Enabling End-User Datawarehouse Mining
Contract No. IST-1999-11993
Deliverable No. D14.3

Feature Selection with Support Vector Machines

Timm Euler

University of Dortmund, Computer Science VIII
D-44221 Dortmund, Germany
euler@ls8.cs.uni-dortmund.de
http://www-ai.cs.uni-dortmund.de

December 19, 2002



Abstract

This deliverable describes the usage of the Support Vector Machine
(SVM) algorithm for automatic feature selection. After explaining SVMs
and the approach to feature selection in general (chapter 1), the work done
for implementing this algorithm and a feature selection operator in the Min-
ingMart system is described in chapter 2.



Chapter 1

Feature Selection with
Support Vector Machines

This chapter has three sections. The first explains Support Vector Machines
(SVMs, section 1.1) in general. The second (1.2) deals with one of their
specific properties, namely the possibility to estimate the generalisation error
of an SVM after one training run. The last section (1.3) describes how this
specific property can be used to perform automatic feature selection in a
Machine Learning scenario.

1.1 Support Vector Machines

Support Vector Machines (SVMs, [CV95]) are a development from statis-
tical learning. They are based on the idea of structural risk minimisation
([Vap82]). The following explanations are based on [Joa01].

The learning scenario is formalised as follows. Let S be a training set
of N examples represented by Z1,...,Zn from the vector space X = IR".
Each of these vectors is associated with a class y from a set Y:

S ={(Z1,v),--.,(@n,yn)}

Here we only need the simplest case of binary classification, so we choose
Y = {1,—1}. The aim is to learn a function or hypothesis h : X — Y
from a hypothesis space H such that the probability that an error is made
on a randomly drawn example is as low as possible. Assuming an unknown
distribution Pr(Z,y) of examples, we want to minimise

Err(h) = Pr(h(Z) #y|h) = / L(h(Z),y) dPr(Z,y)

where L is a simple loss function

L(h(Z),y) = { 0 h@ =y

1 else

1



Mining Mart IST-1999-11993, Deliverable No. D14.3 2

Structural risk minimisation is based on the fact that the error rate
Err(h) of a hypothesis can be related to the complexity of H and the training
error rate Erry.(h). The complexity of H is the VC dimension d, defined
as the maximum number of examples that a function from H can separate
correctly given an arbitrary classification of the examples.

The following bound ([Vap98]) gives the relation between error rate and
complexity d of an hypothesis h, where N is the number of training examples
and 1 — 7 is the probability that the bound holds.

n(¥)-1In
Err(h) < Erry(h) + 0 (dl <d])V : (7))) (1.1)

This means that the true error Err(h) is dependent on the training error on
the one hand and on the complexity of the used learning functions on the
other hand. Thus, simple functions cannot usually lead to a good training
error because they cannot separate the examples well enough. In contrast,
very complex functions give good training errors, but also high values for the
right hand side of the bound above (overfitting). In both cases, the bound
is rather loose.

The structural risk minimisation approach is therefore to choose a struc-
ture of nested hypothesis spaces with increasing complexity:

H CHyC...CH;C... where Vi:d;<d;41

Then the task is to choose the index ¢ such that equation 1.1 is minimised.
The Support Vector Machine approach is to choose, from the hypotheses
that solve the learning task, the one from the H; with lowest ¢, which is
explained in the following.

In general, Support Vector Machines find a hyperplane that separates
the training set according to the given classification'. There can be several
such hyperplanes; SVMs choose the one that maximises the distance to the
nearest points (see figure 1.1). This distance is the so-called margin. The
reason for maximising the margin is that a high margin corresponds to a low
VC dimension of the separating hyperplane ([Vap82]). This is formalised as
follows. The hyperplane to be found is of the form % - Z+ b = 0 with normal
vector @ and distance to the origin b/||%||. Thus what we need to find is
the zero of a function f with f(Z) = @ - £ + b, where all training examples
Z; are separated correctly:

yi(W-Z;+b) >0 Vi=1,...,N
But the function f is not uniquely fixed by this. By also requring

yi(W-Z; +b)>1 Vi=1,...,N (1.2)

!We assume for the moment that such a hyperplane can be found. Below, we will
return to the case where this is not true.




Mining Mart IST-1999-11993, Deliverable No. D14.3 3

Figure 1.1: Separation of points by lines in the two-dimensional plane. On
the left several separators, on the right the one with maximal distance to
the nearest points (called support vectors; circled).

the function is fixed and a certain minimal distance § of the nearest points
to the hyperplane is enforced. These points are called Support Vectors, they
define the margin 6. They alone determine the position of the separating
hyperplane. They lie on hyperplanes parallel to the first one and, due to
(1.2), they can be written in the form

w-Zi+b=1 fory; =1
- +b=-1 fory; =—1

So the distance of these parallel hyperplanes to the origin is |1 — b| / ||| or,
respectively, | — 1 —b| / |||, thus their distance to the first hyperplane, the
margin, is 6 = 1/ ||@||. So by minimising ||%|| one maximises the margin.
The relation between high margin and low VC dimension is achieved by
the following lemma. Let all example vectors Z; be contained in a ball with
radius R and let |@ - Z; + b] > 1 hold for them. Then the set of hyperplanes
h(Z) = sign{w - £ + b} in IR", seen as hypotheses, has a VC dimension d

which is bounded by
2

dgmin(l%] ,n)+1.

Thus the VC dimension is dependent on ||#||, the euclidian length of
the normal vector i of the separating hyperplane. In sum, Support Vector
Machines thus have to solve the following optimisation problem:

Minimise:  V (w,b) = |||

subject to: yi(W-Z; +b)>1, Vi=1,...,N (1.3)

To predict the class of unseen examples Z, we compute on which side of the
hyperplane they are:
y = sign(w - Z+0b).



Mining Mart IST-1999-11993, Deliverable No. D14.3 4

However, optimisation problem (1.3) does not have a solution if no sep-
arating hyperplane exists. Thus we must allow training errors to occur in
general. This is done by including an upper bound on the number of train-
ing errors in the objective function of (1.3). Then this upper bound and the
length of w are minimised simultaneously:

Minimise: V(i b,€) = |[@] + C XN, &
subject to: y;(W-Z; +b) >1-¢;, (1.4)
&>0,Vi=1,....N

The &; are called slack variables. If a training example is on the wrong side
of the hyperplane, the correspnding &; is greater than 1. Therefore Efil &
is an upper bound on the number of training errors. The factor C' above is
a parameter that allows to trade off training error vs. model complexity. A
small value for C' will increase the number of training errors, while a large C
will lead to a behaviour similar to that of the previous optimisation problem.

Since the two optimisation problems (1.3) and (1.4) can be numerically
difficult, the Wolfe dual form is used which can be solved efficiently. This is
given below for (1.4).

Minimise: W(@) =Y~ o + 55N, Z;-V:l Yy 0G0 (T - )
subject to: SN yia; =0, (1.5)
0<a;<C,Vi=1,...,N

From the solution of this problem, the classification rule can be computed
as

P

W7 =N, oy(% - %) and (1.6)

b = Ysv — W - Tsy ’
where T, is any support vector with 0 < a; < C. It can be seen that the
resulting weight vector of the hyperplane is constructed as a linear combi-
nation of the training examples. Only support vectors have a coefficient «;
that is non-zero.

In summary, Support Vector Machines find for a given set of training
examples the hyperplane that separates them best and maximises the dis-
tance to the nearest examples, because this hyperplane has the lowest VC
dimension, so the structural risk is minimised. A parameter C' can be used
to trade off the training error against the complexity of the learned model.
During training, a vector E and a vector & are computed which describe each
training example.

1.2 Estimation of the generalisation error of SVMs

This section deals with a specific property of SVMs that allows to estimate
their generalisation error after one training run. This property was discov-
ered by Thorsten Joachims and is described in more detail in [Joa01]. The
proofs of the claims made here can be found there.



Mining Mart IST-1999-11993, Deliverable No. D14.3 )

Usually, after training a learner, its performance can only be determined
on a separate set of examples that were not used for training, but whose
classes are known. By comparing the known classes to the predicted ones,
an empirical error is found and taken as the true error of the learned model.
The closest one can get to the true error is by using all classified examples
for training except for one, testing on this one example and repeating this
for all examples. Averaging over the single errors renders the so-called leave-
one-out error. The problem is that for N training examples, this requires
N learning runs which is usually not feasible. In practice, the number of
examples held out for testing is often increased to N/j, and this is repeated
j times with disjunct test sets. So the number of learning runs is reduced
to j, where often j = 10 is chosen. This process is called cross-validation.

This scenario is applicable to any learner. However, in this section a
method to estimate the empirical error is presented which works only for
Support Vector Machines. The method is called {a-estimation because its
inputs are the two vectors {7 and & described in the last section. What
follows is a slightly simplified definition of the £a-estimator.

Definition 1 Let E and @ be the vectors computed during a training run
of the Support Vector Machine as described in section 1.1, optimisation
problem 1.5. The £a-estimator of the error rate for a hyperplane A is

Brrea(h) = % with d = [{i : (@R + &) > 1}] (1.7)

where N is the number of training examples and R? is an upper bound on
the kernel function evaluated on any pair of examples.

This definition refers to the kernel function of the SVM. In section 1.1,
only linear SVMs were presented in which the kernel function equals the dot
product. In [Joa01], other kernel functions and their use are presented.

The key measure in this definition is obviously d. It counts the number
of examples for which the inequality (o;R% + &) > 1 holds. There is a
connection between this inequality and those examples that can produce a
leave-one-out error if they are not used for training, but for testing. More
precisely, if an example (Z;,y;) is not classified correctly by a SVM trained
on a sample without it, then for this example the inequality must hold for a
SVM trained on the sample with it. Therefore, all examples for which the
inequality does not hold do not produce a leave-one-out error. So the £a-
estimator is an approximation to the leave-one-out error which is never too
low, i.e. never too optimistic. It can be computed during the training run
of a SVM at no extra cost. Empirical tests have shown that the estimator is
often, but not always, tight enough for applications. In particular for text
data it works well. Details and proofs can be found in [Joa01].



Mining Mart IST-1999-11993, Deliverable No. D14.3 6

1.3 Feature Selection using the estimated error

Real-world machine learning tasks often involve a large number of examples
using a complex representation both for the examples themselves and the
hypotheses to be learned. This makes a number of tasks computationally
rather demanding. One remedy can be the simplification of example repre-
sentation. Referring back to the learning scenario presented in section 1.1,
this can mean to change the representation of examples from elements of
IR™ to elements of IR™ with m < n. If this is to be done automatically,
the simplest way is probably to select m dimensions from the n given ones
according to some criteria, and remove the other dimensions. This is the
task of feature selection. It is generally described in MiningMart deliverable
14.1, and the following descriptions are based on this.

As explained in deliverable 14.1, there are basically two approaches to
feature selection called the wrapper and the filter approach. The latter uses
data characteristics and is not dependent on the learning method, while the
former tunes the feature selection to the learning method used and is there-
fore in general more effective, but also computationally more demanding.

Feature selection with Support Vector Machines is based on the wrap-
per approach. The general wrapper scenario is the following. Let Fj, be
the set of n given features. We search for a subset of F;, which reduces
the computational time needed for learning without losing generalisation
performance, possibly even improving generalisation performance. Given
a subset F,, with m features, m < n, a learning run is started using the
example representation based on F,. The learned model is then evaluated.
Since a proper evaluation involves cross-validation (see section 1.2), in fact j
learning runs are needed for the evaluation of feature set F,, (where usually
j = 10). In this way an error is associated with the feature set F,,. This
error can guide the search for other feature subsets. Please refer to deliver-
able 14.1 for further explanations, in particular the forward and backward
selection search methods.

The crucial point in terms of computational complexity are the j learning
runs that are needed to evaluate one feature set. Since there are 2" subsets
of F,,, the search must cover a large space in which the j learning runs
are needed at every node. So reducing the computational complexity at
such a node will reduce the overall computation time greatly. At this point
the special property of Support Vector Machines described in the previous
section can be exploited. Using {a-estimation, an (estimated) error can be
associated with each feature subset after only one learning run. This error
can be used to guide the search for the best feature subset in the same way as
the empirical error found in cross-validation; it reduces the time for feature
selection by the factor j with respect to the general wrapper scenario.

This approach was implemented and tested in the work done for this
deliverable, as described in the following chapter.



Chapter 2

Feature Selection in the
MiningMart System

This chapter describes first some work done to make the MiningMart sys-
tem able to deal with automatic feature selection (section 2.1). Second, it
explains how the MiningMart operator FeatureSelection WithSVM was im-
plemented (section 2.2). The last section (2.3) briefly describes a small ex-
periment that was used to test the implementation and the general validity
of the approach.

2.1 Automatic Feature Selection in MiningMart

In the MiningMart system, a preprocessing case is described on the concep-
tual level using a graphical tool, the Case editor. The idea is to conceptually
design a complete chain of steps that process the data. Then the MiningMart
compiler translates these steps to the relational level, i.e. to the particular
data used in this preprocessing case. In this scenario, all steps and their
exact input and output are known before the chain is translated.

However, if automatic feature selection occurs in the chain, the output
is the subset of features that the operator for this step selects. This subset
depends on the data and is therefore not known before compilation (trans-
lation to relational level). Since the features of the concepts that form the
input and output of each step are part of the conceptual design of the chain,
the problem arises how to model the output of an automatic feature selection
step, and in fact the inputs and outputs of all steps that depend on this step.
One option could be to compile the chain up to the feature selection step,
and then use the results for further modelling. However, this would mean
to interrupt the modelling process in an awkward and counter-intuitive way
for an unknown length of time, since the compilation time depends on the
size of the data and the number of previous steps.

The chosen solution to this problem is to ease modelling for the user



Mining Mart IST-1999-11993, Deliverable No. D14.3 8

as much as possible, and let the compiler deal with the problem of how
to account for unknown feature subsets. This works as follows. On the
conceptual level which the user models, all features of the concepts are
always present. In particular, the output of a step involving automatic
feature selection is a concept with the same features as the input concept.
This ensures that all features can be used in further modelling. However,
those features that were not selected in the feature selection step are not
present on the relational level in the output of that step and in all dependent
steps—they are called deselected features. The compiler handles all problems
that may arise from this situation.

In fact, there is one type of problem that could not be handled by the
compiler, namely the deselection of features that model some important as-
pects of the conceptual model, like relations between concepts. For example,
if a database table has a column with the primary key for this table, it may
make sense to have a feature for this column in the concept that represents
this table, to be able to use join operators etc. Such features should of
course never be deselected. Therefore every operator that involves auto-
matic feature selection uses an input parameter that specifies the superset
of features from which it may select a subset. This avoids the deselection of
conceptually necessary features.

However, there remain a few situations in which the compiler must deal
with deselected features. The problem concerns all operator input param-
eters of type Feature, i.e. BaseAttributes and MultiColumnFeatures. To
handle this, the compiler uses the information about operator parameters
that is stored in the M4 model (see MiningMart deliverable 18). This in-
formation includes the type of parameter, whether it is input or output,
whether a single Feature is expected or a list of Features, and also whether
the parameter is optional or obligatory.

The compiler distinguishes the following situations when the input pa-
rameters for a step are loaded, and operates accordingly.

1. The parameter is a single optional feature. In this case the compiler
checks whether the feature is conceptually present. If not, the user
decided not to employ it, which is allowed because it is an optional
parameter. No further action is needed. Otherwise, if the feature
is conceptually present, the compiler checks whether it happens to
be deselected on the relational level. This is true if there are no M4
column objects associated with the feature. If the feature is deselected,
the operator is executed as if the feature was not set on the conceptual
level—as if the user decided not to employ it. If the feature is not
deselected, the operator is executed with the parameter set.

2. The parameter is a single obligatory feature. If the feature is not
present on the conceptual level, an exception is thrown because the



Mining Mart IST-1999-11993, Deliverable No. D14.3 9

operator cannot work when the parameter is not set. Otherwise the
compiler checks the relational level. If the feature is deselected, an ex-
ception is thrown with an informing message to the user (“obligatory
parameter XX was deselected in a previous step”) and compilation
stops. If the feature is not deselected, the operator is executed nor-
mally.

3. The parameter is an optional list of features. Here the compiler reduces
the list of features that the operator is executed on to the subset of
features that are not deselected. This subset may be empty, in which
case the operator is executed as if the parameter was not set by the
user on the conceptual level in the first place. Otherwise the operator
is executed on the reduced subset.

4. The parameter is an obligatory list of features. In this case the minimal
number of elements in the list is also specified in the parameter infor-
mation tables for this operator. The compiler again reduces the list of
features that the operator is executed on to the subset of features that
are not deselected. If this subset does not have at least the minimum
number of elements that the operator needs, compilation stops with
an informing message to the user. Otherwise the operator is executed
as if the list of features had been set to the reduced list by the user
(on the conceptual level) in the first place.

The two mechanisms of allowing the user to specify a superset of features
for an automatic feature selection operator to select from, and of having
the compiler deal with deselected features later in the chain, ensure that
modelling can be successfully completed on the conceptual level before com-
pilation, and that some parts can be re-modelled if features are deselected
that are obligatory in a later step. The user has then the option to remove
that feature from the superset of allowed features in the input to the feature
selection operator.

Part of the compiler extension for automatic feature selection done for
this workpackage was also the provision of an abstract superclass for all op-
erators that use automatic feature selection. This meant that the feature
selection operators from deliverables 14.2, 14.4 and 14.5 could be incorpo-
rated easily.

2.2 The MiningMart operator

For this workpackage, the operator FeatureSelection WithSVM was incorpo-
rated into the MiningMart system. It uses two implementations of the Sup-
port Vector Machine algorithm, one that runs in main memory, and one that
runs inside the database. The operator has a parameter called UseDB_SVM



Mining Mart IST-1999-11993, Deliverable No. D14.3 10

(see also deliverable 18) with which the user can choose which algorithm
to use. The algorithm that runs inside the database is only recommended
for very large datasets. Both algorithms are also used by other MiningMart
operators that involve the Support Vector Machine.

To be able to use these algorithms from the MiningMart system, wrap-
per implementations for them were also completed. The main task of the
wrappers is to transform the input as it is specified in MiningMart to the
implementation-specific formats of the two algorithms. For example, SVMs
can deal with boolean values, but only in numeric form (like 1 and 0) and not
in nominal form (like true, false). So the wrappers read the data from the
database according to the information they get from the compiler, convert
it like in the boolean example if necessary, and print it to standard input for
the SVM in main memory or set up a parameter table in the database for
the SVM that runs inside the database. Then they call the algorithm. The
result of SVM learning is the separating hyperplane, which is a linear com-
bination of the support vectors. While for the FeatureSelection WithSVM
operator only the £ a-estimator is needed, other operators that use the SVM
need to be able to use the hyperplane to predict the class of an unseen ex-
ample. Therefore, it is an important task of the SVM wrappers to transform
the function that computes the class of unseen examples (equation 1.6 on
page 4) into an SQL function that can then be called inside the database.
The form of this SQL function depends on the kernel type of the SVM. The
wrappers read the vector & and the support vectors from the output of the
specific SVM algorithm that was called and implement an SQL function in
the database that can be called with an unseen example and returns its class
(or its predicted value for a regression SVM). Because the support vectors
are needed for each evaluation of the function, and the number of support
vectors may be large, they are stored in an extra table inside the database
which is used by the function. The wrappers return the name and parameter
list of the SQL function to the compiler.

FeatureSelection WithS VM provides two simple search strategies, the for-
ward selection and the backward selection which are described in deliverable
14.1. However, a simple interface to the SVM algorithms ensures that more
complex search strategies can easily be implemented. This interface calls
the SVM with a current feature subset and returns the £a-estimation that
the SVM computed on the data that corresponds to the input concept of
this operator.

Forward selection starts with an empty feature set. To the current fea-
ture set, one feature of the remaining features is added, and the SVM is
started on the extended set. Afterwards, the feature is removed and the
next of the remaining features is tried. The feature that yields the best
¢a-estimation is kept and the search continues on the next level if the best
estimation for a set with an added feature is higher than the estimation for
the current feature set.



Mining Mart IST-1999-11993, Deliverable No. D14.3 11

Backward selection starts with the full feature set. It removes a feature,
collects the £a-estimation, then adds the feature again and continues with
the next feature. The subset that yields the best estimation is kept and the
search continues on the next level if the best estimation for a set with a
removed feature is higher than the estimation for the current feature set.

A variant of these search strategies that was tried in the experiments
was to continue the search not only when a new feature set gave a better
estimation, but also when it returned an equal value for the estimated error.
In this way a bigger part of the search space is explored if the estimation
values do not distinguish well between different feature subsets.

The parameters for this operator are:

o ThelnputConcept: Specifies the data on which to learn.

o TheTargetAttribute: Specifies the attribute that corresponds to the
class label.

e PositiveTarget Value: Specifies the value in TheTargetAttribute that
represents the positive class.

o TheAttributes: Specifies the superset of features that the operator may
select from.

o KernelType, C, Epsilon: Specific parameters for the SVM algorithm.

e SearchDirection: Specifies whether to use forward or backward selec-
tion.

e TheKey: Specifies the primary key of ThelnputConcept. Only needed
for the SVM algorithm inside the database.

e SampleSize: Specifies a maximum number of examples to use for learn-
ing.

o UseDB_SVM: Specifies which of the two algorithms to use.

e TheOQutputConcept: Specifies which concept will contain the selected
features.

2.3 Experiments

Some basic experiments with the operator FeatureSelection WithSVM were
carried out to test the implementation and to check that this approach
to feature selection can be useful. For these experiments, a learning task
that involved insurance data with 23 features was used. The experiments
repeated an earlier study at the University of Dortmund, this time using the
MiningMart system. (However, the data was already given in preprocessed



Mining Mart IST-1999-11993, Deliverable No. D14.3 12

format in a database table, so that no special preprocessing was needed in
this case.) MiningMart was used to sample a training set and a test set from
the data, to apply automatic feature selection and to evaluate the results of
learning after feature selection.

No feature selection was used in the original study and the first task was
to repeat the experiment with the full set of features, using the parameter
settings for the SVM that were used originally. This was achieved; the
accuracy in this case was 81%. Using forward selection, only one feature
was selected before the search stopped due to the fact that adding a second
feature did not improve the estimated generalisation error. However, the
accuracy after learning with this one feature was not better than for random
classification. When a search variant that continues until the estimated error
actually decreases was used, eleven features were selected but the accuracy
did not improve much. This shows that the implemented search strategy
is probably too simple, because it may happen that two feature sets that
differ only in one feature do not lead to a difference in the estimated error.
A broader search strategy seems more promising.

With backward selection, four features were removed and the accuracy
using the remaining 19 features improved slightly to 82.6%. This shows
that the general approach to feature selection presented here can work: the
representation of examples could be simplified at no loss, and even a slight
improvement, of the generalisation performance. Yet, more experiments on
different datasets using improved search strategies are needed to support
this result.



Bibliography

[CV95] Corinna Cortes and Vladimir N. Vapnik. Support-vector networks.
Machine Learning Journal, 20:273-297, 1995.

[Joa01] Thorsten Joachims. The Mazimum-Margin Approach to Learning
Text Classifiers: Methods, Theory, and Algorithms. PhD thesis,
Fachbereich Informatik, Universitat Dortmund, 2001.

[Vap82] V. Vapnik. Estimation of Dependencies Based on Empirical Data.
Springer, 1982.

[Vap98] V. Vapnik. Statistical Learning Theory. Wiley, Chichester, GB,
1998.

13



