
Efficiently Approximating the Probability of
Deadline Misses in Real-Time Systems
Georg von der Brüggen
Department of Computer Science, TU Dortmund University, Germany
georg.von-der-brueggen@tu-dortmund.de

https://orcid.org/0000-0002-8137-3612

Nico Piatkowski
Department of Computer Science, TU Dortmund University, Germany
nico.piatkowski@tu-dortmund.de

https://orcid.org/0000-0002-6334-8042

Kuan-Hsun Chen
Department of Computer Science, TU Dortmund University, Germany
kuan-hsun.chen@tu-dortmund.de

https://orcid.org/0000-0002-7110-921X

Jian-Jia Chen
Department of Computer Science, TU Dortmund University, Germany
jian-jia.chen@cs.uni-dortmund.de

https://orcid.org/0000-0001-8114-9760

Katharina Morik
Department of Computer Science, TU Dortmund University, Germany
katharina.morik@tu-dortmund.de

https://orcid.org/0000-0003-1153-5986

Abstract
This paper explores the probability of deadline misses for a set of constrained-deadline sporadic
soft real-time tasks on uniprocessor platforms. We explore two directions to evaluate the prob-
ability whether a job of the task under analysis can finish its execution at (or before) a testing
time point t. One approach is based on analytical upper bounds that can be efficiently com-
puted in polynomial time at the price of precision loss for each testing point, derived from the
well-known Hoeffding’s inequality and the well-known Bernstein’s inequality. Another approach
convolutes the probability efficiently over multinomial distributions, exploiting a series of state
space reduction techniques, i.e., pruning without any loss of precision, and approximations via
unifying equivalent classes with a bounded loss of precision. We demonstrate the effectiveness
of our approaches in a series of evaluations. Distinct from the convolution-based methods in the
literature, which suffer from the high computation demand and are applicable only to task sets
with a few tasks, our approaches can scale reasonably without losing much precision in terms of
the derived probability of deadline misses.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases deadline miss probability, multinomial-based approach, analytical bound

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2018.6

Related Version A full version of this paper is available at [27],
https://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/
2018-brueggen-ecrts-deadline-miss-probability.pdf.

© Georg von der Brüggen, Nico Piatkowski, Kuan-Hsun Chen, Jian-Jia Chen, and Katharina Morik;
licensed under Creative Commons License CC-BY

30th Euromicro Conference on Real-Time Systems (ECRTS 2018).
Editor: Sebastian Altmeyer; Article No. 6; pp. 6:1–6:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:georg.von-der-brueggen@tu-dortmund.de
https://orcid.org/0000-0002-8137-3612
mailto:nico.piatkowski@tu-dortmund.de
https://orcid.org/0000-0002-6334-8042
mailto:kuan-hsun.chen@tu-dortmund.de
https://orcid.org/0000-0002-7110-921X
mailto:jian-jia.chen@cs.uni-dortmund.de
https://orcid.org/0000-0001-8114-9760
mailto:katharina.morik@tu-dortmund.de
https://orcid.org/0000-0003-1153-5986
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2018.6
https://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2018-brueggen-ecrts-deadline-miss-probability.pdf
https://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2018-brueggen-ecrts-deadline-miss-probability.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Probability of Deadline Misses

Funding This paper is supported by DFG, as part of the Collaborative Research Center SFB876
(http://sfb876.tu-dortmund.de/), project A1 and project B2.

1 Introduction

For many embedded systems, timeliness is an important feature, especially when such systems
interact with physical environments. A stronger requirement of timeliness is to provide
hard real-time guarantees, i.e., to ensure that the calculated results are not just functionally
correct but also always delivered within given timing constraints. Such hard guarantees are
necessary if any deadline miss can be catastrophic and should be avoided. By contrast, a
weaker requirement of timeliness is to allow occasional deadline misses, called soft real-time
systems. In this case the system can still function correctly as long as the deadline misses can
be quantified and bounded. For example, the system may adopt fault tolerance techniques
like checkpointing, redundant execution, etc. [13, 20, 23, 28, 19], to neglect transient faults
resulting from electromagnetic interference and radiation [3]. Although the additional
computation incurred by such methods may lead to deadline misses, the system may still
provide timing guarantees even without any online adaption [26]. A second example are the
safety standards in the industry that require low (or very low) probability of failure (e.g.,
due to deadline misses) such as IEC-61508 [1] and ISO-26262 [14].

Probability theory is a basic language to describe probabilistic phenomenons, e.g., occa-
sional deadline misses. It is based on the idea that most natural phenomena are either too
complex to construct deterministic models or simply not fully observable but can be described
in a probabilistic way. For example, we can establish probabilistic bounds on the worst-case
execution times (WCETs) to model the execution of a task depending on the occurrence
of soft errors and the triggered error recovery routines. This allows the system designer
to provide probabilistic arguments based on the occurrence of error recovery. Otherwise,
only the WCET, assuming that the recovery always takes place, has to be considered in the
response time analysis, which is very pessimistic and therefore leads to overestimating the
necessary system resources.

Probability of Deadline Misses. A key procedure needed for such soft real-time systems is
the analysis of the probability of deadline misses for a real-time task. Now, we take a closer
look of the problem by using the following example: Suppose that we have two periodic
tasks τ1 and τ2 that release task instances, called jobs, periodically, starting from time 0.
Each task τi ∈ {τ1, τ2} has two versions of execution times Ci,1 and Ci,2 with probability
Pi(1) and Pi(2), respectively. The period of task τ1 is 1 and the period of task τ2 is 100. We
assume that task τ1 always has a higher priority than task τ2 and task τ1 can always meet
its deadline under a fixed-priority preemptive scheduling strategy in a uniprocessor system.

In this example, the system reboots if a job of task τ2 is not finished before the next job of
task τ2 is released. Therefore, the probability of deadline misses corresponds to the probability
of system rebooting. Essentially, we are interested to know whether a job of τ2, arriving at
time ta, can finish its execution before ta + 100. This can be achieved by the convolution of
the probability density functions of the jobs’ execution times. An intuitive procedure is to
evaluate the probability of the accumulative execution time, denoted as workload, of the jobs
released from time ta to ta + `− 1 (inclusive), starting from ` = 1, 2, 3, . . . , 100. When ` is 1,
we have 22 combinations of the workload of the two jobs released at time ta. When ` is 2,
we can have up to 22 × 2 = 23 combinations of the workload. It is rather obvious that we
can have up to 2101 combinations of the workload when ` is 100, which is exponential with
respect to the number of jobs that may interfere with a job of task τ2.

http://sfb876.tu-dortmund.de/

G. von der Brüggen, N. Piatkowski, K.-H. Chen, J.-J. Chen, and K. Morik 6:3

Since there are only two versions of task τ1, there are in fact only `+ 1 different workload
combinations of the ` jobs released from time ta to time ta + `− 1. As a result, there are
only 2(`+ 1) different workload combinations of the jobs released from time ta to ta + `− 1.
We can evaluate all of them from ` = 1, 2, . . . , 100. However, this remains inefficient as we
are only interested in the probability of the deadline miss at time ta + 100. For this example,
we do not actually care about the individual execution versions of the 100 jobs of task τ1
released from ta to ta + 99. Instead, we only care about their overall workload, which can be
calculated by using a binomial distribution over 100 independent random variables with the
same distribution. As a result, we only have to consider 101 different workload combinations
for the jobs of τ1. Together with the job of task τ2, there are in fact only 2× 101 different
workload combinations.

These approaches are different realizations of the same concept to convolute the probability
density functions of the jobs’ execution times. However, depending on how the convolution
is performed, the complexity can differ largely.

Related Work. As explained above for uniprocessor systems, it is necessary to safely
derive (an upper bound on) the probability of a desired workload constraint to analyze the
probability of deadline misses or the probabilistic response time. Towards this, for periodic
real-time task systems, Diaz et al. [9] developed a framework for calculating the deadline
miss probability based on convolution. Moreover, Tanasa et al. [24] used the Weierstrass
Approximation to approximate any arbitrary execution time distributions and applied a
customized decomposition procedure to search all the possible combinations, in which the
decomposition results in a list with O(4|J|) elements where |J | is the number of jobs in the
interval of interest. These two results have exponential-time complexity with respect to the
number of jobs in the interval of interest. Therefore, both of them suffer from the scalability
with respect to the number of jobs. In the experimental results in [9] and [24], they can
derive the probability of deadline misses with 7 and 25 jobs in the hyper-period, respectively.

For sporadic real-time task systems, in which two consecutive jobs of a task do not
have to be released periodically, Axer et al. [2] proposed to evaluate the response-time
distribution and iterate over the activations of job releases for non-preemptive fixed-priority
scheduling. Maxim et al. [17] provided a probabilistic response time analysis by assuming
probabilistic minimum inter-arrival as well as probabilistic worst-case execution times for the
fixed-priority scheduling policy. Ben-Amor et al. [4] extended the probabilistic response time
analysis in [17], considering precedence constrained tasks. All these approaches convolute the
probability whenever a new job arrives in the interval of interest. Therefore, the convolution
procedure is also heavily dependent on the number of jobs in the interval of interest.

Due to the high complexity, these convolution-based approaches are not scalable with
respect to the number of jobs in the interval of interest and, thus, infeasible. Approximation
techniques can be used to provide an upper bound on the probability. For example, re-
sampling [17] and dynamic-programming based on user-defined granularity can be applied to
reduce the time complexity. Moreover, Chen and Chen [8] provided a scalable approximation
based on the Chernoff bounds. The evaluation results in [8] confirm the applicability and the
scalability of such approximations, even when considering 20 tasks and more than thousand
jobs in the hyper-period.

Our Contributions. We consider the problem of determining the deadline miss probability
of a task under uniprocessor fixed-priority preemptive scheduling when each task has dis-
tinct execution modes that are executed with a known probability distribution. Our main
contributions are:

ECRTS 2018

6:4 Probability of Deadline Misses

We provide a novel approach based on the multinomial distribution that, compared to the
traditional convolution-based approach, allows to calculate the deadline miss probability
with better analysis runtime and without any precision loss.
The analysis is enhanced by a state pruning technique that significantly improves the
runtime as well as the scalability without any loss of precision.
We further improve our approach by merging equivalence classes, thus further reducing
the runtime of our analysis while the introduced precision loss can be bounded in advance.
In the evaluation, we show that our approach is applicable for significantly larger task
sets than the previously known convolution-based approaches by testing it for task sets
of up to 100 tasks.
Furthermore, we provide additional analytical bounds based on the Hoeffding’s [12] and
Bernstein’s [11] inequalities. Our evaluations show that these inequalities lead to fast
results and can be used if the over-approximation is acceptable.

2 Task Model, System Model, and Notation

We consider a given set of n independent periodic (or sporadic) tasks Γ = {τ1, τ2, · · · , τn} in
a uniprocessor system. Each task τi releases an infinite number of task instances, called jobs,
and is defined by a tuple ((Ci,1, ..., Ci,h), Di, Ti), where Di is the relative deadline of τi and
Ti is its minimum interarrival time. In addition, each task has a set of h distinct execution
modes M and each mode j with j ∈ {1, ..., h} is associated with a different worst-case
execution time (WCET) Ci,j . We assume those execution modes to be ordered increasingly
according to their WCETs, i.e., Ci,m ≤ Ci,m+1 ∀m ∈ {1, ..., h− 1}. Furthermore, we assume
that each job of τi is executed in one of those distinct execution modes. To fulfill its timing
requirements in the jth execution mode, a job of τi that is released at time ta must be able to
execute Ci,j units of time before ta +Di. The next job of τi must be released at ta + Ti for a
periodic task and for a sporadic task the next job is released at or after ta + Ti. In this work,
we focus on implicit-deadline task sets, i.e., Di = Ti for all tasks, and constrained-deadline
task sets, i.e., Di ≤ Ti for all tasks. The task set is assumed to be scheduled according to a
preemptive fixed-priority scheduling policy, i.e., each task has a unique fixed priority, the
priority cannot be changed during runtime, and the priority of each task instance is identical
to the priority of the related task. At each point in time, the scheduler ensures that the
job with the highest priority, among the jobs currently ready in the system, is executed.
We assume that the tasks are indexed according to their priority, i.e., τ1 has the highest
and τn has the lowest priority. In addition, hp(τk) denotes the set of tasks with higher
priority than τk and hep(τk) is hp(τk) ∪ {τk}. For a task τi in hp(τk), ρi,t is the maximum
number of jobs that are released in an interval [0, t), also called the interval of interest, and
therefore interfere with task τk, i.e., the number of jobs released in the interval [0, t) under
the critical instance of τk. Furthermore, ρk,t is the number of jobs of task τk in the analysis
window. This notation implicitly assumes that the time window analyzed for τk starts at
0 for notational brevity. Pi(j) denotes the probability that a job of task τi is executed in
mode j with related WCET Ci,j and we assume that each job is executed in exactly one
of these distinct execution modes, i.e.,

∑h
j=1 Pi(j) = 1. In addition, we assume that these

probabilities are independent from each other according to the following definition:

I Definition 1 (Independent Random Variables). Two random variables are (probabilistically)
independent if the realization of one does not have any impact on the probability of the other.

Especially, for a newly arriving job the probability of the execution modes is independent
from the execution mode of the jobs currently in the system or of previous jobs. We aim

G. von der Brüggen, N. Piatkowski, K.-H. Chen, J.-J. Chen, and K. Morik 6:5

Table 1 Important notation used in this work. Please note that not all explanations in this table
are precise. The precise notations can be found in the Section indicated in the table.

Task-related Quantities

τi = ((Ci,1, ..., Ci,h), Di, Ti) Task τi and related WCETs (Ci,1, ..., Ci,h), deadline Di, and period Ti Sec. 2
(Ci,1, ..., Ci,h) WCET of the h different execution modes of τi Sec. 2
Pi(j) Probability that a job of τis is executed in mode j with related WCET Ci,j Sec. 2
M Set of the possible execution modes (assumed identical for all tasks). |M| = h Sec. 2
hp(τk) and hep(τk) Tasks with higher priority than τk (higher and equal priority, respectively) Sec. 2
ρi,t = dt/Tie Maximum number of jobs of τi released in an interval [0, t) under the critical instant Sec. 2
J(t) =

∑
τi∈hep(τk) dt/Tie Total number of jobs released in the interval [0, t) Sec. 5.1

St Maximum accumulated workload over an interval of length t Sec. 3.1

Probabilistic Quantities

Φk Probability of deadline miss for task τk Sec. 3.1
P(St > t) Probability of overload for an interval of length t Sec. 3.1
X̄ Arithmetic mean of a random variable X Sec. 4
E[X] Expected value of a random variable X Sec. 4
V[X] Variance of a random variable X Sec. 4
X(t) Random variable representing the possible execution modes of all jobs in [0, t) Sec. 5.1
X (t) The state space of X(t) with X (t) =MJ(t) since all jobs are considered Sec. 5.1
x ∈ X (t) One concrete variable assignment for X(t) over [0, t) Sec. 5.1
P(X(t) = x) Probability that the state space X(t) has the concrete variable assignment x Sec. 5.1
Xi(t) Subset of random variables in X(t)) that relate to τi Sec. 5.2
Ci(Xi,j(t)) WCET for the jth job of τi based on its random execution mode Xi,j(t) Sec. 5.1

Combinatorial Quantities

1{expression} Indicator function, i.e., evaluates to 1 iff the expression is true, and 0 otherwise Sec. 5.1
σ(x) A permutation of x Sec. 5.1
Sn Set of all permutations of length n Sec. 5.1
[[x]] Equivalence class of x, i.e., all x′ ∈ X (t) that can be permuted into x Sec. 5.1

at relaxing the independence assumptions on tasks and jobs in future work by employing
techniques from the field of probabilistic graphical models [21, 22].

A list of our notation together with a brief explanation can be found in Table 1.

3 Motivation, Problem Definition, and State-of-the-Art

In this section, we will motivate the importance of the considered problem, i.e., the calculation
of the probability of deadline misses, and formally define it. Afterwards, the state-of-the-art
techniques are introduced, namely the traditional convolution-based approach by Maxim
and Cucu-Grosjean [17] as well as the approach by Chen and Chen [8] that uses Chernoff
bounds and the moment-generating function. We use the term traditional convolution-based
approach when referring to the approach by Maxim and Cucu-Grosjean to avoid confusion,
since our novel approach based on multinomial distributions also uses convolution.

3.1 Motivation and Problem Definition
One main assumption when considering real-time systems is that a deadline miss, i.e., a job
that does not finish its execution before its deadline, will be disastrous and thus the WCET
of each task is always considered during the analysis. Nevertheless, if a job has multiple
distinct execution schemes, the WCETs of those schemes may differ largely. One example
are software-based fault-recovery techniques as they rely on (at least partially) re-executing
the faulty task instance. However, when such techniques are applied, the probability that
a fault occurs and thus has to be corrected is very low; otherwise hardware-based faulty-

ECRTS 2018

6:6 Probability of Deadline Misses

recovery techniques would be applied. If such re-execution may happen multiple times, the
resulting execution schemes have an increased related WCET while the probability decreases
drastically. Therefore, considering solely the execution scheme with the largest WCET at
design time would lead to largely over-designing the system resources. Furthermore, many
real-time systems can tolerate a small number of deadline misses at runtime as long as these
deadline misses do not happen too frequently. Hence, being able to predict the probability of
a deadline miss is an important property when designing real-time systems. We will consider
the probability of deadline misses for a single task here which is defined as follows:

I Definition 2 (Probability of Deadline Misses). Let Rk,j be the response time of the jth job
of τk. The probability of deadline misses (DMP) of task τk, denoted by Φk, is an upper bound
on the probability that a job of τk is not finished before its (relative) deadline Dk, i.e.,

Φk = max
j
{P(Rk,j > Dk)} , j = 1, 2, 3, ... (1)

It was shown in [17] that the DMP of a job is maximized when τk is released at its critical
instant, i.e., together with a job of all higher priority tasks and all consecutive jobs of
those higher priority tasks are released as early as possible. This implicitly assumes that
no previous job has an overrun that interferes with the analyzed job. Hence, time-demand
analysis (TDA) [16] can be applied to determine the worst-case response time of a task
when the execution time of each job is known. TDA is an exact schedulability test for
constrained and implicit deadline task sets with pseudo-polynomial runtime that, under the
assumption that the schedulability of all higher priority tasks is already ensured, determines
the schedulability of task τk by finding a point in time t where the total workload generated
by tasks in hep(τk) is smaller than t. To be more precise: τk is schedulable if and only if

∃ t with 0 < t ≤ Dk such that St = Ck +
∑

τi∈hp(τk)

⌈
t

Ti

⌉
Ci ≤ t (2)

Thus, if Dk ≤ Tk, task τk is schedulable if the statement St ≤ t is true. When probabilistic
WCETs are considered, the WCET will obtain a value in (Ci,1, ..., Ci,h) with a certain
probability Pi(j) for each job of each task τi. Therefore, for a given t we are not looking for a
binary decision anymore. Instead, we are interested in the probability that the accumulated
workload St over an interval of length t is at most t. The probability that τk cannot finish in
this interval is denoted accordingly with P(St > t). We call the situation where St is larger
than t an overload for an interval of length t and hence P(St > t) is the overload probability
at time t. According to the previously introduced notation, ρi,t = dt/Tie for each task τi in
hp(τk) and ρk,t = 1, i.e., only the first job of τk is considered here. Since TDA only needs to
hold for one t with 0 < t ≤ Dk to ensure that τk is schedulable, the probability that the test
fails is upper bounded by the minimum probability among all time points at which the test
could fail. Therefore, the probability of a deadline miss Φk can be upper bounded by

Φk = min
0<t≤Dk

P(St > t) (3)

The number of points considered in Eq. (2) and therefore in Eq. (3) can be reduced by
only considering the points of interest, i.e., Dk and the releases of higher priority tasks.
Nevertheless, in the worst case this still leads to a pseudo-polynomial number of points. Since
the minimum value among all these points is taken, an upper bound will still be obtained
when only a subset of those points is considered. Two approaches to calculate Φk are known
from the literature and are summarized in the following subsections.

G. von der Brüggen, N. Piatkowski, K.-H. Chen, J.-J. Chen, and K. Morik 6:7

In some cases it is easier to determine P(St ≥ t) instead of P(St > t), especially when
analytical bounds are used (see Sec. 3.3 and Sec. 4). Since P(St ≥ t) ≥ P(St > t) by definition,
these values can be used directly when looking for an upper bound of P(St > t).

3.2 Traditional Convolution-Based Approaches
Each task is defined by a vector of the possible WCETs and the related probabilities, e.g.,(3

0.9
5

0.1
)
where 3 and 5 are the WCETs and 0.9 and 0.1 are the related probabilities. The

notation we use is similar to the one used by Maxim and Cucu-Grosjean in [17]. The
convolution of two such vectors is denoted by ⊗ and results in a new vector. To determine
this new vector, each element of the first vector is combined with each element of the second
vector by 1) multiplying the related probabilities, and 2) summing up the related WCETs.

I Example 3 (Convolution).
(3

0.9
5

0.1
)
⊗
(5

0.8
6

0.2
)

=
(8

0.72
9

0.18
10

0.09
11

0.01
)

Note that the summation of the probabilities is 1 for each of these vectors. The general idea
of the traditional convolution-based approach [17] is the direct enumeration of the WCET
state space1 and the related probabilities. To this end, it considers the jobs in non-decreasing
order of their arrival times. For each arriving job, the current system state, represented by a
vector of possible states, i.e., possible total WCETs and related probability, is convoluted
with the arriving job. This results in a new vector of possible states, representing the state
space after the arrival of the job. After all jobs released before a certain time point are
convoluted, the probability that the workload is smaller than the next arrival time of a job
is calculated. Afterwards, the jobs arriving at that time are convoluted with the current
states, and the probability for the next arrival time is checked etc. This process is repeated
until t = Dk is reached. A small example explaining the approach considering two tasks
can be found in Figure 1. The first jobs of τ1 and τ2 are both convoluted with the initial
state and the four resulting states are each convoluted with the second release of τ1 at t = 8.
Obviously, when all jobs that are released up to any point in time are convoluted, states that
result in the same execution time can be combined by adding up the related probability, e.g.,
the states with WCET 13 and 14, respectively, in Figure 1.

On one hand, applying the traditional convolution-based approach can easily lead to a
state explosion where the number of states is exponential in the number of jobs. On the
other hand, it calculates the exact probabilities for each t in the interval of interest in one
iteration. To tackle the problem of state explosion, Maxim and Cucu-Grosjean introduced a
re-sampling approach to reduce the number of states to a given threshold and thus to reduce
the runtime while only slightly decreasing the precision as shown in [17].

3.3 Chernoff-Bound-Based Approaches
Chen and Chen [8] use the moment generating function (mgf) in combination with the
Chernoff bound to over-estimate the deadline miss probability. We only briefly introduce
the techniques here, i.e., describe how they can be used in our setting. Details can be
found in, e.g., [18]. The mgf of a random variable is an alternative way to specify its
probability distribution. For the specific case of the WCET distribution of a task τi the mgf
is mgfi(s) =

∑h
j=1 exp(Ci,j · s) ·Pi(j) where exp is the exponential function, i.e., exp(x) = ex,

and s > 0 is a given real number.

1 Please note that the approach in [17] does not only consider probabilistic WCETs but also probabilistic
periods. Since we only consider probabilistic WCETs here, the approach is summarized accordingly.

ECRTS 2018

6:8 Probability of Deadline Misses

D1 = T1 = 8

τ1
C1
P1 =

(
3
0.9

5
0.1

)

D2 = T2 = 14

τ2
C2
P2 =

(
5
0.8

6
0.2

)

(
3
0.9

5
0.1

) (
5
0.8

6
0.2

) (
3
0.9

5
0.1

)

(
0
1

)

(
3
0.9

)

(
5
0.1

)

(
8

0.72

)

(
9

0.18

)

(
10
0.08

)

(
11
0.02

)

(
11

0.648

)

(
13

0.072

)

(
12

0.162

)

(
14

0.018

)

(
13

0.072

)

(
15

0.008

)

(
14

0.018

)

(
16

0.002

)

(
13

0.144

)

(
14

0.036

)

t = 0 t = 8 t = 14 Legend:

Task

Related Job Release

Release Time

First Execution Mode

Second Execution Mode

Considered Time

Deadline Misses

State Merging

Figure 1 An example for the traditional convolution-based approach. Assume that P(S14 > 14)
should be determined for two tasks τ1 and τ2. The initial state is convoluted with the two jobs
released at t = 0 and the second job of τ1 released at t = 8. Then, P(S14) is determined by summing
up the probabilities of the states related to a workload larger than 14 (red dotted circle), leading to
P(S14 > 14) = 0.01. Note that states with the same execution time can be merged (dashed green
arrows). This usually happens when the related paths are permutations of each other, e.g., both
paths to 13 have one execution of C1,1 and one of C1,2.

The Chernoff bound can be exploited to over-approximate the probability that a random
variable exceeds a given value. This statement is summarized in the following lemma:

I Lemma 4 (Lemma 1 from Chen and Chen [8]). Suppose that St is the sum of the execution
times of the ρk,t +

∑
τi∈hp(τk) ρi,t jobs in hep(τk) at time t. In this case

P(St ≥ t) ≤ mins>0

(∏
τi∈hep(τk)(mgfi(s))ρi,t

exp(s · t)

)
(4)

The Chernoff bound is in general pessimistic and there is no guarantee for the quality of
the approximation, even if the optimal value for s is known, i.e., the value that minimizes
the right-hand side in Eq. (4). However, as the condition always holds, an upper bound
can be obtained by taking the minimum over any number of s values. In contrast to the
convolution-based approach, the evaluation of the right hand side of Eq. (4) is linear to the
number of jobs in the interval of interest.

4 Analytical Upper Bounds

Concentration inequalities have various applications in machine-learning, statistics, and
discrete-mathematics. Here, we show how some of them can be used to derive analytical
bounds on P(St ≥ t) which are easier to compute than the Chernoff bounds. Specifically, we
will apply the Hoeffding’s inequality [12] and Bernstein’s inequality [11].

The Hoeffding’s inequality derives the targeted probability that the sum of independent
random variables exceeds a given value. For completeness, we present the original theorem
here:

I Theorem 5 (Theorem 2 from [12]). Suppose that we are given M independent random
variables, i.e., X1, X2, . . . , XM . Let S =

∑M
i=1 Xi, X̄ = S/M and µ = E[X̄] = E[S/M]. If

G. von der Brüggen, N. Piatkowski, K.-H. Chen, J.-J. Chen, and K. Morik 6:9

ai ≤ Xi ≤ bi, i = 1, 2, . . . ,M , then for s > 0,

P(X̄ − µ ≥ s) ≤ exp
(
− 2M2s2∑M

i=1 (bi − ai)2

)
(5)

Let s′ = sM , i.e, s = s′/M . Hoeffding’s inequality can also be stated with respect to S:

P(S − E[S] ≥ s′) ≤ exp
(
− 2s′2∑M

i=1 (bi − ai)2

)
(6)

By adopting Theorem 5, we can derive the probability that the sum of the execution
times of the jobs in hep(τk) from time 0 to time t is no less than t:

I Theorem 6. Let ai be Ci,1 and bi be Ci,h. Suppose that St is the sum of the execution
times of the ρk,t +

∑
τi∈hp(τk) ρi,t jobs in hep(τk) released from time 0 to time t. Then,

P(St ≥ t) ≤

exp
(
− 2(t−E[St])2∑

τi∈hep(τk)
(bi−ai)2ρi,t

)
if t− E[St] > 0

1 otherwise
(7)

where ρi,t =
⌈
t
Ti

⌉
and E[St] =

∑
τi∈hep(τk)(

∑h
j=1 Ci,jPi(j)) · ρi,t.

Proof. Since the execution time of a job of task τi is an independent random variable,
there are in total ρi,t independent random variables with the same distribution function
upper bounded by Ci,h and lower bounded by Ci,1 for each τi ∈ hep(τk). With Eq. (6) and
s′ = t− E[St], we directly get:

P(St ≥ t) = P(St − E[St] ≥ t− E[St]) ≤ exp
(
− 2(t− E[St])2∑

τi∈hep(τk) (bi − ai)2
ρi,t

)
(8)

when s′ > 0. Otherwise, i.e., when s′ ≤ 0, we use the safe bound P(St ≥ t) ≤ 1. J

The Chernoff bound and the related inequality by Hoeffding and Azuma can be generalized
by the Bernstein’s inequality. The original corollary is also stated here:

I Theorem 7 (Corollary 7.31 from [11]). Suppose that we are given L independent random
variables, i.e., X1, X2, . . . , XL, each with zero mean, such that |Xi| ≤ K almost surely for
i = 1, 2, . . . , L and some constant K > 0. Let S =

∑L
i=1 Xi. Furthermore, assume that

E[X2
i] ≤ θ2

i for a constant θi > 0. Then for s > 0,

P(S ≥ s) ≤ exp
(
− s2/2∑L

i=1 θ
2
i +Ks/3

)
(9)

The proof can be found in [11]. Note, however, that the result in [11] is stated for the
two-sided inequality, i.e., as upper bound on P(|S| ≥ s). Here, the one-sided result, which is
a direct consequence of the proof in [11] (page 198), is tighter.

Hence, we can derive the following upper bound:

I Theorem 8. Suppose that the sum of the execution times of all L = ρk,t +
∑
τi∈hp(τk) ρi,t

jobs is St. Let K = maxτi∈hep(τk) Ci,h − E[Ci] be the centralized WCET of any job, where
E[Ci] =

∑h
j=1 Pi(j)Ci,j is the expected execution time of a job of task τi. Then,

P(St ≥ t) ≤

exp
(
− (t−E[St])2/2∑

τi∈hep(τk)
V[Ci]ρi,t+K(t−E[St])/3

)
if t− E[St] > 0

1 otherwise
(10)

for any t > 0, where ρi,t =
⌈
t
Ti

⌉
and E[St] =

∑
τi∈hep(τk)(

∑h
j=1 Ci,jPi(j))ρi,t.

ECRTS 2018

6:10 Probability of Deadline Misses

Proof. Since for each task τi ∈ hep(τk) the execution time of a job of task τi is an indepen-
dent random variable, there are in total ρi,t independent random variables with the same
distribution function. Suppose that Cl is a random variable representing the execution time of
a job of task τi and let Yl = Cl−E[Ci] = Cl−

∑h
j=1 Ci,jPi(j) denote its centralized execution

time. Since the expected execution time of a job is fully determined by its corresponding
task, we have E[Cl] = E[Ci].

Hereinafter, we explain why we adopt V[Ci] instead of θ2
i as known from Theorem 7.

Consider Eq. (9) with S =
∑M
l=1 Yl. The exact variance V[Yl] = E[Y 2

l]− E[Yl]2 = E[Y 2
l] is

unknown and hence some loose upper bound θ2 must be considered in most applications
of Bernstein’s inequality, like stated in Theorem 7. Here, the probabilities of the different
execution modes are given numerically, i.e., Pi(j) for Ci,j . Hence, for an arbitrary but fixed
task τi with h different execution modes, this results in

V[Yl] =
h∑
j=1

Pi(j) (Ci,j − E[Ci])2 =
h∑
j=1

Pi(j)
(
C2
i,j − 2Ci,jE[Ci] + E[Ci]2

)
=

h∑
j=1

Pi(j)C2
i,j −

h∑
j=1

Pi(j)2Ci,jE[Ci] +
h∑
j=1

Pi(j)E[Ci]2 = E[C2
i]− E[Ci]2 = V[Ci] (11)

i.e., V[Yl] = V[Ci], which can be computed exactly in time O(h). Instead of imposing an
upper bound θ2, we can invoke the tightest version of Theorem 7 by using the exact variance.

Since E[Yl] = 0 and ∀1 ≤ l ≤M : Yl ≤ K, we can invoke Theorem 7 with s = t− E[St].
When s ≤ 0, we use a safe bound P(St ≥ t) ≤ 1. When s > 0, Eq. (9) can be rewritten as

P

(
M∑
l=1

Yl ≥ t− E[St]
)
≤ exp

(
− (t− E[St])2/2∑M

l=1 V[Yl] +K(t− E[St])/3

)
(12)

Finally, observing that
∑M
l=1 Yl = St − E[St] and

∑M
l=1 V[Yl] =

∑
τi∈hep(τk) V[Ci]ρi,t (from

Eq. (11)) completes the proof. J

5 The Multinomial-Based Approach

In the traditional convolution-based approach [17], the underlying random variable represents
the execution mode of each single job. First, we take a closer look on the related state space
and show that the complexity of this approach depends on the specific definition of these
random variables. Afterwards, we explain how this state space can be transformed into an
equivalent space that describes the states on a task-based level by proving the invariance
when considering equivalence classes for each task. As a result, we introduce our novel
approach that is based on the multinomial distribution. The section is concluded with
a short discussion regarding the complexity of our approach compared to the traditional
convolution-based approach presented in Section 3.2.

5.1 The State Space of the Traditional Convolution-Based Approach
In this approach [17], X(t) is the set of the random variables representing the individual jobs
released in the interval [0, t) in the order of their arrival times. Note that the notion of X(t)
instead of X is necessary, since the underlying state space and thus the underlying set of
random variables are dependent on the considered t. Let J(t) be the number of jobs released
in [0, t) under the critical instance of τk. Hence, X(t) represents a set of J(t) independent

G. von der Brüggen, N. Piatkowski, K.-H. Chen, J.-J. Chen, and K. Morik 6:11

random variables representing the execution modes of the individual tasks, i.e., X(t) is the
Cartesian product over those J(t) variables. To understand how the computation can be
simplified, it is necessary to explicitly consider the random variables X(t) as well as the
dependence between X(t) and the quantities St and Ci. To simplify notation, let us assume
that all jobs have a common set of h execution modesM, i.e., |M| = h.2 Thus, the state
space of the random variable X(t) is X (t) =MJ(t). A concrete assignment of these variables
is denoted x ∈ X (t), and the portion of x that corresponds to the jobs of task τi is denoted
xi. Each task τi releases ρi,t = dt/Tie jobs, and thus J(t) =

∑
τi∈hep(τk) dt/Tie. Hence,

dt/Tie of the J(t) random variables in X(t) are related to the task τi. Since the execution
time of the jth job of task τi depends on the related random variable Xi,j(t) we denote it
Ci(Xi,j(t)). Linking the total workload St to the random variables, from Eq. (2) we get:

St = St(X(t)) = Ck(Xk,1(t)) +
∑

τi∈hp(τk)

ρi,t∑
j=1

Ci(Xi,j(t)) (13)

Based on this, we denote the exact expression for the probability of a overload at time t as

P(St(X(t)) > t) =
∑

x∈X (t)

P(X(t) = x)1{St(x)>t} (14)

Here, 1{expression} is the indicator function which evaluates to 1 if and only if the expression
is true, and to 0 otherwise. Since the execution modes of the jobs are assumed to be
independent, the joint probability mass P(X(t)) factorizes over the jobs. The probability of
each execution mode per job is fully determined by its corresponding task, and hence

P(X(t) = x) =
∏

τi∈hp(τk)

ρi,t∏
j=1

Pi(xi,j(t)) (15)

Each factor Pi(x) is the probability mass of any job of task τi, being in some state x ∈M.
Note that Eq. (14) is exactly the quantity computed by the traditional convolution-based
approach [17]. Hence, its stems from the state space X (t) =MJ(t) that is exponential in the
total number of jobs. Nevertheless, we leverage the independence of job modes to compute
P(St(X(t))) ≥ t) over a different state space, which is the key insight of our method.

5.2 Invariance and Equivalence Classes
In Eq. (15), for any fixed task τi, the expression

∏ρi,t
j=1 Pi(xi,j) is determined by the num-

ber of jobs for each state in M. As an example, consider an arbitrary task τi with two
distinct execution states, i.e.,M = {Ci,1, Ci,2}, and suppose that xi = (Ci,1, Ci,2, Ci,1, Ci,2),
x′i = (Ci,1, Ci,1, Ci,2, Ci,2), and x′′i = (Ci,2, Ci,1, Ci,1, Ci,2). The resulting probability is identi-
cal in all three cases, i.e., Pi(xi) = Pi(x′i) = Pi(x′′i). We formalize this property subsequently.

I Lemma 9 (Probability Permutation Invariance). Let τi be a task with a set of distinct
execution modes M, let ρi,t be the number of jobs of τi released up to time t, and let
xi ∈Mρi,t be the random vector that represents the execution mode of all jobs which belong
to task τi. The probability mass Pi is permutation invariant with respect to xi, i.e.,

∀ xi ∈Mρi,t : ∀σ ∈ Sρi,t : Pi(xi) = Pi(σ(xi)) (16)

where Sn contains all permutations of n objects.

2 If a task has less than h (or even only one) execution modes, dummy modes with probability 0 can
ensure this condition. Alternatively,Mi and hi can be defined based on the execution modes of τi.

ECRTS 2018

6:12 Probability of Deadline Misses

Proof. The lemma follows directly from the independence of job-wise execution modes, thus
Pi(xi) =

∏ρi,t
j=1 Pi(xi,j), and from the commutativity of the multiplication. J

Up to now, we considered just a single task τi, but the lemma indeed holds for all tasks
simultaneously. Recall that the random modes of all tasks are represented by X(t). Let
Xi(t) represent the random modes of the jobs of task τi, i.e., Xi(t) is the subset of random
variables in X(t) that relate to the random modes of τi. Applying the permutation invariance
to each Xi(t), we derive a partition on X (t) into equivalence classes.

I Definition 10 (Execution Mode Equivalence Classes). For any x ∈ X (t), its equivalence
class [[x]] with respect to permutation invariance is given by

[[x]] = {x′ ∈ X (t) | ∀τi ∈ hep(τk) : ∃σ ∈ Sρi,t : xi = σ(x′i)} (17)

Based on this definition, the statement ∀x′ ∈ [[x]] : P(x) = P(x′) is a straightforward
corollary of Lemma 9. The equivalence relation in Lemma 10 is established by an equivalent
occurrence of execution modes for each task. Hence, each equivalence class has a canonical
representative, given by a tuple ` ∈ ⊗τi∈hep(τk){1, 2, . . . , ρi,t}|M|, which for each task contains
the number of jobs for all execution modes. For convenience we use [[`]] to address the set of
all x in the same equivalence class and rephrase Eq. (14) accordingly.

I Lemma 11 (Class-based Overload Probability). For any set of execution modes M, let
L(t) = ⊗τi∈hep(τk){0, 1, 2, . . . , ρi,t}|M|. Then,

P(St(X(t)) ≥ t) =
∑

`∈L(t)

∏
τi∈hep(τk)

ρi,t!
∏|M|
j=1 Pi(j)`i,j∏
x∈M `i,x! 1{St([[`]])≥t} (18)

where `i,j denotes the number of jobs of task τi which are in the j-th execution mode, and
St([[`]]) denotes the execution time for some arbitrary x ∈ [[`]].

Proof. For all members of the class [[x]], each task has the same number of jobs which are in
the same state. Iterating over the set L(t) =

⊗
τi∈hep(τk){0, 1, 2, . . . , ρi,t}|M| corresponds to

iterating over all such count vectors, which is in turn the same as iterating over all equivalence
classes [[x]]. Each class [[`]] contains all state permutations for all jobs of each task. For each
task τi, this is equivalent to the well-known combinatorial problem of counting the number of
ways how ρi,t objects can be placed into |M| bins, given by the corresponding multinomial
coefficient. Combining those for all tasks, we get

|[[`]]| =
∏

τi∈hep(τk)

(
ρi,t

`i,1 `i,2 . . . `i,|M|

)
=

∏
τi∈hep(τk)

ρi,t!∏
x∈M `i,x! (19)

Combining these facts, we get∑
x∈X (t)

P(X(t) = x) =
∑

`∈L(t)

|[[`]]|P(X(t) = [[`]]) (20)

Observing that P(X(t) = [[`]]) =
∏|M|
j=1 Pi(j)`i,j implies the lemma. J

5.3 Detailing the Multinomial Approach
Now, we can combine the findings of Section 5.1 and Section 5.2 into an algorithm for
calculating P(St > t), i.e., the probability of an overload for a length t, more efficiently.

G. von der Brüggen, N. Piatkowski, K.-H. Chen, J.-J. Chen, and K. Morik 6:13

For simplicity of presentation, we will also refer to the overload probability at time t and
the state space at time t, implicitly assuming that both the probability and the state space
is calculated considering the interval [0, t) with respect to the critical instant of τk. The
traditional convolution-based approach determines this probability by successively calculating
the probability for all other points of interest in the interval [0, t). Nevertheless, the probability
for t is evaluated based on the resulting states after all jobs in [0, t) are convoluted. With
respect to t, the intermediate states are not considered.

We utilize this insight to calculate the vector representing the possible states at time
t more efficiently. Lemma 9 shows that the overload probability of a state for a concrete
variable assignment x ∈ X (t) is identical to the probability of all permutations of x, i.e., the
related equivalence class. This allows us to consider the jobs in J(t) in any order. We further
know from Lemma 11 that all assignments that are part of the same equivalence class result
in the same value for St. Considering only one task τi, those assignments differ regarding
the order in which the execution modes happen but not with respect to the total number
of executions in a given mode. However, if the jobs are convoluted in the non-decreasing
order of their arrival times, this leads to a large number of unnecessary states that will be
merged in the end. For example, in Figure 1 the state space can be reduced if the second job
of τ1 would be convoluted before the job of τ2 is convoluted, since the resulting merged state
space after the convolution of the two jobs of τ1 only has 3 states that represent the number
of executions in each mode. Therefore, to reduce the state space as much as possible, we
consider the jobs ordered according to the tasks they are related to, i.e., first all ρ1,t jobs of
τ1 are considered, then all ρ2,t jobs of τ2, etc. However, if the jobs are just reordered and
then convoluted, this still leads to a large number states that are merged later on.

Regardless, the number of states is already significantly lower than in the traditional
convolution-based approach. Fortunately, if the number of jobs for a task is known, all
possible combinations and the related probabilities can be calculated directly using the
multinomial distribution. To be more precise, assume a given task τi as well as a given
number of releases ρi,t in an interval of length t and let `i,j be the number executions in mode
j ∈ {1, ..., h}. We know that `i,j ∈ {0, 1, ..., ρi,t} and

∑h
j=1 `i,j = ρi,t, leading to

(
ρi,t+h−1
h−1

)
possible combinations of `i,1, ..., `i,h where

(
a
b

)
= a!

b!(a−b)! is the binomial coefficient. For
each combination, we can calculate the related probability as

ρi,t!
`i,1!`i,2!...`i,h!Pi(1)`i,1 · Pi(2)`i,2 · ... · Pi(h)`i,h (21)

where ρi,t!
`i,1!`i,2!...`i,h! determines the number of possible paths for the related equivalence

classes and Pi(1)`i,1 · Pi(2)`i,2 · ... · Pi(h)`i,h is the probability of one of these paths. The
total workload of the ρi,t jobs of τi is calculated for each of these combinations based on
the related values of `i,1 to `i,h. The

(
ρi,t+h−1
h−1

)
states represent the equivalence classes of

τi and the related probabilities. After calculating these representatives for each task, the
overload probability can be calculated by convoluting them and adding up the overload
probabilities of the resulting state space. A concrete example for our approach, assuming
that each task has two possible execution modes, is given in Figure 2. Details on how some
equations can be simplified in this case can be found in the related full version [27]. Note
that based on Lemma 9 the states representing the tasks can be convoluted in any order.

In fact, considering t, the job-based state space of the traditional convolution-based
approach has been transferred into a task-based space state with identical properties regarding
the overload probability. To visualize the different approaches, the traditional convolution-
based approach constructs a binary tree based on the jobs (see Figure 1) where each layer

ECRTS 2018

6:14 Probability of Deadline Misses

D1 = T1 = 15

τ1
C1
P1

=
(

3
0.9

5
0.1

)

D2 = T2 = 19

τ2
C2
P2

=
(

5
0.8

6
0.2

)

D3 = T3 = 24

τ3
C3
P3

=
(

3
0.7

5
0.3

)

D1 = T1 = 15

τ1
C1
P1

=
(

6
0.81

8
0.18

10
0.01

)

D2 = T2 = 19

τ2
C2
P2

=
(

10
0.64

11
0.32

12
0.04

)

D3 = T3 = 24

τ3
C3
P3

=
(

3
0.7

5
0.3

)

min = 10 + 3 = 13
max = 12 + 5 = 17

min = 3
max = 5

(
0
1

)

(
6

0.81

) (
8

0.18

) (
10

0.01

)

(
18

0.1152

) (
19

0.0576

) (
20

0.0072

) (
20

0.0064

) (
21

0.0032

) (
22

0.0004

)

(
23

0.00504

)(
25

0.00216

)(
23

0.00448

)(
25

0.00192

)(
24

0.00224

)(
27

0.00096

)

Legend:

Task

Distribution

Pruned (Definitively No Overload)

Pruned (Definitively Overload)

No Overload

Overload

Figure 2 The multinomial approach convoluting 3 tasks with two modes. The number of children
depends on the number of jobs of the related task. Note that nodes can be ignored in further steps
if they never lead to an overload (green solid circles) or if they always lead to an overload (red
solid circle). In the end, the overload probability at t = 24 is calculated by summing up the related
probabilities (dashed and solid red) which leads to deadline miss probability of 0.00574.

represents the state of the system after the related job is convoluted. The multinomial-based
approach on the other hand constructs a tree based on the tasks (see Figure 2) which means
that the number of children on each level depends on the number of jobs the related task
releases. If the nodes on the J(t)th level of the binary tree are merged as show in Figure 1,
the number of states on that level is identical to the number of states on the kth level of the
tree resulting from our approach. While the state space of our reformulation is still large, it
opens up opportunities for pruning strategies and other state reduction strategies which are
not suitable for the traditional approach. These strategies will be explained in Section 6.

5.4 Complexity Discussion and Comparison
When considering the complexity of the multinomial-based approach for τk over an interval
[0, t) (an interval of length t that ends at time t for notational brevity) under the critical
instance of τk, both the number of tasks that are contributing to the workload in the interval,
i.e., ρi,t for the higher priority tasks, and the total number of jobs in the interval J(t) have
to be considered. The number of multinomial coefficients depends on ρi,t and the number of
possible execution states h for each task and can be calculated as

(
ρi,t+h−1
h−1

)
. This is also

called the h-simplex of the ρthi,t component. The convolution of these states over all tasks
leads to a total number of states of

∏k
i=1

(
ρi,t+h−1
h−1

)
.

The classical convolution-based approach considers each job individually with h possible
outcomes and, therefore, leads to hJ(t) states, i.e., it is exponential in the number of jobs.
Hence, without state merging, it is not feasible for input sets with a sensible cardinality.
However, the convolution-based approach in the process also calculates the deadline miss
probability at all possible points of interest in the interval, i.e., at each point in time a job is
released. Furthermore, states can be merged when they have the same related workload, e.g.,
states resulting from a permutation of the same number of abnormal executions of a given
task. Lemma 9 directly implies that when convolution is used in combination with merging
states, the final number of states for the convolution-based approach at time t is identical to
the number of states created by the multinomial-distribution-based approach (assuming that
all states created by our approach lead to pairwise different workloads). However, while our

G. von der Brüggen, N. Piatkowski, K.-H. Chen, J.-J. Chen, and K. Morik 6:15

approach creates only necessary states, the traditional convolution-based approach not only
creates unnecessary states but also requires additional overhead for state merging after each
step. Therefore, when considering a single point in time our approach is significantly faster
than the traditional convolution-based approach with task merging. On the other hand, since
our approach needs to consider all points of interest individually, if the number of such points
increases due to the number of tasks the traditional convolution-based approach should be
favoured. However, we were not able to observe this behaviour in our evaluation since both
our multinomial-based approach as well as the traditional convolution-based approach with
state merging only rarely were able to provide results for task sets with a cardinality of 10.
Hence, for our approach runtime optimizations are provided in the next section. Note that
this differs depending on the actual setting and that the period range is the most important
parameter since it relates to the number of jobs.

6 Runtime Improvement

Here we introduce two strategies to improve the runtime efficiency. The first one prunes the
state space, i.e., discards states directly if the impact on the overload probability can be
determined without considering the remaining tasks, detailed in Section 6.1. This reduces
the runtime without sacrificing any precision. The second technique combines execution
mode equivalence classes with very low probability when creating the task representations to
reduce the size of the state space beforehand, explained in Section 6.2. While this leads to
an increase of the resulting overload probabilities, this error can be bounded for each task
under consideration and therefore also with respect to the total error of the derived overload
probability. Note that both techniques can be combined, which is done in the evaluation.

6.1 Pruning the State Space
Our multinomial-based approach calculates the probabilities for each interval individually,
a property we already used when we transferred the state space from a job-based to a
task-based state space. For convenience, assume that in our multinomial-based approach
the representatives of the tasks are convoluted according to the task index. Recall that the
state space can be seen as a rooted tree where each node on the jth row represents a possible
state after the convolution of the first j tasks and that we are only interested in the nodes
on the kth (and last) layer, i.e., the states after all task representations are convoluted. Such
a tree is displayed in the example in Figure 2. The general concept of pruning is to remove a
state R if the resulting subtree, i.e., the subtree with root R, has no further impact on the
evaluation on the kth layer, i.e., either all states on the kth layer in the subtree with root
R evaluate to an overload or for all states on the kth layer in the subtree with root R the
resulting workload is less than the interval length. In the first case, the state is discarded and
the related probability is added to the overload probability considering t. In the second case,
the state is directly discarded. This is done by checking the boundary conditions. To this
end, for each task we determine the minimum and maximum execution time it can contribute
to the total workload up to time t, respectively, which can be easily done while calculating
the vectors that represent the task. On the ith layer, the minimum and maximum workload
that can be contributed by the remaining tasks, denoted as Cmini and Cmaxi , is the sum
of the minimum and maximum values related to the remaining tasks. Let P(discard) be a
variable accounting for the overload probability of discarded states, initialized with 0. For
each state Q created by the convolution of τi with the previous state space let C(Q) be the
related total workload. We check the two following conditions:

ECRTS 2018

6:16 Probability of Deadline Misses

1. C(Q) + Cmaxi ≤ t: In this case the subtree rooted at Q only leads to states that will
not lead to an overload at time t, since the branch related to the maximum cumulative
workload in this subtree does not lead to an overload. Therefore, Q can directly be
discarded. In the example in Figure 2 those states are marked with a solid green circle.

2. C(Q) + Cmini > t: All paths in the subtree rooted at Q result in an overload at time t,
since the branch related to the minimum cumulative workload in this subtree leads to
an overload. Hence, Q can directly be discarded and P(discard) is increased by the
probability of Q. In Figure 2 those states are marked with a solid red circle.

Obviously all created states can only fulfill one of these two conditions but not both due to
C(Q) + Cmini ≤ C(Q) + Cmaxi . If Q fulfills none, the state is added to the representation
of τ1, ..., τi. The correctness of this pruning approach follows directly from the observations
that the total probability of a subtree on each level is equal to the probability of the root and
from the fact that the total workload of each branch is always smaller than the maximum
workload (larger than the minimum workload, respectively). A proof is therefore omitted.
Note that the order in which the tasks are considered has no impact on the applicability of
the pruning technique.

When considering a similar technique for the traditional convolution-based approach, one
major difference is that the overload probability of all values is calculated successively. To be
more precise, it considers the critical instant of τk at time 0 and the deadline miss probability
for all intervals [0, t), where t is the release time of a higher priority task. The interval [0, Dk)
is calculated successively and the result at time tb depends on the result at time ta if ta < tb.
We visualize this by a rooted directed binary tree where each layer represents an arriving
job and the layers are created according to the jobs arrival time, i.e., the height of the tree
depends on the number of considered jobs (see Figure 1). The nodes on each layer represent
the state space after the convolution of the related job. One important property of this
approach is that the probability of deadline miss is calculated on each layer. Hence, pruning
a state, i.e., removing a state and the branches resulting from it, can only be done if those
branches have no impact on the probability on all following layers, i.e, a state R at time ta
can only be pruned if all branches of the subtree with root R will for all tb ∈ (ta, Dk] either
lead to an overload at tb or to no overload at tb. This cannot be determined by evaluating
the overload condition for any single time point tb ∈ (ta, Dk]. Assume, for instance, for a
tb ∈ (ta, Dk] that C(Q) + Cmintb > tb where Cmintb is the minimum workload created by
jobs released in the interval [ta, tb). Let tb−1 and tb+1 be the previous and next considered
points with respect to tb in the convolution based approach. We observe that τk may have
no overload at tb−1, if the minimum workload of the job released at tb−1 is smaller than
tb − tb−1. Similar arguments can be taken to create a case with no overload at tb+1 and for
the cases where τk has no overload at tb if Cmaxtb is considered.

6.2 Union of Execution Mode Equivalence Classes
The general concept of the presented runtime improvement technique is to reduce the state
space by unifying equivalence classes with low probability when creating the representation
for the individual tasks. In contrast to the pruning technique, this obviously results in a
loss of precision when approximating the deadline miss probability for a given point in time.
However, if done carefully, the precision loss can be upper bounded by a constant. We will
introduce the concept based on the example in Table 2. Therein, we detail the release of 10
jobs in the interval of interest for a task τi with two execution modes that have a WCET of
Ci,1 = 1 and Ci,2 = 2, with related probabilities Pi(1) = 0.975 and Pi(2) = 0.025. In the
upper half, the original equivalence classes are displayed, i.e., one for each possible number

G. von der Brüggen, N. Piatkowski, K.-H. Chen, J.-J. Chen, and K. Morik 6:17

Table 2 Distribution for 10 releases of τi with Ci,1 = 1, Ci,2 = 2, Pi(1) = 0.975, Pi(2) = 0.025.
The upper part details the distribution before and the lower part after merging equivalence classes.

Ci,2 jobs 0 1 2 3 4 5 6 7 8 9 10
Total Ci 10 11 12 13 14 15 16 17 18 19 20

Probability 0.78 0.2 0.023 0.0016 7.0 · 10−05 2.2 · 10−06 4.63 · 10−08 6.8 · 10−10 6.53 · 10−12 3.72 · 10−14 9.5 · 10−17

Ci,2 jobs 0 1 2 3 4 5 6 or 7 8, 9, or 10
Total Ci 10 11 12 13 14 15 17 20

Probability 0.78 0.2 0.023 0.0016 7.0 · 10−05 2.2 · 10−06 4.701 · 10−08 6.564711 · 10−12

of jobs (0 to 10), together with their total WCET and their (rounded) related probability.
We will explain afterwards how the approach can be generalized.

The probability decreases rapidly with respect to the number of executions in the mode
related to Ci,2. Such distributions are common when considering probabilistic execution
times for real-time systems. The reason is that if the execution mode with larger WCET has
a comparatively high probability, classical non-probabilistic worst-case response time analysis
considering the larger WCET should be used to ensure timeliness for relatively common
cases. Since the probability of the equivalence classes decreases, the impact of those classes
on the overload probability over the given interval decreases as well. Therefore, the number
of states that are created in our approach, and thus the runtime, can be reduced by unifying
some of these highly unlikely equivalence classes. To guarantee a safe approximation, i.e., the
resulting overload probability is only increased, we define the merge of a set of equivalence
class as follows:

I Definition 12 (Union of Task Equivalence Classes). Let C = {[[xi]], [[x′i]], [[x′′i]], . . .} be a set
of |C| = q equivalence classes of task τi in a given interval of interest [0, t). For each class
[[xi]] ∈ C, let Pi([[xi]]) and Ci([[xi]]) denote its probability and the related total worst-case
execution time, respectively. Furthermore, let [[xmax

i]] ∈ C be the equivalence class with the
highest total WCET, i.e., [[xmax

i]] = arg max[[xi]]∈C Ci([[xi]]).
When we union all classes in C = {[[x1]], ..., [[xq]]}, the classes in C are replaced by a a

new class [[xCi]] =
⋃

[[xi]]∈C [[xi]] that has the following characteristics:
1. Ci([[xCi]]) = Ci([[xmax

i]])
2. Pi([[xCi]]) =

∑
[[xi]]∈C Pi([[xi]])

As shown in Table 2, merging the equivalence classes for 6 and 7 executions of mode 2,
the probability of the newly created class is the summation of their probabilities and the
related WCET is the maximum among those two classes, i.e., the WCET of the class with 7
executions. We now show that merging a set of equivalence classes leads to a bounded error
with respect to the overload probability.

I Lemma 13 (Unifying Equivalence Classes Leads to a Bounded Maximum Error). For task
τi let C = {[[x′i]], [[x′′i]], . . .} be a set of |C| = q equivalence classes for the interval of interest
[0, t). If C is merged into [[xCi]] according to Definition 12, the probability of overload can only
increase and the error is bounded by (

∑
[[xi]]∈C |[[xi]]|Pi([[xi]]))− |[[x

max
i]]|Pi([[xmax

i]]).

This follows from Eq. (18), Eq. (20), and the fact that any C in which no class [[xi]] triggers the
indicator function 1{St([[x]])>t} does not introduce any error. Hence, if at least [[xmax

i]] triggers
1{St([[x]])>t} the maximum probability increase happens if all other classes did not trigger
1{St([[x]])>t} before the unification but do afterwards. Since the process can be repeated for
all tasks this directly leads to:

ECRTS 2018

6:18 Probability of Deadline Misses

I Theorem 14 (Bounded For The Overall Increase On The Overload Probability). If equivalence
classes of tasks with respect to the interval [0, t) are merged, the total increase of the overload
probability for this interval is increased by the sum of the individual overload probability
increase of the individually tasks.

Now we can calculate the overloaded probability over [0, t) with a bounded total error
while reducing the states that have to be considered. Assume a value b for the allowed
maximum error to be given and a set of n tasks. The maximum error is bounded by b if
for each task the error is bounded by b/n. This can be achieved by ordering the related
states in decreasing order of probability, traversing them in this order while summing up the
probabilities of each state, and keeping all states until the summation is larger than 1− b/n.
Afterwards the remaining states are unified into one.

So far we considered a setting similar to the one displayed in Table 2, i.e., the workload
increases as the probability decreases. However, this is not necessarily the case, e.g., when a
task has two execution modes with an equal probability or when a task has three execution
modes and Ci,2 has the lowest probability. Nevertheless, in such cases the approach based on
Theorem 14 can still directly be exploited since the union of equivalence classes is agnostic
to the workloads and related probabilities as long as the total probability of the combined
equivalence classes is less than b/n and thus the approach can directly be used. Hence, for a
given task properties of the related distribution can be exploited in the process. For example,
for two execution modes with identical probability the symmetry of the resulting distribution
can be used if modes with a total probability of b/2n at both ends are unified.

7 Evaluation

The main focus of our evaluation was to determine if our novel multinomial-based approach
can provide good results in reasonable analysis runtime, especially considering the scalability
with respect to the number of tasks for reasonable settings. To this end, for a given utilization
Usum and a number of tasks, we generated random implicit-deadline task sets with one
execution mode according to the UUniFast method [6]. As suggested by Emberson et al. [10],
the periods of those tasks were generated according to a log-uniform distribution with two
orders of magnitude, i.e., 10ms − 1000ms. We only considered tasks with two distinct
execution modes in the evaluation, called normal and abnormal execution mode and hence
M = {N,A}. The normal execution mode is considered to have a (much) higher probability.
The WCET in the normal mode was set according to the utilization, i.e., Ci,N = Ui · Ti and
the WCET in abnormal mode was calculated as Ci,A = f · Ci,N for all tasks in the set.

We used a fixed setting, defined by Usum, f , and Pi(A), tracking the resulting deadline
miss probability and runtime related parameters. In each setting, the deadline miss probability
for the lowest-priority task under the rate-monotonic scheduling approach was determined.
In our evaluations, we considered the following approaches where the bold name indicates
how the approach is referred to:
1. Convolution: The traditional convolution-based approach [17].
2. Conv. Merge: The traditional convolution-based approach [17] with state merging.
3. Multinomial: Our novel multinomial-based approach from Sec. 5.3.
4. Pruning: The approach in Sec. 5.3 combined with the pruning technique in Sec. 6.1.
5. Unify: The approach in Sec. 5.3 combined with the pruning technique in Sec. 6.1 and

reducing the complexity with the union of equivalence classes presented in Sec. 6.2.
6. Approx: Approximation of Pruning by only considering the deadline of τk and the last

releases of higher-priority tasks, inspired from the literature, e.g., [7, 5, 25, 8].

G. von der Brüggen, N. Piatkowski, K.-H. Chen, J.-J. Chen, and K. Morik 6:19

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

5 10 15 20 25 30 35

Number of Tasks
(a) Runtime Comparison

10−2

10−1

100

101

102

103

104

A
ve

ra
ge

A
na

ly
si

s
R

un
ti

m
e

(s
ec

on
ds

)
Pruning Unify Approx Chernoff Hoeffding Bernstein

Set 1 Set 2 Set 3 Set 4 Set 5

Sets with 15 Tasks
(b) Approximation Quality

10−6

10−5

10−4

10−3

10−2

10−1

C
al

cu
la

te
d

P
ro

ba
bi

lit
y

Set 2 Set 4 Set 5

Sets with 15 Tasks
(c) Detailed Approximation Quality

10−5

10−4

C
al

cu
la

te
d

P
ro

ba
bi

lit
y

2
.4

9
·1

0
−

0
5

6
.1

0
·1

0
−

0
5

1
.3

5
·1

0
−

0
5

2
.4

9
·1

0
−

0
5

6
.1

0
·1

0
−

0
5

1
.3

5
·1

0
−

0
5

2
.4

9
·1

0
−

0
5

8
.2

9
·1

0
−

0
5

1
.3

8
·1

0
−

0
5

Figure 3 (a) Average runtime with respect to task set cardinality. (b) Approximation quality for
5 sets with 15 tasks. (c) Detailed approximation quality for the multinomial-based approaches.

7. Chernoff: The analytical approach using Chernoff bounds by Chen and Chen [8].
8. Hoeffding: The analytical approach using Hoeffding’s inequality (Sec. 4).
9. Bernstein: The analytical approach using Bernstein inequalities (Sec. 4).
To allow runtime comparisons, all approaches were implemented in the same programming
language, i.e., Python, and executed on the same machine, i.e., a 12 core Intel Xeon X5650
with 2.67 GHz and 20 GB RAM. For the analytical bounds, in contrast to the work by Chen
and Chen [8], all releases of higher-priority tasks were considered since the bounds have a
lower runtime than our novel approach.

Figure 3 shows the results for randomly generated tasks sets with a normal-mode utilization
of Usum = 70, and for all tasks f = 2 and Pi(A) = 0.025 were assumed. Hence, Pi(N) = 0.975.
To analyze the scalability, the cardinality of the task sets ranged from 5 to 35 in steps of 5.
In Figure 3(a) the average runtime of the analysis is displayed with respect to the cardinality.
For a cardinality from 5 to 20 tasks, we evaluated 20 task sets while a cardinality from 25
to 35 tasks, due to the high runtime, 5 task sets were analyzed. For Convolution usually
no result was delivered for a cardinality of 5, i.e., a crash due to an out of memory error
occurred. Even for 3 tasks no result could be provided in some cases since, for instance,
38 jobs already leads to 238 = 274877906944 states for Dk in Convolution. For Conv.
Merge and Multinomial a setting with 10 tasks often lead to no results. Hence, those
three approaches are not displayed. However, the results for Conv. Merge, Multinomial,
and Pruning were always identical (if Conv Merg and Multinomial derived results),
showing that our pruning technique drastically decreases the runtime of the analysis and
increases the scalability without any precision loss. We see that Bernstein and Hoeffding
are orders of magnitude faster than the other approaches which are compatible with respect
to the related runtime. The large runtime of Chernoff yields from finding a good s value
in Eq. (4) which may differ for each point in time. The difference between Approx and
Pruning stems from a different number of tested time points, i.e., for Approx this number
depends on the number of tasks while for Pruning it is related to the number of jobs, while
the calculation for one time point does not differ largely.

The statistical information of the derived deadline miss probabilities is unfortunately not
meaningful. For example, for task sets with 15 tasks, the derived deadline miss probability in
our evaluations under Pruning ranged from 3.0 · 10−39 to 6.1 · 10−5. Therefore, comparing
the average values or other statistical means does not yield much information. In addition,

ECRTS 2018

6:20 Probability of Deadline Misses

comparing relative values is problematic if the probability gets low. Hence, we show a small
sample of 5 task sets with roughly similar probabilities in Figure 3(b). These are the first 5
randomly generated task sets with deadline miss probability larger than 10−6. This selection
is only done to increase the readability of the figure. We observed in general similar relative
behaviour among (nearly) all the evaluated task sets. We see that the error of Bernstein
and Hoeffding is large compared to Chernoff, i.e., by several orders of magnitude, while
the three approaches based on the multinomial distribution result in similar values, roughly
one order of magnitude better than Chernoff. We also conducted experiments with different
probabilistic distributions which in general lead to identical results.

In Figure 3(c), we compare the deadline miss probability of the three multinomial-
distribution based approaches more closely. We can see that Unify performs very similar
to Pruning, i.e., the error is in the magnitude of 10−9. This is significantly smaller than
the predefined allowed error of 10−6 for Unify in the experiments since: 1) execution mode
equivalences classes are only merged for some of the tasks and the maximum error for each
task may already be significantly smaller than 10−6, and 2) the worst-case analysis in Sec. 6.2
is pessimistic. For Approx the error for Set 4 and Set 5 is in the magnitude of 10−5 and
10−7, respectively, since only a subset of the points of interest is considered. In some rare
cases even a larger relative difference could be observed.

Most importantly, all approaches we provide are able to deliver results even for large task
sets, since the time needed to evaluate a single point in time remains still in the scale of
minutes, i.e., in runs with 75 and 100 tasks one time point was evaluated on average in 621.6
and 791.1 seconds, respectively. Therefore, when a given task set needs to be analyzed, the
approach can be used directly, especially since it is highly parallelizable due to the fact that
different points in time can be analyzed completely individually. Hence, we suggest to first
run Hoeffding’s as well as Bernstein’s bounds since they have a small runtime even for large
task sets. If a sufficiently low deadline miss probability cannot be guaranteed from these
bounds, we propose to run the multinomial-based approach with equivalence class union in
parallel on multiple machines by partitioning the time points equally. We point out that it is
especially helpful to use the union of equivalence classes if the periods of tasks differ largely,
e.g., in automotive applications where periods often range from 1 to 1000 ms [15].

8 Conclusion

We provide a novel way to analyze the deadline miss probability of constrained-deadline
sporadic soft real-time tasks on uniprocessor platforms where points in time are considered
individually. Our main approach convolutes the equivalence classes of a task represented by
the values of the multinomial distribution. The runtime of this approach can be improved
by the detailed pruning technique without any precision loss. Furthermore, we present an
approximation via unifying equivalent classes with a bounded loss of precision. In addition,
we provide two analytical bounds based on the well-known Hoeffding’s and Bernstein’s
inequalities which have polynomial runtime with respect to the number of considered time
points. We demonstrate the effectiveness in the evaluations, specifically showing that our
approaches scale reasonably even for large task sets.

G. von der Brüggen, N. Piatkowski, K.-H. Chen, J.-J. Chen, and K. Morik 6:21

References
1 IEC-61508 Edition 2.0. Functional safety of electrical / electronic / programmable electronic

safety-related systems ed2.0. Technical report, International Electrotechnical Commission
(IEC), 2010. URL: http://www.iec.ch/functionalsafety/standards/page2.htm.

2 Philip Axer and Rolf Ernst. Stochastic response-time guarantee for non-preemptive, fixed-
priority scheduling under errors. In The 50th Annual Design Automation Conference 2013,
DAC ’13, Austin, TX, USA, May 29 - June 07, 2013, pages 172:1–172:7, 2013. doi:
10.1145/2463209.2488946.

3 Robert C. Baumann. Radiation-induced soft errors in advanced semiconductor technologies.
IEEE Transactions on Device and Materials Reliability, 5(3):305–316, Sept 2005. doi:
10.1109/TDMR.2005.853449.

4 Slim Ben-Amor, Dorin Maxim, and Liliana Cucu-Grosjean. Schedulability analysis of de-
pendent probabilistic real-time tasks. In Proceedings of the 24th International Conference
on Real-Time Networks and Systems, RTNS 2016, Brest, France, October 19-21, 2016,
pages 99–107, 2016. doi:10.1145/2997465.2997499.

5 Enrico Bini and Giorgio C. Buttazzo. Schedulability analysis of periodic fixed priority
systems. IEEE Trans. Computers, 53(11):1462–1473, 2004. doi:10.1109/TC.2004.103.

6 Enrico Bini and Giorgio C. Buttazzo. Measuring the performance of schedulability tests.
Real-Time Systems, 30(1-2):129–154, 2005. doi:10.1007/s11241-005-0507-9.

7 Jian-Jia Chen, Wen-Hung Huang, and Cong Liu. k2u: A general framework from k-point
effective schedulability analysis to utilization-based tests. In 2015 IEEE Real-Time Systems
Symposium, RTSS 2015, San Antonio, Texas, USA, December 1-4, 2015, pages 107–118,
2015. doi:10.1109/RTSS.2015.18.

8 Kuan-Hsun Chen and Jian-Jia Chen. Probabilistic schedulability tests for uniprocessor
fixed-priority scheduling under soft errors. In 12th IEEE International Symposium on
Industrial Embedded Systems, SIES 2017, Toulouse, France, June 14-16, 2017, pages 1–8,
2017. doi:10.1109/SIES.2017.7993392.

9 José Luis Díaz, Daniel F. García, Kanghee Kim, Chang-Gun Lee, Lucia Lo Bello, José María
López, Sang Lyul Min, and Orazio Mirabella. Stochastic analysis of periodic real-time sys-
tems. In Proceedings of the 23rd IEEE Real-Time Systems Symposium (RTSS’02), Austin,
Texas, USA, December 3-5, 2002, pages 289–300, 2002. doi:10.1109/REAL.2002.1181583.

10 Paul Emberson, Roger Stafford, and Robert I. Davis. Techniques for the synthesis of
multiprocessor tasksets. In International Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems (WATERS 2010), pages 6–11, 2010. URL: https:
//waters2016.inria.fr/files/2017/02/WATERS16-proceedings-final.pdf.

11 Simon Foucart and Holger Rauhut. A Mathematical Introduction to Compressive Sensing.
Springer New York, 2013. doi:10.1007/978-0-8176-4948-7.

12 Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58(301):13–30, 1963. URL: http://www.jstor.
org/stable/2282952.

13 Jie S. Hu, Feihui Li, Vijay Degalahal, Mahmut T. Kandemir, Narayanan Vijaykrishnan,
and Mary Jane Irwin. Compiler-directed instruction duplication for soft error detection.
In 2005 Design, Automation and Test in Europe Conference and Exposition (DATE 2005),
7-11 March 2005, Munich, Germany, pages 1056–1057, 2005. doi:10.1109/DATE.2005.98.

14 ISO-26262-1:2011. Iso/fdis26262: Road vehicles - functional safety. Technical report, In-
ternational Organization for Standardization (ISO), 2000. URL: https://www.iso.org/
standard/43464.html.

15 Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real world automotive benchmarks
for free. In 6th International Workshop on Analysis Tools and Methodologies for Embedded
and Real-time Systems (WATERS), 2015.

ECRTS 2018

http://www.iec.ch/functionalsafety/standards/page2.htm
http://dx.doi.org/10.1145/2463209.2488946
http://dx.doi.org/10.1145/2463209.2488946
http://dx.doi.org/10.1109/TDMR.2005.853449
http://dx.doi.org/10.1109/TDMR.2005.853449
http://dx.doi.org/10.1145/2997465.2997499
http://dx.doi.org/10.1109/TC.2004.103
http://dx.doi.org/10.1007/s11241-005-0507-9
http://dx.doi.org/10.1109/RTSS.2015.18
http://dx.doi.org/10.1109/SIES.2017.7993392
http://dx.doi.org/10.1109/REAL.2002.1181583
https://waters2016.inria.fr/files/2017/02/WATERS16-proceedings-final.pdf
https://waters2016.inria.fr/files/2017/02/WATERS16-proceedings-final.pdf
http://dx.doi.org/10.1007/978-0-8176-4948-7
http://www.jstor.org/stable/2282952
http://www.jstor.org/stable/2282952
http://dx.doi.org/10.1109/DATE.2005.98
https://www.iso.org/standard/43464.html
https://www.iso.org/standard/43464.html

6:22 Probability of Deadline Misses

16 John P. Lehoczky, Lui Sha, and Yuqin Ding. The rate monotonic scheduling algorithm:
Exact characterization and average case behavior. In Proceedings of the Real-Time Systems
Symposium - 1989, Santa Monica, California, USA, December 1989, pages 166–171, 1989.
doi:10.1109/REAL.1989.63567.

17 Dorin Maxim and Liliana Cucu-Grosjean. Response time analysis for fixed-priority tasks
with multiple probabilistic parameters. In Proceedings of the IEEE 34th Real-Time Systems
Symposium, RTSS 2013, Vancouver, BC, Canada, December 3-6, 2013, pages 224–235,
2013. doi:10.1109/RTSS.2013.30.

18 Michael Mitzenmacher and Eli Upfal. Probability and Computing - Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, 2005.

19 Bogdan Nicolescu, Raoul Velazco, Matteo Sonza-Reorda, Maurizio Rebaudengo, and Mas-
simo Violante. A software fault tolerance method for safety-critical systems: effective-
ness and drawbacks. In Integrated Circuits and Systems Design, pages 101–106, 2002.
doi:10.1109/SBCCI.2002.1137644.

20 Nahmsuk Oh, Philip P. Shirvani, and Edward J. McCluskey. Error detection by duplicated
instructions in super-scalar processors. IEEE Trans. Reliability, 51(1):63–75, 2002. doi:
10.1109/24.994913.

21 Nico Piatkowski, Sangkyun Lee, and Katharina Morik. Spatio-temporal random fields:
compressible representation and distributed estimation. Machine Learning, 93(1):115–139,
2013. doi:10.1007/s10994-013-5399-7.

22 Nico Piatkowski and Katharina Morik. Stochastic discrete clenshaw-curtis quadrature.
In Proceedings of the 33rd International Conference on Machine Learning, ICML 2016,
New York, USA, 19-24 June 2016, JMLR: W&CP. JMLR.org, June 2016. URL: http:
//jmlr.org/proceedings/papers/v48/piatkowski16.html.

23 Semeen Rehman, Muhammad Shafique, Pau Vilimelis Aceituno, Florian Kriebel, Jian-
Jia Chen, and Jörg Henkel. Leveraging variable function resilience for selective software
reliability on unreliable hardware. In Design, Automation and Test in Europe, DATE 13,
Grenoble, France, March 18-22, 2013, pages 1759–1764, 2013. doi:10.7873/DATE.2013.
354.

24 Bogdan Tanasa, Unmesh D. Bordoloi, Petru Eles, and Zebo Peng. Probabilistic response
time and joint analysis of periodic tasks. In 27th Euromicro Conference on Real-Time
Systems, ECRTS 2015, Lund, Sweden, July 8-10, 2015, pages 235–246, 2015. doi:10.
1109/ECRTS.2015.28.

25 Georg von der Brüggen, Jian-Jia Chen, and Wen-Hung Huang. Schedulability and opti-
mization analysis for non-preemptive static priority scheduling based on task utilization and
blocking factors. In Euromicro Conference on Real-Time Systems, ECRTS, pages 90–101,
2015. doi:10.1109/ECRTS.2015.16.

26 Georg von der Brüggen, Kuan-Hsun Chen, Wen-Hung Huang, and Jian-Jia Chen. Systems
with dynamic real-time guarantees in uncertain and faulty execution environments. In
2016 IEEE Real-Time Systems Symposium, RTSS 2016, Porto, Portugal, November 29 -
December 2, 2016, pages 303–314, 2016. doi:10.1109/RTSS.2016.037.

27 Georg von der Brüggen, Nico Piatkowski, Kuan-Hsun Chen, Jian-Jia Chen, and Katha-
rina Morik. Efficiently approximating the probability of deadline misses in real-time
systems. Technical report, Department of Computer Science, TU Dortmund University,
Germany, 2018. URL: https://ls12-www.cs.tu-dortmund.de/daes/media/documents/
publications/downloads/2018-brueggen-ecrts-deadline-miss-probability.pdf.

28 Dakai Zhu, Hakan Aydin, and Jian-Jia Chen. Optimistic reliability aware energy manage-
ment for real-time tasks with probabilistic execution times. In Proceedings of the 29th IEEE
Real-Time Systems Symposium, RTSS 2008, Barcelona, Spain, 30 November - 3 December
2008, pages 313–322, 2008. doi:10.1109/RTSS.2008.37.

http://dx.doi.org/10.1109/REAL.1989.63567
http://dx.doi.org/10.1109/RTSS.2013.30
http://dx.doi.org/10.1109/SBCCI.2002.1137644
http://dx.doi.org/10.1109/24.994913
http://dx.doi.org/10.1109/24.994913
http://dx.doi.org/10.1007/s10994-013-5399-7
http://jmlr.org/proceedings/papers/v48/piatkowski16.html
http://jmlr.org/proceedings/papers/v48/piatkowski16.html
http://dx.doi.org/10.7873/DATE.2013.354
http://dx.doi.org/10.7873/DATE.2013.354
http://dx.doi.org/10.1109/ECRTS.2015.28
http://dx.doi.org/10.1109/ECRTS.2015.28
http://dx.doi.org/10.1109/ECRTS.2015.16
http://dx.doi.org/10.1109/RTSS.2016.037
https://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2018-brueggen-ecrts-deadline-miss-probability.pdf
https://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2018-brueggen-ecrts-deadline-miss-probability.pdf
http://dx.doi.org/10.1109/RTSS.2008.37

	Introduction
	Task Model, System Model, and Notation
	Motivation, Problem Definition, and State-of-the-Art
	Motivation and Problem Definition
	Traditional Convolution-Based Approaches
	Chernoff-Bound-Based Approaches

	Analytical Upper Bounds
	The Multinomial-Based Approach
	The State Space of the Traditional Convolution-Based Approach
	Invariance and Equivalence Classes
	Detailing the Multinomial Approach
	Complexity Discussion and Comparison

	Runtime Improvement
	Pruning the State Space
	Union of Execution Mode Equivalence Classes

	Evaluation
	Conclusion

