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ABSTRACT
We address the problem of characterizing shortest path his-
tograms of networks in terms of continuous, analytically
tractable distributions. Based on a recent model for the
expected number of paths between arbitrary vertices in ran-
dom networks, we establish the Weibull distribution as the
corresponding distribution of minimal path lengths. Empir-
ical tests with different graph topologies confirm our theo-
retical prediction. Our methodology allows for computing
non-linear low dimensional embeddings of path histograms
for visual analytics.

Categories and Subject Descriptors
G.2.2 [Graph Theory]: Path and Circuit Problems; G.3
[Probability and Statistics]: Distribution Functions

General Terms
Theory, Experimentation

Keywords
random networks, shortest path distributions, extreme value
theory, Weibull distribution

1. INTRODUCTION
Histograms of shortest path lengths provide useful statis-

tical characterizations of graphs or networks. First of all,
features such as average path lengths or graph diameters
can be determined therefrom. Second of all, path length
statistics are closely related to dynamic properties such as
velocities of network spreading processes. Accordingly, if an-
alytical models of shortest path distributions were available,
they would facilitate inference and reasoning about network
structures and dynamics.

Yet, although the idea of shortest path lengths distribu-
tions is an intuitive concept, its analytic treatment proves
surprisingly difficult as the combinatorial nature of networks
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makes often obstructs general results. Related approaches
therefore resort to approximations [3, 8].

Here, we extend the work in [3, 8] and draw on extreme
value theory [5, 16] in order to reason about path length
distributions. In particular, we demonstrate that a recent
approximation of inter-vertex distances in random networks
leads to the Weibull distribution as a model of shortest path
lengths statistics. To our knowledge, this characterization
has not been provided before. We proceed as follows:

(i) We review a model discussed in [3, 8] and reinterpret
it in terms of the expected number of paths between nodes
in a random network.

(ii) We summarize key results from extreme value the-
ory and establish the Weibull distribution as an appropri-
ate, physically plausible model of the distribution of shortest
path lengths in random networks.

(iii) We present empirical tests that corroborate our the-
oretical results.

2. DISTANCES IN RANDOM NETWORKS
Following [3, 8], we consider undirected Erdős-Rényi (ER)

random graphs Gn,π of n nodes where any two nodes are
connected with probability π. With respect to the distance
between a random source node vi and another randomly
selected node vj , we let Fd denote the probability that the
latter is at a distance larger than d from the former. That
is, Fd denotes the probability that no path of length less or
equal than d exists between vi and vj .

Fronczak et al. [8] model Fd for the case of generalized
ER graphs. Given two nodes vi and vj , they assume mod-
ified edge probabilities πij = hihj/β where hi and hj are
node specific hidden variables and β = E{h}n is a scaled
expectation. They show that Fd can then be written as

Fd = e
−

hihj

E{h2}n

(
E{h2}n

β

)d
. (1)

Concerned with ordinary ER graphs, Blondel et al. [3]
reduce this model to a simpler form. By letting hi = np for
any node vi in Gn,π, they obtain E{h} = np, E{h2} = n2p2,
and β = E{h}n so that

Fd = e−
1
n

(np)d (2)

where p = n−1
n
π. They interpret this expression in terms of

the following recursive process: if a vertex vj is at a distance
larger than d from a randomly chosen source node, all its
neighbors are at least d − 1 steps away from the source. If
the number of neighbors is approximated by its expectation
np and dependencies are neglected, Fd can be written as



Fd = Fnpd−1. The model in (2) is then recovered by setting

F0 = e−
1
n ≈ 1− 1

n
. (3)

Next, we provide an alternative interpretation of the model
in (2). To this end, we state the following

Theorem 1. Let Gn,π be a connected, undirected Erdős-
Rényi random graph with n nodes and edge probability π. Let
vi and vj be any two distinct nodes in Gn,π. The expected
number of paths E

{
Nd
}

of length d ≥ 2 between vi and vj
amounts to

E
{
Nd
}

=
1

n
(np)d

where p = n−1
n
π.

In other words, the exponent in (2) denotes the expected
number of paths of length d between any two nodes in an
ER graph Gn,π. To prove this, we consider properties of
adjacency matrices of undirected ER graphs. The adjacency
matrix A of a graph with n nodes is a binary n× n matrix
with entries

Aij =

{
1 if there is an edge between vi and vj

0 otherwise.

Rows ai and columns aj of A therefore are binary vectors.
Moreover, as the adjacency matrix of an undirected graph
is symmetric, we have A = AT which implies aTi = ai.

Next, recall that
(
Ad
)
ij

indicates the number of paths of

length d between vi and vj . In particular, for d = 2, we have(
A2)

ij
=

n∑
l=1

AilAlj = 〈ai,aj〉 = 〈ai,aj〉. (4)

That is, the number of paths of length 2 between vi and vj
is given by the inner product of row ai and column aj of A
which, as the latter is symmetric, equals the inner product
of the corresponding columns.

Finally, recall that if Gn,π is an ER graph with n nodes
and edge probability π, its node degrees are Poisson dis-
tributed and the expected node degree is

k = (n− 1)π. (5)

An average column ai of the adjacency matrix A of an ER
graph therefore contains k entries equal to 1 which occur
with probability p = k

n
. For column vectors like these, we

show

Lemma 1. Let u and w be two independent n-dimensional
binary vectors. If their entries are i.i.d. random variables
which equal 1 with probability p and 0 with probability 1− p,
then

E
{
〈u,w〉

}
= np2.

is the expected value of the inner product 〈u,w〉.
Proof. Since the entries ul and wl of vectors u and w

are independently Bernoulli distributed with

P (ul = b) = P (wl = b) = pb(1− p)1−b

where b ∈ {0, 1}, their product ulwl is distributed as

P (ulwl = b) = p2b(1− p2)1−b

= qb(1− q)1−b

which is another Bernoulli distribution. The inner product
〈u,w〉 =

∑n
l=1 ulwl therefore is a sum over n independent

Bernoulli trials. Hence, its value is binomially distributed
with parameters n and q and its expected value is nq =
np2.

This lemma immediately provides us with an estimate of
the expected number of paths of length 2 between any two
nodes vi and vj in Gn,π, namely

E
{(

A2)
ij

}
= E

{
〈ai,aj〉

}
= np2. (6)

Using this estimate as a basis for mathematical induction
then provides the following

Proof of theorem 1. Let A ∈ Rn×n be the adjacency
matrix of an ER graph Gn,π. Since the expected degree of
any node v is k = (n− 1)π, an average row or column of A
contains k entries equal to 1 which occur with probability
p = k

n
. The number of paths of lengths 2 between any two

nodes vi and vj is given by
(
A2
)
ij

and E
{(

A2
)
ij

}
= np2.

Accordingly, assuming independence of
(
A2
)
il

and Alj ,
the expected number of paths of length 3 between vi and vj
can be estimated as

E
{(

A3)
ij

}
= E

{∑
l

(
A2)

il
Alj
}

=
∑
l

E
{(

A2)
il
Alj
}

=
∑
l

E
{(

A2)
il

}
E
{
Alj
}

=
∑
l

np2 E
{
Alj
}

= np2 E
{∑

l

Alj
}

= np2np = n2p3

where we have used that
∑
lAlj is the outcome of a series of

n Bernoulli trials each with success probability p. Induction
leads to E

{(
Ad
)
ij

}
= nd−1pd as claimed.

3. THE WEIBULL MODEL
Next, we show that, for the model of inter-vertex dis-

tances in (2), the Weibull distribution naturally arises as a
continuous characterization of the distribution of shortest
path lengths. First, we summarize key results from extreme
value theory and then present theorems that establish our
claims.

3.1 Extreme Value Theory
Extreme value theory is concerned with asymptotics of or-

der statistics such as minima or maxima of random samples.
If X1, X2, . . . , Xn are i.i.d. random variables drawn from

a distribution with cdf F (x), the cdf of the sample minimum
Yn = mini{Xi} is found to be

FYn(y) = P (Yn ≤ y) = 1−
(
1− F (y)

)n
.

Since in the limit n → ∞ this distribution is degenerate,
extreme value theory studies conditions for non-trivial lim-
iting distributions. The Fisher-Tippett-Gnedenko theorem
[7, 10] establishes that there are in fact only three different
types of extreme value distributions: (i) the Gumbel, (ii)
the Fréchet, and (iii) the Weibull distribution.

The Gumbel distribution arises when F (x) is unbounded
from below and has a tail that decreases at least exponen-
tially; the Fréchet distribution arises for distributions F (x)
that are unbounded from below and have a tail that declines



according to a power law; finally, the Weibull distribution
appears if the sampled distribution has a finite lower limit.
The latter obviously applies to path lengths in random net-
works which are lower-bounded by zero.

The pdf and cdf of the standard, two parameter Weibull
minimum distribution for x ≥ 0 are given by

fWB(x;λ, κ) =
κ

λ

(x
λ

)κ−1

e−( xλ )κ (7)

and

FWB(x;λ, κ) = 1− e−( xλ )κ (8)

respectively, where λ > 0 and κ > 0 are scale and shape
parameters.

The Weibull has the following minimum closure property:
If X1, X2, . . . , Xn are independent with Xi ∼ fWB(x;λ, κ)
and Yn = mini{Xi}, then

FYn(y)FYn(y) = 1−
(
1− FWB(y;λ, κ)

)n
= 1− e

(
−( xλ )κ

)n
= 1− e−

(
x

λn−1/κ

)κ
= FWB

(
y;λn−1/κ, κ

)
.

In other words, if the Xi characterize minima each of which
follows a Weibull distribution, then the minimum of the set
{Xi} is distributed according to another Weibull.

3.2 The Weibull and Shortest Path Lengths
The model in (2) considers ER graphs Gn,π and expresses

the probability Fd for two randomly chosen nodes vi and vj
being farther apart than d. Accordingly, the expression

F (d) = 1− Fd = 1− e−
1
n

(np)d (9)

denotes the probability that vi and vj are connected by a
path of length less or equal than d. To show that minima
of samples drawn from F (d) will be Weibull distributed, we
show that F (d) is in the domain of attraction of the Weibull.

Theorem 2. Let Gn,π be an ER graph as in theorem 1
and assume the validity of the model in (2). Then, 1 − Fd
is in the domain of attraction of the Weibull distribution
so that minima of samples drawn from 1 − Fd are Weibull
distributed. That is, minimum distances between any two
nodes vi and vj are Weibull distributed.

Proof. Gnedenko [10] has shown that a distribution F (x)
belongs to the domain of attraction of the Weibull, if the fol-
lowing two criteria are met:

C1 : xl = inf{x | F (x) > 0} > −∞

C2 : lim
h↓0

F (hx− xl)
F (h− xl)

= xγ , γ > 0.

For inter-vertex distances in graphs, the lower bound xl =
0 is clearly finite so that C1 is met. In order to verify that
C2 holds for F (d) as defined in (9), we apply l’Hôpital’s rule

and consider the limiting process

lim
h↓0

F (hd− xl)
F (d− xl)

= lim
h↓0

∂
∂h
F (hd− xl)

∂
∂h
F (d− xl)

= lim
h↓0

x (np)hd−xl e−
1
n

(np)hd−xl

(np)h−xl e−
1
n

(np)h−xl

= x
(np)−xl e−

1
n

(np)−xl

(np)−xl e−
1
n

(np)−xl

= xγ

where γ = 1. Therefore, C2 is met as well.

Given our discussion and results so far, distributions of
shortest paths in ER networks can be characterized using
the following

Theorem 3. Let Gn,π be an ER graph as in theorem 1
and assume the validity of the model in (2), then

(i) the distribution of shortest path between a particular
node vi and a set of nodes {vj}j 6=i follows a Weibull distri-
bution and

(ii) the distribution of all shortest paths in Gn,π follows a
Weibull distribution.

Proof. Both claims follow from theorem 2 together with
the minimum closure property of the Weibull distribution.

3.3 Remarks
To conclude this section, we point out that, even though

extreme value theory may now appear as a general analytic
tool for treating shortest path distributions, our derivation
hinges on properties of ER graphs. Moreover, it hinges on
the approximation in (2) with its implicit assumptions as
to average node degrees and edge probabilities. If, for in-
stance, the variance of the node degree distribution of a net-
work was too high or a graph had an extreme, non-random
layout, e.g. a barbell structure, results concerning expected
distances between nodes are much harder to come by (see
the discussion in [3]). Nevertheless, our experiments below,
in which we consider large sets of Barabási-Albert, power
law, and log-normal graphs suggest that for these “natural”
graphs, too, shortest path lengths vary in a way that is well
accounted for by the Weibull distribution.

Finally, we emphasize that we apply the Weibull as a con-
tinuous characterization of discrete distributions; hop counts
or path lengths in random network are discrete and their dis-
tributions are naturally represented in terms of histograms.
Therefore, using the Weibull to represent empirical shortest
path histograms is convenient for reasoning and inference
but obviously necessitates statistical model fitting.

4. EMPIRICAL EVALUATION
In order to evaluate the merits of the Weibull as a contin-

uous characterization of discrete shortest path distributions,
we determined goodness-of-fit results for different kinds of
graphs. For baseline comparison, we also considered two
alternative models that have been discussed in the related
literature.

4.1 Graph Data
We created different Erdős-Rényi (ER), Barabási-Albert

(BA), power law (PL), and log-normal (LN) graphs of n ∈
{1, 000, 10, 000} nodes.



ER graphs are a staple of graph theory and merit inves-
tigation. To create ER graphs, we used edge probability
parameters π ∈ {0.005, 0.0075, 0.01}. BA and PL graphs
represent networks that result from preferential attachment
processes and are frequently observed in biological, social,
and technical contexts. To create BA graphs, we consid-
ered attachment parameters m ∈ {1, 2, 3} and the expo-
nents of the vertex degree distributions of the PL graphs
were drawn from γ ∈ {2.1, 2.3, . . . , 3.1}. LN graphs have
log-normal vertex degree distributions and reportedly char-
acterize link structures within sub-communities on the web
[15]. To synthesize LN graphs, parameters were chosen from
µ ∈ {1, 1.5, . . . , 3} and σ ∈ {0.25, 0.5, 0.75, 1}. For each
parametrization of all these models, we created 100 graphs,
resulting in a total of 64, 000 graphs.

4.2 Baseline Models
An alternative characterization of shortest path length

distributions arises from considering a complete graph G
with exponentially distributed edge weights. Although G is
fully connected, the edge weights effectively thin the graph
if we assume that transitions from node to node are more
likely for small edge weights. Studying branching processes
in graphs like these, Vazquez [18] derives a model in which
shortest path lengths follow a Gamma distribution

fGA(x; θ, η) =
1

θη
1

Γ(η)
xη−1e−

x
θ (10)

where Γ(·) is the gamma function and θ > 0 and η > 0 are
scale and shape parameters, respectively.

His theoretical prediction is empirically backed by Kalisky
et al. [13] who observe that, for spreading trees in scale free
networks, the number of nodes per layer is Gamma dis-
tributed. However, we point out that Vazquez shows his
model only to be valid for PL graphs where 2 < γ < 3; for
γ ≥ 3, a different regime takes over.

For additional baseline comparisons, we consider the Log-
normal distribution

fLN (x;µ, σ) =
1

xσ
√

2π
e
− (log x−µ)2

2σ2 . (11)

In addition to its familiar interpretation in the context of
multiplicative growth [14], the Log-normal can be under-
stood as the first passage time distribution of a diffusion
with drift [4] and frequently occurs as the distribution of
travel times in networks [2, 11].

4.3 Model Fitting and Goodness-of-Fit
We computed the shortest path histogram h of each of our

model graphs using Dijkstra’s algorithm and applied multi-
nomial maximum likelihood [6, 12] to fit continuous Weibull
(fWB), Gamma (fGA), and Log-normal (fLN ) distributions.
Since statistical tests such as the χ2 test underestimate the
quality of fits to histograms on non-categorial data [9], we
used the Kullback-Leibler (KL) divergence

DKL(h|f) =
∑
d

hd log
hd
fd

(12)

between empirical data h and fitted model f sampled at d
to test goodness of fit. Since the KL divergence measures
the loss of information if h is represented by f , it follows
that the lower the divergence between data and model, the
better the model explains the data.

Table 1: Goodness of fit of models fitted to shortest
path distributions for graphs of 1,000 nodes.

graph type parameters
average DKL value

fWB fGA fLN

Erdős-Rényi π = 0.005 0.009 0.098 0.343
π = 0.075 0.008 0.097 0.375
π = 0.010 0.009 0.079 0.365

Barabási-Albert m = 1 0.005 0.020 0.168
m = 2 0.005 0.055 0.301
m = 3 0.012 0.059 0.344

power law γ = 2.1 0.063 0.008 0.272
γ = 2.3 0.048 0.006 0.217
γ = 2.5 0.038 0.007 0.199
γ = 2.7 0.029 0.010 0.197
γ = 2.9 0.033 0.011 0.182
γ = 3.1 0.018 0.021 0.206

log-normal µ = 1, σ = 0.5 0.021 0.084 0.346
µ = 1, σ = 1.0 0.020 0.064 0.327
µ = 2, σ = 0.5 0.016 0.077 0.366
µ = 2, σ = 1.0 0.016 0.054 0.343
µ = 3, σ = 0.5 0.018 0.088 0.415
µ = 3, σ = 1.0 0.019 0.062 0.392

4.4 Results
Table 1 summarizes goodness of fit results for different

graphs of n = 1, 000 nodes in terms of average DKL values.
Table 2 lists results for graphs where n = 10, 000.

Apart from the fact that the average divergence between
a fitted model and an empirical distribution is slightly lower
for smaller graphs, both tables show strikingly similar re-
sults. We observe that (i) in agreement with our theoretical
results in section 3, the Weibull distribution provides a well
fitting model for the distribution of shortest path lengths in
ER graphs; it outperforms the Gamma and the Log-normal
distribution; (ii) for BA and for LN graphs, too, the Weibull
provides the best fitting model in our tests; (iii) for PL
graphs where 2 < γ < 3, the Gamma distribution provides
the best model for the distribution of shortest path lengths;
this agrees with the theoretical result in [18]; for PL graphs
where γ ≥ 3, the Weibull provides the best fitting model; in
this context, we note that BA graphs are power law graphs
for which γ = 3 [1]; (iv) for sparser graphs. i.e. for graphs
with comparatively fewer edges such as ER graphs where
π < 0.01, BA graphs where m < 3, or PL graphs where
γ ≥ 3, the Weibull model yields particularly good fits.

Given these empirical results, it appears that the Weibull
accounts well for the distribution of shortest path lengths
even for topologies different from the ER model.

Figure 1 and 2 illustrate how the Weibull and the Gamma
fit empirical shortest path distributions. Visual inspection
of many such plots revealed that path length distributions
in ER, BA, and LN networks are typically skewed to the left
or more or less symmetric. In these cases, the Weibull con-
sistently provided accurate descriptions. For PL networks
where 2 < γ < 3, path length distributions were found to
be skewed to the right. In these cases, the Gamma achieved
more accurate fits. Here, it is interesting to note that both,
the Weibull and the Gamma, are special cases of the gen-
eralized gamma (GenGamma) distribution [17]. Since the
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(a) ER graph, π = 0.005
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(b) BA graph, m = 3
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(c) LN graph µ = 2, σ = 0.5
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(d) PL graph γ = 3.1

Figure 1: Examples of Weibull fits to the shortest path length distributions of an ER, a BA, an LN, and a
PL graph. The empirical distributions are either skewed to the left or more or less symmetric; the Weibull
mimics this behavior well and closely models the histograms.

Table 2: Goodness of fit of models fitted to shortest
path distributions for graphs of 10,000 nodes.

graph type parameters
average DKL value

fWB fGA fLN

Erdős-Rényi π = 0.005 0.014 0.081 0.240
π = 0.075 0.008 0.053 0.201
π = 0.010 0.038 0.057 0.225

Barabási-Albert m = 1 0.009 0.017 0.128
m = 2 0.006 0.058 0.227
m = 3 0.015 0.061 0.248

power law γ = 2.1 0.069 0.008 0.188
γ = 2.3 0.071 0.005 0.159
γ = 2.5 0.063 0.007 0.129
γ = 2.7 0.062 0.015 0.126
γ = 2.9 0.053 0.027 0.113
γ = 3.1 0.045 0.046 0.129

log-normal µ = 1, σ = 0.5 0.033 0.099 0.288
µ = 1, σ = 1.0 0.035 0.070 0.250
µ = 2, σ = 0.5 0.023 0.086 0.281
µ = 2, σ = 1.0 0.024 0.054 0.237
µ = 3, σ = 0.5 0.022 0.083 0.293
µ = 3, σ = 1.0 0.027 0.044 0.240

GenGamma is a three-parameter distribution, it allows for
more flexible model fitting than either the Weibull or the
Gamma. Accordingly, it seems auspicious to attempt to rig-
orously unify our theoretical and practical results and those
in [18] under the umbrella of the GenGamma. For now, we
leave this to future work.

4.5 Embedding Path Length Histograms in 2D
An interesting consequence of using two-parameter dis-

tributions to characterize shortest path histograms is that
they provide a nonlinear embedding path length data into
two dimensions. This allows for visual analytics of the be-
havior of different graph topologies w.r.t. path length distri-
butions. Figure 3 shows exemplary histograms of shortest
path lengths by means of their two-dimensional coordinates
(κ, λ) that result from fitting Weibull distributions to the
data. Looking at the figure, it appears that shortest path
length distributions obtained from different network topolo-
gies cluster together or are confined to certain regions in the
parameter space. These are preliminary observations which,
to the best of our knowledge, have not been reported before.
An in-depth study of the characteristics of these representa-
tions and possible physical interpretations is underway and
results will be reported elsewhere. However, the figure sug-
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(a) Weibull fit

0 1 2 3 4 5 6 7 8 9 10 11

path length
0.0

0.2

0.4

0.6

0.8

1.0

fr
eq

ue
nc

y

Gamma fit
empirical data

(b) Gamma fit

Figure 2: Example of a Weibull and a Gamma fit to
the shortest path length distribution of a PL graph
(γ = 2.3). The empirical distribution is noticeably
skewed to the right and the Gamma distribution
provides the better model.

gests that the idea of characterizing networks in terms of
continuous models of shortest path distributions is indeed
auspicious and may lead to new insights as to properties of
different types of networks..

5. SUMMARY AND FUTURE WORK
We considered the problem of representing discrete path

lengths distributions by means of continuous, analytically
tractable models. We reinterpreted a recent approximation
of inter-vertex distances in random networks in terms of the
expected number of paths of length d between two arbitrary
nodes. Resorting to extreme value theory, we showed that,
for this model, the Weibull distribution naturally arises as
the distribution of shortest expected path between nodes.

Empirical tests with different types of random graphs con-
firmed our theoretical results and revealed that, in addition
to Erdős-Rényi graphs, the Weibull also accounts well for
shortest path length distributions in Barabási-Albert and
Log-normal graphs. For power law graphs, we found the
Weibull distribution to provide good fits whenever the power
law exponent γ ≥ 3.

As an application in the context of visual analytics, we
briefly discussed a non-linear embedding of high-dimensional
path length histograms into 2D parameter spaces and ob-
served structural regularities in the resulting representations.
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Figure 3: Two-dimensional embedding of short-
est path histograms obtained for different kinds of
graph topologies. Each point (κ, λ) represents a path
length distribution in terms of the parameters of the
best fitting Weibull model. Path length distribu-
tions obtained from different types of graphs appear
to confined to specific regions.

Given these results, there are several directions for fu-
ture research. First of all, it appears auspicious to unify
our results with those of Vazquez in [18] and attempt a
characterization of shortest path length histograms in terms
of the generalized Gamma distribution which subsumes the
Weibull and the Gamma.

Second of all, it appears worthwhile to attempt to connect
the shape and scale parameters of the Weibull distribution to
physical properties or well established features of networks.
Here it seems auspicious to resort to analytical results on
expected path lengths in random networks by Fronczak et
al. [8]; we expect to be able to establish a connection to, say,
the expected value or the variance of the Weibull.

Third of all, we need to extend our approach towards dis-
tributions with multiple modes. The obvious strategy is to
consider mixtures of Weibull distributions in order to cope
with more regular network structures.

Finally, the proposed approach of embedding path lengths
histograms in 2D merits further study. If it was possible to
establish a connection between locations in these parameter
spaces and graph topologies, there will be implications for
network inference from outbreak data.
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