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Chapter 1

Introduction

Many different complex processes wind their way through our modern world. Under-
standing those procedures has been a central aspiration of mankind for ages. Insight
into global economy, climate forecasting, or analysis of the population growth are just
some exemplary tasks of present time, which all require comprehension of underlying
processes. The key to gain that understanding can only be found within the observed
information from the process itself.
Data from processes can be captured in various ways, and observation from afar is a
popular choice. However resulting datasets such as satellite images often suffer from
faulty entries, which are rooted in technical malfunctions, distortion issues or occlusion.
This thesis investigates how machine learning methods can be applied for filling the
resulting data gaps. In the following we explain our motivation for the topic and shortly
discuss our chosen approach. Afterwards the specific thesis objectives are determined.
This first chapter ends with a short overview of the thesis structure.

1.1 Motivation

Remote sensing is a commonly known example for visual process observation, typically
resulting in satellite or drone images. It provides humans with insight into important
developments and evolutions by capturing states of large scale processes. As an exam-
ple climate change and population growth are under the greatest dangers to mankind,
according to a recent expert survey [22]. At the same time they are perfect examples for
processes, where remote sensing observation is not only possible, but leads to unique dis-
coveries [84] [89]. Improving our understanding of the processes is vital to stem those
threats. Therefore, the demand for high-quality methods dealing with remote sensing
data is stronger than ever.
According to the United Nations Register of Objects Launched into Outer Space1 nearly
5000 satellites orbit earth in 2019, with about 800 of them dedicated to making obser-
vations and taking pictures of earth and space. As a result, hundreds of remote sensing
datasets are available and can be used for analysis. However remote sensing data often
suffers from various disturbances occurring during image capturing, which reduces their
utility. Figure 1.1 depicts examples for the two most common issues, namely cloud cover
and sensor failure, which often result in large parts of faulty and hence unusable data.

1http://www.unoosa.org/oosa/en/spaceobjectregister/index.html

http://www.unoosa.org/oosa/en/spaceobjectregister/index.html
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(a) Satellite image with cloud cover (b) Satellite image with sensor failure

Figure 1.1: Erroneous satellite image data resulting from cloud cover (a) (THEIA L2A Sentinel-2
data) and sensor failure (b) (Landsat 7 data with SLC failure, taken from [68]).

For many application scenarios it is necessary to fill those gaps, i.e. to replace the er-
roneous values with more appropriate data. Appropriateness here means that replacing
values ideally resemble the data which would have been observed without any issues. A
lot of work has already been done on this task[65] [32], however in some cases those
approaches provide unsatisfactory results.
We present a novel approach to reconstruct the missing data in remote sensing images
by utilizing well-founded probabilistic machine learning techniques or, more specifi-
cally, generative Markov models [81] [57]. They are especially popular due to their
high customizability and their extensive theoretical background. Gap filling with a fully
probabilistic approach has (to the best of our knowledge) never been attempted before.
Our methodology allows to use an arbitrary mass of the available multidimensional data
for fine-tuning the probabilistic model, which is then able to predict likely values for
gaps. A major benefit of this approach is the influence of non-local data during gap fill-
ing, as every pixel in the training data affects the whole set of parameters, and thus, every
prediction. At the same time a specified amount of locally available information also af-
fects the probabilistic prediction. Besides that we explore a novel approach to compress
probabilistic models. Our experiments show that these methods are well suited for their
task, and we are indeed able to outperform other gap filling approaches. Moreover the
proposed methodology could be applied to arbitrary incomplete image datasets, with
satellite images serving as a proof-of-concept example.
However utilizing probabilistic models for gap filling on satellite images is not straight-
forward and leads to some special problems, which require smart solutions. The thesis
discusses fundamental theories, the specific difficulties, the respective solutions and ex-
perimental results of our novel gap filling approach.
This work is a research cooperation between the Competence Center Machine Learning
Rhine-Ruhr (ML2R)2 and a research team located at Monash University 3. Piatkowski’s

2https://www.ml2r.de/en/landingpage/
3https://research.monash.edu/en/projects/time-series-classification-for-new-

generation-earth-observation-s

https://www.ml2r.de/en/landingpage/
https://research.monash.edu/en/projects/time-series-classification-for-new-generation-earth-observation-s
https://research.monash.edu/en/projects/time-series-classification-for-new-generation-earth-observation-s
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work on probabilistic models and exponential families [57] is the fundamental backbone
for the machine learning methodology of this thesis. Petitjean and Webb on the other
hand provided insight into the remote sensing context and the associated satellite data,
allowing us to explore a novel use case for probabilistic models. In terms of the col-
laboration I spent six months at Monash University, working closely together with both
groups and thus linking research interests.

1.2 Objectives and Structure

The thesis investigates how gaps in satellite images can be filled with probabilistic ma-
chine learning. We intend to inform about all underlying fundamental aspects, convey
the comprehensive methodology, and discuss the benefits and drawbacks in a compre-
hensible way. We hope that our work contributes to the state-of-the-art research in re-
mote sensing and computer science.
Chapter 2 introduces the remote sensing context and gives an overview of popular gap
filling approaches. It also conveys the fundamentals of probabilistic machine learning
and generally explores all underlying theoretical aspects for our approach.
Chapter 3 contains the core methodology which allows to use probabilistic machine
learning for gap filling. We here discuss the different emerging subproblems and their
respective solutions. Besides the gap filling approach we also introduce our novel com-
pression procedure and give a short overview of our proof-of-concept implementations.
The implemented methods were tested in various experiments, which are discussed in
Chapter 4. Their results have been evaluated in a qualitative and quantitative way, show-
ing feasibility of the presented methodology. We also explore how the subproblems’
different solutions affect the results.
The thesis ends with a conclusion (Chapter 5), where we sum up the methodological
content. We also provide an overview of possible extensions and future work.



Chapter 2

Fundamental Concepts

This chapter introduces topics and theories which are necessary for understanding the
remainder of this thesis. As outlined earlier, furthering the understanding of processes
is a common goal, and can be achieved by capturing and evaluating data from the pro-
cess. Following up, the possibilities of observation via remote sensing are explored
(Section 2.1). However the measured information can be erroneous (like data in gen-
eral). Several approaches have emerged for filling resulting gaps in data, some of them
specifically for the satellite data context. They are explored in Section 2.2. This thesis
later on investigates how specialized probabilistic models can be used for remote sensing
gap filling. Section 2.3 introduces these models and their fundamental theory.

2.1 Image Series as Observations of Spatio-Temporal Processes

Data from a process can be captured by various types of sensors, which somehow mea-
sure the process state. Many commonly known sensory devices such as wind gauges
or seismometers are able to capture these information locally, but there are also a wide
range of remote sensors in use.

2.1.1 Introduction to Remote Sensing

In these days, remote sensing generally refers to collecting data with satellite- or aircraft-
based sensory technologies. Even though this is not beneficial in every scenario, remote
sensing generally can be very helpful, e.g. for observing processes in dangerous or
inaccessible areas. In addition looking at the big picture, literally, can also help with
understanding large-scale developments. Remote sensing follows the inverse problem
principle, assuming that observations can be used for calculating the causal factors which
produced them.
Various sensor types are used for remote sensing. They can be roughly divided into
passive and active approaches. While passive collectors only gather emitted reflections
or radiance from the target, active remote sensors emit energy and then measure the re-
flected radiance. Film photography, infrared, and radiometers are examples for passive
sensors, with sunlight reflection being the most commonly measured radiation. Exam-
ples of active remote sensors include radio detection and ranging (RADAR) and light
detection and ranging (LIDAR), which measure the time delay between emission and
return. With this information one could for example compute the location, speed, and
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direction of an object. This is also an obvious example for how the inverse problem
principle is applied in the field of remote sensing [7].
Remote sensing technologies can be quite complex, and the resulting data is not always
easy to use and interpret. Basically it has a spatial, temporal, spectral (wavelengths
of frequency bands), and radiometric (different distinguishable values) dimension. The
respective dimension ranges and resolutions can highly vary between different sensor
technologies, and define the resulting data dimensions. Single numeric entries within
datasets are mostly reflectances, which are computed from sensor measurements.
It is often necessary to preprocess the data before it can be used in applications, with
routines like georeferencing, radiometric calibration, and terrain correction [64]. As
already outlined earlier cloud cover is a frequent problem in the evaluation of remote
sensing data. For example, Cihlar estimated that up to 80% of Canada’s surface can
be obscured by clouds during mid-morning [12]. Cloud cover often leads to gaps in
remotely sensed data, as the clouded reflectances are highly faulty. Sensor failure is an-
other example which can lead to erroneous or missing data [8]. In most cases identifying
and reconstructing affected data (i.e. the so-called gap filling) needs to take place before
the data can be used in applications.

2.1.2 Interpreting Remote Sensing Data As Images

The interpretation of satellite data as images is quite common, due to the fact that many
remote sensing datasets are acquired or stored as matrices and tables. Therefore the term
intensity is often used as a synonym for the reflectance values. Interpreted as an image,
a remotely sensed dataset I consists of b-dimensional intensity values {I(x,y) ∈ Rb}
which are identified by pixel locations (x,y) with 1 ≤ x ≤W,1 ≤ y ≤ H. Here W (idth)
and H(eight) denote the image size, and b is the number of bands in the spectral dimen-
sion of the dataset. If data is acquired at T different times (or dates) it is also possible
to interpret it as an satellite image time series (SITS) I with dimensions (T,W,H). It
consists of multidimensional intensities {I(t,x,y)} with 1 ≤ t ≤ T . This allows the
interpretation of intensities for a single pixel (x,y) at different times as a time series
I(x,y) = {I(1,x,y),I(2,x,y), ...,I(T,x,y)}. An exemplary visualization of this inter-
pretation is displayed in Figure 2.1.
Usually a mask M(t,x,y) identifies erroneous data entries in the SITS. Some masks
feature a probability that the data at (t,x,y) is faulty, i.e. 0 ≤ M(t,x,y) ≤ 1, some of
them simply act as a flag, i.e. M(t,x,y) ∈ {0,1}. Obviously some preprocessing steps
(as mentioned above) are crucial for such a visual interpretation, because a certain pixel
location at different times needs to describe the same spatial area of the captured terrain
over time.
For visualizing data some of the b bands are selected, based on their importance for the
application scenario. Usually the intensities per band are normalized to the desired color
channel intensity range (reflectance outliers are often excluded for normalization, e.g.
highest and lowest 2%). Accordingly, one could choose three bands and normalize them
to the interval [0,255] for displaying the remotely sensed data at a certain time in an
Red-Green-Blue (RGB) image.
The experiments of this thesis were run on data from the Sentinel-2 earth observation
mission [16] (see Section 4.1.1 for more information on the specific data product). Fig-
ure 2.2 depicts a grayscale and RGB visualization of Sentinel-2 data, as well as the same
region on a date with clouds and the corresponding cloud mask.



Background of Remote Sensing Gap Filling 6
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Figure 2.1: Remote sensing data interpreted as satellite image time series.

It is obvious that intensities affected by clouds will lead to faulty results when used in
applications. Several approaches for gap filling in remote sensing have already been
published, they are explored in the following section. Moreover, this thesis presents a
novel way to fill gaps in satellite images with the help of probabilistic generative machine
learning.

2.2 Background of Remote Sensing Gap Filling

Missing data is a quite common problem in information technologies, with each field of
research having their own specialized methods to solve it. In most use cases preprocess-
ing steps identify parts of the data as missing, because the available information is faulty
and such unusable. Following up some general approaches for gap filling in arbitrary
temporal and spatial datasets are introduced.
In addition various specific methods have been published to fill gaps in the remote sens-
ing context. All approaches use a certain part of the available data to compute hopefully
realistic values for unobserved pixels. One can roughly divide them into categories, with
methods that take available data along the spatial or temporal dimension into consid-
eration. Some hybrids exist which even combine both (spatio-temporal methods). The
remainder of this section is structured accordingly.
Some approaches also make use of ancillary information, such as valid data recorded
by another sensor (spectral-based methods). This can be especially helpful for gaps
resulting from sensor failure, as malfunctions often affect only some of the spectral
bands. However those approaches cannot be applied when no ancillary information is
available, e.g. for cloud cover, which usually affects all sensor bands. As the thesis
experiment data suffers from cloud cover, those methods are not further discussed here.
More extensive reviews of gap filling approaches have been published by Shen et al. and
Kandasamy et al. [65] [32].
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(a) Grayscale visualization of band eight (b) RGB visualization of bands eight, three
and two

(c) Region with cloud cover (d) Cloud mask (black pixels identify
clouds)

Figure 2.2: Example visualization of THEIA L2A Sentinel-2 satellite data in grayscale (a) and
RGB (b), RGB visualization with cloud cover (c) and corresponding cloud mask (d).
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2.2.1 Filling Gaps in General Spatial and Temporal Datasets

General spatial and temporal data, such as audio signals, weather data, and images,
can contain faulty values, which creates demand for universal gap filling approaches.
Curve fitting methods have been in use since antiquity [44] and can be roughly divided
into interpolating or smoothing the available data. They assume that n observations
(x1,y1),(x2,y2), ...,(xn,yn) are described by an unknown function y = f (x). Interpola-
tion provides the possibility to estimate the function value at arbitrary places x while
resulting in the exact observations yi = f (xi) for 1 <= i <= n. Smoothing on the other
hand assumes a certain noise on observations and thus tries to approximate the values as
good as possible. Accordingly the function computes f (xi) = yi + ri for 1 <= i <= n,
with ri being the assumed noise (or error) of the observation.
Curve fitting methods differ in complexity, accuracy, cost, and number of data points
needed for successful calculation. A nearest-neighbor (NN) interpolation is the easiest
method for interpolating, it returns the y-value of the data point whose x-value has the
smallest distance to the queried x. Linear interpolation relies on only two data points,
with the interpolant f for computing data being a simple linear function based on the
data points. Polynomial interpolation generalizes this idea by using a polynomial func-
tion of a higher degree as interpolant. With n available data points there exists exactly
one polynomial of degree at most n−1 such that all points are interpolated. The resulting
interpolation function f is smoother and infinitely differentiable, while the interpolation
error is proportional to the distance between data points to the power of n. Spline in-
terpolation uses low-degree polynomials in each of the data point intervals. This allows
efficient interpolation, especially if n is large, while the estimation and evaluation of
a high-degree polynomial interpolation gets increasingly cumbersome. Other forms of
interpolation choose a different class of interpolants (e.g. rational functions) or rely on
knowledge about local derivatives [23].
Linear regression is an easy way to fit a smoothing curve f to observed data. With n≥ 3,
fitting the linear function results in an overdetermined system of equations (as long as
the data points are not collinear). A common method for solving overdetermined sys-
tems (and thus finding the best curve parameters) is least squares, which approximates
the solution by minimizing the sum of squared errors. As with the interpolation, poly-
nomial regression generalizes the linear approach by making f a polynomial function of
a higher degree. Other regression approaches use complexer functions such as splines
or sigmoids. Smoothing splines have a dedicated term for measuring (and possibly pe-
nalizing) the smoothness of the fitted function [78]. Instead of fitting the curve based
on the y errors, some geometric approaches also try to minimize the orthogonal distance
of points to the curve. Figure 2.3 depicts a few exemplary interpolation and smoothing
results for a set of observations from a simple function. It shows that regressions results
in a smooth curve that can be extrapolated, but interpolation here is closer to the original
function.
More refined methods exist, such as utilizing Gaussian processes by interpreting the
mapping of values as a random process (instead of a function). As one can see, the
whole topic of curve fitting is closely related to estimation and probabilistic theory, and
thus, to machine learning [33]. However more advanced methods are not discussed here,
as they go beyond the scope of this thesis.
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Figure 2.3: Results of several different curve fitting approaches, based on six data points evalu-
ated from f (x) = xsin(x).

2.2.2 Spatial Gap Filling Approaches for Remote Sensing

The most simple and traditional approaches for satellite data gap filling are spatial meth-
ods, as only available information in spatially surrounding pixels is utilized. At the same
time this can be a huge drawback, especially for images with clouds, which can result
in enormous spatial data gaps. Obviously the methods can be applied to all kinds of
incomplete images, another reason why they are well founded.
Interpolation methods are quite common and recover missing values as weighted av-
erages of certain pixel intensities. The specific number and positions of interpolated
pixels change from method to method, for example one could consider a basic bilinear
interpolation in the 8-pixel neighborhood. Many approaches have been adapted from
geostatistics [74], including kriging [51], one of the most famous techniques. Over the
years it has been extensively explored in both geostatistical [60] and mathematical [67]
ways, and also contributed in remote sensing [91] [88]. The central idea behind krig-
ing is to estimate the pixel value as an unknown random-process mean together with
the best linear unbiased estimator. It is being used and extended to the present day, for
example by taking gap-free data into consideration [92] and extending it for nonlinear
thermomechanical analysis [94].
The propagated diffusion methods propagate local information around gaps from the ex-
terior to the interior, like in image inpainting. The propagation effect is formalized with
partial differential equations (PDEs), which also determine the direction for propagation
[4]. Many variants have been presented with different PDE models, each favoring cer-
tain directions [50] [45]. However they are known for blurred results when large areas
need to be reconstructed [42].
Variation-based methods fill gaps by performing image regularization, which is com-
monly formulated as a variational problem. It can be solved by minimizing a global
energy function based on the observed data, a mask identifying the missing data and a
clear target image. Regularization is added as a prior model for the target data, imposing
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smoothness [27], sharpness [82], or non-local similarity [10] constraints on the images.
Variation-based methods in general have satisfactory results with a chance of blurriness,
depending on length of training, regularization, size of gaps, and data complexity [42].
Based on texture synthesis, exemplar-based methods copy similar known pixels to re-
cover missing values [14]. Gap filling can be performed stepwise for single pixels or
whole patches, the similarity is based on neighborhood pixels. Algorithms usually are
run in a greedy way, therefore ordering has a high impact on the result. Global image
coherence can be achieved by post-processing the inpainting [28] [35]. Those methods
are able to restore large regions with detailed textures, however their accuracy is not
always satisfactory, especially when only a small amount of data is observed.
Spatial approaches generally have problems if large parts of images are missing (e.g.
due to cloud cover). Therefore it makes sense to also rely on temporal information, if it
is available.

2.2.3 Temporal Gap Filling Approaches for Remote Sensing

Temporal-based approaches intend to fill gaps by looking at supplementary information
for regions with missing data at different times. Obviously areas of interest can change
over time, due to regular periodic geographical changes or abrupt, standalone incidents
(caused by nature or humans). Good temporal gap filling methods hence should try to
take those evolutions into consideration.
Replacement methods fill gaps by replacing the erroneous values with other measure-
ments in the same region at a different time (also referred to as mosaicing [29]). Some
methods first transform the observed intensities with a function to deal with temporal
differences and changes that should also affect the replacement [38]. Replacing can
commence pixel-by-pixel, patch-by-patch, or for the whole unobserved region, and is
very similar to the spatial exemplar-based methods.
Temporal filter methods generally are used to process one-dimensional signals (e.g. for
reducing noise), and thus allow the use of methods mentioned in Section 2.2.1. They can
easily be applied in the remote sensing context be interpreting the intensities at a certain
pixel position over time as a time series (as described in Section 2.1.2). Filtering can be
applied locally or to the whole series. Common techniques for local filtering use sliding
windows, the values within the window enclosing the gap are then used to compute the
filling value [76] [63]. Curve fitting methods that only rely on some local data points for
estimating the function can also be interpreted as sliding window approaches (here the
window size is determined by the interpolated points). As an example basic curve fitting
is used in the gap filling module1 for Orfeo ToolBox (OTB) (a collection of applications
for working with remote sensing data2). It computes values for missing data with the
help of linear and spline interpolation methods, depending on the available surrounding
data. Despite of its simplicity even a basic linear interpolation can still capture changes
over time, as long as they are more or less linear. Several more advanced curve fitting
methods have been explored, such as the asymmetric Gaussian (AG) model [31] or the
double logistic (DL) technique [5], which assume that the temporal profile follows a
Gaussian distribution. Some methods filter within the frequency domain by Fourier or
wavelet transforming the original signal. It allows to use amplitude and phase informa-

1http://tully.ups-tlse.fr/jordi/temporalgapfilling/blob/master/README.org/
2https://www.orfeo-toolbox.org/

http://tully.ups-tlse.fr/jordi/temporalgapfilling/blob/master/README.org/
https://www.orfeo-toolbox.org/
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tion of the signal frequencies for gap filling, which can be especially promising for time
series with periodical behavior [31] [61].
Only few approaches were made of temporally learning a model for the gap filling task.
They utilize genetic optimization [42], dictionary learning [39], and Kohonen’s self-
organizing maps (SOMs) [37]. This thesis adds a novel approach to the short list of
temporal learning models, utilizing Markov random fields (MRFs).
Kandasamy et al. provided an informative review on other temporal gap filling tech-
niques [32]. The authors conclude that temporal smoothing and gap filling by Verger,
Baret, and Weiss [75] provides the best overall performances when there is more than
20% missing data.
In general applying temporal gap filling approaches to every pixel of the series can lead
to visible hard edges in the resulting images, as the novel pixel values might not blend
well with their spatial neighborhood.

2.2.4 Spatio-Temporal Gap Filling Approaches for Remote Sensing

Methods that only work spatially or temporally have certain advantages and drawbacks.
Some attempts have been made that combine both approaches.
A simple approach is to use spectral and temporal methods successively, such that the
results of the previous method are further improved [90]. However simply pipelining the
techniques does not necessarily capture correlations in both dimensions well, as possi-
bly better results might be overridden or not even computed in the first place. Another
approach uses spatial completion with temporal guidance, combining spatial exemplar-
based replacement with a spatio-temporal variational smoothing technique [9]. Only pix-
els in the same picture are considered for replacing, while local spatio-temporal smooth-
ness is achieved with the help of a MRF. While this method scored great results in Cheng
et al.’s experiments, it might struggle when no spatial data is available at all.
As already stated earlier, some methods utilize available information in the spectral di-
mension. Similarly to spatio-temporal approaches, some hybrids exist that rely on spec-
tral and temporal (or spatial) information [73] [93]. They are not further discussed here
because spectral computations have limited use with clouded satellite data. Nevertheless
Shen et al. think that spatio-spectro-temporal approaches might become the “trend in
missing information reconstruction” [65] (as long as such data is available).

2.3 Background on Probabilistic Machine Learning

Machine learning techniques can be used to model and thus better understand processes.
A learned model is usually represented by its parameters, which are changed during
training to best fit sampled data from the process. Trained models can be used for various
tasks such as classification or generation of new data.
This thesis explores the use of machine learning techniques for gap filling in remote
sensing. More specifically, the idea is to train a model with some available data, and
then use it to generate likely data for the gaps. It is possible to formulate the machine
learning task with the help of probability theory (this formulation can be found in Sec-
tion 3.1.1). Accordingly this thesis utilizes probabilistic models for solving the task. One
should note that various other machine learning techniques might be applicable for gap
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filling, however this thesis and the machine learning fundamentals section only explores
probabilistic models.
Probabilistic models have extensive fundamental theory which is introduced in the fol-
lowing, with used notation and terminology mostly inspired by Piatkowski’s work [57].
First the possibilities of using a graph as underlying conditional dependency structure
for a random process variable are explored. Model parametrization can be achieved by
utilizing the theory of exponential families. Probabilistic inference techniques allow to
compute specific probability quantities, which are necessary to train and use a model.
Possibilities of training and recent work on spatio-temporal models are discussed after-
wards. Lastly a short introduction to vector quantization (VQ) is given, which, although
not directly related to probabilistic machine learning, will be useful for our probabilistic
gap filling approach.

2.3.1 Probabilistic Models and Graphical Structures

A multivariate random variable X = (X1,X2, ...,Xn) can be used to probabilistically
model a set of observations (or missing data). Here Xi addresses the i-th component
of X (i can also be a set of indices for addressing multiple components). Each single
componentXi has a specific state space Xi, which is the set of all its possible realizations
x1,x2, ...xki , meaning that Xi has ki different realizations. The full state space of X is
defined as the Cartesian product of all component state spaces X =X1×X2× ...×Xn.
In a practical sense, the state space X defines which observations can be modeled with
X . The probability density of the event that X takes the value x ∈ X is denoted as
p(x) = p(X = x). For computing probabilistic inference it is also necessary to work
with conditional probabilities, denoted as p(X = x|O) for an arbitrary event O.
Independence between components of an arbitrary n-dimensional random variableX is
denoted asXi ⊥⊥X j, with I(X) containing all independences ofX . Declaring a graph-
ical dependency structure G = (V,E) with vertices V and edges E is an easy and intuitive
way to describe many conditional independence assumptions. Dependency structures in
form of directed acyclic graphs are commonly known as Bayesian networks, while undi-
rected graphs are generally called MRFs. In theory both approaches can be used as a
graphical dependency structure [57], however only undirected graphs will be discussed
in the following. Different forms of MRF models have been explored in the past, for
example their use in resource-constrained environments has been investigated [57].
Let G be an undirected graph with vertices V and an associated edge set E. With inter-
preting G as a graphical independence structure for the random variable X , the edges
of G encode conditional independences of each vertex given its neighbors N(v) = {u ∈
V |(v,u) ∈ E}, i.e. each node is independent from all other nodes given its neighbors.
The set of all conditional independences can be formulated as

∀u ∈V :Xu ⊥⊥XV\({v}∪N(v))|XN(v). (2.1)

Together these independence assertions are called local Markov properties, denoted as
I(G). Besides the intuitive representation of dependencies, the graph G and its cliques
C(G) can be used to factorize the probability density ofX [26]:

p(x) =
1
Z

ψ(x) =
1
Z ∏

C∈C(G)

ψC(xC), as long as I(G)⊆ I(X) (2.2)
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Here Z =
∫
X ψ(x)dv(x) is a constant for normalization known as partition function, and

ψ , which factorizes into positive functions ψC, is the potential function of the graphi-
cal model. Any non-negative function ψ for n variables induces a certain undirected
graphical model, the possible factorization of ψ defines the cliques and thus the connec-
tivity of the graph. It does not even have to contain all independences of X in order
to yield a valid factorization, as normally multiple factorizations of ψ exist. However
more independences (and thus, less edges in E) will lower the complexity for computing
probabilistic inference (see Section 2.3.3). Hence a factorization in terms of cliques with
minimal factors C̄(G)⊆ C(G) is desirable, and will be considered in the following [57].
Practically, the real statistical dependencies are unknown, and different graphical depen-
dency structures can be used depending on the task. Some algorithms exist for discov-
ering associations and deriving dependency structures from available data. They usually
result in triangulated graphs [55] [54] [46] [72] or trees [11]. In some processes sensor
nodes (which are represented by components of X) might influence adjacent sensors,
and a dependency graph can be derived from sensor placement, hopefully approximat-
ing the real statistical dependencies. An example for that would be a city street network
and traffic density sensors at different places, with the road infrastructure possibly indi-
cating dependencies in the measured data [40].

2.3.2 Exponential Families and Probabilistic Models

The goal of probabilistic machine learning is to build an adaptable model for the den-
sity of a multivariate random variable X . For adaptability, this density needs to be
parametrized by a parameter vector Θ ∈ Rd , which leads to exploring exponential fam-
ily densities. The parametrized density pΘ is part of the exponential family of densities,
if it can be written as follows:

pΘ(X = x) = exp(〈Θ,φ(x)〉−A(Θ)) =
ψ(x)

Z(Θ)
(2.3)

Here φ(x) are the sufficient statistics based on the training data, ψ(x) = exp(〈Θ,φ(x)〉)
denotes the potential function, and A(Θ) = logZ(Θ) is the logarithmized partition func-
tion.
〈Θ,φ(x)〉 denotes the Euclidean inner product of the vectors Θ and φ(x), which both
take values in Rd . A(Θ) assures the normalization of pΘ, such that ∑x∈X pΘ(X =x) =
1. According to the definition of Z, it is defined as A(Θ) = log

∫
X 〈Θ,φ(x)〉dv(x).

The exponential family formulation is rather simple and well suited for computations,
however factorization is needed to use it with the previously introduced graphical mod-
els. A canonical representation with indicator functions is available for discrete MRFs,
achieving factorization of pΘ. For the discrete, n-dimensional random variable X , its
state space X , its undirected conditional independence structure G = (V,E), and the set
of cliques with minimum factors C̄(G), the overcomplete sufficient statistic φ : X →Rd

is
φ(x) = (φC(x)

> : ∀C ∈ C̄(G))>. (2.4)

φC(x) is a |XC|-dimensional vector of indicator bits representing the possible states of
the variables that belong to C. For a given x exactly one bit in φC(x) is set. Accordingly
φ(x) is a d-dimensional vector containing the indicator functions for all cliques, with
d = ∑C∈C̄(G) |XC|. Figure 2.4 shows a simple example for sufficient statistics.
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φU(x
1
U)=



0
1
0
0
0
0
0
0
0
0
0
0



φU(x
2
U)=



0
0
0
0
0
0
0
1
0
0
0
0



φU(x
3
U)=



0
0
0
0
0
0
0
0
0
0
1
0



XU =

{(A,0,+1),
(A,0,−1), ← x1

U
(A,1,+1),
(A,1,−1),
(B,0,+1),
(B,0,−1),
(B,1,+1),
(B,1,−1), ← x2

U
(C,0,+1),
(C,0,−1),
(C,1,+1), ← x3

U
(C,1,−1)}

Figure 2.4: Sufficient statistics example of a vertex set U = {u,v,w} with vertex state spaces
Xu = {A,B,C}, Xv = {0,1}, Xw = {−1,+1} and three realizations x1

U = (A,0,−1), x2
U =

(B,1,+1), and x3
U = (C,1,−1). Each entry in φU is an indicator function for a specific state in

XU =Xu×Xv×Xw, as listed on the right. Example is taken from [57].

Each weight in the d-dimensional parameter vector Θ represents a certain clique state,
the order of both φ(x) and Θ is arbitrary but fixed. A sufficient statistic like this can
be constructed for any discrete random variable. For continuous variables no universal
definition of sufficient statistics exists, which is why discrete MRF models will be used
and explored in this thesis. Exponential family representations of graphical models can
also be motivated through the principle of maximum entropy [81].

2.3.3 Probabilistic Inference

Inference is the general term for computing certain quantities from probability measures,
such as the value of a partition function Z(Θ), marginal probabilities p(Xi = xi), or the
maximum a posteriori (MAP) state maxx∈X p(x).
As already stated earlier, the partition function ensures normalization of the probability
density pψ for an arbitrary non-negative potential function ψ : X → R+:

p(x) =
1∫

X ψdv
ψ(x) =

1
Z

ψ(x) , with Z being the partition function of p (2.5)

It is closely related to the computation of marginal probabilities, which can be computed
by only partially carrying out the integration for unfixed variables U [57]:

pŪ(xŪ) =
1
Z

∫
XU

ψ(xU , xŪ)dvU(xU) , U ⊂ {1,2, ...,n}, variables Ū fixed to xŪ

(2.6)
For discrete random variables with a conditional independence structure the naive com-
putation of the partition function is not feasible, as it requires summation over the whole
state space and multiplication over the cliques (more specifically it is a #P-complete
problem [6]). However the belief propagation (BP) algorithm (occasionally called sum-
product message passing) allows to evaluate Z in polynomial time, as long as the un-
derlying graphical independence structure G is acyclic [52]. BP uses a message passing
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technique on the tree graph G. Messages are send inwards starting at the leaves, meaning
that each subtree root obtains messages from all adjoining nodes and then sends them
to its unambiguous parent. Probabilistically speaking, the partition function can be re-
cursively reformulated by cutting edges between any leaf v and its parent node u, and
computing the potential for the subtree rooted at u without the former edge to v [57]. In
a tree every node has a unique edge towards the root, and it is guaranteed that each node
can obtain messages from all adjoining nodes before it passes them on. As soon as all
messages were collected at the root node, all messages can be sent back in the opposite
direction, starting at the root. This is only feasible if G is a tree, as otherwise there is at
least one subgraph that does not contain leaf vertices.
The heuristic inference loopy belief propagation (LBP) algorithm uses a similar ap-
proach for arbitrary graphs [36]. Here the messages are recomputed several times, as
incoming messages can possibly change due to cycles. LBP converges for trees, how-
ever convergence and correctness for general graphs is neither well understood nor guar-
anteed. Despite LBP’s heuristic nature and lack of approximation bounds it is still com-
monly used in practice for computing approximate inference, and often provides good
results [57].
Another approach for evaluation of the partition function is the junction tree (JT) algo-
rithm. It is not based on the summation over the whole state space of the graph, instead
it computes inference on its JT (which can be constructed for any loopy graph) [81]
[57]. The computational effort for inference with a JT depends on the state spaces and
neighborhood sizes of the vertices and can be feasible for simple graphs [34]. However
in most cases LBP delivers sufficient results while running significantly faster.
Methods of variational inference can be used to modify the conditional independence
structure. The goal is to reduce the complexity for probabilistic inference without loos-
ing too many details and thus quality [81]. For example certain variational approxima-
tions allow to bound the partition function [80] [79].
Sampling methods can be used to alleviate the computational effort of enumerating a
large dataset for computing inference (such as the vertex state space). The idea here is to
draw N random samples x from the set and extrapolate the solutions for those samples
onto the whole set. In other words, the wanted quantity is estimated from the samples.
Different estimators could be used for computing the expected value (e.g. computing
the average value over all sample function values). In probabilistic inference, sampling
allows to estimate the partition function, marginal probabilities, or the most likely joint
state [57]. Those techniques are based on the Monte Carlo principle [2]. Markov chain
Monte Carlo (MCMC) methods generate samples according to the Markov property,
such that each sampling depends on the previously drawn sample. One popular ex-
ample for MCMC methods is the Gibbs sampler [19]. It uses the Markov property
p(xv|xV\{v}) = pv(xv|xN(v)) for any vertex v to compute conditional marginal probabil-
ities. With C(v) being the set of cliques containing v, the conditional marginal is

pv(xv|xN(v)) =
∏C∈C(v) ψC(xv,xN(v))

∑y∈Xv ∏C∈C(v) ψC(y,xN(v))
. (2.7)

Gibbs sampling starts with some initial joint state x0 and constructs a new state by
sampling each component of x0 according to Equation 2.7. By repeating the sampling
several times it is possible to obtain a valid sample statex, which is independent fromx0.
The generic and lightweight nature makes Gibbs sampling a great choice for generating
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samples from densities.
When samples are generated with a model, certain joint states will have a higher chance
to appear depending on the parameters. The so-called MAP state x∗ is the most likely
joint state that might be sampled:

x∗ = argmax
x∈X

pΘ(X = x) = argmax
x∈X

〈Θ,φ(x)〉. (2.8)

If only a subset of the variables O⊂V are observed and the rest H =V \U is hidden (or
missing), it is possible to compute the most likely state given the observation:

x∗H = argmax
xH∈XH

pΘ(XH = xH |XO = xO) (2.9)

This is called conditional MAP problem, which allows to use probabilistic models for
conditionally predicting missing data (or classification, with variables in O denoting
features and H being class variables.) [57]. Computing conditional MAP states is also
NP-hard, however the inference techniques which have been introduced above can be
adapted for solving (BP, JT) or approximating (LBP, variational principle, sampling)
the problem [85] [36] [83] [57]. Instead of finding the conditional most probable joint
state, it can also be interesting to find the top-M solutions for Equation 2.9, and methods
have been adapted accordingly [86] [18].

2.3.4 Training a Probabilistic Model

After introducing the idea of graphical dependency structures, parametrized discrete
probabilistic models, and practical approaches for computing inference with those mod-
els, the question remains how they can be trained.
Training is based on a dataset D with samples fromX and results in parameters Θ̂ which
hopefully fit the data well. To measure the model quality for training data it is necessary
to specify some sort of loss function L, with Θ̂ minimizing the loss. For probability
densities it is common to use the maximum likelihood (ML) principle, which assumes
that samples in the dataset are independent from each other. The probability density of
D therefore factorizes over the samples, i.e. pΘ(D) = ∏x∈D pΘ(x). The most likely
parameters given the data are

Θ̂ ∈ argmax
Θ∈Rd

p(Θ|D) = argmax
Θ∈Rd

p(D|Θ)p(Θ)

p(D)
. (2.10)

For now p(Θ) is a constant, and dividing by p(D) is irrelevant for maximization. It
is numerically convenient to work with logarithmized probabilities, and minimization
of the negative average log-density −(1/|D|) log p(D|Θ) preserves the intuitive idea of
minimizing loss. As p(D|Θ) = pΘ(D) is part of the exponential family of densities, the
obtained ML loss function (with plugging in Equation 2.3) is

L(Θ;D) =− 1
|D| ∑

x∈D
(〈Θ,φ(x)〉−A(Θ) =−〈Θ, µ̃〉+A(Θ). (2.11)

Here µ̃ is the sample average estimator for the sufficient statistics, and due to the linearity
of the dot product the last equality holds [57]. The gradient is ∇L(Θ;D) = ∇A(Θ)− µ̃,
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and the optimal parameters that minimize the loss are Θ̂ = argminΘ∈Rd L(Θ;D). Obvi-
ously Equation 2.11 requires computation of the #P-hard (log) partition function, there-
fore exact computation is cumbersome and in most cases not feasible. Efficient algo-
rithms for inference, computation of loss and gradient, and parameter estimation prob-
lems are available for tree structured models, in other cases the approximate inference
techniques mentioned above come in handy [81]. Various first- or second-order methods
can be applied for parameter estimation if no closed-form solution exists, they vary in re-
source consumption, convergence speed, and complexity [49]. For the proof-of-concept
experiments in this thesis a basic first-order parameter estimation technique was used.
First-order methods iteratively improve the parameters, starting with an arbitrary vector
Θ0 and generating Θ1,Θ2, ... . The simplest approach, known as gradient descent (GD),
generates the series by improving Θ step by step, with respect to the (approximated) loss
gradient, i.e.

Θi+1 = Θi−κi∇L(Θi;D). (2.12)

For linear objective functions, the step width κ0 can be chosen as 1, resulting in the
optimal solution after one step. Otherwise Θi eventually converges to a stationary point,
depending on the chosen step widths κ0,κ1,κ2, ... . Several more advanced methods
have been developed based on the GD idea [48] [62], and its convergence to the global
minimum is guaranteed for the introduced ML loss function [57] [47].
It is questionable if a perfect fit for training data (i.e. convergence to a stationary Θi)
is desirable, as it cannot be assumed that training data perfectly represents all use case
scenarios. For training a generalizing model, it is common to stop the optimization as
soon as the improvement drops below a specified threshold ρ [87] [1]. An absolute
L(Θi;D) ≤ ρ or relative L(Θi;D)−L(Θi+1;D) ≤ ρ stop criteria is used to check for
improvement. With cyclic MRFs the loss function and gradient of probabilistic models
are usually approximated in every iteration, resulting in a slight fluctuating of the ob-
jective function. This means that a single iteration might not improve the loss, although
further improvement could be achieved when the approximation is run again. For opti-
mization termination, this is usually countered by only stopping after I iterations without
improvement.
Regularization can be helpful for incorporating additional information into the optimiza-
tion, especially when the problem is ill-posed. It is a way to impose certain characteris-
tics on parameters (e.g. sparseness or smoothness), although it can reduce their optimal-
ity regarding Equation 2.11. It is usually achieved by adding penalty terms to the loss,
which depend on Θ. The resulting minimization problem for any function f is then

min
Θ∈Rd

f (Θ)+λR(Θ). (2.13)

The regularization weight λ controls the impact of the regularizer R during optimization.
Powers of lp-norms are common examples for regularizers:

R(Θ) = ||Θ||p = (
d

∑
i=1
|Θi|p)

1
p , (2.14)

they allow the popular l1-regularization ||Θ||1 or squared-l2-regularization ||Θ||22. Adding
regularization to optimization can also be seen as imposing some sort of prior density
on the parameters. This can be achieved with MAP estimation, by making p(Θ) in
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Equation 2.10 dependent on some hyperparameters λ ∈ Rk:

Θ̂ ∈ argmax
Θ∈Rd

p(D|Θ)p(Θ|λ), (2.15)

leading to the negative average log-likelihood

LMAP(Θ;D) =−〈Θ, µ̃〉+A(Θ)− log p(Θ|λ). (2.16)

In fact it is possible to choose densities for p(Θ|λ) which result in regular l1- or l2-
regularized objective functions [57]. We later extend the idea of regularization based on
prior knowledge about parameters Section 3.1.5.
Training exponential family models usually demands fully observed data in D. Yet it
is possible to support incomplete data during training by running it as an expectation-
maximization (EM) algorithm [15]. EM algorithms support missing data by treating
them as latent variables, and has been successfully applied in the context of exponential
family models [70] [69] In the expectation step, the missing data is estimated based on
the current parameters (e.g. by solving the conditional MAP problem). After that the
model is optimized based on the observed and estimated data (maximization step). By
repeating both steps in an alternating fashion, it is possible to train an exponential family
model with missing data.

2.3.5 Spatio-Temporal Random Fields

Piatkowski, Lee, and Morik applied Markov models in specific use cases with their
spatio-temporal random field (STRF) approach [58]. The authors provide a generic
method to construct a MRF from a given spatial dependency structure. The resulting
models can be used to analyze spatio-temporal processes, such as traffic density in cities
[40].
STRFs are based on a spatial structure G0 = (V0,E0), that is being replicated for each
time step 1≤ t ≤ T (i.e. the process is modeled for T different times). The replicas Gt of
G0 are connected with (T −1) · (|V0|+ |E0|) temporal edges Etempt

, i.e. the final model
has temporal edges for each node and each spatial edge. Accordingly the whole STRF
is G = (

⋃
t Vt ,

⋃
t(Et

⋃
Etempt

)), with EtempT
= /0 (only T − 1 connections between the T

replicas are needed). This structure also allows a temporal reparametrization which can
be used for compression and regularization [58].

2.3.6 Vector Quantization

Obviously data complexity can highly affect the complexity of machine learning mod-
els, and hence the runtime for training and prediction. For the discussed probabilistic
models the state space size |X | affects the number of parameters and pretty much every
computation. Therefore it can be helpful to compress data and thus lower its complexity.
VQ is a classical approach for data compression, that has been explored for many years
[21]. Compressing data is achieved by subdividing the input space into convex groups,
which are represented by their centroid points. During quantization the centroids are
iteratively moved depending on the data, resulting in groups that have approximately
the same number of vectors closest to them. A popular choice for VQ is the k-means
clustering algorithm [43], a specialization of Lloyd’s algorithm [41]. It chooses the first
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k points as centroids and iteratively adds the remaining points, each time shifting the
assigned centroid. Several algorithmic extensions have been published [3] [77] [30], and
implementations exist in various languages and frameworks.
Obviously VQ and clustering can also be used for machine learning, e.g. in pattern
recognition [66]. More extensive information can be found in [21] [20].
All fundamental theories for gap filling with probabilistic models have now been intro-
duced. The next chapter conveys information about the specific problems of this task,
and how they can be overcome.



Chapter 3

Methodology and Implementation

Our methodology applies machine learning in the remote sensing context. The main con-
tribution is our fully probabilistic approach for filling gaps in SITS. Section 3.1 discusses
the resulting non-trivial subproblems and how we intend to solve them. In addition we
present a novel technique for compression of probabilistic models, it is explored in Sec-
tion 3.2. These methods have been implemented and tested in experiments to show their
applicability and usefulness, Section 3.3 gives an overview over the implementation de-
tails.

3.1 Probabilistic Approach for Gap Filling in Satellite Images

Utilizing probabilistic machine learning for gap filling in remote sensing has many ad-
vantages compared to other approaches. The prediction with a trained model can take
local and global available information in both temporal and spatial dimension into con-
sideration, depending on the chosen graphical dependency structure. Various routines
and hyperparameters make the whole process customizable to many use cases with spe-
cific requirements. However several more or less complicated obstacles need to be over-
come for solving this ambitious task.
We first formulate the gap filling task in a probabilistic way and explore how MRF
models can be utilized for this task. After that we address the complexity problem,
which is rooted in the nature of remote sensing data. Next a optimization routine is
introduced, which is able to handle missing data entries in the training dataset. The
remainder of this section explores how parameter prior knowledge can be incorporated
into the training process.

3.1.1 Probabilistic Interpretation of the Gap Filling Task

The following probabilistic interpretation of gap filling is based on the visual interpre-
tation of remote sensing data introduced in Section 2.1.2. Let I = {I(t,x,y) ∈ Rb}
with 1≤ t ≤ T,1≤ x≤W,1≤ y≤ H be an arbitrary SITS with M(t,x,y) ∈ {0,1} iden-
tifying missing or erroneous data entries. More specifically, I takes values in Ω =
(Ω0×Ω1× ...×Ωb)⊆Rb. Ω is the Cartesian product of the different reflectance values
Ωi that can be measured on each sensor band 1≤ i≤ b.
I can be interpreted as a multivariate random variable X = (X1,X2, ...,XN), with
N = T ·W ·H. Note that all components of X have the same state space Ω, i.e. X
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sampling training prediction

SITS (with gaps) training data D MRF SITS (gaps filled)

Figure 3.1: Pipeline with steps of the novel probabilistic gap filling approach.

takes values x ∈ ΩN . It is safe to assume that some components of X affect others,
e.g. reflectances are possibly influenced by local spatial neighborhood and the past and
following reflectances over time. A graphical dependency structure G = (V,E) could
be used to approximate the real dependencies. M identifies certain variables O ⊂ V as
observed and the rest H = V \U as missing. Accordingly the gap filling task can be
interpreted as a conditional MAP problem (see Equation 2.9).
The fundamental theories in Section 2.3 allow to train a spatio-temporal probabilistic
model, which can be used for solving the conditional MAP problem. However it does
not really make sense to model the complete SITS, as only a single training sample
would be available. Moreover the number of parameters for such a model would be
enormous (e.g. a million vertices in the MRF for a single image of size W = H = 1000).
Despite this underwhelming realization, it is still possible to use probabilistic models for
gap filling.

3.1.2 Probabilistic Models for Filling Gaps

Our central idea is to subdivide the data into small patches, define a random variable
Y ⊂X describing such a patch, and train a MRF for Y . The model can be trained with
an arbitrary amount of data which is randomly sampled from the whole dataset. Filling
gaps can be achieved by solving the conditional MAP problem for every patch which
contains missing entries. Practically speaking the model is slid over the whole dataset
for filling all gaps, Figure 3.1 displays the individual steps of our gap filling approach.
The patch form and the graphical dependency structure determine which local infor-
mation is taken into consideration during prediction. One should note that due to the
training with randomly sampled data, an arbitrary amount of globally available informa-
tion affects the model parameters, and thus, the prediction. This is a big advantage over
other methods, which only rely on local information.
Our approach might perform poorly if there are completely unobserved patches in the
dataset. Without any observed data (i.e. O = /0), the conditional MAP prediction would
result in the most likely state, i.e. the average data seen during training. However this is
not really a disadvantage, as all gap filling approaches struggle when no local reference
data is available. Depending on the data of interest it makes sense to choose different
model structures. As an example models for filling gaps which stem from cloud cover
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should make use of available temporal information, as there are hardly any places on
earth that are always clouded. Simply put these (temporal) models should simulate how
any single pixel in the data (and optionally its local spatial neighborhood) can change
over time. For sensor failure gaps it might make sense to construct a model that considers
spatially available data. As the thesis experiments deal with cloud covered data we will
only explore temporal models here.
A Chain model might be the simplest model for gap filling on cloud covered data. In
this case Y has T components, and the underlying graphical dependency structure is a
chain-like MRF with T vertices and T −1 edges connecting them. It only considers tem-
porally available information, accordingly the patches are simply intensity time series as
described in Section 2.1.2. |D| pixel locations (x,y) within the image are randomly sam-
pled and the associated data slices I(x,y) are extracted from the dataset, forming the
training data D. It will be later discussed how training with missing data can commence,
but for now it is assumed that training slices are fully observed. The model is trained by
minimizing the loss function (Equation 2.11), e.g. with running GD. Afterwards gaps
are filled by solving the conditional MAP problem (e.g. with Gibbs sampling) for every
slice in the dataset that features missing data.
The Chain model can be easily extended to also consider local spatial information during
predictions. The idea here is to add neighboring nodes to each of the T nodes, forming
a Cross (4-pixel neighborhood) model. As a result Y has 5 ·T components, while (T −
1) ·30+4 ·T edges indicate the conditional independences.
A MRF that captures spatio-temporal dependencies like this might encounter problems
when large spatial patches are unobserved (e.g. with cloud covered data). In this case
most gap pixels would also have an unobserved neighborhood, and the randomness of
Gibbs sampling predictions for these pixels would probably dominate the available tem-
poral information. To still make use of spatial data, one could utilize the simpler Chain
model for predicting neighboring pixels. This means that a Chain prediction for the
whole SITS is computed first, and for Cross predictions the corresponding neighboring
pixels are taken from the Chain result. Another option would be to also connect the
neighborhood nodes in the MRF with temporal edges, leading to the T-Cross structure.
Here all pixels are affected by the temporally available information, which could results
in less random behavior. Figure 3.2 depicts possible graphical dependency structures of
a Chain, Cross, and T-Cross model as described above, with T = 3.
These models obviously capture spatio-temporal dependencies, similar to the original
STRFs which were introduced in Section 2.3.5. In fact the T-Cross model is a STRF
(just without diagonal temporal edges), with the underlying spatial structure resembling
a cross (hence the name). The STRF structures originally model independences in the
whole process, as several captured spatio-temporal process states are available for train-
ing. On the other hand, the models introduced above compute inference on small patches
within the data, and are slided over the dataset for filling all gaps. However the novel
models are just special adaptions, and the classic STRFs could also be used for gap fill-
ing with our sliding prediction approach. This means that our models could also be tem-
porally reparametrized [58]. Based on this idea we further exploit the spatio-temporal
structure in the compression approach (Section 3.2). By using a grid-like STRF one
could also predict several pixels at once, and slide the model but patch-per-patch (in-
stead of pixel-per-pixel).
Obviously even more complex patch forms and graphical dependency structures could
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t

(a) Chain model (b) Cross model (c) T-Cross

Figure 3.2: Graphs of different temporal models for the gap filling task on remote sensing data
with T = 3. The Chain model (a) only considers temporally available information during pre-
diction, while the Cross model also relies on the spatial 4-pixel neighborhood (Cross model)
(b). The 4-pixel T-Cross model (c) features more temporal edges, as each node is temporally
connected.
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be chosen here, however it is questionable if the increase in complexity really pays off.
More edges allow to consider more local information for gap filling, however it also
increases the model complexity and thus, the time needed for training and prediction. It
should also be noted that some MRF structures (including our T-Cross) deny the exact
computation of probabilistic inference due to cycles (see Section 2.3.3). A comparison
of gap filling results with different model structures can be found in Section 4.2.

3.1.3 Reducing the Computational Complexity

Looking at the computational effort of probabilistic gap filling reveals a remaining prob-
lem. The high radiometric resolution of sensor bands leads to a colossal state space
size, which has a high impact on the model complexity. For example considering a
model which processes very simple satellite data of five bands, with each band featur-
ing Ωi = [0,255] different reflectance values. Accordingly the state space size of each
component ofX would be |Ω|= 2565 ≈ 1.1e12. This means that each edge in the con-
structed MRF model would be represented by 25610 ≈ 1.2e24 parameters, which makes
the computation of probabilistic inference practically impossible. In remote sensing the
radiometric resolution is usually way higher, and most data products feature more than
five bands.
The solution for this is to drastically reduce the satellite data complexity, for example
with VQ (shortly discussed in Section 2.3.6). For this scenario it makes sense to only
quantize the valid intensities, as faulty pixels are not presented to the model and would
probably deteriorate the quantization results. By replacing each valid multidimensional
intensity value I(t,x,y) in the SITS with one of the k prototype intensities {Ĩ1, Ĩ2, ...Ĩk},
the number of parameters per edge is reduced to k2. Accordingly quantization results in
a new image series Ĩ= {Ĩ(t,x,y) ∈ Rb}. The predicted quantized values could even be
further improved by replacing them with better estimations, based on more information
from the quantization process or locally observed data. Consequences of quantization
are shortly discussed in Section 4.2.1.

3.1.4 Training Probabilistic Models with Missing Data

A big problem arises from data incompleteness. It would be desirable to have a proba-
bilistic gap filling approach which can be applied in all scenarios, no matter how much
of the data is missing. However the random sampling of training data might result in
partially unobserved patches. Limiting the sampling to fully observed patches does not
really help, as it can highly restrict the data for training. In some cases it might even be
impossible to find patches which do not feature any missing data.
Generally it cannot be guaranteed that patches sampled for training are completely ob-
served, which creates demand for a training routine supporting partially missing data.
Unfortunately this disqualifies simply minimizing the loss function (Equation 2.11), as
the estimated average sufficient statistics µ̃ cannot be computed if parts of the data are
unobserved.
This problem can be solved by running the whole training as an EM algorithm, as intro-
duced in Section 2.3.4. The expectation step can be executed by (approximately) solving
the conditional MAP problem (Equation 2.9) for the unobserved training data in D, e.g.
with Gibbs sampling. As intended this prediction is based on the current model parame-
ters. The average sufficient statistics µ̃ are re-estimated after every expectation step. The
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maximization is then performed by running a regular training routine that demands fully
observed data, e.g. minimizing the loss with GD. The number of outer EM iterations Q
(i.e. number of expectation and maximization steps) affects the amount of time needed
for training, as well as the quality of the resulting model. Experiments in Chapter 4
inspect the impact of EM training in terms of convergence, training runtime, and model
quality.

3.1.5 Incorporating Parameter Priors for Optimization

Even with EM training for supporting missing data, a specific problematic scenario re-
mains. Let us assume that we have a spatio-temporal dataset I that is completely unob-
served on a specific acquisition date, e.g. due to total failure of sensors. We want to train
a Chain MRF model for this data, i.e. the model shall utilize only available temporal
information for a pixel. However all sampled training patches have missing intensities
for pixels at this unobserved acquisition date, i.e. one node of our model is always unob-
served. The weights are initialized randomly, so the first conditional MAP state of this
random variable component (computed during the first EM iteration) is totally random.
Accordingly the model will then learn parameters that fit this random state (or rather, the
estimated average sufficient statistics resulting from the conditional MAP state). This
might already be problematic if acquisition dates exist where the vast majority of pixels
is unobserved, because here the sufficient statistics are dominated by the few observed
pixels.
Obviously this scenario is also problematic for other spatial gap filling approaches. How-
ever most temporal methods would simply compute interpolated intensities based on
the temporally available information, instead of random values. To pave the way for
similar behavior of probabilistic models, it is necessary to incorporate prior knowledge
about parameters. This can be achieved by adding a regularization to the objective func-
tion, as described in Section 2.3.4 (Equation 2.13). The commonly used squared-l2-
regularization can be interpreted as enforcing prior knowledge about the parameters,
such that all parameters take values near zero:

R(Θ) = ||Θ||22 = ||Θ−0||22 = ||Θ−σ||22, (3.1)

with 0 being the d-dimensional zero vector and σ ∈ Rd being the prior vector. As
shown above prior knowledge can be incorporated by choosing values for σ, which con-
tains a prior value for each parameter Θi ∈Θ. In the remainder of this thesis normal
squared-l2-regularization is referred to as L2 Zero (L2Z) prior. Simply put prior knowl-
edge regularization will push the model parameters towards σ, as it is costly (in terms
of loss) to move away from the prior values.
The question remains how values for σ can be computed. In general each parameter
describes a specific state transition, either over time or spatially (depending on the asso-
ciated edge in the MRF). Accordingly each prior value σi ∈ σ functions as a guideline
for the (logarithmized) probability of this state transition. In the following we make
some suggestions on how prior values can be computed.
One approach is to prioritize state transitions based on state similarity. In the remote
sensing context the k states are the b-dimensional quantized centroid intensities, hence
we named this the intensity-based similarity (IBS) prior. Similarity can be measured by
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first computing the Euclidean distances between the centroid vectors:

D =


0 d2

12 d2
13 . . . d2

1k
d2

21 0 d2
23 . . . d2

2k
d2

31 d2
32 0 . . . d2

3k
...

...
...

. . .
...

d2
k1 d2

k2 d2
k3 . . . 0

 , with d2
i j = ||Ĩi− Ĩ j||22. (3.2)

Obviously state transitions from the same state into the same should have the highest
probability. Therefore D needs to be be inversely scaled, i.e. all distances are projected
onto the interval [pl, ph], with the highest distances obtaining the pl-value and the small-
est distances resulting in ph. This gives the IBS matrix containing probability priors
between [pl, ph]. Simply put, the IBS prior for a parameter is higher, if the centroid in-
tensities of the associated states are more similar. Elements of σ take values from this
matrix, based on the state transition that they describe.
Another approach is to compute a log transition probability (LTP) prior, which is based
on the (logarithmized) empirical probabilities of state changes. Here it makes sense to
compute different priors for temporal and spatial edges, as the empirical probabilities
for temporal and spatial state changes are different. The logarithmized empirical tempo-
ral state transition probabilities can be computed from the quantized image series Ĩ as
follows:
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and γt(t,x,y,m,n) indicating if a temporal state transition from Ĩm to Ĩn takes place:

γt(t,x,y,m,n) =

{
1 if Ĩ(t−1,x,y) = Ĩm∧ Ĩ(t,x,y) = Ĩn

0 else
(3.4)

By normalizing each row in Pt (i.e. ∑
k
j p̂i j = 1 ∀1 ≤ i ≤ k), one obtains the temporal

LTP prior matrix. In a similar fashion it is possible to compute the LTP prior for spa-
tial edges, e.g. based on the empirical spatial state change probabilities for a 4-pixel
neighborhood:
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(3.5)

and

γs(t,x,y,m,n) =


2 if Ĩ(t,x−1,y) = Ĩm∧ Ĩ(t,x,y−1) = Ĩm∧ Ĩ(t,x,y) = Ĩn

1 if Ĩ(t,x−1,y) = Ĩm∧ Ĩ(t,x,y) = Ĩn

1 if Ĩ(t,x,y−1) = Ĩm∧ Ĩ(t,x,y) = Ĩn

0 else

(3.6)

The values in σ are taken from the LTP prior matrices, depending on the (spatial or
temporal) state transition that the corresponding parameter describes.
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As introduced earlier, regularization is commonly weighted with λ (see Equation 2.13).
However when different priors for spatial and temporal parameters are used, it might
make sense to weight the regularization with different values:

min
Θ∈Rd

f (Θ)+λR(Θ) = min
Θ∈Rd

f (Θ)+λ ||Θ−σ||22 = min
Θ∈Rd

f (Θ)
d

∑
i

λi(Θi−σi)
2 (3.7)

This allows to weight each single parameter prior differently, and by assigning λi ∈
{λt ,λs} depending on the associated edge, the temporal and spatial regularization can
be weighted differently. If the STRF model also contains diagonal temporal edges as
described in [58], it might also make sense use another designated prior and weight it
independently.
All those priors were tested in experiments with different weights, they are discussed
in Section 4.2.2 and Section 4.2.4. Obviously one could test even more priors, e.g. by
computing the LTP prior over a local temporal window instead of the full data. Easily
incorporable prior knowledge is a big advantage of the probabilistic gap filling approach,
as it allows a lot of fine-tuning. Moreover the prior regularization could be adapted
to MRF extensions, e.g. Piatkowski, Lee, and Morik’s STRF reparametrization. In
this specific case the trained parameters are Z [58], and the prior values σ need to be
recalculated in a similar fashion.

3.2 Model Compression with Parameter Series Cluster Shar-
ing

The high complexity of probabilistic models is probably their highest drawback. How-
ever the temporal dimension of STRFs allows regularization [58] and compression by
merging parameters and thus reducing their size. Following up we present our novel
parameter series cluster sharing (PSCS) compression approach, which first subdivides
the whole set of parameters and then compresses the resulting parameter series.

3.2.1 Temporal Parameter Series in Probabilistic Models

The parameters of any STRF G = (V,E) with underlying spatial dependency structure
G0 = (V0,E0) can be subdivided into parameter series. As described in Section 2.3.5
edges of these graphical structures can be divided into spatial and temporal edges.
A single parameter θspat(vi,v j, t) ∈ Θ of a spatial edge describes a specific state tran-
sition between replicas of nodes vi,v j ∈ V0 at time 1 ≤ t ≤ T . The temporal edges are
represented by parameters θtemp(vi,v j, t) ∈ Θ. They describe the temporal transition
from t to t + 1 between replicas of nodes vi,v j ∈ V0 with 1 ≤ t ≤ T − 1 (vi 6= v j for di-
agonal edges). Accordingly each parameter belongs to a set of parameters Θspat(vi,v j)
or Θtemp(vi,v j), which describe the same data relation at different temporal sections, i.e.
edges of the model.
This subdivision of Θ is exemplary displayed in Figure 3.3. Each set Θspat(vi,v j) or
Θtemp(vi,v j) contains T or T − 1 parameters, and can be interpreted as a time series of
parameters (hence the name parameter series).
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Figure 3.3: Example for a STRF G based on a simple spatial graph G0 with T = 3 (without
diagonal edges), whose parameters can be interpreted as parameter series.
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3.2.2 Cluster Sharing for Parameter Series

For complex models the parameter series of different edges and nodes will probably
show similarities. This is particularly the case for STRFs which are used in a sliding
way (as described in Section 3.1.2), as here multiple spatial nodes represent any arbitrary
pixel in the image over time. Even with STRFs describing a whole process, there is a
high chance that matters might evolve similarly in different regions of the model.
We therefore propose to compress the set of parameter series, meaning that each series
Θspat(vi,v j) or Θtemp(vi,v j) is replaced by a specific cluster centroid series Θ̃spat(vi,v j)
or Θ̃temp(vi,v j). As a parameter series is essentially a T - or (T − 1)-dimensional vec-
tor, regular methods of VQ can be easily applied for finding good centroids (see Sec-
tion 2.3.6). In a model which has been compressed with this novel PSCS approach,
several parameter series share the values of a clustered centroid parameter series.
PSCS compression can drastically decrease memory requirements of the model, with-
out reducing the level of detail too much. Moreover higher compression results in a
more general model, and hence might alleviate overfitting. The compression rate is
parametrized by the number of temporal and spatial cluster centroids c. As an example
c = k2 would indicate that all spatial (or temporal) edges share the same state transition
probabilities over time (with k2 being the state space size per node). With the number
of initial parameter series and the number of temporal and spatial cluster centroids c, it
is possible to compute the compression rate. For example a model with 1024 different
parameter series, which are being replaced by c = 128 clustered centroids, would be
compressed to 128/1024 ·100 = 12.5% of its original complexity.

3.3 Implementation Details

The introduced methodology for probabilistic gap filling was implemented1 and evalu-
ated in experiments. Some implementation details are discussed in the following, start-
ing off with the C++2 implementations for probabilistic computations.
As this part of the software was not developed for the specific remote sensing context,
several Python 3 scripts3 were implemented, which process and shape the satellite data
for the probabilistic computations. Information about this code is provided in the second
part of this section. The thesis code is available on the data medium and might be
uploaded publicly at a later time.

3.3.1 Implementations for Probabilistic Computations

For working with probabilistic models Piatkowski’s PX framework4 was utilized and
slightly extended.
PX is a collection of various classes and routines in raw C++, which essentially allow
computations with discrete undirected probabilistic models. The software contains dif-
ferent approaches for computing probabilistic inference, implementations of graphical
dependency structures, several optimization algorithms that can be used in an EM fash-
ion, the computation of estimated average sufficient statistics, and much more. The

1https://github.com/chaosdev94/mt-code/
2https://isocpp.org/
3https://www.python.org/
4https://bitbucket.org/np84/px/

https://github.com/chaosdev94/mt-code/
https://isocpp.org/
https://www.python.org/
https://bitbucket.org/np84/px/
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STRF approach is implemented as well, based on a spatial graph and a given value for
T [58]. Users can choose between several forms of spatial structures, or simply specify
a custom graph with an adjacency matrix. Training results in a binary model file that
can be inspected or used for predictions. Training or prediction data is given in form of
comma-separated value (.csv) files, with each line containing a full realization of the
random variable X (the ? character denotes unobserved components). In general PX is
well optimized and large parts support parallelization over multiple cores. The frame-
work core is compiled into a shared library, which is used by the different routines such
as px-train or px-predict.
Small code changes were done for allowing code compilation on Windows with Mi-
crosoft Visual C++5, such as adding corresponding compiler intrinsics. A new graph
class which only connects a single node over time was added to PXGRAPH and can be used
for Cross model computations. For prior regularization several adjustments were made
in PXMISC, px-train.cpp, and PXOPT. The GradientDescentL2EdgePrior class in
PXOPT is used for optimizing with a prior regularization. The changes in PXMISC and
px-train.cpp allow to load prior matrices and weight the regularization differently,
as described in Section 3.1.5. px-manipulate.cpp was added for compressing previ-
ously trained models (see Section 3.2). It loads a trained model and exports (or imports)
temporal and spatial parameter series for compression.
PX features several options and routines, however only some of them were used for
experiments. Training is run with the following command:

Listing 3.1: PX Training Command

./px-train -Y 1 -s 4 -I $I -p $p -Q $Q -T $T -o $plist

-l $l_t $l_s $l_d $train $adj $mname .

-Y 1 assigns the state space of each node in the model to be similar. -s 4 chooses
the novel prior regularized GD as optimization routine, while $I and $p control the
relative stop criteria I and ρ as described in Section 2.3.4. With setting -Q the training
is run in an EM fashion with $Q outer iterations (see Section 3.1.4). $T determines the
number of spatial structure copies which together form the spatio-temporal graph (i.e.
the number of acquisition dates T ). A comma separated list of prior matrices is given
with $plist, the individual weights for temporal, spatial, and diagonal parameters are
set to $l_t, $l_s and $l_d. $train is the file with data samples used for training, the
spatial structure is generated based on the given adjacency matrix $adj. PX writes the
model file $mname as soon as the training is finished. For other parameters the default
values were used, i.e. LBP was used for approximating probabilistic inference with
termination bound 100, and Gibbs sampling approximately solves the conditional MAP
problems.
Predictions can be computed with the command

Listing 3.2: PX Prediction Command

./px-predict $pred $mname

with $pred being the .csv file for prediction and $mname being the model name. This
routine results in a .predicted file where all missing values in $pred are filled. PX
was designed to make a full prediction instead of sliding the trained model over a bigger

5https://docs.microsoft.com/en-us/cpp/?view=vs-2017

https://docs.microsoft.com/en-us/cpp/?view=vs-2017
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dataset, as it is the case with the gap filling task. One option to deal with this is to extract
all patches with missing data, list them in the $pred file, run px-predict, and after-
wards assemble the full prediction from all lines. A specialized script was implemented
allowing the use of predicted data for following patches.

3.3.2 Implementations for Satellite Data Processing

The processing of remote sensing data was implemented in Python scripts. Each script
is roughly discussed here, more detailed information is available by running scripts with
the -h help argument.
Satellite data was accessed with the Open Source Geospatial Foundation (OSGeo) soft-
ware6 and the corresponding osgeo package for Python. The SatDataAccess.py script
is responsible for loading the data, quantizing it with scikit-learn’s k-means cluster-
ing implementation [53], and adding artificial clouds based on a JavaScript Object Nota-
tion (JSON) file. It also reads data from OTB’s linear temporal interpolation as described
in Section 2.2.3. The script creates a range of .npy files which are used by other scripts,
containing the data, cloud masks, and clustering information. SatDataSampler.py is
used for sampling the data for training. It also generates a file containing the data for
prediction, as well as the adjacency matrix describing the spatial model structure. The
SatDataPriorComputation.py script allows to compute prior matrices as described
in Section 3.1.5, which can be loaded with PX.
The whole training and prediction with MRF models is executed with the extended PX
software, as described above. For simplicity only the centroid indices are used during
the probabilistic computations. This means that the state space for each node in the MRF
model is simply the set of centroid indices Xi = {1,2...,k}.
PatchOverlapPrediction.py is a specialized script which allows to use predicted
data during following predictions. This is helpful for models with spatial neighborhood,
as here the predicted intensities of the centered pixel should spatially influence the next
prediction. It internally calls px-predict as a subroutine for each single patch.
The resulting .predicted files can be evaluated with SatDataPredEvaluation.py,
which replaces the centroid indices with quantized intensities. The script also writes
quality reports for the whole data and for each acquisition date, if artificial clouds were
added. Moreover it generates pictures that show the visual results of gap filling, as well
as another .npy file containing the predicted gap data. Rerunning SatDataAccess.py

with the -w option allows to store the gap filled satellite data in the original format.
The ModelCompressor.py script executes the PSCS compression. It reads, clusters,
and writes the quantized parameter series from and into the files which have been gen-
erated by px-manipulate.cpp. Clustering is again computed with scikit-learn’s
k-means implementation.

6https://www.osgeo.org/

https://www.osgeo.org/


Chapter 4

Experiments

Several experiments were run with the implementations of our methodology (see Sec-
tion 3.3 for details). The obtained results show the feasibility of our proposed meth-
ods and provided insight into issues and benefits. This chapter provides an extensive
overview of the experiments, the obtained qualitative and quantitative results, as well as
possible interpretations.
Starting off Section 4.1 conveys general experimental background information. Sec-
tion 4.2 discusses the probabilistic gap filling experiments. This includes exploration
of different hyperparameter choices, a comparison with a different gap filling approach,
and the evaluation of quantitative and visual results. Lastly the experiments for our novel
compression approach for STRFs are discussed in Section 4.3.

4.1 General Information on the Experiments

Some general information is crucial for understanding the experiments. Therefore this
section introduces the experiment data, the technique for evaluation, and quality mea-
sures that are used later on.

4.1.1 Data and Environment for Gap Filling Experiments

The data used in the experiments originates from the Sentinel-2 earth observation mis-
sion [16]. It globally covers most land and sea surfaces, revisits each location every five
days, and has a free data policy. The satellites’ data features 13 bands in the visible,
near infrared, and short wave infrared spectrum and is especially interesting because of
its high spatial resolution (10, 20 and 60m). It makes Sentinel-2 data valuable for many
use case scenarios, such as monitoring crops or vegetation [13], flood mapping (e.g. for
disaster management) [17] or the generation of detailed land cover maps [71]. Different
preprocessed products of the raw data are available. We chose THEIA’s product format
at level 2A1 for our experiments, following up the corresponding preprocessing steps are
shortly explained.
THEIA L2A data is already atmospherically corrected by the MACCS-ATCOR Joint
Algorithm (MAJA) [25] and comes with cloud masks, which identify gaps. First step
in THEIA L2A data correction is estimating the atmospheric water vapor content. It

1https://theia.cnes.fr/atdistrib/rocket/

https://theia.cnes.fr/atdistrib/rocket/
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is followed by the correction of gaseous absorption, which uses the SMAC model [59].
MAJA’s classification of clouds is based on steep increases in the blue surface reflectance
band over time and correlations in the local pixel neighborhood of preceding images
[24]. After that the aerosol optical thickness is estimated, which is then used to retrieve
the corrected surface reflectances. Final step in preprocessing is the correction of adja-
cency and terrain slope effects.
THEIA L2A data is subdivided into tiles of (10000×10000) pixels at T different acqui-
sition dates (T varies from tile to tile). It features d = 10 of the original 13 Sentinel-2
bands and binary cloud information for each entry. The data of a single tile can be inter-
preted as an image series which allows uncomplicated visualization, for example with
OSGeo2 (exemplary visualizations were already shown in Figure 2.2). The thesis ex-
periments were run on a subregion of (1000× 1000) pixels in the T31UDQ tile. The
featured data was measured for France on T = 31 acquisition dates in 2016. A single
image in the dataset is referenced by its date

t ∈ {2,12,25,42,65,72,75,82,92,105,122,125,172,175,192,222,225,

235,245,245,252,265,272,282,285,335,342,345,352,355,362}

which denotes the t-th day of 2016 (obviously it can be recomputed to the specific date).
About half of the 31000000 pixels in the dataset are identified as clouded. Experiments
were run remotely on NeCTAR Research Cloud3, a collaborative Australian research
platform which is supported by Australia’s National Collaborative Research Infrastruc-
ture Strategy (NCRIS)4.

4.1.2 Adding Artificial Clouds for Evaluation

As described in Chapter 3, the introduced approach for gap filling is highly customizable,
due to several hyperparameters and routines. This creates demand for measuring the
quality of models with different hyperparametrizations. Artificial clouds were randomly
added to the data, allowing the comparison of observed data with the model prediction
and hence the computation of quality measures. Each synthetic cloud covers 6584 pixels
and has the shape of a rectangle with rounded edges, the smallest cloud shape detected
in THEIA L2A masks. Obviously the data for artificially concealed pixels is also unob-
served during training.
Validation experiments were run to evaluate the impact of changing certain hyperparam-
eters. The succeeding test experiments were run with the best parameters and led to
final quantitative and qualitative results. About 3.5% of the intensities were artificially
clouded for test experiments, and more clouds were added (concealing another 1.5%)
for finding good hyperparameters. In total, 165 clouds were added for testing, and 70
clouds for validating. This means that roughly 10% of the originally unclouded data is
artificially clouded for evaluation. Obviously the pixel data concealed for validation is
observed during test experiments, leading to a slightly higher amount of available in-
formation. Figure 4.1 shows the proportion of real, test, and validation clouds over the
whole dataset, for each acquisition date, and examples of resulting cloud masks.

2https://www.osgeo.org/
3https://nectar.org.au/research-cloud/
4https://www.education.gov.au/national-collaborative-research-infrastructure-

strategy-ncris

https://www.osgeo.org/
https://nectar.org.au/research-cloud/
https://www.education.gov.au/national-collaborative-research-infrastructure-strategy-ncris
https://www.education.gov.au/national-collaborative-research-infrastructure-strategy-ncris
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Figure 4.1: Artificial clouds were added randomly, allowing evaluation of results. The proportion
of clouds in the data can be analyzed over the whole series (a) or for each acquisition date (b).
Resulting exemplary cloud masks are shown for three different dates (c - e).
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The artificial clouds also allow to run different gap filling approaches and compare their
results. OTB’s linear temporal interpolation (see Section 2.2.3) was used as a baseline
approach for comparison, labeled as Baseline in the following sections. As the proba-
bilistic models can only predict quantized intensities, the interpolated values were also
projected onto the nearest quantization centroid.

4.1.3 Quality Measures for the Evaluation

Mean absolute error (MAE) and Error (ERR) are computed for the n clouded pixels
to measure the quantitative prediction quality. MAE here denotes the mean absolute
intensity error per band and pixel:

MAE =
1

d ·n
n

∑
i=1

d

∑
k=1
|Ik(ti,xi,yi)− Îk(ti,xi,yi)| (4.1)

(ti,xi,yi) denotes the location of the i-th sample, and Ik (as well as Îk) describe the
k-th band intensity in the reference (or prediction) data entry. The MAE is also used
to compute the quantization error MAEQ by using the quantized intensities Ĩ instead
of Î . Obviously MAEQ is contained within MAE, and the remaining prediction error
is denoted as MAEP, such that MAE = MAEQ +MAEP. ERR denotes the empirical
probability that the predicted value is not equal to the quantized originally observed
intensity (i.e. ERR = 1−Accuracy):

ERR =
1
n

n

∑
i=1

{
0 if Îk(ti,xi,yi) = Ĩk(ti,xi,yi)

1 else
(4.2)

Dealing with THEIA L2A data results in d = 10 bands, while the number of evaluated
pixels is n = 165 ·6584 = 1086360 for testing, n = 70 ·6584 = 460880 for validation and
n= 15535050 for the quantization experiments (number of artificially clouded pixels and
number of unclouded intensities in the whole image series).
All experiments in this thesis were run eight times, as the placement of artificial clouds,
the sampling of training data, and the approximation of probabilistic inference result
in highly non-deterministic behavior. Accordingly all measured qualities are averaged
over all eight runs. The results which cannot be easily merged (e.g. gap-filled images
or convergence computations) are all taken from the first run. In some experiments
we also evaluate the standard deviation (SD) of the quality measures over all runs, i.e.

SD =
√

1
8 ∑

8
i (zi− z̄)2, with zi denoting a quality measure result from the i-th run, and z̄

denoting the averaged quality measure over all runs.

4.2 Experimental Gap Filling with Probabilistic Models

The first experiments focus on the suggested probabilistic gap filling approach, using
Markov models with dependency structures introduced earlier (see Section 3.1.2 for
more details). We first explore the impact of quantization, prior regularization, and other
hyperparameters on the model quality with the help of validation clouds. Based on those
findings the quantitative and visual performance of trained models on the test clouds is
evaluated.
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Figure 4.2: MAEQ for k-means quan-
tized satellite data, with varying num-
ber of centroids k (SD ±6.7).

Figure 4.3: Visual k-means quantiza-
tion results of an image subregion (d)
with k = 4 (a), k = 8 (b) and k = 16 (c).

4.2.1 Results of Complexity Reduction with Quantization

The very first hyperparameter in the routine is the number of quantization centroids
k, which regulates the state space size per node in the model (and thus the number of
parameters per edge, i.e. the model complexity, as described in Section 3.1.3). It can
actually be evaluated without artificial clouds, because the error is computed from the
quantized and originally unclouded intensities. Quantizations and the resulting MAEQ

were computed with different values of k, the error can be seen in Figure 4.2, while
optical quantization results are depicted in Figure 4.3.
One can see that the MAEQ and visual level of detail converge relatively fast. Choosing
the value for k is a balancing act of computation runtime versus quality of the trained
model, k = 16 was chosen for all following experiments. Moreover a higher k requires a
larger amount of training data for obtaining a robust estimation of the average sufficient
statistics.

4.2.2 Benefits of Temporal Prior Regularization

The artificial validation clouds allow to measure the model quality, and hence the impact
of changing hyperparameters for training. Finding good values for them is necessary, as
the quality of predictions can drastically change with different configurations. We chose
initial values for all hyperparameters, and then later explored the effects of changing
them one by one.
The number of training samples n affects the sufficiency of the estimated average statis-
tics µ̃, it was set to n = 100000. As explained in Section 3.1.4, the training needs to
be run in an EM fashion, as it has to deal with missing data. Q, the number of outer
EM iterations, was set to Q = 8 in the experiments. I and ρ regulate the stop crite-
ria for optimization, the number of iterations without improvement was set to I = 100
and the relative stop criteria for improvement was initially set to ρ = 0.1. Last but not
least parameter regularization based on prior knowledge can be applied, it is the first
hyperparameter that we evaluate in detail.
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Figure 4.4: MAE (a) and ERR (b) of models with varying temporal regularization priors and
values for λ .

All of the suggested models have temporal edges, which is why we first inspect the
impact of temporal regularization. The different priors suggested in Section 3.1.5 were
tested with varying values for λ , Figure 4.4 depicts the resulting errors on the Chain
model (which only has temporal edges).
It is obvious that the LTP edge prior outperforms the L2Z and IBS priors with a good
λ . However it is interesting that the LTP prior performs worse than the others when it is
weighted too strong. Apparently a good prior enables our gap filling method to beat the
baseline in terms of quality. Results could probably be further improved by choosing λ
between 0.001 and 0.0001.

4.2.3 Impacts of Other Hyperparameters

More Chain models with the LTP edge prior and varying λ were trained, with different
values for Q, n, and ρ . Figure 4.5 shows that even with few training samples (e.g.
n = 100) the Chain model can still outperform the baseline method. However a greater
weighting of the edge prior regularization can be beneficial, if only a small amount of
data (n ≤ 100) is available for training. Also note that the error seems to converge for
all curves, but λ slightly affects the point of convergence. The low impact of n on the
quality is probably also rooted in the modest complexity of the Chain model, using more
data also allows to train more complex models (e.g. by increasing k).
Effects of changing the value for Q can be seen in Figure 4.6. It shows that the benefit
of iteratively rerunning the optimization is lower for training with a very large or small
λ . This makes sense as the model is not allowed to adapt to the re-estimated average
sufficient statistics (high λ ), or is allowed to behave too randomly (small λ ). Obviously
only few iterations of EM training are needed for a converging error, however more
iterations can still improve the results.
Experiments were run with different values for ρ , the quantitative results are displayed
in Figure 4.7. It is interesting that the early optimization stopping with ρ = 1 leads
to a way worse performance with a small regularization weight. It also shows that a
lower value for ρ actually further decreases the error. However one has to keep in mind
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Figure 4.5: MAE (a) and ERR (b) of models with varying number of training samples n, trained
with the LTP prior and different values for λ .
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Figure 4.7: MAE (a) and ERR (b) of models with varying relative optimization termination
criteria ρ , trained with the LTP prior and different values for λ .
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Figure 4.8: Converging graphs of the objective function L(Θ;D) during the training of the Chain
model in different EM iterations with ρ = 0.1 (a) and ρ = 0.01 (b).

that early stopping makes models more general, and can thus alleviate overfitting the
training data. Resulting convergence plots for the first EM iterations (Iter) are shown in
Figure 4.8. Obviously the optimization is stopped way earlier with a lower ρ , however
the error does not decrease drastically, and the more general model might even perform
better on unknown data.
We conclude that Q = 8 and n = 100000 were well chosen, they are therefore fixed in all
upcoming experiments without further tests. In the test experiments ρ was set to 0.01,
to further improve the prediction quality.

4.2.4 Adding Spatial Prior Regularization

Considering local spatial information might help to further increase the model qual-
ity. However it requires a more complex graphical dependency structure, which also
increases the complexity of probabilistic inference.
A lot of hyperparameters have already been discussed, and we here assume that they
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Figure 4.9: MAE (a) and ERR (b) of models with varying spatial regularization priors and values
for λs. The temporal edges are regularized with the LTP prior and λt = 0.01. The (+ Chain)
results were achieved by first predicting the spatial neighborhood pixels with the Chain model.

will affect more complex models in a similar way. However the impact of spatial priors
needs to be evaluated, as it does not make sense to regularize spatial edges with the
temporal LTP prior (keep in mind that the LTP prior is different for spatial and temporal
edges, as described in Section 3.1.5). Therefore Cross models were trained with the
differently weighted LTP, L2Z, and IBS priors for spatial edges. The temporal edges
were regularized with the LTP prior and λt = 0.001, as determined above.
In the initial experiments all of the trained Cross models performed significantly worse
than the Chain model. The cause for that is probably rooted in the nature of clouds,
which usually cover large regions. Accordingly the spatial neighborhood is most often
unobserved for clouded pixels, and random behavior of the neighbors during sampling
deteriorates the prediction (already mentioned in Section 3.1.2).
This problem can be overcome by first predicting the neighborhood of a clouded pixel
with the Chain model, and then predicting values for the centered pixel with the Cross
model. Figure 4.9 depicts the quantitative results for these experiments, (+ Chain) plots
indicate that a neighborhood prediction with the Chain model was computed first. It
shows that the Cross model can indeed have a higher quality than the Chain, when the
spatial neighbors are observed (or predicted first).
Apparently the LTP prior also works best for spatial regularization, it provides better
results than the other priors for all tested values of λs. Here regularization weighted
with λs = 0.01 delivers the best results, however the choice of λs does not affect the
quantitative quality much.
Another option for solving the problem of unobserved neighbors might be to use a T-
Cross model. The newly added temporal edges could then also be regularized with the
LTP prior, as mentioned above.

4.2.5 Quantitative Results of Probabilistic Gap Filling

After finding good hyperparameters the test experiments were run. Accordingly the
quality measures are computed for the test clouds, the clouded validation data is now
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Table 4.1: Quantitative results obtained with different models.

Method MAE (± SD) ERR (± SD) Prediction time Training time
Baseline 339.79 (± 12.3) 57.25% (± 1.6) 60s -
Chain 288.32 (± 6.4) 46.55% (± 1.3) 3600s 10800s
Cross (+ Chain) 284.10 (± 6.4) 45.98% (± 1.3) 10800s 43200s

observed. n = 100000 samples were used for training a Chain and Cross model with the
spatial and temporal LTP prior (λt = 0.001, λs = 0.01), and Q = 8 EM iterations (each
one stopping after I = 100 iterations with improvement lower than ρ = 0.01).
Table 4.1 depicts the average MAEs, ERRs, SDs, approximated computational runtime
of probabilistic gap filling, as well as the respective results of the baseline method. One
can see that both Chain and Cross model by far outperform the baseline in terms of
quality. They also appear to be more robust over all experiments, as the resulting SD
is lower. This is interesting as the test cloud placement is the only random factor in
the baseline gap filling routine, and apparently has a high impact on the interpolation
quality. It also shows that spatial information can possibly increase the model quality,
even with clouded data, however it also requires a significantly higher amount of training
and prediction runtime, and the neighbors need to be predicted first.
On the other hand the computational runtime is obviously much higher than with the
baseline method. This is expected, as the complexity of probabilistic inference is enor-
mous compared to a simple linear interpolation. To make the best out of the time invest-
ment, it might make sense to train a model for gap filling in different regions, based on a
larger and more diverse amount of training data. The nature of exponential family mod-
els give the advantage that a higher number of training samples does not really increase
the amount of time needed for training, as n only affects solving the conditional MAP
problem and computing the estimated average sufficient statistics µ̃.
Figure 4.10 depicts the quality for each acquisition date where artificial test clouds were
added (see Figure 4.1 for information on cloud placement). It shows that the probabilistic
prediction is hardly ever worse than the baseline, and excels on certain dates. Domain
experts reckon that these dates feature non-linear developments (e.g. due to growing
and harvesting seasons of specific crops), which are captured better by the probabilistic
approach. One can also see that the Cross prediction error is slightly lower on some
dates, but in general both models perform pretty similarly.
As described earlier the MAEs of both baseline and model prediction consist of quanti-
zation error (which is equal for both methods) and prediction error, Figure 4.11 depicts
the proportion of both errors. One can see that the MAEQ dominates the MAEP, but
improving the prediction (for example with more complex models) is still desirable, as
a higher value for k could be chosen to reduce the quantization error.
Figure 4.12 depicts how the objective function converges during the first EM iterations.
Obviously most of the optimization is achieved in the first EM iteration, although the
ones following apparently still slightly fine-tune the model (and according to Figure 4.6,
this also further increases the quality). It also shows how the expectation steps in the EM
training decrease the loss value (due to the sampling of more likely data). The values for
I and ρ seem to be chosen well, as the optimization in each iteration seems to converge.
Moreover, the EM training also appears to converge, the gaps between the curves (i.e.
the improvement of re-estimating the missing data) decreases from iteration to iteration.
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Figure 4.12: Converging graphs of the objective function L(Θ;D) during the training of the
Chain (a) and Cross (b) model in different EM iterations.
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(a) Original at t = 222 (b) Original at t = 225 (c) Original at t = 235

(d) Cross Prediction (e) Cross Prediction (f) Cross Prediction

Figure 4.13: Comparison of original data (clouds indicated in white) on consecutive dates (a, b,
c) and the corresponding Cross model prediction (d, e, f).

4.2.6 Visual Results of Probabilistic Gap Filling

Besides a quantitative evaluation it also makes sense to inspect the prediction quality
visually.
The first obvious approach here is to evaluate how the prediction for clouded pixels
blends with the unclouded data. Figure 4.13 displays satellite images with clouds on
three consecutive dates (cloud masks are outlined in white), and the corresponding Cross
model prediction. One can see that the probabilistic gap filling indeed leads to reasonable
values. It is also evident that the cloud masks do not capture the cloud outlines perfectly.
The artificial clouds allow to compare the original captured reflectances with the model
prediction and the baseline method result. This comparison is displayed in Figure 4.14,
showing that the Cross model can indeed visually outperform the baseline. This is rooted
in globally sampled training data affecting the model prediction, while the baseline
method results are only based on the temporal information per pixel. As an example
the not perfectly captured cloud shadow at t = 222 (Figure 4.13a) obviously deteriorates
the linear interpolation for t = 225 (Figure 4.14d). The Cross model on the other hand
predicts better values, i.e. reflectances that are more likely to be observed.

4.3 Consequences of Compressing Probabilistic Models

In Section 3.2 PSCS was introduced, a method that can be used for compressing spatio-
temporal probabilistic models. Some experiments were run to evaluate the consequences
of compression, and explore the usefulness of this novel approach.
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(a) Full image at t = 225 (b) Full image at t = 335

(c) Quantized observations (d) Baseline result (e) Probabilistic result

(f) Quantized observations (g) Baseline result (h) Probabilistic result

Figure 4.14: Comparison of quantized observed intensities (c, f) (clouds indicated in white)
with the quantized baseline result (d, g) and Cross model prediction (e, h) on dates t = 225 and
t = 335, region location is shown in (a, b). White circles indicate regions were the probabilistic
results beat the Baseline.
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Figure 4.15: Parameter series of a trained Chain model (a), colored corresponding to the associ-
ated parameter series centroid (b).

Table 4.2: Quantitative results obtained with differently compressed Chain models.

Complexity Number of centroids MAE (± SD) ERR (± SD)
100% 256 288.32 (± 6.4) 46.55% (± 1.4)
50% 128 290.93 (± 6.1) 47.49% (± 1.3)
23% 32 306.75 (± 6.9) 51.35% (± 1.6)
3% 8 357.34 (± 14.7) 59.62% (± 2.3)

We ran PSCS compression on the previously trained and fairly simple Chain model.
It only consists of T − 1 temporal edges, each one represented by k2 = 16 · 16 = 256
parameters (for the chosen quantization rate k = 16). Accordingly the whole model is
parametrized by only 256 temporal parameter series.
We compressed the Chain to only consist of c ∈ {8,32,128} different parameter series,
i.e. a compression to 3%,23% and 50% of the initial model complexity. Figure 4.15
depicts the original model parameter series and the c = 8 calculated centroids, with
colors indicating the associated centroid index that was determined during compres-
sion. It clearly shows that some redundancies are present in the parameters, and can be
eliminated with compression. However it also opens the question whether more refined
quantization methods might lead to better results.
The quality of PSCS compressed models (measured with test clouds) is shown in Ta-
ble 4.2. As expected MAE and ERR increase with firmer compression (i.e. lower value
of c), however a compression to 50% or even 23% of the original complexity results in a
model, which still performs reasonable well and beats the baseline quality. One can also
see that light compression has hardly any impact on the robustness of our approach, as
the SD does not increase much.
Visual prediction results which have been generated with the compressed Chain models
can be seen in Figure 4.16. They show that the visual prediction quality is solid, even
with a drastically compressed model. The compression results for the Chain look quite
promising, especially because the original model does not contain a lot of redundancies.
Compression of more complex model could possibly prove to be even more beneficial.
More visual results can be found on the accompanying data medium.
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(a) Original image at t = 222 (b) Original image at t = 352

(c) Prediction with c = 256 (d) Prediction with c = 32 (e) Prediction with c = 8

(f) Prediction with c = 256 (g) Prediction with c = 32 (h) Prediction with c = 8

Figure 4.16: Comparison of predictions at t = 222 and t = 352, which have been generated
with PSCS compressed Chain models at different compression rates (c ∈ {8,32,256}) (clouds
indicated in white).



Chapter 5

Conclusion

This thesis explored how probabilistic machine learning techniques can be applied for
gap filling in the remote sensing context. Our findings can be beneficial for state-of-the-
art projects working with satellite data, or any other kind of spatio-temporal and possibly
incomplete data. We here summarize our methods and findings, and afterwards give a
short outlook on possible extensions and future work.

5.1 Summary of Novel Methods and Findings

Probabilistic machine learning is well-founded and provided us with robust routines,
which we were able to apply for gap filling in remote sensing.
Our core idea is to probabilistically model a subpatch of the dataset, and fill gaps by
sliding the model over the whole dataset. The model structure controls which local
information affects the prediction, and how complex the model is. A very basic but nec-
essary step is reducing the satellite data complexity, as otherwise discrete probabilistic
models would be infeasible for the task. EM training allowed us to construct MRFs
based on incomplete datasets, and hence solved a big problem in the application context.
Our novel regularization concept proved to be very beneficial during experiments, we
found that restricting the model based on prior knowledge helps when large parts of the
data are missing. The PSCS compression approach subdivides the model parameters
into parameter series, which are then clustered and replaced by their assigned centroid
series.
In the end all these methods allowed us to train models, which can quantitatively and
visually outperform other gap filling approaches, and at the same time are still feasible
to use. The high quality of probabilistically gap filled results is probably rooted in the
utilization of globally and locally available data, which might be the biggest benefit of
our introduced methodology. We were able to show that considering more local data can
actually lower the prediction error. Our compression also led to satisfactory proof-of-
concept results, and might be even more advantageous with complexer (and thus possibly
more redundant) models.
Moreover the methods are highly adaptable, and therefore can also be applied in other
application contexts which deal with incomplete data. We showed that our methods
obtain good results on complex remote sensing data, and hopefully the probabilistic
approach of gap filling will also lead to new insights in other research ares.
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5.2 Possibilities of Extension and Future Work

The introduced methodology also provides a lot of room for improvement and expansion,
which is why we want to shortly address some possible enhancements.
For a start more work could go into finding better graphical dependency structures. Be-
sides choosing it arbitrarily, one could also determine a good structure in an algorithmic
way (as shortly mentioned in Section 2.3.1). Running several different structures against
each other (or collectively, similar to the discussed Cross + Chain predictions) might
lead to even better results (it reminds of the idea of machine learning ensembles). It
would also be possible to model the spectral data dimension, allowing spectro-spatio-
temporal gap filling, as encouraged by Shen et al. [65]. Obviously the suitability of
different dependency structures is always related to the specific data and nature of gaps.
More work could also go into finding better parameter priors or refining the regulariza-
tion. The empirical state transition probability worked great, but maybe a local empirical
estimate (e.g. computed with a sliding window) could further improve results. Our PSCS
compression approach results in parameter series centroids, which could be used as prior
values during training of new models. One could also extend the prior regularization to
consider different priors, for example by randomly choosing from a set of priors during
training (thus combining different prior approaches).
The parameter series cluster sharing approach could be extended to already consider pa-
rameter similarities during training. It might be possible to reparametrize the model ac-
cordingly (similar to Piatkowski, Lee, and Morik’s STRF reparametrization [58]), such
that only centroid values are used and changed during optimization. This special form of
regularization (or parameter tying) would already decrease the model complexity during
training. It might lead to faster convergence, and result in a model which is less prone
to overfitting. Moreover other time series similarity measures might improve results for
compressing or regularizing a model. As an example dynamic time warping (DTW) is
a popular time series distance measure, which could also be applied for averaging the
parameters [56].
Another interesting idea would be to slightly change the application goal. With a trained
model it might be possible to enhance cloud masks, as unlikely data in the dataset, such
as not perfectly captured clouds, could be identified. Gap filled results could possibly
also be improved, for example by applying smoothing, utilizing information from the
quantization process, or taking the probability of predicted values into consideration.
Lastly all fundamental subroutines, such as the optimization with GD, the LBP approx-
imation for inference, or the Gibbs sampling approach for solving the MAP problem,
could be refined or substituted by other methods. The adaptability and extendability is
definitely a benefit of the approach, especially because even the initially chosen (and
pretty basic) routines led to outstanding results. Chances are good that some of those
enhancements will be tackled by the authors in near future.
We hope that our findings contribute to the state-of-the-art computer science and remote
sensing research. Missing data is a widespread problem, and maybe our probabilistic gap
filling approach can be beneficial in future projects working with satellite data, or other
scenarios. With the high popularity of probabilistic models chances are good that people
can also benefit from our compression approach. The proof-of-concept experiments
led to many promising results, and hopefully forthcoming research can build on our
suggested methods.
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