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Abstract—Analyzing telemetry data of player behavior in
computer games is a topic of increasing interest for industry and
research, alike. When applied to game telemetry data, pattern
recognition and statistical analysis provide valuable business
intelligence tools for game development. An important problem
in this area is to characterize how player engagement in a game
evolves over time. Reliable models are of pivotal interest since
they allow for assessing the long-term success of game products
and can provide estimates of how long players may be expected
to keep actively playing a game. In this paper, we introduce
methods from random process theory into game data mining
in order to draw inferences about player engagement. Given
large samples (over 250,000 players) of behavioral telemetry
data from five different action-adventure and shooter games,
we extract information as to how long individual players have
played these games and apply techniques from lifetime analysis
to identify common patterns. In all five cases, we find that
the Weibull distribution gives a good account of the statistics of
total playing times. This implies that an average player’s interest
in playing one of the games considered evolves according to a
non-homogeneous Poisson process. Therefore, given data on the
initial playtime behavior of the players of a game, it becomes
possible to predict when they stop playing.

I. INTRODUCTION

Developing a profitable game is a challenging endeavor.
Over 1,500 commercial titles are published every year and
compete for players’ time and attention. This rivalry on the
globalized market and the high costs of producing quality
games are reasons for the gaming industry to attempt to
streamline their production. In order to develop games more
efficiently, a variety of tools can be adopted and techniques
ranging from business practices to user testing have notice-
ably influenced game development in recent years. They have
led to a new focus on the analysis of games and gameplay,
whether for industrial or research purposes [1].

One of the new sources of business intelligence is game
telemetry. Data on revenues, technical performance, devel-
opment processes, and, most importantly, the behavior of
players has gained attention as a new source of insights into
a number of processes in the game industry [2], [3]. Ac-
cordingly, game data mining or game mining is now widely
recognized as a means for analyzing the demographics of
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TABLE I
STATISTICS OF FIVE GAME DATA SETS ANALYZED IN THIS PAPER. NOTE
THAT THE NUMBER OF PLAYERS IN THE DIFFERENT DATA SETS ARE NOT

IN ANY WAY INDICATIVE OF SALES FIGURES FOR THE FIVE GAMES!

#players
observed

observation period

start date end date #months

Just Cause 2 5,331 03-23-2010 10-07-2010 7
Tomb Raider: U. 146,233 12-01-2008 01-31-2009 2
Battlefield B.C. 2 87,126 03-14-2010 12-26-2011 21
Crysis 2 4,364 04-13-2011 11-23-2011 6
Medal of Honor 12,328 11-03-2010 12-18-2011 14

populations of players and for making sense of the ways
people play games. Being able to answer questions such as
“How do players behave within a game?”, “How to entice
non-paying players to become paying customers?”, or “How
quickly do players lose interest in playing?” can help the
game industry to prevent fraud, improve game design or user-
oriented testing procedures and thus may reduce production
and marketing costs.

Game mining of telemetry data is particularly appealing,
because it provides a viable means for analyzing the behavior
of populations of thousands of players and substantially adds
to the explanatory power of traditional tools for game user
research [1], [3]. While other sources on player behavior,
such as customer feedback or surveys, are tedious to evaluate
and prone to biased results, recordings of game telemetry
data provide direct and consistent information for in-depth
analysis. Mining this data allows game developers to uncover
frequent usage patterns or behaviors and thus helps them to
identify popular game elements or flaws in game mechanics.
They have thus greater certainty about design decisions
and can accelerate development. Therefore, game telemetry
analysis has become acknowledged as a way for the gaming
industry to increase their return on investment [2], [4].

A. Related Work

The games research community, too, is increasingly paying
attention to in-game pattern recognition and game mining.
Early work in this context was notably focused on learning
from in-game data in order to create more human-like game
bots [5], [6], [7], [8], [9], [10], [11]. And while such efforts
have noticeably intensified (see [12] for a recent review),
game mining also seems to hold the key to many other
problems. Recent work considers modeling of player experi-
ence, procedural generation of content, and challenges due to



the massive scale of game telemetry data. Examples include
recognizing player behaviors and motivations [13], [14], [15],
tracking the evolution of social groups in MMORPGs [16],
identifying patterns in the naming of player characters and
guilds [17], detecting causes of player frustration [18], [19],
or uncovering social ties among players of FPS games [20].

In this paper, we address yet another problem that –to our
knowledge– has not been studied before. Given data as to the
behavior of a population of players, we want to understand
how engagement in a game evolves over time. Prior work
most closely related to our question can be found in [13],
[14], [15], [16]. However, in contrast to these contributions,
our aim is not to categorize players or teams but to proceed
towards a general understanding of how the allure of a game
changes with time.

B. Contribution and Main Result

Our focus in this paper is on applying game mining
in order to learn about the temporal evolution of people’s
interest in playing a game. In particular, we analyze large
samples of behavioral telemetry data from five different
action-adventure or shooter games (see Table I) and mine
them for common patterns or deviating characteristics. Our
goal is to infer process models that characterize time series
of player engagement. Once available, such models might
be applied to predict a game’s long-term success from only
a few measurements of player activity. The implications for
game development are obvious, since developers will be able
to estimate how long people will keep playing the game in
question. Models could be applied to data from alpha- and
beta-testing with larger numbers of players, as well as to
data recorded immediately after a game’s release. The latter
is particularly interesting for persistent games such as free-
to-play online games which are currently one of the most
rapidly growing genres in the industry.

There are two fundamental difficulties that need to be
addressed in modeling the dynamics of player engagement.
First of all, interest in playing a game is an abstract quantity.
Psychologists or Sociologists would call it a latent or hidden
variable which influences measurable quantities such as the
frequency of playing sessions or total playing times but
cannot itself be observed directly. We are therefore in need of
a principled way of inferring the dynamics of player interest
from observable data.

Second of all, we are in need of models that are physical
in that they represent processes that can take place in the real
world. In other words, while it is always possible to produce
an abstract mathematical model that fits well a sample of
data, not every such model may correspond to physical
reality. In particular, time series can easily be modeled
using computational intelligence techniques such as Neural
Networks or Hidden Markov Models, but the resulting rep-
resentations will hardly explain the mechanisms that caused
the data to appear as observed. Even if data analysts are
often tempted to assign meaning to abstract representations,
such reification is seldom justified; interpretative claims
cannot arise from mathematics but must abide by the general

conditions of the application domain. Results from game
telemetry analysis need to provide tangible explanations that
address actual needs and requirements of game developers
in order to be useful for the industry.

Addressing both these difficulties, our contribution in this
paper is to introduce methods from random process theory
[21], [22] and lifetime analysis [23] to game mining. We
assume that a player’s interest in playing a game evolves
as a random process with drift. This appears reasonable,
since, on a day-to-day basis, a player’s eagerness to play will
depend on numerous unforeseeable events (including private
circumstances, releases of new game content or competing
games, etc.), but, in the long run, it will most certainly
decline, because at some point most players will stop playing
the game. Given this assumption, we apply lifetime analysis
to infer details about the unobservable process.

Although interest in gameplay cannot itself be measured
from game telemetry data, we can estimate how long it takes
for it to drop to zero. To this end, we measure the duration of
individual total playing times observed among a population
of players. Having thus obtained an empirical distribution of
total playing times, we fit different lifetime- or first passage
time distributions to the data. In particular, we consider four
well established distributions, namely the Weibull-, Gamma-,
Log-normal- and Inverse Gaussian distribution, because they
are known to be in one-to-one correspondence to four distinct
random processes which frequently occur in nature and are
very well understood (cf. e.g. [21], [22], [24], [25]).

Our extensive empirical tests reveal that, overall, the
Weibull distribution gives a very good account of the dis-
tribution of total playing times. Observing first passage
times (to a level of zero interest) to be Weibull distributed
implies that the underlying latent process is a particular non-
homogeneous Poisson process, namely a power law process.
For the data sets at hand, we can thus infer that an average
player’s interest in playing action games drops according to
a power law.

This is indeed an interesting finding, because power law
statistics have been observed in a wide variety of contexts and
are known to describe different aspects of human behavior.
Examples include the dynamics of economic decisions [26]
or politics and conflicts [27], [28], email communication
patterns [29], [30], but also the frequency of choices of
character names in online games [17]. Our result is therefore
well in line with with a vast body of literature from fields
such as sociometrics or mathematical psychology.

C. Organization of the Remainder of the Paper

Next, we briefly introduce the particularities and charac-
teristics of the five game telemetry data sets we considered
in our analysis. Then, in Section III, we present details
on random process models of interest in gameplay and
how they are related to first passage time distributions. In
Section IV, we report and discuss the results of our analysis
and Section V once again summarizes our goals and findings.
For details as to our methodology for maximum likelihood
fitting of lifetime distributions, we refer to the appendix.



II. DATA SETS AND CHARACTERISTICS

For the study presented in this paper, we analyzed in-game
data from five recent action-adventure or shooter games.
These include two single-player games (Just Cause 2, Tomb
Raider: Underworld) as well as three multi-player games
(Battlefield Bad Company 2, Medal of Honor, Crysis 2).

Data from Tomb Raider: Underworld (TRU) were drawn
from the Square Enix metrics suite, which contains data
from over 1.5 million players. The sample drawn covers all
data collected in a two month period (from Dec 1st, 2008
to Jan 31st, 2009), providing records from approximately
203,000 players (around 100 GB). The game was launched
in November 2008, so that the data represent a time period
where the game was recently released to the public. The data
in the sample were extracted in a series of tables, cleaned
and transposed to a single table. Records with missing
information and other irregularities were removed (e.g. only
the first playthrough for players who played the game more
than once was retained) which provides us with a final sample
size of 146,233 player observations.

Data from Just Cause 2 (JC2) were drawn from the Square
Enix metrics suite, which contain data from all players of
the game. A sample of over 5,000 players was drawn using
simple random sampling, and processed similar to the TRU
data, resulting in a final dataset containing 5,331 records.

The data for the three multi-player games Battelefield Bad
Company 2 (BF2), Crysis 2 (CR2) and Medal of Honor
(MOH) were collected from the p-stats network1. We note
that this website only collects information from players
who have installed a specific add-on for their games. While
extremely casual players may not have installed such an add-
on, many regular players use it to meticulously keep track
of their in-game activities and achievements. These data,
too, were preprocessed as above to mitigate effects due to
incomplete information.

After preprocessing, each data set contains anonymized
observations of several thousand individual players and their
in-game activities over different periods of time (see Tab. I).
In particular, the data describes when, i.e. on which dates,
and for how long, i.e. for how many seconds, each player
was actively playing the corresponding game.

Accordingly, the data allows for various comparisons of
the games with respect to temporal preferences of their
players. As an example, Fig. 1 shows histograms of player
activity per weekday. For the two single-player games, there
seems to be a tendency towards higher activity on the
weekend. While for Tomb Raider: Underworld this trend
is noticeable but minuscule, it is well pronounced for Just
Cause 2. Other than this, the average daily playing activities
in each of the five games considered here appear to be evenly
distributed over the days of the week. As we shall see in later
sections, other temporal statistics of player behavior, too, are
in close agreement for the five different games.

1http://p-stats.com
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Fig. 1. Normalized histograms of player activity per weekday (averaged
over population) for Battle Field Bad Company 2 (BF2), Crysis 2 (CR2),
Medal of Honor (MOH), Just Cause 2 (JC2), and Tomb Raider: Underworld
(TRU). Except for Just Cause 2, for which player activity noticeably spikes
on Saturday, average daily playing times for the different games appear
fairly evenly distributed over the week.

III. MODELING INTEREST IN GAME PLAYING

In this section, we motivate our approach to modeling
the dynamics of player engagement and provide a brief
introduction to random process theory and first passage time
distributions.

A. Random Processes Models for Player Interest

Our main goal with this paper is to attempt a formalization
of the temporal evolution of people’s interest in playing
a game. This is not a straightforward endeavor, because
interest in playing a game is a rather abstract quantity. It
cannot be measured directly but is a latent variable that has
to be inferred from observable data. Moreover, it appears
reasonable that a player’s interest in playing a game does not
evolve in a deterministic fashion that could be described by
means of simple equations. Rather, everyday experience tells
us that, on any given day, a player’s eagerness to play a game
will be influenced by different unforeseeable events ranging
from private circumstances or schedules to the release of new
game content or competing games.

Given both these considerations, it makes sense to model
the evolution of a player’s interest in playing a game as a
stochastic time series or random process. That is, at any time
t, a player’s interest It in playing a game is a random quantity
that may or may not depend on previous values and whose
future values cannot be predicted exactly.

Random process models are frequently applied to char-
acterize the dynamics of systems or events observed in
nature. Familiar examples include the frequency of incoming
telephone calls, fluctuations of financial markets, biomedical
measurements such as a patient’s blood pressure, or the
motion of particles. There are various types of random pro-
cess models which differ with respect to their mathematical
complexity and application domain (cf. e.g. [21], [22], [25]).
Since our interest is in understanding the temporal dynamics
of a one-dimensional quantity, we restrict our discussion and
experimental verification to the four most common models
for this purpose. Their mathematical form is shown in the
right column of Tab. II; their names and properties are as
follows:



TABLE II
FIRST PASSAGE TIME DISTRIBUTIONS AND UNDERLYING PROCESSES

first passage time distribution underlying latent process

Gamma distribution Poisson process
p(t) = 1

ακΓ(κ)
tκ−1 e−

t
α p(It = κ) =

(λt)κ

Γ(κ+1)
e−λt

Weibull distribution non-homogeneous Poisson process

p(t) = κ
α

(
t
α

)κ−1
e−
(
t
α

)κ
p(It = κ) =

λ(t)κ

Γ(κ+1)
e−λ(t)

Inverse Gaussian distribution Wiener process with drift

p(t) =
√

α
2πt3

e
−α(t−µ)2

2µ2t dIt = νt+ βdWt

Log-normal distribution Fokker-Planck diffusion

p(t) = 1
tσ
√

2π
e
− (log t−µ)2

2σ2 ∂
∂t
f = ∂2

∂I2
I2f − ∂

∂I
If

Posisson processes: If a player’s interest in playing a
game would follow a Poisson process, we could picture this
model by imagining that, at certain random points in time,
the player feels an urge to play. On average, this urge to play
would set in according to a constant rate λ. This parameter
does not change with time and fully characterizes the process.

Non-homogeneous Poisson processes: this model class
generalizes simple Poisson processes in that the rate param-
eter λ(t) is now assumed to be a function of time.

Bwownian motion / Wiener processes: while the two
previous models do not assume that, at time t, the quantity
of interest It depends on its history, in a Wiener process,
the current value of It would result from random Gaussian
perturbations dWt of its previous value. In a Wiener process
with drift ν, individual updates are still random, yet, over
time, the quantity of interest will tend towards decreasing
values.

Fokker-Planck diffusion: this model provides the most
general description of the temporal evolution of a one-
dimensional stochastic variable. It assumes that there is
a probability density f(I, t) that characterizes the random
variable It. A stochastic differential equation then describes
trends and speeds with which the density of the quantity of
interest progresses.

As these four standard models cover the whole range from
fairly simple to fairly complex stochastic processes, we can
reasonably expect that one or several of them may explain
the dynamics of player interests in a statistically meaningful
way. However, since a player’s interests in playing a game
is not immediately apparent in our game telemetry data, we
are in need of a method that would bridge the gap between
our data and the proposed models. In the next subsection,
we discuss how lifetime analysis accomplishes this feat.

B. First passage Time Distributions

First passage time distributions are used to characterize
how long it takes for a random process to reach a certain
value. They form the backbone of lifetime analysis which
is concerned with investigating, say, how long complex
(mechanical or biological) systems that consist of several
components or factors work properly on average [23].

In our context of estimating the dynamics of a population’s
interest in a game, we might ask for how long individual
players have played the game in total. From the point of
view of random processes, analyzing distributions of total
playing times is tantamount to estimating how long it takes
until an average player’s interest in playing that game drops
to a value of zero.

What is interesting is that specific random process models
are in a one-to-one relation with certain first passage time
distributions. Table II lists the correspondences for the four
random processes considered here.

For Poisson processes, first passage times are distributed
according to a Gamma distribution [24]. That is, if an
empirical distribution of total individual playing times can
be modeled by a Gamma distribution with scale parameter α
and shape parameter κ, we can infer that an average player’s
interest in playing consisted of κ independent urges to play
which occurred at a rate of λ = 1

α .
If an empirical lifetime distribution can be modeled as a

Weibull distribution, we can infer that the underlying random
process is a non-homogeneous Poisson process [24]. In
particular, Weibull distributed lifetimes indicate the presence
of a power law process where λ(t) = κ

α ( tα )κ−1.
For Wiener processes, first passage times follow Inverse

Gaussian distributions [24] and for processes characterized
through Fokker-Planck diffusion, first passage times follow
Log-normal distributions [31].

Obviously, the fortunate existence of one-to-one relations
between random processes and first passage time distribution
can help us to infer the dynamics of player engagement.
Even though a player’s interest in playing a game is a latent
variable that cannot be read from game telemetry data, an
analysis based on first passage time distributions allows us to
make claims as to the dynamics of player engagement. Next,
we present results obtained from fitting lifetime distributions
to observed total playing times and discuss implications of
our findings.

IV. RESULTS AND DISCUSSION

Given the game telemetry data introduced in section II, we
extract the total individual playing times of each observed
player for each of the five games by accumulating the
durations of all of their observed playing sessions. This
provides us with total playing times measured in seconds
which we round to hours in order to accomplish statistical
smoothing for robustness against over-fitting as well as to
facilitate graphical representation.

Figures 2 and 3 show the resulting empirical distributions
of individual playing times (plotted in black) for the two
single-player and the three multi-player games, respectively.
Note that, for better visibility, the time axes in the body of
each plot are truncated at 72 hours; the insets in each plot
display the data in a doubly logarithmic representation and
cover the whole range of total playing times observed for
each game.

Looking at the figures, we immediately note that the
empirical distributions of total playing times per player are
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(a) JC2, Weibull fit
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(b) JC2, Gamma fit
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(c) JC2, Log-normal fit
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(d) JC2, Inverse Gaussian fit
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(e) TRU, Weibull fit
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(f) TRU, Gamma fit
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(g) TRU, Log-normal fit
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(h) TRU, Inverse Gaussian fit

Fig. 2. Observed empirical distributions of playing times per player (in hours) and fitted first passage time distributions for the two single-player games
Just Cause 2 (JC2) and Tomb Raider: Underworld (TRU). Shape and scale parameters of the fits were obtained from from maximum likelihood estimation.
For better visibility, the times axes in the figures are truncated at 72 hours; the insets show data and fitted functions on a logarithmic scale and cover the
whole range of observed playing times. For both games, the observed empirical distribution are heavily skewed to the right: while most of the observed
players played for only a few hours, the long tails of the distributions indicate that a noticeable fraction players played for more than 100 hours in total.

similar across the five games. For each game considered
here, we observe playing time distributions that are highly
skewed to the right. That is to say that, for each game,
there is a surprisingly high percentage of players who have
played the game for only a few hours. At the same time,
since the tails of the observed distributions are long, we find
that a noticeable fraction of players have played the game
for a considerably longer time. It is important to note that
this general behavior is independent of the duration of the
corresponding observation period. Regardless of whether our
data covers a period of only two months or almost two years,
the distributions of total playing times assume their maxima
at the ordinate, decrease rather smoothly, and are long-tailed.

Figures 2 and 3 also show the results (plotted in red) of
maximum likelihood fits of the four previously discussed first
passage time distributions to the empirical data.

Already by means of visual inspection it appears that the
Inverse Gaussian distribution generally gives a rather poor
account of the empirically observed distributions of playing
times. Based on what we discussed above, this immediately
rules out the hypothesis that an average player’s interest in
playing a game develops according to a Wiener process.

For the other three first passage time distributions, the
general picture is less clear from visual inspection only.
The Weibull and the Gamma distribution apparently provide
rather good approximations to our data, in particular, they
seem to model the tails of the empirical distributions well.
But for some of the games, the Log-normal distribution,
too, appears to provide a good fit. In order to quantify this
qualitative observation, we resort to goodness of fit tests.

Table III summarizes results we obtain from running
Kolmogorov-Smirnov tests. It presents the corresponding p-

TABLE III
RESULTS OF GOODNESS OF FIT TESTS

p-value according to Kolmogorov-Smirnov test

Weibull Gamma Log-normal Inv. Gaussian

Just Cause 2 0.055 0.018 0.018 0.002
Tomb Raider: U. 0.000 0.000 0.000 0.000
Battlefield B.C. 2 0.008 0.003 0.002 0.000
Crysis 2 0.051 0.022 0.037 0.003
Medal of Honor 0.014 0.005 0.030 0.001

values where higher p-values indicate better fits. Looking at
the table, three observations stick out: first of all, for the game
of Tomb Raider: Underworld, none of the tested lifetime
distributions achieves a p-value that would indicate a good
(if any) fit to the data. However, this is a consequence of
the large amount of data for this game (more than 100,000
observed players) rather than a failure on the part of the
models. Note that statistical tests such as the Komogorov-
Smirnov test were devised at a time when data samples were
small; it is common lore among statisticians that for very
large sample sizes such tests will indicate departure from
the tested distribution even if actual deviations are minor.
The fact that traditional statistical tests are indeed tailored
towards smaller samples is corroborated by the observation
that, for the two games for which we have less than 10,000
data, we obtain the highest the p-values. This ineptitude
of statistical testing leaves us with the dilemma of either
having to down-sample the data (thus introducing other
difficulties) or of having to rely on qualitative impressions.
Adopting the latter strategy to determine which lifetime
distribution provides the better fit to the data obtained for
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(a) BF2, Weibull fit
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(b) BF2,Gamma fit
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(c) BF2,Log-normal fit
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(d) BF2,Inverse Gaussian fit
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(e) CR2, Weibull fit
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(f) CR2,Gamma fit
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(g) CR2,Log-normal fit
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(h) CR2,Inverse Gaussian fit
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(i) MOH, Weibull fit
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(j) MOH, Gamma fit
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(k) MOH, Log-normal fit
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(l) MOH, Inverse Gaussian fit

Fig. 3. Observed empirical distributions of playing times per player (in hours) and fitted first passage time distributions for the three multi-player games
Battlefield Bad Company 2 (BF2), Crysis 2 (CR2), and Medal of Honor (MOH). The parameters of the fitted statistical distributions were obtained from
from maximum likelihood estimation. For better visibility, the times axes in the figures are truncated at 72 hours; the insets show data and fitted functions
on a logarithmic scale and cover the whole range of observed playing times. Just as with the single-player, for the multi-player games, too, the observed
empirical distributions are skewed to the right; while many players played only a few hours, a considerable fraction played much longer than 100 hours.

TABLE IV
DETAILS ON WEIBULL FITS TO THE EMPIRICAL DATA

sample
mean

Weibull
mean

Weibull parameters

α κ

Just Cause 2 21.37 20.33 17.26 0.76
Tomb Raider: U. 18.00 17.93 16.42 0.85
Battlefield B.C. 2 143.69 143.67 118.93 0.74
Crysis 2 51.35 50.02 37.48 0.66
Medal of Honor 84.09 82.54 61.79 0.66

Tomb Raider: Underworld suggests that the Weibull and the
Gamma distribution outperform the Log-normal model.

Second of all, for three out of the remaining four games,
Weibull fits to the empirical playing time distributions yield
the highest p-values. Third of all, for the two games for
which there are less then 10,000 player observations, the
Weibull distribution actually yields statistically significant fits
(p > 0.05). Since one of these games is a single-player game
(Just Cause 2) and the other is a multi-player game (Crysis
2), it appears that the Weibull distribution as a suitable model
for the lifetimes of interest in a game regardless of whether
or not that game is played online.

Finally, we note that while for Medal of Honor the Log-

normal distribution seems to provide the best fit to our
data, its behavior at the ordinate diverges from the empirical
distribution (see Fig. 3). On the other hand, the Weibull
distribution gives a reasonable account, too, and also provides
a better explanation of the lower tail.

Summarizing our findings for the five games under con-
sideration, it appears that suitably parameterized Weibull
distributions provide convincing abstractions of empirically
determined distributions of total playing times per player.
The figures in Tab. IV further stress this conclusion. For each
of the five games, the table compares average total playing
time per player either computed from the data (sample mean)
or predicted by the best fitting Weibull distribution (Weibull
mean). In each case we find the difference between sample-
and predicted mean to be two orders of magnitude less than
the value of the sample mean which further confirms the
adequacy of the Weibull model.

Table IV also lists the shape and scale parameters κ and
α of the best fitting Weibull models. The corresponding
Weibull distributions are plotted logarithmically in Fig. 4.
It is noticeable that the curves for the two single-player
games and the curves for the three multi-player games cluster
together; also, total playing times for multi-player games
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Fig. 4. Comparison of the Weibull fits to the playing times per player
(averaged over population) for Battle Field Bad Company 2 (BF2), Crysis
2 (CR2), Medal of Honor (MOH), Just Cause 2 (JC2), and Tomb Raider:
Underworld (TRU). Two effects are clearly visible: for the single-player
games (JC2 and TRU), the largest amount of time spent playing (between
100 and 200 hours) is less than for the multi-player games (between 300
and 700 hours). Correspondingly, for the single-player games, the fraction
of players investing less than 30 hours is larger than for the multi-player
games.

exceed those of single-player games. Both observations make
perfect sense according to everyday experience and therefore
once more underline the appropriateness of the Weibull
distribution.

In light of what we discussed in Section III, it is therefore
justified to assume that an average player’s interest in playing
either of the games considered here declines according to a
non-homogeneous Poisson process. Since the time-dependent
rate of this process is given by λ(t) = κ

α ( tα )κ−1, where κ
and α are the shape and scale parameters of the Weibull
distribution that fits playing times, we recognize a power law
process. Looking again at Tab. IV, we find that the exponent
κ−1 is negative for each of the five games. This establishes
that the rate, at which an average player’s urges to play set
in, decreases over time.

V. CONCLUSION

Game data mining, or game mining, is a topic of rapidly
increasing interest [1], [2], [3], [4]. When applied to game
telemetry data, techniques from data analysis and statistical
pattern recognition are valuable tools for customer analytics.
In particular the analysis of player behavior can help improve
game design and playability.

An important open problem in this context is to understand
and model how a players interest in playing a game evolves
over time. Once available, such models will enable game
developers to assess the longterm success of their products
early on and thus to correct design problems and to adapt
their products or marketing strategies correspondingly.

Given large game telemetry data sets from five games
covering two different genres (action-adventure and shooter
games), we extracted information as to how long individual
players have played these games and applied techniques from

lifetime analysis in order to identify distinctive patterns.
In all five cases, we found that the Weibull distribution
gives a good account of the empirical distribution of total
playing times. This, in turn, implies that an average player’s
interest in playing these games evolves according to a non-
homogeneous Poisson process whose intensity function is
given by a power law.

Given suitable game telemetry data from, say, alpha- or
beta-testing, the techniques presented in this paper make
it possible to predict how long a player will stay engaged
even before a game is released. Moreover, generalizations are
possible that would allow for monitoring and understanding
the effects of updates to a game. However, while we have
performed statistical analysis on a solid empirical basis of
five different games, we cannot guarantee that the Weibull
distribution will also be found to fit playtime data from other
types of games such as, for instance, MMOGs. Correspond-
ing investigations are planned for future work.

APPENDIX

To obtain the results reported throughout this paper, we
applied maximum likelihood estimation (MLE) to determine
the parameters of the best fitting lifetime distributions. For
the Inverse Gaussian- and the Log-normal distribution, max-
imum likelihood estimators of their parameters are readily
available in closed form; for the Gamma- and the Weibull
distribution, such closed form solutions do not exist. In order
for this paper to be self-contained, this appendix therefore
provides details as to our methodology.

A. MLE for the Inverse Gaussian distribution

Given a sample D = {ti}Ni=1 of observed first passage
times, MLEs of the location and scale parameter of the
Inverse Gaussian distribution are given by

µ =
1
N

∑
i

ti = t and α =
N∑

i

(
1
ti
− 1

µ

) ,
respectively.

B. MLE for the Log-normal distribution

Given a sample of N observed first passage times, MLEs
of the location and scale parameter of the Log-normal
distribution are given by

µ =
1
N

∑
i

log ti = log t and σ =
1
N

∑
i

(
log ti − µ

)2
,

respectively.

C. MLE for the Gamma distribution

Given a data sample D = {ti}Ni=1, the log-likelihood for
the parameters of the Gamma distribution is

L(α, κ | D) = N
(
(κ− 1)log t− log Γ(κ)− κ logα− t/α

)
where overlines indicate averaging. The MLE for α is readily
determined as α = t/κ. However, differentiating the log-
likelihood with respect to κ and equating to zero does



not permit for a closed form solution. We therefore follow
Minka’s proposal [32] and apply Newton’s method using

1
κnew =

1
κ

+
log t− log t+ log κ−Ψ(κ)

κ2
(
1/κ−Ψ′(κ)

)
where Ψ is the digamma function.

D. MLE for the Weibull distribution

Given a data sample D = {ti}Ni=1, the log-likelihood for
the parameters of the Weibull distribution is

L(α, κ | D) = N
(
log κ−κ logα

)
−(κ−1)log t−

∑
i

(ti/α)κ.

Deriving L with respect to α and κ leads to a coupled system
of partial differential equations for which there is no closed
form solution. Consequently, we apply Newton’s method for
simultaneous equations and compute[

κnew

αnew

]
=

[
κ

α

]
+

[
∂2L
∂κ2

∂2L
∂κ∂α

∂2L
∂κ∂α

∂2L
∂α2

]−1 [−∂L∂κ
−∂L∂α

]
where the entries of the Hessian matrix and the gradient
vector are given by

∂L

∂κ
= N/κ−N logα+ log t−

∑
i

(ti/α)κ log(ti/α)

∂L

∂α
= κ/α

(∑
i

(ti/α)κ −N
)

∂2L

∂κ2
= N/κ2 −

∑
i

(ti/α)κ
(
log(ti/α)

)2
∂2L

∂α2
= κ/α2

(
N − (κ+ 1)

∑
i

(ti/α)κ
)

∂2L

∂κ∂α
= 1/α

∑
i

(ti/α)κ + κ/α
∑
i

(ti/α)κ log(ti/α)−N/α.
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