
18 REFERENCES

[Janas, 1988] Janas, J. M. (1988). Covers for functional independencies. In Conference of

Database Theory. Springer, Lecture Notes in Computer Science 338.

[Kanellakis, 1990] Kanellakis, P. (1990). Formal Models and Semantics, Handbook of The-

oretical Computer Science, chapter Elements of Relational Database Theory, 12, pages

1074 { 1156. Elsevier.

[Kanellakis et al., 1983] Kanellakis, P., Cosmadakis, S., and Vardi, M. (1983). Unary

inclusion dependencies have polynomial time inference problems. Proc. 15th Annual

ACM Symposium on Theory of Computation.

[Mannila and R�aih�a, 1991] Mannila, H. and R�aih�a, K.-J. (1991). The design of relational

databases. Addison-Wesley.

[Morik et al., 1993] Morik, K., Wrobel, S., Kietz, J.-U., and Emde, W. (1993). Knowledge

Acquisition and Machine Learning: Theory, Methods and Applications. Knowledge-

Based Systems. Academic Press, London u.a.

[Piatetsky{Shapiro and Frawley, 1991] Piatetsky{Shapiro, G. and Frawley, W. (1991).

Knowledge discovery in databases { an overview. In G. Piatetsky-Shapiro, W. F.,

editor, Knowledge Discovery in Databases, pages 1 { 27. AAAI Press, Menlo Park.

[Plotkin, 1970] Plotkin, G. D. (1970). A note on inductive generalization. In Meltzer,

B. and Michie, D., editors, Machine Intelligence, chapter 8, pages 153{163. American

Elsevier.

[Savnik and Flach, 1993] Savnik, I. and Flach, P. (1993). Bottum-up indution of func-

tional dependencies from relations. In Piatetsky-Shapiro, G., editor, KDD-93: Work-

shop on Knowledge Discovery in Databases. AAAI.

[Schlimmer, 1993] Schlimmer, J. (1993). Using learned dependencies to automatically

construct su�cient and sensible editing views. In Piatetsky-Shapiro, G., editor, KDD-

93: Workshop on Knowledge Discovery in Databases. AAAI.

[Ullman, 1988] Ullman, J. D. (1988). Principles of Database and Knowledge-base Systems,

volume 1. Computer Science Press.

REFERENCES 17

times faster than Schlimmer's algorithm. Even without any bound on the length of the

FDs it is still eight times faster and it uses a database. We conjecture, that this interesting

but also unexpected result is mainly caused by the distinction between the three types of

attributes in the search for functional dependencies.

But of course the two domains above are not typical database applications. Table 2

shows the results of our algorithm with respect to a real database, the library database of

our computer science department. Here it becomes obvious that our pruning criterions are

e�cient, because with a bound of six attributes and without any bound the time needed

is nearly the same. The di�erences are neglectable because there are many more users

working on the network and the results are only reproducible within some bounds. But

apart from the known primary key of the database the discovered FDs are semantically

meaningless.

Furthermore we have stored the tuples of the databases mentioned above as ordinary

PROLOG Facts. In the Breast Cancer domain the results were very surprising, because

the database approach is more than four times faster as using eleven place PROLOG

predicates, one place for every attribute, and simulating the SQL queries in PROLOG.

But the reason is obvious. This kind of representation is not e�cient because due to the

arity of the predicates which represent the tuples, we have to take into account eleven

variables even for testing unary FDs.

In summary, on can say that the algorithm which we present in our work has one

important advantage over the two approaches mentioned above. The algorithm is capable

of dealing with great amounts of data, because we use a real database for the storage. And

as a side e�ect, because we use standard SQL statements for the discovery of FDs, our

approach is portable and we can use any database which \understands" SQL as a query

language.

Acknowledgment: This work is partly supported by the European Community

(ESPRIT Basic Research Action 6020, project Inductive Logic Programming) and the

Daimler{Benz AG, Contract No.: 094 965 129 7/0191.

References

[Bell, 1995] Bell, S. (1995). Inferring data independencies. Technical Report 16, University

Dortmund, Informatik VIII.

[Brockhausen, 1994] Brockhausen, P. (1994). Discovery of functional and unary inclusion

dependencies in relational databases. Master's thesis, University Dortmund, Informatik

VIII. in german.

[Dehaspe et al., 1994] Dehaspe, L., Laer, W. V., and Raedt, L. D. (1994). Applications

of a logical discovery engine. In Wrobel, S., editor, Proc. of the Fourth International

Workshop on Inductive Logic Programming, GMD-Studien Nr. 237, pages 291{304, St.

Augustin, Germany. GMD.

[Fagin, 1981] Fagin, R. (1981). A normal form for relational databases that is based on

domains and keys. ACM Transactions on Database Systems, 6(3):318{415.

16 4 EVALUATION AND CONCLUSIONS

Algorithm Data Base jrj jRj jX j Time

Savnik/Flach Lymphography 150 19 7 9 min

Schlimmer Breast Cancer 699 11 4 1 h 14 min

Bell/Brockh. Lymphography 150 19 7 > 33 h

Bell/Brockh. Breast Cancer 699 11 11 8 min 53 sec

Bell/Brockh. Breast Cancer 699 11 4 4 min 19 sec

Table 1: Comparison of the Experimental Results from [Savnik and Flach, 1993] and

[Schlimmer, 1993] with the algorithm functional dependencies.

Database jrj jRj jX j Time N

Books 9931 9 9 4 h 44 min. 25

Books 9931 9 6 4 h 40 min. 25

Books 9931 9 3 2 h 10 min. 20

Table 2: Summary of the results of the algorithm functional dependencies.

4 Evaluation and Conclusions

We compared our algorithm with two approaches: Savnik and Flach call their method

\bottom{up induction of functional dependencies from relations"[Savnik and Flach, 1993].

Briey, they start with a bottom{up analysis of the tuples and construct a negative cover,

which is a set of FIs. Therefore they have to analyze all combinations between any two

tuples. In the next step they use a top{down search approach similar to ours in order to

discover the functional dependencies. They check the validity of a dependency by searching

for FIs in the negative cover. Schlimmer also uses a top{down approach, but in conjunction

with a hash{function in order to avoid redundant computations [Schlimmer, 1993].

But in contrast to our algorithm, in both articles mentioned, the authors do not use

a relational database like OracleV7 or any other commercial DBMS. They even do not

use a database at all. And this has some important e�ects on the results, which will be

discussed in the next paragraph. Table 1 shows a summary of their results, where jrj

denotes the number of tuples, jRj the number of attributes, jX j the maximal number of

attributes on the left{hand side of a FD and time is the time needed for the discovery

of the most general cover. For comparison reasons we introduced such a bound on the

number of attributes in our algorithm.

First, our algorithm cannot detect the FDs in the Lymphography domain in reasonable

time, because we do not hold the data in main memory like Savnik and Flach. And

since most of the FDs are really long, for some attributes the shortest most general FDs

have already seven attributes on the left side, the search space and the overhead for the

communication with the database is to big. But it cannot be said that our approach is

inferior to the one of Savnik and Flach, because the circumstances are to di�erent, namely

the presence or absence of a database for the storage of the tuples.

Second, in the Breast Cancer domain our algorithm is really fast, more than seventeen

3.4 Functional Dependencies 15

The funcion top{down{search is twofolded. This distinction between the two phases is

useful, because if A is an attribute on the left hand side of a most general FD, then we need

not consider any combination of attributes on the left hand side, which entails A. This is

realized by the statement (a). Therefore, our top{down{search with the breadth{�rst and

left{to{the{right strategy starts with two place hypotheses. Then at every step, we take

the �rst element of the queue, test the hypothesis and if the test is negative, the node in

the tree is expanded and the direct children are put in left to right order at the end of the

queue.

But we need some more procedures namely update{fd and has{fd{as{subset,

which can be found in [Brockhausen, 1994]. The latter detects the following situation,

cf. example 4 which is always present by the nature of a lattice and which is impossible

to avoid in general.

Example 4 Let CE ! F be a newly detected most general FD and AB is a FI, cf. �gure

8. Then it is wrong to delete C and E in LHS(F). But one have to exclude , that C and

E together are part of the left hand sides of later generated hypotheses. For example the

successors ABC and ABE from AB have to be generated but ABCE and ABCDE not.

As the global data structure for the exploitation of the transitivity of FDs, we use a

graph structure similar to the one described for the algorithm inclusion dependencies.

Here again we start with the known most general FDs as edges, i.e. the unary primary

keys, and after the detection of new FDs by database queries or by inference, the graph is

updated by the procedure update{fd. The inference already starts at the classi�cation

of the attributes into the disjunct classes. update{fd has some drawbacks on the lists

LHS(A

i

) and UH(A

i

) too, where we omitted the details here in order not to complicate

the presentation of the algorithm in �gure 10.

The procedure for deriving one new FD because of the transitivity has a running time

O(l + e), where l denotes the number of nodes in the graph. At the moment we still use

search procedures like DFS or BFS in a graph which also exploit the known independencies

but we do not use any theorem prover.

But this search procedure can be called l times in the worst case. And worst in this

case is the fact that the number of nodes in the graph can be exponential in n, the number

of attributes. Even if we have n attributes and O(n) tuples in a single table, it is possible

that there exists
(2

n

2

) most general FDs, as shown in [Mannila and R�aih�a, 1991], or

correspondingly nodes in the graph.

We should mention that we also use the discovered inclusion dependencies in the

algorithm above. If we know that the set of values of the attribute A is a proper subset

of the attribute B, then A cannot functionally determine B or A 6! B.

At the moment, we are interested in \correct" FDs, either the FD X ! B is valid or

not, i.e. X ! B is a FI. But certainly, a database contains \noise" in many ways, which

we will not discuss here. But if we want to cope with this problem, all we have to do is to

change the statement a

1

= b in �gure 6 into j a

1

� b+ � j� �. Here � denotes a threshhold,

i.e. the number of allowed tuples, which \contradict" the FD. � is a \correction factor" in

order to deal with NULL{values and attributes of the class NKNN. We get this value as

a side e�ect of the classi�cation of the attributes.

14 3 DISCOVERING DATA DEPENDENCIES

1. Top{Down{Search{Start

Test all unary hypotheses A

i

! B from UH(B). If A

i

! B is a valid FD, then do:

(a) Delete A

i

in LHS(B).

(b) Call the procedure update{fd with A

i

! B.

If LHS(B) = ; then RETURN

2. Top{Down{Search

Sort the names of all attributes in the list LHS(B) in ascending order. Let A

1

; : : : ; A

n

be the attributes in LHS(B). Construct all two place combinations A

i

A

j

, i < j,

i; j 2 f1; : : : ; ng and insert them into the queue QUEUE.

WHILE QUEUE6= ; DO

Let A

r

1

: : :A

r

k

be the �rst element of QUEUE.

IF NOT(has{fd{as{subset(A

r

1

: : :A

r

k

))

THEN verify the hypothesis A

r

1

: : :A

r

k

! B at the database.

IF A

r

1

: : :A

r

k

! B is valid

THEN call udate{fd with A

r

1

: : :A

r

k

! B.

ELSE construct all k + 1{place sons A

r

1

: : :A

r

k

A

l

with l 2 fk + 1; : : : ; ng. Put these at the end of QUEUE

OD

RETURN

Figure 10: Function: top{down{search

3.4 Functional Dependencies 13

Algorithm: functional dependencies

Input: All attributes A

1

; : : : ; A

n

of the relation

Output: All discovered most general FDs

1. Compute the class of attributes NKNN.

2. For each attribute A

i

do:

(a) Compute a list LHS(A

i

) of all possible attributes for the left{hand side of most

general FDs X ! A

i

.

(b) Compute a list UH(A

i

) of all possible attributes for unary hypotheses A

k

! A

i

3. For each attribute A

i

do:

IF bottom{up{search THEN top{down{search

Figure 9: The Algorithm functional dependencies

In the algorithm functional dependencies we have integrated two main ideas,

namely to exploit the transitivity of FDs and to concentrate on the computation of most

general FDs.

Every attribute in a relation can be classi�ed in one of three disjunct classes. We denote

the �rst class with UCK, that means unary candidate key. Attributes which contain only

distinct values and no NULL{values belong to this class. Some of them for example may

be marked in the system table of the database as the unary primary key or as a unique

index and so on. All the attributes of this class are keys and therefore they build the

left{hand sides of most general FDs, which the algorithm need not to generate anymore.

Other attributes contain NULL{values. They build up the second class NK, \no key".

All these attributes trivially do not imply any other attribute and more important they

are useless for specializations of hypotheses which correspond to an invalid most general

FD.

As a consequence only the attributes of the third class NKNN, that means \no-key-no-

null-values", are needed for the left{hand sides during the search for unknown most general

FDs. For the computation of the class NKNN we exploit the information in the system

table of the database and analyze the data itself where needed. The time complexity of

this operation, which is the �rst step in our algorithm, cf. �gure 9, is O(n �m).

The second step in �gure 9 mainly initializes data structures for the following third

step. But if we are looking for FDs of the form X ! B and the attribute B is an element

of the class UCK then we need not consider any unary hypotheses in the third step with

the attribute B on the right{hand side, because they all are invalid FDs. This is also

recognized in this step which has a time complexity of O(n

2

).

The function bottom{up{search in the next step is quite simple. Assume that the

attributes A

1

; : : : ; A

n

are possible attributes for the left{hand side of a most general FD

X ! B. Then we test the most special hypothesis A

1

: : :A

n

! B. If the corresponding

FD is not true then we need not consider this search space. Otherwise the function returns

true and the function top{down{search will be called.

12 3 DISCOVERING DATA DEPENDENCIES

1. SELECT SUM (COUNT (DISTINCT A

1

)),

SUM (COUNT (DISTINCT B))

FROM R

GROUP BY A

1

; : : : ; A

n

=: a

1

; b

2. a

1

= b) A

1

: : :A

n

! B

Figure 6: A SQL statement for the Computation of Functional Dependencies

R A

1

A

2

A

3

B C

3 3 11 d f

2 1 7 d f

2 2 9 c i

3 3 11 d g

1 2 9 a p

2 2 9 c h

A

1

A

2

B

1 2 a

2 1 d

2 2 c

3 3 d

A

2

A

3

B

1 7 d

2 9 a

2 9 c

3 11 d

Figure 7: A sample relation to demonstrate the SQL query

R, the other two tables show the intermediate results of the SQL queries. The results of

the queries wrt. the hypotheses are as follows: a = b = 4 and a = 3 6= 4 = b respectivly. It

follows that A

1

A

2

! B is a FD and A

2

A

3

6! B a FI. �

All the attributes for the left{hand side of most general FDs of the type X ! F

build a semi lattice. Figure 8 shows the intuitive reduction of this semi lattice into a tree

structure where we have left away the right{hand sides, which is always the attribute F

in this example.

AB AC AD AE BC BD BE CD CE

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

DE

ABCD ABCE ACDE BCDE

ABCDE

A B C D E

ABDE

AB AC AD AE BC BD BE CD CE

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

DE

ABCD ABCE ABDE ACDE BCDE

ABCDE

A B C D E

Figure 8: Reduction of a semi lattice into a tree structure

3.4 Functional Dependencies 11

A1

A6 A5

A4

A2 A3(1)

(1)

(1)

(1)

(2)

(2)

(3)
(3)

Figure 5: Sketch to example 2

A

1

; : : :A

n

6� A

1

are valid UINDs and UINIs respectively, then starting with A

1

we will

pose 2 � n database queries. But if we were starting with A

n

we would only need 2 SQL

queries. This is caused by the transitivity and the fact that A

n�1

6� A

1

; : : : ; A

2

6� A

1

are

UINIs, cf. lemma 1. �

Example 2 Figure 5 illustrates the last example. (1) depicts the edges inserted after

step 3 in the algorithm inclusion dependencies and assume that no other UINDs are

valid. If we start with (3) and the test A

6

, then the following tests are deleted by update:

A

5

,: : : ,A

2

. After the test A

6

the remaining tests A

5

,: : : ,A

2

are removed. Starting with (2)

would be a worst case scenario in this example. �

It is easy to overcome this problem by altering our algorithm. First, look for these

chains and then, by using a heuristic choose a \good" numbering.

3.4 Functional Dependencies

We start this subsection with a presentation of the necessary SQL statement in order to

compute functional dependencies. Figure 6 lists the statement and the condition which

must hold. The clue is the GROUP BY instruction. The computational costs of this

operation are dependent on the database system, but it can be done in time O(m� logm).

The statement itself counts the di�erent values in each group and sums up over all groups.

It is su�cient to count only the di�erent values for the attribute A

1

, because this number

is the same for all attributes A

1

up to A

n

. But it is important that the attribute B, the

right hand side of the hypothesis, does not appear as an attribute in the grouping. And

since we are looking for most general FDs, it is assured, that the attributes A

1

; : : : ; A

n

; B

are all distinct. The statement returns a binary tuple. If the two numbers are the same

then the hypothesis is true, that means that the corresponding functional dependency

holds in the database.

Example 3 The relation R contains the attributes A

1

; : : : ; A

3

, B and C. The hypotheses

A

1

A

2

! B and A

2

A

3

! B are to be veri�ed. The �rst table in �gure 7 depicts the relation

10 3 DISCOVERING DATA DEPENDENCIES

Procedure: update graph

Input: One valid UIND A

i

� A

j

1. Insert the edge A

i

! A

j

into the graph.

2a) i < j

(a) Find all nodes A

k

, k > i, from which exists a path to the node A

i

.

(b) Find all nodes A

l

, l > i, which are reachable from A

j

.

(c) Delete all tests A

l

; l > j in the list A

i

.

(d) Delete all tests A

l

; k < l in the lists A

k

.

(e) Delete all tests A

k

; k > l in the lists A

l

.

2b) i > j

(a) Find all nodes A

k

, k > j, from which exists a path to the node A

i

.

(b) Find all nodes A

l

, l > j, which are reachable from A

j

.

(c) Delete all tests A

k

; k > i in the list A

j

.

(d) Delete all tests A

l

; k < l in the lists A

k

.

(e) Delete all tests A

k

; k > l in the lists A

l

.

Figure 4: Procedure update graph

At a �rst glance, this result looks strange because of theO{notation. But our algorithm

has one very important property. Given a �xed numbering of the attributes at step 2,

the algorithm presented here always poses a minimal number of database queries for

the discovery of UINDs, by exploiting the transitivity of UINDs and hence it saves all

superuous queries to the database.

It can be shown that there exist \good" and \bad" numberings of the attributes in

step 2, cf. example 2, resulting in di�erent numbers of \necessary" database queries. But

even if the numbering is a worst case one, as long as there exists at least one valid UIND

in the database, our algorithm saves at least one database query.

And since one database query | given a \real" database and measured in cpu{time

| takes considerably longer than our whole algorithm inclusion dependencies without

the database queries, the extra amount of work with time complexity O(n

4

) is more than

justi�ed. And for this reason it does not matter if it is possible to drop the time complexity

of summand O(n

4

), which seems possible, because it would not save one more database

query.

Now, we present a short example demonstrating our algorithms inclusion dependen-

cies and update. But it serves also as an illustration of one drawback of our implemented

approach.

Example 1 We are looking for all UNIDs between A

1

and A

2

; : : : ; A

n

. Suppose that a

transitive chain A

n

� A

n�1

� : : :A

2

exists, because of the foreign key entries in the

system table. Then after step 3 in the algorithm inclusion dependencies all these edges

are inserted into the graph. If A

1

� A

2

; A

1

� A

3

; : : : ; A

1

� A

n

and A

2

6� A

1

; A

3

6�

3.3 Unary Inclusion Dependencies 9

Algorithm: inclusion dependencies

Input: A list of all attributes of one type

Output: A list of all inclusion dependencies between attributes of one type

1. Compute all candidate attributes for UINDs, which ful�ll the condition: the interval,

made up by the minimal and maximal value for this attribute | these are the value

restrictions | is a subset or a superset for any other attribute of this type.

2. Number all attributes from A

1

up to A

n

.

3. Construct a directed graph with nodes A

i

and edges A

i

! A

j

, i� A

j

is marked in

the system table as a foreign key for A

i

.

4. Construct the following list structure:

h

[A

1

: [A

2

; A

2

]; [A

3

; A

3

]; : : : ; [A

n

; A

n

]]

[A

2

: [A

3

; A

3

]; : : : ; [A

n

; A

n

]]

.

.

.

[A

n�1

: [A

n

; A

n

]]

i

A

j

and A

j

respectively are symbols for the tests, if the UINDs A

i

� A

j

or A

j

� A

i

are valid. The list of A

i

contains A

j

or A

j

with j > i, if there does not exist a path

in the graph from A

i

to A

j

or A

j

to A

i

respectively.

5. For all A

i

with 1 � i < n do:

(a) Let A

i+r

with r 2 f1; : : : ; n� ig be the next test. If there exists an edge from

A

i+r

to a node A

k

with k < i and no edge from A

i

to A

k

, then continue at

step 5b with the next test, else execute the test. If A

i

� A

i+r

is valid, then call

update graph with A

i

� A

i+r

and continue at step 5b, else continue directly

at step 5b.

(b) Let A

i+r

with r 2 f1; : : : ; n� ig be the next test. If there exists an edge from

A

i

to a node A

k

with k < i and no edge from A

i+r

to A

k

, then continue at

step 5a with the next step, else execute the test. If A

i+r

� A

i

is valid, then

call update graph with A

i+r

� A

i

and continue, else continue.

(c) While the list of the tests for A

i

is not empty, continue at step 5a with the next

test A

i+r+1

.

6. Return all edges of the graph as UINDs

Figure 3: Algorithm inclusion dependencies

8 3 DISCOVERING DATA DEPENDENCIES

1. SELECT COUNT(DISTINCT R

i

:A

1

)

FROM R

i

; R

j

WHERE R

i

:A

1

= R

j

:A

2

=: e

2. SELECT COUNT(DISTINCT A

1

)

FROM R

i

=: e

1

3. SELECT COUNT(DISTINCT A

2

)

FROM R

j

=: e

2

4. e = e

1

) A

1

� A

2

5. e = e

2

) A

2

� A

1

6. e = e

1

= e

2

) A

1

= A

2

Figure 2: SQL Statements and Conditions for Calculating UINDs

Lemma 1

1. If there exists a directed edge from the node A

i+r

to the node A

k

and no edge from

the node A

i

to the node A

k

with k < i, then it is impossible that there exists an edge

from the node A

i

to the node A

i+r

.

2. If there exists a directed edge from the node A

i

to the node A

k

and no edge from the

node A

i+r

to the node A

k

with k < i, then it is impossible that there exists an edge

from the node A

i+r

to the node A

i

.

All the other steps in the algorithm are responsible for an ordered run through all

possible tests and are trivial. The procedure update graph discovers the transitive

relations between the UINDs. The two steps and the distinction between the two cases

guarantee that tests are deleted only in those lists, where they can occur. Hence the

list structure becomes \incomplete" and some more cases are needed in the algorithm

inclusion dependencies which we omitted here.

The procedure update graph has a time complexity of O(n + e), where n and e

denote the number of nodes and edges as usual. For example in the case i < j we have

to execute a depth{�rst search or breadth{�rst search in step 1a and 1b. Deleting of

tests can be done on the run and in time O(1), but one has to change the data structure

at step 4 in the algorithm inclusion dependencies from a list structure to arrays in

order to achieve this result, which is a simple transformation, but would complicate the

presentation here.

A naive algorithm for computing inclusion dependencies has a time complexity of

�(n

2

� m

2

). It generates exactly

n�(n�1)

2

database queries, if the corresponding UINDs

are valid or not. In contrast the algorithm inclusion dependencies has a overall time

complexity of O(n

4

+ n

2

�m

2

). The summand O(n

4

) is caused by the nested loop and

each call to update graph.

3.3 Unary Inclusion Dependencies 7

Quintus Prolog

SQL

SQL

TCP/IP

DB

(VARCHAR)

(VARCHAR)(NUMBER)

(NUMBER)

Output

Input

C - Interface

System Tables

Network

Functional

Dependencies

UINDs UINDs

Value

Restrictions

Value

Restrictions

Prolog Terms

DBMS

ORACLE V7

Tuples

Figure 1: Systemoverview

6 3 DISCOVERING DATA DEPENDENCIES

it makes sense to gather all di�erent numeric and alphanumeric types in \generic" types

NUMBER and STRING, which are mapped in turn onto the Prolog types NUMBER and

ATOM. Data of type RAW is suppressed.

Our system is build up by a hierarchie of three algorithms, i.e. part of the output of

one algorithm is used as input for the algorithm above. The dotted square symbolizes

that we compute these restrictions, but normaly they do not have a semantic meaning.

But nevertheless, they are useful wrt. the computation of the UINDs.

3.2 Value Restrictions

We consider value restrictions or the upper and lower bounds of attribute domains. We

select the minima and maxima for all attributes in all relations with the corresponding

SQL statements. The SQL statement uses the normal order on numbers for numerical

attributes and the lexicographic order on the character set for attributes of a symbolic

type. Since it is possible to compute the two values in one query, the overall costs are

O(n �m). Throughout this section n denotes the number of attributes in all tables and

m the maximal number of tuples in the table which possesses the most.

The third argument, i.e. the type, is determined by the two Oracle data types, as

already mentioned above, in order to infer UINDs.

3.3 Unary Inclusion Dependencies

Unary inclusion dependencies can be computed by taking advantage of the transitivity and

of a run through all possible combinations in a special sequence. First, we start with the

presentation of the necessary SQL statements and conditions for calculating the UINDs

in �gure 2.

The results of the queries are numbers. It is possible to combine the second and third

statement in one query, because in some cases both UINDs A � B and B � A are possible,

but in others only one UIND. The implemented version of the algorithm always uses the

appropriate query. The time complexity of the SQL statements is determined by the join

in the �rst one and is O(m

2

).

The algorithm inclusion dependencies depicted in �gure 3 is called one time for

each kind of the mentioned \generic" data types in the database.

The algorithm uses a graph representation for UINDs. There exists a directed edge

from the node A

i

to the node A

j

, if and only if there exists an UIND R

p

[A

k

] � R

q

[A

l

] in

the database and A

i

and A

j

are numbers which represent the attributes A

k

and A

l

in the

relations R

p

and R

q

respectively. In the algorithm we denote by A

i

� A

j

the edge in the

graph as well as the corresponding UIND.

The computational costs of step 1 in the algorithm are O(n

2

), because all combinations

between two attributes are considered. But here, since we do not pose any database

query, we do not exploit the transitivity between intervalls, which otherwise will result in

computational costs which are at least as high in the best case.

The correctness of the algorithm is considerably based on the following lemma. It

is a direct consequence of the axiomatization of dependencies and independencies, cf.

[Bell, 1995], and the proof is done by contradiction concerning the transitivity of UINDs.

5

An example of such a semi lattice can be found later in �gure 8. This de�nition cor-

responds to the usual more general de�nition in machine learning, i.e. the �{subsumption

introduced by Plotkin [Plotkin, 1970]. The relationship also reects our inference rules,

i.e. the inference rule FD2 states that if a relation satis�es a functional dependency, then

the relation satis�es each more speci�c dependency too. For example, if a relation satis�es

the functional dependency AB ! C, then the relation satis�es ABD ! C. We can also

adapt this concept to independencies. Then we say for example: AB 6! C is more general

than ABD 6! C or ABD 6! C is more speci�c than AB 6! C according to inference rule

FI1.

This relationship implies a partial ordering which simpli�es the discovery of functional

dependencies by a simple representation: the set of functional dependencies can be par-

titioned into equivalence classes by the satis�ability de�nition. Each class of functional

dependencies speci�es the same set of admissible relations. As these equivalence classes

will typically contain a large number of elements it is only reasonable to de�ne a suitable

representation with a minimal number of elements. This representation is usually called

minimal cover. We do not use a minimal cover as de�ned in database theory, therefore we

call the cover the most general cover. The di�erence is shown by the following example:

The set fA! B;B ! C;A! Cg is most general in our sense, but not minimal as de�ned

in database theory, because the transitivity rule is applicable.

De�nition 8 (Most General Cover) The set of functional dependencies F is a most

general cover if for every dependency X ! A 2 F , there exists no Y with Y � X and

Y ! A 2 F .

In the next section we put the point of main e�ort on data structures and the imple-

mentation of such inferences and investigate the costs.

3 Discovering Data Dependencies

In this section we present the algorithms to infer integrity constraints, unary inclusion

dependencies and functional dependencies, for more details see [Brockhausen, 1994]. But

we start with an overview of the architecture of our system.

3.1 Architecture

The input for our system consists of the data of a relational database, here Oracle Server

7, with the corresponding database scheme, represented in the system tables. The com-

munication between our system implemented in Prolog and the DBMS takes place over a

network by means of the TCP/IP protocol. Hence we can use any Oracle database which

is worldwide reachable over the Internet.

We generate the SQL queries in Prolog and the interface pushes them forward to the

database. The answer, a set of tuples, has to be converted to Prolog terms. The interface

is responsible for this too. Normally the DBMS o�ers many di�erent numeric and alphanu-

meric data types. But theses types like CHAR or VARCHAR2 in OracleV7 are mainly

meant for storage e�ciency reasons for example and do not imply any fundamental di�er-

ences in the data which justify a separate treatment in the algorithms below. Therefore

4 2 TERMINOLOGY AND DATA DEPENDENCIES

There are interactions between FDs and UINDs and their corresponding independen-

cies which are described by an axiomatization. In our system we do not use a complete

axiomatization but only a subset of inference rules, because we do not exploit the cardi-

nalities of the attributes. But we have a certain order of dependencies in our inference

process. First, we determine the value restrictions. Second, we determine the UINDs and

third the FDs. Therefore, the Armstrongs Axioms, the axiomatization of UINDs and the

following inference rules are only of interest:

De�nition 6 (Inference) Let X; Y and Z be sets of attributes of the same relation if

not mentioned otherwise.

1. The interaction of FDs and FIs can be described by the following rules:

FI1 :

XV 6!Y W;W�V

X 6!Y

FI2 :

X!Y;X 6!Z

Y 6!Z

FI3 :

Y!Z;X 6!Z

X 6!Y

2. The interaction of UINDs and UINIs can be described by:

UI1 :

R[A]�S[B]; R[A]6�T [C]

S[B]6�T [C]

UI2 :

R[A]�T [C]; S[B]6�T [C]

S[B]6�R[A]

3. There is also an interaction between UINDs, UINIs and FIs:

I6:

R[A]�R[B];R[B]6�R[A]

A6!B

Obviously, the operator � is overloaded. But it should be clear from the context

whether the normal subset relation or a UIND is intended. The correctness is proven in

[Bell, 1995]. The rules are given in a natural deduction style. For example, the �rst rule

says, that if we know the FI XV 6! YW is valid and that W is a subset of V , then the FI

X 6! Y must be the case too. The rules UI1 and UI2 describe the interaction between

UINDs and UINIs, whereas the rule I6 describes the interaction between UINDs, UINIs

and FIs.

Additionally, we have some inference rule, which infers from the type and the upper and

lower bounds the corresponding unary inclusion independencies. For example if val(B) =

[b

i

; b

j

; �

b

] and val(A) = [a

i

; a

j

; �

a

] and �

b

6= �

a

, then A 6� B and B 6� A. Another rule is:

if val(B) = [b

i

; b

j

; �] and val(A) = [a

i

; a

j

; �] and b

j

< a

i

, then A 6� B and B 6� A. The

correctness of these rules can be seen easily.

The discovery of value restrictions and UINDs is easier than the discovery of FDs.

Therefore, we need some more terminology for the discovery of FDs: The discovery of

FDs may be visualized as a search in semi lattices consisting of nodes and edges. The

nodes are labeled with data dependencies and the edges describe a relationship between the

nodes. In general, this relationship can be described as a more general than relationship

as in [Savnik and Flach, 1993]:

De�nition 7 (More general) Let X and Y be sets of attributes such that X � Y , then

the dependency X ! A is more general than the dependency Y ! A, or Y ! A is more

speci�c than X ! A.

3

According to Kanellakis [Kanellakis, 1990] a sound and complete axiomatization for

unary inclusion dependencies (UIND) is given by the following de�nition:

De�nition 2 (Inference of Unary Inclusion Dependencies (UINDs)) Inference

rules of unary inclusion dependencies are given by:

U1 : (Reflexivity) A � A

U2 : (Transitivity)

A�B;B�C

A�C

Functional dependencies (FDs) are the most important dependencies between at-

tributes, and X ! Y , for example, says that every pair of tuples that agree in the X

entries must also agree in the Y entries. An axiomatization was given by Armstrong, and

it is usually called Armstrong's axiomatization, cf. [Ullman, 1988].

De�nition 3 (Axiomatization of FDs) X; Y and Z are sets of attributes. An axiom-

atization of FDs is given by:

FD1 : (Reflexivity) If X � Y then Y ! X

FD2 : (Augmentation) If W � V then

X!Y

XV!Y W

FD3 : (Transitivity)

X!Y;Y!Z

X!Z

Kanellakis, Cosmadakis and Vardi [Kanellakis et al., 1983] have investigated the re-

lationship between FDs and UINDs, and shown that there is no axiomatization in the

unrestricted case; in the �nite case, there is only a axiomatization in the presence of

cardinality dependencies.

We [Bell, 1995] have also investigated the relationship of UINDs and FDs, and have

given an axiomatization, regarding the so called independencies. Independencies have

been introduced by Janas [Janas, 1988], but the given axiomatization was not complete.

Functional independencies mirror functional dependencies, but they are meant for a totally

di�erent purpose: they are not semantical constraints on the data, but a support for the

database designer in the task of identifying functional dependencies and they also improve

the inference of functional dependencies. For example, if we know that the FD X ! Y

is valid and Z ! Y is not valid, then we can conclude that the FD Z ! X cannot be

valid too. The reason follows immediately from the de�nition of functional independencies

which is simpli�ed here by ignoring null values.

De�nition 4 (Functional Independency (FI)) X 6! Y denotes a functional indepen-

dency. A relation r satis�es X 6! Y if there exist tuples t

1

, t

2

of r with t

1

[X] = t

2

[X] and

t

1

[Y] 6= t

2

[Y].

Unary inclusion independencies can be de�ned in a similar way.

De�nition 5 (Unary Inclusion Independency (UINI)) R[A] 6� S[B] denotes a

unary inclusion independency. A database satis�es R[A] 6� S[B] if there exists a tuple t

1

of r with t

1

[A] 62 s[B].

2 2 TERMINOLOGY AND DATA DEPENDENCIES

system can not be applied to large sized databases. Thus, our presented system can be

seen at the �rst glance as an optimized version of CLAUDIEN regarding functional de-

pendencies, [Dehaspe et al., 1994]. But there are di�erences: �rst, in CLAUDIEN the

relationship between the dependencies is based on �{subsumption and the veri�cation of

the hypotheses on theorem proving. In our approach, the relationship of the dependen-

cies is based on an axiomatization of FDs and UINDs and the veri�cation is done by the

database management system which groups the rows. This o�ers several advantages: First,

in contrast to we can infer dependencies by some kind of transitivity which is really simple,

theorem proving which is too powerful for this purpose. Second, we can �nd dependencies

in relational databases, which can not be stored in the main memory as PROLOG asser-

tions. In most others ILP learning systems like RDT, cf. [Morik et al., 1993], functional

dependencies can not be expressed. Systems, which are closer to ours, are empirically

compared in section 4.

2 Terminology and Data Dependencies

Familiarity is assumed with de�nitions of relational database theory as given for example

in [Kanellakis, 1990]. The uppercase letters A;B;C stand for attributes and X; Y; Z for

sets of attributes. By convention we omit the braces. R; S stands for relation schemes

and r; s for relations of a database d. Further we assume that our database is �nite,

i.e. there are only �nite many rows in a relation in order to ensure the existence of the

axiomatizations. We use tuple, row and entry in a interchangeable way.

Fagin [Fagin, 1981] introduced domain dependencies, for example IN(A; S) where A is

an attribute and S is a set. It means that the A entry in each tuple must be a member of

the set S. For example, let A be the attribute SALARY, and let S be the set of all integers

between 10; 000 and 100; 000. If A is one of the attributes of relation R, then R obeys

IN(A; S) if and only if the SALARY entry of every tuple of R is an integer between 10; 000

and 100; 000.

We adapt these constraints to the data types of our database management system and

restrict the domains to ordered sets in order to represent them as a pair of lower and upper

bounds. Therefore, we have to distinguish only between numeric and symbolic types of

the attributes and can use the normal orders on numbers and the lexicographic order on

the character set. We denote them as value restrictions:

De�nition 1 (Value Restrictions) Value restrictions are de�ned as follows:

val(A) = [a

i

; a

j

; �]j each value of the attribute A is of type � and in the interval [a

i

; a

j

]

For example, val(SALARY) = [10000; 100000; number] means that the entry of the at-

tribute SALARY is an integer between 10; 000 and 100; 000.

An inclusion dependencies (IND) says that values in columns of one relation must

also appear as values in columns of some other relation. Unary inclusion dependencies

(UINDs) restrict this de�nition to the case, where only one singleton attribute is allowed

as column. As an example, every MANAGER entry in a relation R appears as an EMPLOYEE

entry in a relation S which will be abbriviated by R(MANAGER) � S(EMPLOYEE).

Originally, the concept of INDs in relational database theory has been a generalization of

Codd's notion of a foreign key.

1

1 Introduction and Related Works

Data dependencies are the most common type of semantic constraints in relational data-

bases which determine the database design. Despite the advent of highly automated tools,

database design still consists basically of two types of activities: �rst, reasoning about data

types and data dependencies and, second, normalizing the relations. Automatic database

design may serve as a process to support database designers with a dependencies proposing

system, which may help to design optimal relation schemes for those cases where data

dependencies are not obvious. The so called dependency inference problem is described in

[Mannila and R�aih�a, 1991] as: Given a relation r, �nd a set of data dependencies which

logically determines all the data dependencies which are valid in r.

Unfortunately, it is impractical to enumerate all data dependencies and to try to verify

each of them. Alternatively, a second approach to the dependency inference problem

is to avoid unnecessary queries by inferring as much as possible from already veri�ed

data dependencies. A third approach is to draw inferences not only from veri�ed data

dependencies but also from invalid data dependencies. In this paper we will follow the

latter approach.

To address these problems we present an inference relation on valid and invalid data

dependencies and show how a set oriented language like SQL can be used for testing data

dependencies. We exemplify this by value restrictions, unary inclusion and functional de-

pendencies. The plot of this paper is as follows: In section 2 value restrictions of attributes,

functional and unary inclusion independencies are introduced in order to improve the in-

ference of the dependencies. Then, the corresponding inference relations are discussed.

In section 3 we describe the architecture of our system, show how to test dependencies

by SQL queries and describe the implementation of the former de�ned ineference process.

Also, the complexity of this inference is discussed. We conclude with empirical results and

a comparison with similar systems.

In general, knowledge discovery in databases (KDD) incorporates the same problems

as the above approaches. First, it is impractical to test all hypotheses and second, the

only interface to the database is a database management system.

Knowledge discovery is not only the nontrivial extraction of implicit, previously un-

known, and potentially useful information from data, as de�ned by Piatetsky-Shapiro

and Frawley [Piatetsky{Shapiro and Frawley, 1991], but typically has also the following

properties

1

: high level language, accuracy and e�ciency. High level language means that

the discovered knowledge is represented in a high level language in order that its expres-

sions are understandable by (non technical) humans. Accuracy means that the discovered

knowledge should reect the contents of the database exactly, and if not, the imperfect is

expressed by measures of certainty. E�ciency is a matter of the discovery process and says

that the process is e�cient and the running times for large sized databases are predictable

and acceptable. It is easy to see, that data dependencies ful�ll the �rst two conditions,

the third condition is a matter of the underlying techniques which are discussed later.

Therefore, adapting approaches of machine learning to KDD should consider all these

properties. For example, in CLAUDIEN, cf. [Dehaspe et al., 1994], the high level language

has been taken into account, but the e�cency requirement has been neglected because the

1

Mentioned by C. Lee

Abstract

Knowledge discovery in databases is not only the nontrivial extraction of implicit,

previously unknown and potentially useful information from databases. We argue that in

contrast to machine learning, knowledge discovery in databases should be applied to real

world databases.

Since real world databases are known to be very large, they raise problems of the access.

Therefore, real world databases only can be accessed by database management systems

and the number of accesses has to be reduced to a minimum. Considering this property,

we are forced to use, for example, standard set oriented interfaces of relational database

management systems in order to apply methods of knowledge discovery in databases.

We present a system for discovering data dependencies, which is build upon a set

oriented interface. The point of main e�ort has been put on the discovery of value restric-

tions, unary inclusion- and functional dependencies in relational databases. The system

also embodies an inference relation to minimize database access.

Discovery of Data Dependencies in Relational

Databases

LS{8 Report 14

Siegfried Bell Peter Brockhausen

Dortmund, April 3, 1995

Universit�at Dortmund

Fachbereich Informatik

Forschungsberichte des Lehrstuhls VIII (KI) Research Reports of the unit no.VIII (AI)

Fachbereich Informatik Computer Science Department

der Universit�at Dortmund of the University of Dortmund

ISSN 0943-4135

Anforderungen an:

Universit�at Dortmund

Fachbereich Informatik

Lehrstuhl VIII

D-44221 Dortmund

ISSN 0943-4135

Requests to:

University of Dortmund

Fachbereich Informatik

Lehrstuhl VIII

D-44221 Dortmund

e-mail: reports@ls8.informatik.uni-dortmund.de

ftp: ftp-ai.informatik.uni-dortmund.de:pub/Reports

www: http://www-ai.informatik.uni-dortmund.de/ls8-reports.html

UNIVERSIT

�

AT DORTMUND

Fachbereich Informatik

Lehrstuhl VIII

K

�

unstliche Intelligenz

Discovery of Data Dependencies in Relational

Databases

LS{8 Report 14

Siegfried Bell Peter Brockhausen

Dortmund, April 3, 1995

Universit�at Dortmund

Fachbereich Informatik

University of Dortmund

Computer Science Department

