on May 2017.
[Online]. Available: https://www.xilinx.com/support/documentation/sw
_manuals/xilinx2016_2/ug902-vivado-high-level-synthesis.pdf

[30] J. Monson, M. Wirthlin, and B. L. Hutchings, “Implementing high-
performance, low-power FPGA-based optical flow accelerators in C,” in
Proc. IEEE 24th Int. Conf. Appl.-Specific Syst., Archit. Process. (ASAP),
Jun. 2013, pp. 363–369.

[31] P. Moorthy and N. Kapre, “Zedwulf: Power-performance tradeoffs of a
32-node Zynq SoC cluster,” in Proc. IEEE 23rd Annu. Int. Symp.
Field-Program. Custom Comput. Mach. (FCCM), May 2015,
pp. 68–75.

Sebastian Buschjäger, photograph and biography not available at the time
of publication.

Katharina Morik, photograph and biography not available at the time of
publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

