

1

Diploma Thesis

Integration of WebLicht Services for Fast Structural Kernel Generations

and Feature Visualization in RapidMiner

Marcel Fitzner

February 2015

Supervisors:

Prof. Dr. Katharina Morik

Dipl.-Inform. Christian Pölitz

Technical University Dortmund

Faculty of Computer Science

Chair of Artificial Intelligence (VIII)

http://www-ai.cs.uni-dortmund.de/

2

3

Table of content

Chapter 1 Introduction .. 8

Chapter 2 Annotation and Extraction of Linguistic Features .. 10

2.1 Overview of linguistic tools for NLP .. 10

2.2 Introduction to linguistic tools .. 12

2.2.1 Tokeniser .. 12

2.2.2 Part-Of-Speech-Taggers ... 12

2.2.3 Stemmers and lemmatisers .. 13

2.2.4 Parsers .. 14

2.2.5 Constituency parsers... 14

2.2.6 Dependency parsers ... 15

2.2.7 Word sense disambiguators .. 17

2.2.8 Named Entity recognizers ... 17

2.3 Natural language processing toolkits ... 18

2.4 Web-Based Linguistic Chaining Tool (WebLicht) ... 20

2.4.1 The WebLicht services for natural language processing... 20

2.4.2 The web environment of WebLicht .. 21

2.4.3 Communication with WebLicht services .. 22

2.4.4 Preparing text corpora for WebLicht services .. 22

2.4.5 Testing the accessibility of WebLicht services .. 23

2.5 Annotating linguistic features in RapidMiner ... 25

2.5.1 Flexible tool chain concept for the 'WebLicht Feature Annotator' .. 25

2.5.2 XML Configuration of the WebLicht tool chain .. 27

2.5.3 Implementing the WebLicht connector ... 28

2.5.4 Compatible WebLicht services in the tool chain ... 29

2.6 Extraction of linguistic features in RapidMiner ... 31

2.6.1 Motivation for implementing a parser for annotated text corpora... 31

2.6.2 Parsing linguistic features from annotated text corpora ... 31

2.6.3 Feature extraction from XML sections in the TCF document .. 33

2.7 Discussing linguistic features in the context of a hypothetical task .. 36

2.7.1 Definition of a metaphor ... 36

2.7.2 Discussing linguistic features for pattern detection ... 36

Chapter 3 Feature Visualization .. 40

3.1 Terminology of graphs and trees .. 40

3.2 Modeling relational structures of parse trees .. 41

3.3 Tree drawing .. 42

3.3.1 Drawing conventions .. 42

3.3.2 Aesthetics and constraints of a tree drawing ... 43

3.4 Drawing algorithms for parse trees ... 45

3.4.1 The "Layered-Tree-Draw" Algorithm... 46

3.4.2 The "Reingold & Tilford" Algorithm ... 48

3.5 Visualization of structural features in RapidMiner .. 50

4

Chapter 4 Machine Learning in Text Corpora ... 52

4.1 Kernel Methods (KMs) ... 53

4.2 The Support Vector Machine (SVM) ...56

4.2.1 The linear separable case.. 57

4.2.2 Karush-Kuhn-Tucker conditions ... 59

4.2.3 The non-separable case .. 60

4.3 The String (Subsequence) Kernel .. 62

4.4 Bag of Words Kernel / n-gram Kernel .. 63

4.5 The Spectrum Kernel ... 64

4.6 The Tree Kernel .. 64

4.7 Fast Kernels for String and Tree Matching ... 66

4.7.1 The suffix tree .. 67

4.7.2 Matching statistics ... 69

4.7.3 Efficient Kernel computation ..71

4.7.4 Weight functions ... 73

4.8 The 'Fast String Kernel' operator for RapidMiner ... 74

Chapter 5 Experiments ... 77

5.1 Experiment I: "Tranches"... 77

5.1.1 Acquiring labeled data .. 77

5.1.2 Training phase .. 80

5.1.3 Testing phase... 82

5.2 Experiment II: "Literature types"... 84

5.2.1 Acquiring texts from different periods ... 84

5.2.2 Training phase .. 85

5.2.3 Testing phase... 87

5.3 Experiment III: "Bild vs. Spiegel" .. 88

5.3.1 Acquiring sentences from online articles .. 88

5.3.2 Training phase & Testing phase ... 89

5.3.3 Testing phase... 90

5.4 Benchmark test of the 'Fast String Kernel' operator ... 91

Chapter 6 Summary and Outlook .. 94

Appendix ... 95

A.1 RapidMiner operator 'WebLicht Feature Annotator' .. 95

A.1.1 Installation and usage in RapidMiner ... 95

A.1.2 Description of parameters .. 95

A.1.3 XML scheme definition for the XML configuration of the tool chain ... 97

A.1.4 XML configuration for storing available WebLicht services ... 99

A.1.5 Class diagram of the 'WebLicht Feature Annotator' ... 103

A.2 RapidMiner operator 'WebLicht TCF to ExampleSet' .. 104

A.2.1 Installation and usage in RapidMiner ... 104

A.2.2 Description of parameters ... 104

A.3 RapidMiner operator 'Visualize and Label Parse Trees' ... 105

A.3.1 Installation and usage in RapidMiner ... 105

5

A.3.2 Description of parameters .. 106

A.3.3 Class diagram of the visualization framework for drawing parse trees 107

A.4 RapidMiner operator 'Fast String Kernel'... 108

A.4.1 Installation and usage in RapidMiner ... 108

A.4.2 Description of parameters .. 109

References .. 110

Literature .. 110

URLs ... 112

List of Figures .. 113

List of Tables ... 115

6

7

"The whole of life is just like watching a film. Only it's as though you always get in ten minutes

after the big picture has started, and no-one will tell you the plot, so you have to work it out all

yourself from the clues." Terry Pratchett

Acknowledgements:

First of all, my deep thanks goes to my supervisors at the Chair VIII for Artificial Intelligence at

the Faculty of Informatics at the Technical University of Dortmund, Mrs. Prof. Dr. Katharina Morik

and Dipl.-Inf. Christian Pölitz for the support and direction during my research in the field of

computational linguistics and machine learning. I thank Katharina for her comments and ideas

about the implemented visualization module, and Christian who provided insights and expertise

about learning on text corpora in RapidMiner.

My thanks also go to Thomas Bartz and many other linguists who have spent a lot of time and

energy to prepare the many different text corpora that were provided to me for the experiments.

I am also immensely grateful to Sebastian Buschjäger, Sebastian Gerard, Lukas Pfahler, and

Jörg Nitschke for their comments on an earlier version of the manuscript, although any errors are

my own and should not tarnish the reputations of my esteemed fellow students. Last but not

least, I thank my wife Jia for her daily support, love, and the many delicious Chinese meals she

cooked.

8

Chapter 1

Introduction

Computational linguistics is an interdisciplinary research field in which natural language is studied

from a computational perspective. It focuses on the development of models for various kinds of

linguistic phenomena in order to enable machines to recognize, process, represent, and

produce natural language in both spoken and written form.

In the context of text corpus based learning, experts in linguistic research often have a distinct

question in mind to which computer scientists attempt to provide an answer with the help of

machine learning methods. The term 'text corpus' refers to a set of documents where each

document may consist of several sentences but often contains only a single sentence. In the

following course of this work, the terms 'document' and 'sentence' are used synonymously.

Typical tasks could be the association of sentences to specific topics or text corpora, or the

distinction of sentences if a specific grammatical phenomenon is present or not.

In this work text classification tasks are considered where sentences may be distinguished

according to specific expressions or some type of linguistic feature like tokens, parts-of-speech,

lemmas, dependencies or grammatical constituents. Establishing an overall routine that classifies

documents of text corpora by means of machine learning methods requires us to first obtain and

prepare these features. Figure 1-1 presents a pipeline that consists of different processing steps

where each step is covered by a single chapter:

Figure 1-1: A processing pipeline concept combining feature preparation steps and
machine learning methods in order to perform a text classification.

In order to perform a machine learning, only the sentences of an acquired text corpus (step 1)

could be used, but features like tokens, parts-of-speech, lemmas, dependencies or constituents

reveal patterns that may prove relevant for a text classification task. For instance, such patterns

can be characterized by a specific word usage, parts-of-speech sequences or relational

structures like dependencies or constituents.

In Chapter 2 features and linguistic tools are investigated, followed by a comprehensive

presentation of methods that perform a feature processing in various ways (step 2). More

precisely, Section 2.1 provides a hierarchy of various linguistic features. A common technique to

obtain these features is by means of annotation tools that are often designed to annotate a

document with a single feature type. In Section 2.2 linguistic tools of the most relevant features

are introduced. Furthermore, in Section 2.3 a list of available annotation toolkits is compiled with

regard to finding the most suitable for the integration into a feature annotation tool for RapidMiner.

9

Then, Section 2.4 provides a detailed introduction to the chosen toolkit "WebLicht". As the last

step in feature preparation, Section 2.6 presents the process for feature extraction that is

implemented in a RapidMiner operator.

Chapter 3 deals with the implementation of a visualization module (step 3) to display parse trees

that encode the dependencies or grammatical constituents of the sentences. Section 3.3

introduces conventions in order to formalize the optimization problem of obtaining layouts that

produce tidy trees spanning a minimal width. Section 3.4 then, presents algorithms to construct

tree layouts in linear time. Additionally, the implemented visualization module offers the option to

manually label sentences of a text corpus which can be used in supervised machine learning

(Appendix A.3).

In Chapter 4 kernel methods (KMs) are introduced that allow an efficient detection of patterns in a

given set of linguistic features (Section 4.1). Conceptually, KMs perform a mapping of features to

a feature space (step 4). In this space non-linear relations become linear separable which allow

the integration of a machine learning method (step 5). Here, the prominent support vector

machine (SVM) is employed which is presented in Section 4.2. The Sections 4.3-4.7 briefly

introduce KMs that are specifically designed for comparing strings and trees. Since classical

string kernels are computationally slow, the 'Fast Kernel (Method) for String and Tree Matching'

[Vishwanathan & Smola] is presented where the kernel computation performs in linear time

(Section 4.7). In addition to the implemented operator for RapidMiner (Section 4.7.3), various

weight functions are provided in order to differently emphasize arbitrary matching substrings

(Section 4.7.4). Section 4.8 addresses the problem of a high memory consumption during the

kernel computation and provide an effective solution by implementing different caching

mechanisms. Finally, the runtime performance of the 'Fast String Kernel' operator is measured in

a benchmark test and the results are outsourced in Section 5.4.

Chapter 5 presents three machine learning experiments that were run on different corpora in order

to investigate which combination of feature type and weight function is the most suitable to

achieve the highest possible separability of two different text corpora with regard to each

specific text classification task. At the same time, the use of the annotation and extraction

operators is shown, and where applicable the visualization operator which additionally allows to

assign labels to the annotated sentence.

In the Summary and Outlook a brief review provides an overview of the established linguistic

processing capabilities and properties of the learning framework. Further, the advantages of own

contributions are outlined while pointing out opportunities for further research.

10

Chapter 2

Annotation and Extraction of Linguistic Features

This chapter investigates various linguistic features and deals with the preparation of these

features in the context of a processing pipeline with the intention to perform a text classification.

The preparation includes the annotation of text corpora with features and the extraction of these

so that they can be forwarded to a machine learning method. Linguistic features are basically of

so called flat or structured type. A flat feature is usually of nominal type. In natural language

processing (NLP) these are given by linguistic units like tokens, lemmas or part-of-speech (PoS)

tags. Structured features refer to data that encodes the representation of a tree containing all the

structural relations within a linguistic unit like a sentence.

Furthermore, flat features can be incorporated into structural features like bag-of-terms or n-

grams. Here, the bag-of-terms is a vector that contains frequencies of tokens or the

corresponding part-of-speech tags. Another structural feature is the n-gram which is comprised

of a sequences of units (like characters or words) whereas all sequences have the same

number of units.

Section 2.1 provides a hierarchical overview of linguistic tools on different levels of analysis.

Further, Section 2.2 introduces common linguistic tools used for natural language processing

(NLP) tasks. In order to establish NLP for RapidMiner, Section 2.3 presents a list of available

toolkits and libraries where their suitability is evaluated with regard to processing English and

German text corpora. Then, Section 2.4 introduces 'WebLicht', which is a service oriented

architecture (SOA) that allows us to directly communicate with various services to enrich a text

corpus with desired features.

A particular problem is to obtain structural features that build upon basic features. Therefore,

Section 2.5 presents a flexible tool chain that is implemented into a feature annotation tool and

further describes the configuration of WebLicht services. Section 2.6 describes the feature

extraction process from annotated corpora and points out important properties of the

implemented operator in RapidMiner.

Finally, in Section 2.7 the different types of linguistic features are discussed against the

background of a hypothetic task of detecting metaphors in a text corpus.

2.1 Overview of linguistic tools for NLP

Many linguistic tools enrich a linguistic resource with annotations either because a higher

accessibility is required or because this resource needs to be passed for further processing.

Depending on the task, specific tools annotate paragraphs, sentence parts, phrases or single

words with additional data. The data can contain information about a word sense (semantics),

11

part-of-speech (syntax), references, or any other unit of the linguistic resource that seems useful

for the analysis task. Other annotated information may describe the phonetics of single words or

consist of markers for a proper identification of named entities (e.g. persons, organizations).

Generally, linguistic tools can be described as programs that analyze or process linguistic units

like tokens, phrases or sentences. Tokens are not only the words of the text, but may also refer

to numbers, named entities or punctuation characters.

Tools that play a major role with regard to a text analysis (highlighted in Table 2-1) are

tokenisers (Section 2.2.1) that segment sentences into sets of tokens, lemmatisers that

determine to each word the corresponding lemma (2.2.3), and part-of-speech (PoS) taggers

(Section 2.2.2) that automatically identify the parts-of-speech and tag the tokens accordingly.

Furthermore, named entity recognizers (Section 2.2.8) which are often contained in tokenisers,

and word sense disambiguators are important tools, as well.

 Discipline Units & Categories Tools

Higher levels
of analysis

Pragmatics,
Discourse theory,
Rhetoric,
Speech act theory

discourse types,
genres, classes of
speech act, emotions

emotion analyzers, metaphor
analyzers, rhetorical coherency
analyzers, dependency analyzers,

named entity recognizers

Semantics
word sense disambiguators,
semantic role analyzers,
coreference and anaphora tools

Lower levels
of analysis

Syntax
sentences, phrases,
words

constituency parsers,
dependency parsers, chunkers

Morphology and
Lexical analysis

words, prefixes and
suffixes, singular and
plural, conjugations,
declensions

stemmers,

lemmatisers,
tokeniser,
part-of-speech taggers

Phonetics and
Phonology

sounds, phonemes,
syllables, Intonational
categories

speech recognition,
spectrograms / sonograms

Table 2-1: Disciplines of linguistic tools distributed along different levels of analysis

Tools of a higher complexity usually depend on tools with a lower one. As shown in

Table 2-1, the linguistic tools can be divided into different levels of analysis [hierarchy]. As an

example, a syntax analyzer like a parser requires sentences to be clearly separated from each

other, words to be clearly delineated by a tokeniser, and a part-of-speech tagger to have

performed first. Constituency and dependency parsers (Section 2.2.4) that analyse the syntax of

a sentence depend on the output of linguistic tool that extract flat features from the same

sentence beforehand.

12

2.2 Introduction to linguistic tools

The following subsections describe common, linguistic tools that are used for the annotation of

text corpora with relevant features.

2.2.1 Tokeniser

A computational analysis of a text corpus normally starts with the segmentation of the text into a

set of individual words, also known as tokenization. Additionally, a sentence-splitting tool is often

used in combination with the tokenization. An easy way to tokenize a text corpus into its tokens

is by simply decomposing the text along its whitespace characters followed by punctuation

marks. In alphabetic texts additional challenges have to be met as there exist many linguistically

anomalous elements like numbers, abbreviations, named entities, punctuation (e.g. used in URLs)

and many more. Given those difficulties it is often more practical to consider tokens instead of

words when segmenting a text, since a token encompasses these anomalous elements

[tokeniser].

Most of the tokenisers need to be trained for a large set of idiosyncrasies in a given language.

For example it is being expected from a tokeniser to recognize and decompose the entities in a

compound word like the famous German word "Donaudampfschiffahrtselektrizitätenhaupt-

betriebswerkbauunterbeamtengesellschaft" or linguistically similar compounds like "low-budget"

or "first-class". Short phrases like idioms that are composed of multiple words and separated by

spaces like "im Großen und Ganzen" in German or "pain in the neck" are best to be treated as

a single term. Furthermore, a tokeniser should also properly recognize terms of the same

meaning but that can be written in different ways like "egg beater", "egg-beater" and

"eggbeater".

After performing the segmentation process, a tokeniser delivers linguistic features as a set of

ideally all properly identified tokens. This set of features is usually known under the term "bag of

words" (for the definition see Section 4.4).

Some tokenisers additionally return a list of sentences in which each token corresponds to a

specific sequence of characters in the text - according to the rules and idiosyncrasies of the

given language.

2.2.2 Part-Of-Speech-Taggers

The task of a part-of-speech (PoS) tagger is to classify the syntax of words in a given text.

However, a tokenization has to be performed beforehand. While considering the context of a

word a PoS tagger chooses the parts-of-speech tags from a specific set of parts-of-speech,

usually referred to as tagset. For German texts a frequently used tagset is the "Stuttgart-

Tübingen Tagset" (STTS) [Schiller et al.], and for English texts the Penn Treebank Tagset (PTTS)

[Santorini] and the CLAWS Tagset [Garside] are frequently used.

13

Ambiguity of parts-of-speech tags for a given word poses a frequent problem for a tagger, as

shown in the following sentence:

Example 2-1: Ambiguous case with possible PoS-tags with regard to the word "einen".
The given sentence translates to "The teacher drinks a coffee".

Without considering the context, the German word "einen" has two possible meanings, either

being used as an article in masculine form for accompanying a noun or it is used as a verb with

the meaning to "unify" something. Hence the available tags are "ART", "VVINF" (infinitive verb,

full) and "VVFIN" (finite verb, full).

Various supervised learning methods have been established to train a PoS tagger to choose the

correct tags in case of ambiguity, for example by means of hidden markov models (HMM)

[Charniak 1997] and decision trees [Schmid]. Another approach uses a simple, rule-based PoS

tagger [Brill]. During training, tags are learned from specific corpora (mostly of the same genre

like corpora of newspapers) whose parts-of-speech tags have been manually annotated. For

the actual tagging phase it is recommended that the tokens of a text match those tokens to

which the tagger has been trained to recognize. Respectively it is important that the tokeniser

employed in the preprocessing is used for the training phase as well.

In an unsupervised setting no previously defined tagset can be chosen, where no training data

is available and hence no error signal can be computed to evaluate a potential solution. Instead

a new tagset is generated during the tagging phase by means of stochastic methods.

While in a naive approach the frequencies of occurring PoS-tags are simply learned from a given

training corpus, HMM-based or decision tree based taggers perform far better by considering

the context of a tag like the preceding and following tag [Brill]. Following this approach, learning

methods of performant PoS taggers make use of sequences of PoS-tags. In this context, a

sequence of linguistic units (like words, parts-of-speech or characters) is referred to as an n-

gram. Usually learning methods make use of bi- or trigrams. In the given Example 2-1 the word

sequence "trinkt einen" has the bi-grams VVFIN-ART, VVFIN-VVINF and VVFIN-VVFIN. Training

from text corpora, the sequence VVFIN-ART likely has the highest probability. Conclusively, a

PoS tagger assigns the tag ART to the word "einen".

2.2.3 Stemmers and lemmatisers

Both stemming and lemmatization aim to reduce inflectional forms and sometimes derivationally

related forms of a word to a common base form [stemming]. Since the inflectional morphology

of most European languages is indicated by suffixes, a stemmer is a program that usually refers

to a crude heuristic process that chops off the ends of words in the hope of achieving this goal

correctly most of the time, and often includes the removal of derivational affixes. Stemmers were

developed originally to improve information retrieval and are usually very simple programs that

Der Lehrer trinkt einen Kaffee .

ART NN VVFIN VVINF NN $.
 VVFIN

 ART

14

use a catalog of regular expressions to simplify the word-forms found in digital texts. They are

linguistically not very sophisticated, and miss many kinds of morphological variations.

Whenever possible, a lemmatiser is preferred to a stemmer. Usually a combination of a lexicon

and a set of rules is being used in order to remove inflectional endings and then to return the

base (or dictionary) form of a word, which is known as the lemma. A lemmatiser using this

approach can determine the lemmas to each annotated token in the input text corpus.

2.2.4 Parsers

A parser is a tool that performs syntactic analysis of natural language either in an automated or

manual way. Although parsing of natural language superficially resembles parsing in computer

science, the former one operates in a very different way, since the diversity and complexity of

human language still exceeds those parsers that make use of finite-state grammars and

recognition rules.

Far more accurate and robust parsers today incorporate statistical principles to some degree

and often these parsers have been trained from manually parsed texts using machine learning

techniques, which has been done analogously successfully for the part-of-speech tagger as

described in Section 2.2.2. Many common parsers like the Stanford constituency parser, the

Stanford phrase structure parser or the Berkeley parser work with a PoS-tagger as a

preprocessor. In this context, it is important that the tagset of the integrated PoS-tagger has to

match the tagset that is expected from the parser.

Parsers usually require tokenized input text, and they output these tokens wrapped into a

structural form. The structured data is known as a parse tree, which encodes different syntactic

connections between parts of the sentence.

Most parsers implement the syntactical analysis of the two major categories dependency

grammars and constituency grammars. Both types are introduced in the next two sections. Less

frequently used parsers combine the results of both analysis categories into a hybrid form.

2.2.5 Constituency parsers

In the analysis of constituency grammar the relation of constituents derive from an initial binary

division by splitting the clause into a subject noun phrase (NP) and a predicate verb phrase (VP).

Subclauses are then iteratively decomposed up to the smallest constituents according to a given

constituency grammar.

The following Figure 2-1 presents a constituency parse tree of an exemplary sentence in German.

Before feeding the sentence to a constituency parser the sentence was tokenized and the parts-

of-speech were identified by a PoS-tagger of the NLP project. The parser used tags from the

'Tiger Treebank Tagset' to annotate the nodes in the tree [Tiger]:

15

Figure 2-1: The result of a constituency parser for a German sentence.

In the case of structural ambiguous sentences not every constituent parser detects the ambiguity

and usually delivers only one interpretations of the parsed sentence.

In the exemplary sentence "Visiting relatives can be dangerous" the constituency parser of the

'OpenNLP project' (left side of Figure 2-2) considers "Visiting relatives" as a noun phrase (NP)

with "relatives" as the head while the 'Stanford Core NLP' parser (right side of Figure 2-2)

basically treats "Visiting relatives" as a verb phrase (VP) with "Visiting" as its head:

Figure 2-2: Different parsing results of the constituent parser of the NLP project and the Stanford Core NLP parser

2.2.6 Dependency parsers

The analysis of dependency grammar considers dependency relations between single words of

a given sentence, while for a single word multiple connections to other ones can exist

[Neumann]. The principal idea for syntactic connections is to choose the verb as the root of all

clause structures. Tokens can then iteratively be connected with a parent node where -

according to a given dependency grammar, the PoS-tag of each token is subordinated in a

hierarchy of word categories. As an example, Figure 2-3 presents a German sentence in a

16

dependency tree, with the verb "haben" (which translates to "to have") as the root of the

hierarchy of dependency relations. The edges carry PoS-tags from the 'STTS' tagset [Tiger]:

Figure 2-3: Result of the Stuttgart Dependency Parser for an German example sentence.

The above parse tree is only one way to represent dependencies, the following notation

schemes illustrate other common conventions [DepConst]:

Figure 2-4: Different conventions to draw dependency trees

Convention (f.) in Figure 2-4, also referred to as bracket notation, is especially useful since it can

practically encode a parse tree to a string which can then be forwarded to a consecutive tool.

Alternatively, the bracket notation can integrate both PoS-tags and tokens regarding the above

sentence "The conventions can vary":

Example 2-2: A parse tree represented in bracket notation

Representing the parsed dependency grammar as a tree is a one-to-one relation, since every

element in the sentence corresponds to exactly one node in the tree structure. The result of this

correspondence is that dependency grammars are word grammars, as shown in Figure 2-5:

Figure 2-5: Difference between a dependency and a constituency tree

In the dependency tree on the left two words are represented with two nodes, whereas the

constituency tree on the right contains three nodes. Constituency trees require the number of

nodes to exceed the number of elements in a sentence of at least by one [depVsConst].

17

2.2.7 Word sense disambiguators

A word sense disambiguator is a tool that is specialized in the automatic identification of the

correct meaning of a word (or sense) in a text. Such tools usually use a combination of digitized

dictionaries that contain a database of words and their possible meanings, and information

about the context in which the given words is likely to have a particular meaning.

As an example, let us consider the words "white" and "snow". A disambiguation tool can

associate a set of attributes that describe each of the single words, but the words in the order

"Snow white" most likely has a different meaning. The input for word sense disambiguation tools

are usually tokenized text, although PoS-tags and even parsing may be required before

disambiguation.

2.2.8 Named Entity recognizers

The linguistic phenomenon of a named entity is the generalization of the idea of a proper noun.

Examples for named entities refer to places, brand names, non-generic things, people, and

sometimes highly subject-specific terms. Named entity recognition plays an important role in

information retrieval, machine translation or in topic identification.

Basically, there are no limits that may restrict where named entities can be derived from. Named

entities can have frequent usage in texts, and are usually not listed in common dictionaries. The

detection of named entities is based on rules, statistical methods, machine learning algorithms,

or a combination of these methods.

For example, while analyzing sequences of two or more words, a simple rule may check if

these words are written with capital letters. Another possibility to setup named entity recognition

is often done by integrating databases that contain large lists of named entities.

18

2.3 Natural language processing toolkits

In order to establish preprocessing routines that extract various linguistic features, a manageable

selection of frameworks is examined that have been developed for natural language processing

(NLP) tasks. The complete list of NLP toolkits is too comprehensive in order to be listed here

[OutlineNLP], and numerous highly specialized tools perform all kinds of tasks on a wide range

[tasksNLP].

For our purposes, the list is restricted to toolkits that are offered as libraries or services, and

whose processing capabilities fall into consideration for the implementation of a processing

operator in RapidMiner. Tools that come into consideration need to be capable of detecting and

annotating text corpora with sentences, tokens, lemmas, part-of-speech tags, named entities,

and parsing constituents and dependencies. The following Table 2-2 lists toolkits or libraries that

are evaluated on a closer inspection:

Toolkit

[URL]
Creator License

Processing

capabilities
Supported language

OpenNLP

[TK_OpenNLP]
Apache Software

Foundation
Apache License

2.0

sentence segmentation,
tokenization,

lemmatizing, PoS-
tagging, NER, and more

English and others;
German: sentence

segmentation, tokenizing
and PoS tagging only

Stanford
CoreNLP

[TK_Stanford]

The Stanford NLP
Group

GNU Public
License v3

sentence segmentation,
tokenization,

lemmatizing, PoS
tagging, constituency

parsing, NER, and more

English, Spanish & Chinese;
German: PoS tagging, NER,

parsing only

Natural
Language

Toolkit
[TK_NLTK]

Team NLTK
Apache License

2.0
n-gram, PoS tagging,

tokenization, NER
English, Arabic

LinguaStream

[TK_Lingua]

Computer
Research Group

"GREYC"

Free for
research

sentence segmentation,
tokenization, PoS

tagging, statistical tools
English, French

Mate Tools
[TK_Mate]

IMS - Institute for
Computational

Language
Processing

GNU Public
License v3

lemmatizing, part-of-
speech tagging,

morphological tagging,
dependency parsing,

and semantic role
labeling

English, German

MontyLingua

[TK_Monty]
MIT

Free for
research

tokenization,
lemmatizing, PoS
tagging, parsing

English

WebLicht
[WebLicht]

SfS - University of

Tübingen

Free for
research

sentence segmentation,
tokenization, lemma-
tizing, PoS tagging,

NER, and many more

Various languages

Table 2-2: A selected list of available toolkits for different NLP tasks and languages

All listed toolkits are offered with a license that make them potential candidates for an integration

into the implementation of a RapidMiner operator. Unfortunately, not many toolkits offer NLP for

German language, hence only toolkits are considered that fully or partially support German:

19

 The 'OpenNLP' toolkit offers basic processing (sentence segmentation, tokenizing, PoS

tagging), but lacks constituency or dependency parsing.

 The 'Stanford CoreNLP' toolkit offers PoS tagging, named entity recognition and

constituency parsing trained on the Negra corpus [NEGRA]. On a side node, the

NEGRA corpus is a large set of tokens and sentences of German newspaper text,

taken from the 'Frankfurter Rundschau'. Still, using only one distinct training corpus like

NEGRA may not suffice to represent the German language as editors of the Frankfurter

Rundschau are probably not using terms, phrases and sayings that are common to

people in other cultural regions of Germany. Furthermore, the 'Stanford CoreNLP' does

not contain tools that extract German tokens or their lemmas, and offers no dependency

parser which we want to integrate into a RapidMiner, as well.

 The toolkit 'Mate Tools' contains basic linguistic processing as well as parsing and

semantic role labeling. The tools provide processing of linguistic units like lemmas and

PoS-tags, but no tokenization.

 The language processing environment 'WebLicht' is a service oriented architecture (SOA)

that has been established by partners of the KobRA project at the University of

Tübingen [Hinrichs et al., WebLicht]. The term WebLicht refers to Web-Based Linguistic

Chaining Tool. Since WebLicht is offered as a SOA, no libraries need to be integrated

into a programming code, but instead all the services can be accessed remotely. The

repertoire of services amounts a comprehensive list of processing tools for both English

and German (among other languages). Furthermore, the environment allows a chaining

of tools so that they consecutively add linguistic features to a text corpus, as presented

in Section 2.4.2.

For the integration in a feature preprocessing pipeline in RapidMiner, the choice fell on 'WebLicht'

as the advantages above make this SOA an applicable and highly interesting candidate for the

implementation of a processing operator in RapidMiner. The next section presents a selection of

tools that are available in the large repertoire of NLP tools provided by WebLicht.

20

2.4 Web-Based Linguistic Chaining Tool (WebLicht)

2.4.1 The WebLicht services for natural language processing

WebLicht offers a large repertoire of tools, many of them process texts in English and German

language. The Table 2-3 depicts a list of interesting tools that come into question for a language

processing in RapidMiner:

Tool name Developed by
Supported
Languages

Extracted features

Tokeniser ASV: Uni Leipzig de sentences, tokens

Tokeniser IMS: Uni Stuttgart
en, de, cs, hu,
sl, fr, it

sentences, tokens

Tokeniser - OpenNLP Project SfS: Uni Tübingen en, de tokens

Tokeniser/Sentences - OpenNLP
Project

SfS: Uni Tübingen en, de sentences, tokens

Tokeniser and Sentence Splitter BBAW: Berlin de sentences, tokens

Part-of-Speech-Tagger BBAW: Berlin de PoS-tags

POS Tagger - OpenNLP Project SfS: Uni Tübingen en, de PoS-tags

RFTagger IMS: Uni Stuttgart de, cs, hu, sl PoS-tags

TreeTagger IMS: Uni Stuttgart en, de, fr, it lemmas, PoS-tags

Stanford Core NLP SfS: Uni Tübingen en

sentences, tokens,
lemmas, PoS-tags,
named entities, const.
parsing

Berkeley Parser - Berkeley NLP SfS: Uni Tübingen de Parsing

Constituent Parser IMS: Uni Stuttgart en, de const. parsing

Constituent Parser - Open NLP
Project

SfS: Uni Tübingen en
const. parsing, PoS-
tags

Stanford Dependency Parser SfS: Uni Tübingen en dep. parsing, PoS-tags

Stanford Phrase Structure Parser SfS: Uni Tübingen en, de parsing , PoS-tags

Stuttgart Dependency Parser IMS: Uni Stuttgart de
dep. parsing, lemmas,
PoS-tags

German Named Entity Recognizer SfS: Uni Tübingen de named entities

Open NLP Named Entity Recognizer SfS: Uni Tübingen en, es named entities

Person Named Recognizer BBAW: Berlin de named entities

Table 2-3: A list of relevant services of WebLicht that perform NLP tasks for English and German text corpora.

The repertoire of the SOA WebLicht provides all important tools for annotating text corpora with

the most common linguistic features. More importantly, all of these tools are able to process

English and German texts.

21

2.4.2 The web environment of WebLicht

WebLicht comes along with an interactive web interface that can be accessed by authorized

research users1.

This section briefly describes how linguistic tools can be chained together in order to perform

NLP tasks on texts: First, the user uploads or directly enters a text via a form. In order to

assemble a processing chain, the user can drag tools into an appropriate area of the web

interface. While doing so, the WebLicht interface interactively adapts the palette of the remaining

applicable tools according to the last appended tool.

When starting the execution of a "constructed" tool chain the given text is first converted into an

XML2 structure whose scheme follows a specific text corpus format (TCF) [Heid et al.].

Depending on the "stage" of the tool chain, each processing tool enriches the text corpus with

additional linguistic features. Finally, the finished annotated text and the extracted features can be

viewed in a separate web interface or directly downloaded as a TCF file.

The screenshot in Figure 2-6 shows an exemplary processing tool chain in the web environment

of WebLicht. It consists of a text loader, a text to TCF converter, a tokeniser, a part-of-speech

tagger, and a constituent parser.

Figure 2-6: An exemplary preprocessing tool chain in WebLicht.

1 The login mechanism makes use of a so called authentification- and authorization infrastructure of the
German research net (DFN-AAI). That way, researches who have an account at an university or
institutions that is connected to the German research net (DFN) are able to login to the environment. This
however, does not concern the WebLicht services which can be accessed freely.

2 XML is a short term for extensible markup language and basically defines a set of rules for encoding
documents in a format that can be read by humans as well as processed by machines [XML]. An XML
scheme definition (XSD) aids in formally specifying the elements in an XML document [XSD]. Thus an
XML document can be validated against its scheme definition by checking if the elements contained in the
document are conform to a given set of rules in the scheme.

22

2.4.3 Communication with WebLicht services

One aspect that makes WebLicht an ideal choice for language processing capabilities in

RapidMiner is due to the possibility to directly communicate with the services over the web via

the POST method of the HTTP protocol [HTTP]:

Figure 2-7: Communication with WebLicht services by using the HTTP POST protocol.

The web URL to each available service is given in the properties view of the web environment.

This view provides additional information like input and output features that are used in the

implementations later (Section 2.5.2). The properties of each service further indicate the content

types, one for the data type that the service accepts, and the other type describes what type of

data is sent back by the service. Content types are also known under the term MIME, short for

Multipurpose Internet Mail Extensions3 [MIME]. Simply put, clients that send HTTP requests to a

service need to indicate the MIME type expected from a service, so that the transmitted content

can be properly processed by the WebLicht service. Respectively, a service sends a MIME type

together with the content back to a client. Most of the time, WebLicht services expect and send

content of the MIME type 'text/tcf+xml'. The first part 'text' indicates the general type of the file,

whereas 'tcf+xml' indicates the subtypes. In this case the services accept file contents in 'tcf'

and 'xml' format.

2.4.4 Preparing text corpora for WebLicht services

As mentioned above in Section 2.4.2, a text corpus needs to be converted into TCF first. To this

end, requests are sent to either one of the following converter services:

Name of the tool Developed by
Supported
Languages

performed task

BBAoS&H Converter Berlin Brandenburg Academy
of Sciences and Humanities

de text to text corpus (TCF)

SfS Converter SfS: University of Tübingen de, en, fr, it,
and many
more

text to text corpus (TCF)

Table 2-4: Available conversion tools to process texts to the text corpus format (TCF).

By sending a POST-request with the appended text content to one of the converter services, the

returned text is being wrapped into the text corpus format (TCF). The next section demonstrates

such a request.

3 Nowadays, MIME do not only describe file extensions used as attachments in emails, but describe
numerous different content types in general. In communication protocols like HTTP for the WWW MIME
types play an important role for applications that transmit and process file contents.

Respons

e

POST

Input (TCF) Output (TCF) Webservice:

 Extraction of relevant data from input

 Generation of new data

 Returning TCF with new annotations

23

2.4.5 Testing the accessibility of WebLicht services

By using a simple communication program like "wget" the accessibility of a WebLicht service

can be tested [Wget]. Wget allows sending files via the HTTP POST request and retrieves a

response from the targeted web server. The following example demonstrates how a simple text

is converted to an XML file (whose scheme follows the text corpus format (TCF)):

1. Input text (saved in file "Ballerina.txt"):

The ballerina was a swan, gliding over the stage.

2. HTTP POST request (sent via Wget):

wget --post-file="D:/Ballerina.txt" --header='Content-Type: text/plain' -O D:/Ballerina.xml
"http://weblicht.sfs.uni-tuebingen.de/rws/service-
converter/convert/qp?informat=plaintext&language=en&outformat=tcf04"

3. Service response (saved in "Ballerina.xml"):

<?xml version="1.0" encoding="UTF-8"?>

<D-Spin xmlns="http://www.dspin.de/data" version="0.4">

 <MetaData xmlns="http://www.dspin.de/data/metadata">

 <source></source>

 </MetaData>

 <TextCorpus xmlns="http://www.dspin.de/data/textcorpus" lang="en">

 <text>The ballerina was a swan, gliding over the stage.</text>

 </TextCorpus>

</D-Spin>

List 2-1: A returned text corpus converted into TCF in version 0.4.

After converting the input text to TCF, the text corpus can now be annotated with further

linguistic features. In the next example, "Ballerina.xml" is sent to the tokeniser from the OpenNLP

project via:

wget --post-file="D:/Ballerina.xml" --header='Content-Type: text/tcf+xml'

-O D:/Ballerina_tokens.xml "http://weblicht.sfs.uni-tuebingen.de/rws/service-opennlp/annotate/tok-

sentences?language=en"

4. The returned text corpus (saved in "Ballerina_tokens.xml"):

<?xml version="1.0" encoding="UTF-8"?>

<D-Spin xmlns="http://www.dspin.de/data" version="0.4">

 <MetaData xmlns="http://www.dspin.de/data/metadata"><source></source></MetaData>

 <TextCorpus xmlns="http://www.dspin.de/data/textcorpus" lang="en">

 <tc:text xmlns:tc="http://www.dspin.de/data/textcorpus">

 The ballerina was a swan, gliding over the stage.</tc:text>

 <tc:tokens xmlns:tc="http://www.dspin.de/data/textcorpus" charOffsets="true">

 <tc:token end="3" start="0" ID="t_0">The</tc:token>

 <tc:token end="13" start="4" ID="t_1">ballerina</tc:token>

24

 <tc:token end="17" start="14" ID="t_2">was</tc:token>

 <tc:token end="19" start="18" ID="t_3">a</tc:token>

 <tc:token end="24" start="20" ID="t_4">swan</tc:token>

 <tc:token end="25" start="24" ID="t_5">,</tc:token>

 <tc:token end="33" start="26" ID="t_6">gliding</tc:token>

 <tc:token end="38" start="34" ID="t_7">over</tc:token>

 <tc:token end="42" start="39" ID="t_8">the</tc:token>

 <tc:token end="48" start="43" ID="t_9">stage</tc:token>

 <tc:token end="49" start="48" ID="t_10">.</tc:token>

 </tc:tokens>

 <tc:sentences xmlns:tc="http://www.dspin.de/data/textcorpus">

 <tc:sentence tokenIDs="t_0 t_1 t_2 t_3 t_4 t_5 t_6 t_7 t_8 t_9 t_10"></tc:sentence>

 </tc:sentences>

 </TextCorpus>

</D-Spin>

List 2-2: A returned text corpus annotated with Sections for tokens and sentences.

As shown in List 2-2, a tokeniser does not only extract all the tokens, but also annotates the

text corpus with a section for sentences in which the tokens are given in the same order as in

each sentence. The next section presents the concept of combining different WebLicht services

to a tool chain.

25

2.5 Annotating linguistic features in RapidMiner

2.5.1 Flexible tool chain concept for the 'WebLicht Feature Annotator'

Although the web environment of WebLicht is not relevant for our purposes, the idea of chaining

tools is a useful concept for the software design of a 'Feature Annotation' operator in RapidMiner.

Here, a text corpus is also annotated with different linguistic features (by means of WebLicht

services) in an incremental way.

The following activity diagram (Figure 2-8) presents the concept of a flexible tool chain that is

implemented as a RapidMiner operator with the name 'WebLicht Feature Annotator':

Figure 2-8: The concept of a flexible tool chain for the 'WebLicht Feature Annotator'

After loading a document via the "read document" operator in RapidMiner, the text corpus is

forwarded to the feature annotation operator. In the parameter settings of this operator a

RapidMiner user can select one of the following tool chains (documented in the Appendix A.1.2):

 converter

 converter tokeniser

 converter tokeniser lemmatizer (not shown in Figure 2-8)

 converter tokeniser PoS tagger

 converter tokeniser PoS tagger constituency parser

 converter tokeniser PoS tagger dependency parser

The exemplary selection (highlighted with an orange border in Figure 2-8) includes only the first

three linguistic tools (converter, tokeniser and PoS tagger). It should be noted, that the depicted

tools in the program are placeholders for the distinct tools. Section 2.5.4 describes in detail, how

specific WebLicht tools/services can be chosen.

26

The cascade like nature of the flexible tool chain behaves as follows:

1. In (1a) the converter sends a text corpus to the WebLicht connector (Section 2.5.3)

which prepares and sends a HTTP POST request to a WebLicht converter. On a service

response the connector converts the received text corpus (in TCF) to a RapidMiner

document and forwards it to the next tool in the selected chain (1b), provided that the

end of the selected chain is not reached.

2. In (2a) the tokeniser triggers the connector to send the text corpus to a tokeniser

WebLicht service. The received TCF content contains an XML section that lists all the

tokens in the text corpus (2b).

3. In the last step of the selected tool chain the tokenized text corpus is sent to a PoS-

tagger and obtain a corpus that is annotated with the PoS-tags according to the tokens.

However, not every service can be connected with one another in the tool chain. For example,

the tokeniser from the OpenNLP project annotates the text corpus with tokens only while different

PoS taggers additionally require an XML section for sentences. When a specific language

parameter for a text corpus should be defined, the problem is that not every service supports

that language. Due to these restrictions, all the dependencies of services among one another

have to be considered.

In order to implement a RapidMiner operator that is easily manageable and allows adjustments in

the case of future changes of any of the WebLicht services, or allows adding new WebLicht

services, it is desirable to establish a configurable tool chain that has the following properties:

 Flexibility: Allow to easily modify the configuration of a WebLicht service

 Scalability: Add or remove a tool (in a tool category4) that is added/removed in the tool

chain

 Adjustments: Easily change any parameter of the service: URL, in-/output features,

supported languages, and more

 Syntactical correctness: Using XML & XSD allows to ensure a correct configuration setup

One possible way to provide a flexible setup is achieved with an XML configuration file [XML].

Furthermore, by defining an own XML Scheme Definition [XSD] (listed in Appendix A.1.3) it is

ensured that the elements and attributes of the configuration XML remain syntactically correct so

that a configuration loader can properly read the necessary information from each service.

How the different service parameters are incorporated into the XML configuration is presented in

the next section.

4 Due to programmatic limitations in the implementation of the RapidMiner operator we have to restrict the

flexibility of the configuration to the set of known tool categories.

27

2.5.2 XML Configuration of the WebLicht tool chain

According to the properties view that is given along with each service in the web environment of

WebLicht, the following service properties are mapped into single XML elements:

 Creator

 Contact (email address)

 Description

 Input features

 Output features

 PID (basically, a service ID registered at WebLicht)

 URL (server address in the WWW)

Based on the XML Scheme Definition in the Appendix A.1.3, an XML structure allows to configure

a specific tool. In List 2-3 the exemplary configuration of the "IMS PoS tagger" from the

University of Stuttgart is shown:

<tool_group category="pos-tagger">

 <tool id="1"> … </tool>

 <tool id="2">

 <creator>IMS: University of Stuttgart</creator>

 <contact>clarin@ims.uni-stuttgart.de</contact>

 <description lang="en">[IMS] PoS TreeTagger(2008): Italian, English, French,
 and German part-of-speech tagger and lemmatiser

 </description>

 <input_features lang="it,en,fr,de" mime_type="text/tcf+xml"
 type_description="tokens" version="0.4" />

 <output_features lang="" mime_type="" postags.tagset="stts"
 type_description="lemmas, POStags" version="" />

 <pid>http://hdl.handle.net/11858/00-247C-0000-0007-3739-5</pid>

 <url>http://clarin05.ims.uni-stuttgart.de/treetagger2008</url>

 <url_params></url_params>

 </tool>

 <tool id="3"> … </tool>
</tool_group>

List 2-3: An extract of the XML configuration for a WebLicht service that is available in the tool chain

The only attribute in the element description defines the language that is used for the description

text of the given service. The input_features and output_features only contain XML attributes

that define the language ("lang"), the MIME type ("mime_type") and the linguistic features

("type_description") accepted and returned by the service. In the case of a PoS-tagger tool,

the element output_features specifically contains the attribute "postags.tagset". This information

is later on used during the visualization of linguistic features (Chapter 3). Lastly, the XML element

url_params is a placeholder for parameters that can additionally be appended to the URL used

in an HTTP request to the WebLicht service. Other service categories have similar XML sections.

The full XML configuration is listed in the Appendix A.1.4.

28

2.5.3 Implementing the WebLicht connector

In order to let the 'WebLicht Feature Annotator' communicate with WebLicht services that are

selected in the tool chain, a "WebLicht connector" is implemented that sends HTTP requests to a

service in a simple way. For this purpose, the RESTful services JAX-RS 2.0 [JAX-RS] provides

a comfortable application programming interface (API). This framework is included in the JAX-

RPC API which is part of the Java Platform since Java Enterprise Edition 5 [JAX-RPC]. In Code

Snippet 2-1 the implementation of a straightforward connection setup is listed:

final ServiceTool serviceTool = webLichtServices.getServiceTool(toolCategory, toolID); // (1)

final Client client = ClientBuilder.newClient(configuration); // (2)

WebTarget target = client.target("http://" +

 serviceTool.getHost() + ":" +

 serviceTool.getPort()).path(serviceTool.getPath()); // (3)

for (Entry<String, String> param : serviceTool.getUrlParams().entrySet()) // (4)

 target = target.queryParam(param.getKey(), param.getValue()); // (5)

Entity<String> uploadEntity = Entity.entity(inputDocument.getText(),"text/tcf+xml"); // (6)

Response response = target.request("text/tcf+xml").post(uploadEntity); // (7)

String responseText = response.readEntity(String.class); // (8)

Document returnDoc = new Document(responseText); // (9)

Code Snippet 2-1: Connection setup of the 'WebLicht Feature Annotator' which allows
uploading content to a WebLicht service and receiving a response.

The Code Snippet 2-1 demonstrates the steps of a HTTP POST communication with a WebLicht

service: In the first step (1), the tool with a specific category and identifier is fetched from the list

of available tools (previously loaded from the configuration XML). Then, an instance of the JAX-

RS specific class Client is created (2) which is used to build and execute client requests and

which consumes responses from a WebLicht service. In (3) a WebTarget object is created

which targets a WebLicht service by a specified URL (composed of the parts host address,

access port and the local path under which the service can be found on the destination server).

The current serviceTool accesses all the required information (which are read from the XML

configuration) via the methods getHost(), getPort() and getPath(). With getUrlParams() in (4)

service specific parameters like "?language=de" are obtained. With queryParam() in (5) pairs

of keys and values of each parameter are appended to the URL (several key-value-pairs are

separated by "&").

In (6) the input document is prepared for sending. This is done via Entity.entity(…) where the

input text is passed as the first parameter, and the MIME type as the second parameter. With

target.request(…).post(uploadEntity) not only the entity is sent to the destination service, but

also a Response object is created that silently waits for a response from the service (7). Via

target.request("text/tcf+xml") the MIME types 'TCF' and 'XML' are defined that the client is

allowed to receive. On a service response in (8) the client reads the received entity via

29

response.readEntity() and stores the saved string into a new document that now contains the

annotated text corpus (9).

2.5.4 Compatible WebLicht services in the tool chain

Based on the parameters of each service that a configuration loader reads in from the XML

configuration file (Section 2.5.2), the 'WebLicht Feature Annotator' operator determines

allowable tool chain combinations. The list of valid combinations is presented in the following

Figure 2-9:

Figure 2-9: Combinations of supported tool chains

As shown in Figure 2-9, the tool chains (mentioned in Section 2.5.1) are divided into the

language parameter 'English' and 'German'. Services that support other languages can be

added, and the configuration actually integrates services to process French and Italian texts, as

well (for brevity these are not shown in Figure 2-9).

By defining the language parameter for the input text corpus, the operator determines the

available tool chains together with the list of valid tools that support the chosen language.

Then, in the parameters of this operator (see Appendix A.1.2) tool lists of specific categories

(converter, tokeniser, lemmatizer, PoS tagger, and parser) contain available services. Since

these lists never contain tools that are not supported, a RapidMiner user can only choose valid

combinations to form a tool chain5. For instance, by setting the language parameter to English

and choosing the first tool chain "ConverterTokeniserLemmatiser" (first column in Figure 2-9)

the list of converters only consists of C2. Figure 2-9 represents this by hiding C1.

Regarding tokenisers in the last four columns in Figure 2-9, the tokeniser from the OpenNLP

project does not deliver sentences as its output feature, but PoS-taggers depend on this feature.

Therefore, the user may only choose from services T2 - T3.

5 The set of services shown in Figure 2-9 does not match with those in Table 2-3 since (at the time of writing) few

services are declared as "in development" and thus not suitable for productive use.

30

As mentioned in section (2.5.1), the implemented 'WebLicht Feature Annotator' includes a

dependency mechanism to check if the required input features of a selected service are

provided by previous tools in the chain. The dependency mechanism is realised by the specific

method "checkToolCompatibility()" as shown in the class diagram in Appendix A.1.5. It checks if

the input features of a selected service are contained in the set of output features that have

been collected in the tool chain so far.

One shortcoming is that both dependency parsers offered by WebLicht do not support analyzing

English text corpora (second last column in Figure 2-9). This, may change in the future if such a

parser is added to the repository of tools in WebLicht.

Overall, the implementation of the 'WebLicht Feature Annotator' appears justified as the benefits

of the tool chain outweigh the single disadvantage of a (currently) lacking dependency parser for

English texts:

 The RapidMiner user / linguistic researcher has the possibility to quickly replace tools

that deliver unsatisfactory results. For example, each Weblicht service may annotate a

text corpus with features differently since it has been trained on a specific text corpora

or makes use of different detection mechanisms. This is the case for tokenisers that

have named entity recognizers included, and as such may return different recognized

named entities for the same tokens. Another example is where two constituency

parsers deliver different results in the case of structural ambiguous sentences as shown

in Figure 2-2.

 The flexibility of the tool chain allows the user to easily try out different combinations

of services while the implementation ensures the validity and correctness of the chosen

tool chain.

 The configuration is straightforward to manage and allows adding, editing or

removing of WebLicht services.

The detailed documentation to the 'WebLicht Feature Annotator' operator is given in the

Appendix A.1.

31

2.6 Extraction of linguistic features in RapidMiner

2.6.1 Motivation for implementing a parser for annotated text corpora

The developers of WebLicht at the University of Tübingen provide a library that contains a TCF

parser [TCF0.3Parser]. However, the parser is incompatible with the XML corpora delivered by

the WebLicht services as it only accepts input in TCF version 0.3 (specification 2009) while the

WebLicht services produce XML corpora in TCF version 0.4 (specification 2011) [TCFSpec]. If

the version were intentionally changed from 0.3 to 0.4 for all input text corpora, this would result

in an unknown number of exceptions in which the provided parsers could not properly recognize

specific XML content.

Due to the above reason and for easier adaptability in the future, a parser is implemented in

order to read all the different XML elements, attributes and data contents that may occur in an

annotated text corpus. For processing of XML content the implementation makes use of JAXP,

the Java API for XML processing, which is a standard component in many Java development

kits [JAXP].

2.6.2 Parsing linguistic features from annotated text corpora

After an annotated text corpus has been received, a process is required that extracts and

outputs linguistic features for further use in RapidMiner. More precisely, an XML parser is

implemented and integrated into the 'WebLicht TCF to ExampleSet' operator (see Appendix A.2)

that properly detects the relevant sections in the XML structures of a given text corpus.

Afterwards, the operator places the features of each type into distinct columns of a new

ExampleSet6
. Figure 2-10 depicts the involved input and output of this operator:

6 An ExampleSet is the most frequently used data structure in RapidMiner and allows the user to forward
data to various operators for further processing.

Figure 2-10: The extraction process of linguistic features from a text corpus

32

As shown in Figure 2-10, the original text is not forwarded to the output ExampleSet, but instead

the sentences are placed one after the other in the column "Sentence". Flat features

associated with each sentence are placed in the columns "Tokens", "Lemmas" and "PosTags".

The label of the column "PoS-tags" additionally carries the information which tagset the PoS-tags

belong to. Note that features are always stored as strings in the cells of the ExampleSet.

If a text corpus contains parse trees, the parser detects the type of the trees. The trees are then

transformed into string representations that use the bracket notation as described in Section

2.2.6. In the following course of this work, the term 'tree string' refers to this representation. The

encoded tree strings are then placed in the column "Tree string" in the

corresponding order of the sentences given in the first column.

While the parser performs the feature extraction from corresponding XML sections in the corpus

(Section 2.6.3), it is important to take into account that WebLicht services may occasionally

return incomplete sets of features. This problem occurs when a requested service is unable to

properly analyze a specific sentence. Unfortunately, in this situation the service denies to further

process the remaining sentences and only delivers the partial set of features according to the

initial sentences that were properly parsed so far.

Since it is desirable to associate tokens, lemmas or PoS-tags with each according sentence, the

parser deals with incomplete feature sets by processing each feature type independently. The

parsing process is proceeded on the following assumptions:

1. The selected tool chain contains a tokeniser. Since tokenization usually involves no

complex analytical processing (as no text corpora with Asian language is processed),

and therefore each chosen tokeniser service is robust enough to provide a full list of

tokens that occur in the given text corpus.

2. The selected tokeniser annotates the corpus with a section for sentences.

In the exceptional case where the parser notices a partial set of a distinct feature type (lemmas,

PoS-tags, parse trees) the highest token ID in the text corpus is determined. Then, only the first

 features are associated with the corresponding sentences, and the last – entries of the

corresponding feature type remain empty. With these circumstances at hand, the parser is

implemented with the following properties:

 Preserve the order of features as occurring in the XML text corpus

 Flexible parsing: Only parse existing feature sections in the XML text corpus, and produce

the output columns in the ExampleSet accordingly

 Robustness: Continue the parsing process despite errors in the XML text corpus like

missing XML elements or different naming conventions

 Readability: Encode parse trees via string bracket notation

 Enrich parse trees: If parse trees are contained in the XML text corpus, add columns in

the ExampleSet for each existing flat feature type (tokens, lemmas, PoS-tags). Then in

33

each column add a list of features as they would occur in the parse tree when

performing a pre-order traversal of that parse tree.

The visualization operator for parse trees makes use of the last property (see Section 3.5).

Since parse trees only contain tags from a specific tagset it is desirable to visualize tokens and

lemmas in the nodes, as well. By simply traversing each parse tree in pre-order the parser can

match each tag with the corresponding token or lemma (if existing7) and appends the token or

lemma to a 'tree string (tokens)', or 'tree string (lemmas)' respectively. The pre-order traversal

is a recursive method that is defined as follows [treeTraversal]:

1. Read the data of the root element of the current tree

(or subtree)

2. traverse to the left subtree by recursively calling the

pre-order method

3. traverse the right subtree by recursively calling the

pre-order method.

Figure 2-11 depicts an exemplary tree whose pre-order

traversal is given by: F, B, A, D, C, E, G, I, H. Appending

the data in the visited nodes to a 'tree string' yields:

By matching the tokens, lemmas or PoS-tags according to the tags in each leaf of the parse

tree, the parser produces the tree strings according to Figure 2-11 in the following way:

TreeString:

Tokens (Tree):

Lemmas (Tree):

PoS-tags (Tree):

2.6.3 Feature extraction from XML sections in the TCF document

The following list briefly describes the parsing of different XML sections in an text corpus that has

been annotated with various features. Since not all WebLicht services follow the TCF 0.4

specification [TCFSpec], different cases are considered in which the implemented parser takes

special care in order to properly extract annotated features:

1. Tokens (a mandatory section in the input text corpus):

<tc:tokens xmlns:tc="http://www.dspin.de/data/textcorpus" charOffsets="true">
 <tc:token end="3" start="0" ID="t_0">The</tc:token>

7 An unmatched tag in the parse tree results in an empty string.

Figure 2-11: Pre-order traversal
of an exemplary tree

34

 …
</tc:tokens>

By searching for an XML element that contains "tokens" the parser can find the token

section. Because not every WebLicht service follows the same naming convention

prepended strings like "tc:" are ignored. When the section is found, simply one token

after the other is parsed and stored in an internal list.

2. Sentences (a mandatory section in the input text corpus):

<tc:sentences>

 <tc:sentence tokenIDs="t_0 t_1 ..."/>

 ...

 </tc:sentences>

This sentence section is added by every tokeniser service in the tool chain (with the

exception of the tokeniser from the OpenNLP project). By parsing the attribute

"tokenIDs" the parser is able to associate a set of tokens to the appropriate sentence.

XML data has to be parsed carefully as WebLicht services use different naming and

numbering conventions. Some services start the list of "tokenIDs" with "t0", while other

services start it with "t_1". Since all features like lemmas or PoS-tags carry a reference

to the tokenID all features can be associated with the according sentence.

3. PoS-tags (an optional section in the input text corpus):

<tc:POStags tagset="STTS">

 <tc:tag tokenIDs="t_0">ART</tc:tag>
 …

</tc:POStags>

While scanning for "POStags", the parser additionally reads the attribute "tagset"

indicating the tagset of the given PoS-tags. Again, special care needs to be taken during

the parsing: For example, when indicating sentence punctuation, some services prepend

"$" or "\$" to the tag and other services, however, return them directly as is.

4. Lemmas (an optional section in the input text corpus):

<tc:lemmas>

 <tc:lemma ID="l_0" tokenIDs="t_0">the</tc:lemma>

</tc:lemmas>

5. Constituency parse trees (an optional section in the input text corpus):

<tc:parsing tagset="tuebadztb"><parse>
 <constituent cat="VROOT" ID="c_56">

 <constituent tokenIDs="t_1" cat="ART" ID="c_1"></constituent>

 ...

35

 </constituent>

</parse>
 ...

</parsing>

The section for constituency parse trees usually starts with an XML element "tc:parsing".

Because some services omit the leading "tc:" or use a different naming scheme, the

parser only searches for "parsing" in order to find this section.

The constituents in each sentence are enclosed by a pair of "<parse> </parse>"

elements. The parser inherits the tree structure by following the constituents nested within

other constituents in a pre-order traversal. A leaf is simply represented by a pair of

opening and closing "constituent" tags without having any content in between. Siblings

on the same level of the tree are represented by placing the "constituent" elements one

after another.

6. Dependency parse trees (an optional section in the input text corpus):

<ns3:depparsing emptytoks="false" multigovs="false" tagset="tiger">

 <ns3:parse>

 <ns3:dependency govIDs="t_2" depIDs="t_0" func="MO"/>

 <ns3:dependency govIDs="t_0" depIDs="t_1" func="NK"/>

 <ns3:dependency depIDs="t_2" func="ROOT"/>

 <ns3:dependency govIDs="t_4" depIDs="t_3" func="NK"/>

 </ns3:parse>
 ...

</ns3:depparsing>

The section for dependency parse trees is recognized by an XML element that contains

"depparsing". Again, some services omit the leading "nc:" or make use of a different

naming scheme. In the same way as for constituency parse trees, each sentence is

enclosed by a pair of opening and closing "parse" elements. The parser follows the tree

structure by starting from the dependency whose attribute "func" has the value "ROOT".

Then, the depending ID "depIDs" indicates the child element in the tree one level below.

The dependent elements can be found by examining the values of the attribute "govID".

While parsing down the tree, the attribute "func" of each element carries a PoS tag or

grammar related tag (depending on the used tagset of the WebLicht service) and is

determined by the parser.

36

2.7 Discussing linguistic features in the context of a hypothetical

task

This section deals with the idea of detecting metaphors in sentences according to the types of

linguistic features that can be obtained from the 'WebLicht Feature Annotator'.

2.7.1 Definition of a metaphor

A metaphor is a figure of speech in which an implied comparison is made between two unlike

things that in fact have something in common. According to the simple model by [Richards] a

metaphor consists of an unfamiliar part (tenor) and a familiar part (vehicle). The tenor is the

subject to which attributes are ascribed while the vehicle is the object to which these attributes

are borrowed. In the German sentence "Der Mann ist ein Schrank" which translates to "the man

is a cupboard" the tenor is "Mann" and the vehicle is "Schrank". Further examples are: "He is a

walking dictionary" or "The ballerina was a swan, gliding across the stage".

For the discussion in the next section let us only consider metaphors of the above simple model

where both tenor and vehicle only consist of nouns. Other metaphorical expressions use a wide

range of possibilities to combine nouns with verbal phrases or particles which in turn would be

far more difficult to analyze. Another condition that should be excluded is when the tenor is

omitted since the speaker assumes that the recipient concludes the tenor from the given context.

Furthermore, metaphors need to be distinguished between creative and dead ones: On one

hand, creative metaphors are essentially of innovative nature either because they occur very

rarely (e.g. "reshuffle the deckchairs on the Titanic") or in specific contexts (e.g. "Pyrrhic victory")

or they have found their way in language use at some time (e.g. "to google").

On the other hand, dead metaphors subsume two types: In the first type the sense of a

transferred image is absent, like in the German verb "begreifen" which means "to understand"

where the physical action is used as a metaphor for understanding. Such metaphors are no

more visualized, and usually go unnoticed. The second type of metaphors have such a high

frequency in linguistic usage that they have been lexicalized (e.g. the German noun "Fundgrube"

which translates to "bonanza").

The distinction between creative and dead metaphors is usually achieved by dictionaries

containing a large set of dead metaphors so that these can simply filtered out from a given text

corpus.

2.7.2 Discussing linguistic features for pattern detection

In the context of the processing pipeline for a classification task (Figure 1-1), the following Figure

2-12 depicts how linguistic features are obtained right at the start, then transform them in a

processing step, and finally forward them to a machine learning method in order to perform a

pattern detection. Generally, these steps also resemble a typical data mining task that bridges

computational linguistics with machine learning in an interdisciplinary manner:

37

Figure 2-12: An interdisciplinary perspective on an exemplary data mining task

With different types of linguistic features at hand (Figure 2-12, center box), first it is unclear which

feature type or combination of feature types is most applicable for a given NLP task like the

exemplary idea of detecting metaphors. The following Table 2-5 demonstrates the case where

parts-of-speech tags are considered alone, in the attempt of finding patterns that correspond to

a possible metaphor in a sentence:

Example Sequence of PoS-tags interesting PoS-tags Metaphor?

Der Mann ist groß
This man is tall

ART NN VAFIN ADJD NN ADJD no

Der Mann ist Lehrer
Wolfgang is (a) teacher

ART NN VAFIN NN ART NN NN no

Der Mann ist ein Schrank
This man is a cupboard

ART NN VAFIN ART NN ART NN ART NN yes

Julia war ein Schwan
Julia was a swan

NE VAFIN ART NN NE ART NN yes

Table 2-5: A set of examples with sequences of PoS-tags; the tags are taken from the

"Stuttgart-Tübingen Tagset" (STTS); the translations are given in the second lines

The column with "interesting PoS-tags" shows possible subsets of part-of-speech tags that are

considered relevant in the given sentences. The last two sentences contain metaphors and show

that the tenor ("Der Mann", "Wolfgang", "Julia") either is a common noun (NN) or a named entity

(NE), and that the vehicle of the metaphor is tagged with NN or NE, as well. Concerning the

German language, the vehicle of a metaphor often appears in combination with an article (ART).

In order to decide whether a sentence contains a metaphor or not, first of all an exemplary case

is required that provides a distinct set of features with an unambiguous pattern. In terms of

machine learning, this detection task resembles a binary classification problem in which a given

set of training data needs to be separated in two classes. In order to perform a machine

learning, we need to know if a specific set of features exists such that a decision rule can

unambiguously decide to which class a given sentence belongs. If such a set exists, a decision

rule could be learned and later on a classification could be performed on unseen data.

38

Let us consider n-grams comprised of sequences of parts-of-speech tags (with n=5):

Example 2-3: Sequence of n-grams with n=5; the blue coloring indicates the subject or the tenor
of a metaphor. The orange coloring indicates the object phrase or the vehicle of a metaphor.

In Example 2-3 the only difference between the n-grams is given by the tags 'NN' (for "Lehrer")

and 'ART NN' (for "ein Schrank"). Another factor we have to take into account are tokens that

are not related to a metaphorical expression. These tokens potentially feature arbitrary PoS-tags,

and potentially add more ambiguous cases which further permits any clear distinction.

Another example is given below to demonstrate a shortcoming of n-gram features due to their

fix length. Since sentences are usually arbitrary long, interesting words can potentially have

arbitrary words in between. For example, by choosing n=4 the second sentence yields two

combinations of 4-grams:

Example 2-4: Sequence of 4-grams; the second sentence yields two 4-grams of PoS-tags.

By comparing the 4-grams of the first sentence and the first sequence of the second sentence,

a difference is obtained in the tags 'NN' (vehicle) and 'ART'. However, this does not give any

clue at all. When we compare the n-gram of the first sentence with the second sequence of PoS-

tags, we obtain the matching tags 'ART NN' (tenor) from the first example and 'ART NN'

(vehicle) from the second sequence, although we want to compare 'NN' (vehicle) with 'ART NN'

(vehicle). This problem would additionally require to determine correct start positions of

interesting PoS-tag sequence in order to compare only relevant pairs of PoS-tags.

Considering the first sentence, there are no rules in German that define when to add or omit an

indefinite article (like "ein") to a common noun. Both in written and colloquial language the

difference is sensed very subtly. Thus, the first sentence could equally be written as:

Example 2-5 proves that PoS-tags alone are not suitable for an unambiguous distinction

between sentences. Furthermore, if structural features like constituency parse trees (Section

2.2.5) are considered, we could determine the proper tag for each constituent that forms a

1. Der Mann ist Lehrer

 ART NN VAFIN NN (no metaphor)

2. Der Mann ist ein Schrank

 ART NN VAFIN ART NN (metaphor)

1. Der Mann ist Lehrer

 ART NN VAFIN NN

2. Der Mann ist ein

 ART NN VAFIN ART

 Mann ist ein Schrank

 NN VAFIN ART NN

1. Der Mann ist ein Lehrer

 ART NN VAFIN ART NN (no metaphor)

2. Der Mann ist ein Schrank

 ART NN VAFIN ART NN (metaphor)

Example 2-5: Variation of Example 2-3 with an indefinite article added to the common noun in the first sentence.

39

subject or object phrase, and still end up in ambiguous cases. This leads to the conclusion that

no feature type, that has been presented so far, would allow a proper binary classification.

However, the following concept may offer an approach to examine and decide ambiguous

cases: First, we determine pairs of "candidate" tokens that possibly form a metaphorical

expression. This can be achieved by only searching for pairs of their corresponding PoS-tags. If

we constrain sentences with metaphors to only be made up of nouns or named entities in the

subject and object phrases, we could simply search for pairs of 'NN' or 'NE' tags.

In the given example above, the tag 'NN' refers to the token "Mann" and the 'NN' tags to the

tokens "Lehrer" and "Schrank". In the next step, a word sense disambiguation tool could

retrieve the senses to each corresponding tokens.

The basic idea is as follows: If the sense of one of the "candidate tokens" is not related to the

semantic field8 of the other token then the given pair of tokens are likely to form a metaphorical

expression.

Figure 2-13 shows an exemplary semantic

field of the word "purple". In linguistics, a

specific term (here "purple") whose

semantic field is included within the semantic

field of another more general term ("color"),

is called a hyponym. Respectively, the

semantic field of a hypernym subsumes

instances of more specific terms ("purple" , "red", and so on). Terms on the same level in the

field are called co-hypernyms.

Regarding the distinction between the sentences from Example 2-3 a word sense

disambiguation tool could provide the following senses (given in brackets after the PoS-tags):

Example 2-6: The exemplary sentences are now annotated with PoS-tags and their word senses.
These senses can then be compared regarding their semantic fields.

With this detection concept, the second sentence in Example 2-6 could be unambiguously

classified as a metaphorical expression since the term "person" for the token "Mann" does not

share the same semantic field with the term "object" for the token "Schrank".

8 A semantic field is a set of words grouped by a meaning that is referred to a specific subject [Jackson et al.]. From

an intuitive point of view, words in a semantic field are not simply synonyms, but rather are possible words that

describe the same general phenomenon [Akmajian et al.]. Furthermore, the sense of a word is partly depending on its

relation to other words in the same conceptual area [Hintikka].

1. Der Mann ist Lehrer

 NN (person) NN (job)

2. Der Mann ist ein Schrank

 NN(person) NN (object)

Figure 2-13: An exemplary semantic field of the term "purple"

40

Chapter 3

Feature Visualization

This chapter deals with the visualization of structural features extracted by the "WebLicht TCF to

ExampleSet" operator (Section 2.6). A commonly used representation for linguistic structures is

the tree graph, also referred to as tree bank. As already described in previous chapters these

tree banks mainly come in two types: Constituency trees that display hierarchies of phrases

(Section 2.2.5) and dependency trees that represent relations by drawing lines between

dependencies within a text corpus (Section 2.2.6).

Before different concepts for tidy tree drawing are presented, various definitions of graphs and

trees are give in Section 3.1. Afterwards, Section 3.2 describes the representation of relational

data used to describe parse trees. According to [Battista], the drawing of a graph in a pleasing

and tidy way can be divided into the categories of drawing convention (Section 3.3.1), aesthetic

standards, and the constraints on aesthetics in a drawing (Section 3.3.2). Following these

constraints, two different drawing algorithms are presented in Section 3.4: First, the "Layered-

Tree-Draw" algorithm that constructs tidy tree layouts (Section 3.4.1). However, because this

algorithm does not produce tree layouts with minimal breadth, the drawing algorithm proposed

by Reingold & Tilford is shown Section 3.4.2. Finally, Section 3.5 presents the implemented

visualization operator that provides visual insights into structural relations of parse trees.

3.1 Terminology of graphs and trees

This section contains the most relevant definitions of graphs and trees that are used later on. We

start with the general type of a graph which consists of a finite set of vertices and

a finite set of edges consisting of unordered pairs of vertices. A vertex is often called node,

and the terms arc, link, or connection are used instead of edge. The end-vertices of an edge

 are the vertices and . These nodes are also called adjacent to each other and

the edge is incident to and . The neighbors of are its adjacent vertices. The degree of

is the number of its neighbors. An edge with is a self-loop. Furthermore, an edge

that is contained more than once in is called a multiple edge. A simple graph does not contain

any self-loops and no multiple edges.

A directed graph (digraph) is defined similarly to a graph. The only exception is that the set of

edges , called directed edges, contain ordered pairs of vertices. A directed edge is

defined by an outgoing edge of and an incoming edge of . Usually a directed edge is drawn

as an arrow. Vertices without outgoing edges are called sinks. Respectively, vertices without

incoming edges are called sources.

41

A (directed) path in a (directed) graph is a sequence of distinct

vertices of , such that for . A path is a cycle if . In

this context, a graph in which any two vertices are connected by exactly one path is called

acyclic.

A tree is a connected acyclic (and thus simple) graph. Furthermore, a tree is called a rooted

tree if one vertex has been designated as the root. Commonly, a tree is considered as a

directed graph while all edges are oriented away from the root. One property of a rooted tree is

that the of any vertex lies on the path to the root . Furthermore,

every vertex has a unique parent. A rooted tree in which each vertex has at most

children is also referred to as n-ary tree. In the case of two children the tree is called binary tree.

Vertices that have no children at all are called leaves.

A graph with and is called a subgraph of .

Respectively, a subtree rooted at vertex consists of the subgraph induced by

all vertices on paths originating from , with . The depth of a vertex of a tree

is defined by the number of edges that lead on a path from to . The height of is the

maximum depth of a vertex of T.

We call an edge of a digraph transitive if a directed path from to exists while

 . The transitive closure of a digraph has an edge for every path from to

 in .

Next, we define the term drawing: A drawing of a graph (digraph) is a function that maps

each vertex to a distinct point . Every edge is mapped to a so called simple

open Jordan curve, with endpoints and [Battista, JordanCurve]. Furthermore, we call

 planar if no two Jordan curves intersect. Thus, a graph is planar if it admits a planar drawing.

3.2 Modeling relational structures of parse trees

In order to express parse trees of annotated text corpora (Sections 2.2.5 and 2.2.6) an

appropriate model is required that represents these trees. A parse tree is given as a relational

structure which consists of entities and the relationship between them. These entities are linguistic

units like words (in a dependency parse trees) or constituents (in a constituency parse tree).

Modeling relational structures as trees can be done in many ways. The representation of an

entity is usually a vertex (drawn as points or boxes), while the relationship between two entities

is visualized by an edge (drawn as straight or curved lines) that connects the associated

vertices.

42

One way to describe parse trees is by using the list notation9 with list entries of edges that

are incident to vertex for each . The following Table 3-1 shows an exemplary tree

(which is the parse tree shown Figure 3-4 below):

 (1,2)

 (2,3), (2,4), (2,5)

 (3,6), (3,7), (3,8), (3,9)

 (4,10), (4,11)

 (11,12), (11,13)

 (13,14), (13,15), (13,16)

Table 3-1: The list notation of an exemplary tree

A more compact description of a graph is a adjacency matrix whose columns and

rows correspond to vertices, with if and otherwise:

 1 2 … 13 14 15 16

1 0 1 … 0 0 0 0

2 1 0 … 0 0 0 0

… … … 0 … … … …

13 0 0 … 0 1 1 1

14 0 0 … 1 0 0 0

15 0 0 … 1 0 0 0

16 0 0 … 1 0 0 0

Table 3-2: The adjacency matrix of an exemplary graph ; the entries

 indicate that the vertex has no self-loop.

With the set of relational data at hand, we can now deal with drawing trees according to some

specific drawing conventions, as defined in the next section.

3.3 Tree drawing

3.3.1 Drawing conventions

A drawing convention is a basic constraint of geometrical representations of nodes and edges.

For example, in flow diagrams (Figure 2-8), vertices are drawn as boxes and edges as

orthogonal chains consisting of horizontal and vertical lines. Drawing conventions vary depending

on the field of application and thus involve many different details of the drawing. This section

outlines a few central conventions for the visualization of parse trees.

Representations of vertices include boxes, circles, diamonds, parallelograms, ellipses, or filled

dots (thicker than the edge lines). For our purposes vertices are drawn as boxes so that labels

can be placed within. However, instead of displaying a simple label, this box can be used to

place extracted features of the parse tree.

9 The WebLicht parsers make use of list notation in the XML structures of the annotated text corpus, as
shown in 0, 5) and 6)

43

Since all tags in a parse tree carry a reference to the token ID, all flat

features can be matched with the corresponding nodes in the parse

tree. As shown in Figure 3-1, each node can display a PoS tag, token

and lemma if a match is found and the feature type has been

annotated in the text corpus. The ID is additionally displayed in order

to track the alphabetical order of tokens.

Common conventions for drawing edges include orthogonal, straight or bent lines. Straight lines

or lines with a sharp bent are preferred in order to achieve parallel lines.

Along with conventions for edges and vertices, different options are available to arrange the

elements of a tree in a two dimensional space. In graph drawing theory, a graphical construction

is a grid if the relations between all elements are expressed by the same graphical component in

a two dimensional plane [Bertin]. The following Figure 3-2 presents a set of grid conventions that

use different notation types for the edges and vertices, and arrange the grid onto an ordered

field:

Figure 3-2: Grid types for trees with different ways to draw components and connections.

When visualizing trees according to the grid types (2) and (4), it would become difficult to

visually grasp its relational structures if a tree contains a large number of hierarchies. For our

purposes trees are drawn according to the common and visually comprehensible grid type (1).

3.3.2 Aesthetics and constraints of a tree drawing

A major factor that influences the usefulness of a drawn tree is its readability. Although all

possible drawings contain the same information, the conveyance of the relational structures can

be very different and strongly depends on the following properties of a drawing [Battista]:

 Bends

 Crossings (planarity)

 Positioning of vertices

 Edge Length

 Symmetry

 Area

Regarding the aesthetics bends and crossings it is desirable to produce drawings with as fewest

bends and crossings as possible so that the readability of a tree is increased [Bhanji et al.,

Purchase et. al]. Additionally, these are directly influenced by the positioning of the vertices, as

Figure 3-1:
The implemented

representation of a
vertex in parse trees

44

demonstrated in Figure 3-3 below. Here, the drawing is a constituency parse tree of the

processed sentence "The quick brown fox jumps over the lazy dog.". To emphasize the impact

of the positioning of the vertices, Figure 3-3 shows the transitive closure of the tree

with being the extracted constituents and the relations between them:

Figure 3-3: An exemplary tree with a very low readability

The numerous overlapping edges and crossings make it impossible to comprehend the relational

structures of the parsed tree. On the opposite, Figure 3-4 presents the reduced graph (the

transitive reduction of) with a high readability:

Figure 3-4: The reduced tree of with a high readability

The tree is drawn in such a way that the leaves are placed on the lowest line

and the internal vertices with a specific depth are arranged on the same height in the drawing.

The parallel edges are achieved by placing bends in between the edges (on the same x-

coordinate as the node below) and preferably on the same height in order to achieve a

maximum display of symmetry. This aesthetics is, as we see, directly influenced by positioning

vertices and bends on the same height, by using as many parallel edges as possible, and

furthermore by creating isomorphic subtrees that have the same drawing.

45

Regarding the aesthetics area, it is of utmost importance that a spatial layout is produced that

covers an area with minimal breadth. Since parse trees can be very large, a drawing should

not waste space on a computer screen (or printed medium) so that it is still viewable.

With all the central aesthetic criteria at hand, the following parameters for a multi-objective

optimization problem can be formalized in order to produce a tree drawing with a maximum

readability:

 minimization of the number of crossings

 minimization of the number of bends of edges

 minimization of the number of different gradients

 minimization of the covered surface

 maximization of displaying symmetries

Generally, drawing algorithms for graphs cannot satisfy all constraints, and thus deliver trade-off

solutions [Battista]. However, since we deal with trees, an optimum can be achieved regarding

all optimization objectives due to a specific drawing algorithm introduced below (Section 3.4.2).

3.4 Drawing algorithms for parse trees

This section introduces specialized algorithms that are suitable to produce tidy drawings of parse

trees received from WebLicht. A natural way of visualizing these rooted trees is by constructing

downward planar drawings.

In the first step of a drawing process a layer assignment is performed in which each vertex of a

tree is assigned to a layer such that an edge with and

goes from layer to a layer below, with .

In the general case of acyclic graphs, the goals during the layer assignment are to

simultaneously produce a small number of layers, as few edges as possible that span large

numbers of layers, and a balanced assignment of vertices to layers [Battista].

In the case of trees the layer assignment is simple: The number of layers is given by the

maximum depth of a vertex in the tree. Therefore, a vertex with depth is directly placed into

layer , thus each vertex can be assigned the y-coordinate . The drawing starts with

 by assigning to and y-coordinate , which is the top of the drawing.

If has more vertices than the root, the assignment continues with its children. Each child vertex

 with depth is then assigned to a new layer below.

The edges of a parse tree can be drawn without crossings by ensuring that the left-to-right

relative order of any two vertices and in layer is the same order of their parents and

46

 in layer . As mentioned in Section 2.6.3, each vertex of a parse tree is indicated by a

unique number (id) and the order of vertices is given by an increasing numbering.

Due to the layer assignment, all vertices have prescribed y-coordinates so that an algorithm for

constructing a drawing only needs to compute the x-coordinates. An intuitive requirement is to

position the x-coordinate of a parent vertex within the horizontal span of its children.

3.4.1 The "Layered-Tree-Draw" Algorithm

In order to construct a layered drawing of an n-ary rooted tree, the 'Layered-Tree-Draw'

Algorithm is present first. It is a basic recursive approach that makes use of a divide-and-

conquer strategy to draw subtrees (divide) and their children (conquer) in the tree. The

Algorithm 3-1 to this approach is defined as follows:

Algorithm 3-1: The "Layered-Tree-Draw" Algorithm

The term bounding box (mentioned in the conquer step of Algorithm 3-1) refers to a rectangle

that embraces the drawing of a subtree. According to this approach, an exemplary rooted tree

is presented in the next Figure 3-5.

The properties of a drawing produced by the 'Layered-Tree-Draw' Algorithm are given as

follows:

 clearly encodes the depth levels by using a layered layout in which each vertex with

depth is placed on a layer with y-coordinate .

 is planar, and consists of strictly downward straight lines.

 contains no crossings since the left-to-right order of the children of each vertex is

preserved.

 Minimum horizontal and vertical distance of at least 1 unit between any two vertices.

 The area covered by is .

 Every parent vertex is placed horizontally in the center of a subtree.

Input: Rooted n-ary tree

Output: Layered drawing of

1. Trivial case: If consists of only one vertex, output the trivial drawing.

2. Divide: Apply the algorithm recursively on each subtree (e.g. in a left-to-right order).

3. Conquer: Draw each subtree for separately. Then, place the drawing of to the

right of the drawing of so that their bounding boxes are not overlapping. Now, shift to the

left until the leftmost node in has a distance of units to the rightmost node in .

Finally, the root is positioned vertically one unit above and horizontally in the center of the

drawing of a new subtree. If only has one subtree, then place the root directly above that

subtree.

47

Figure 3-5: An exemplary rooted tree whose nodes are placed by the Layered-Tree-Draw Algorithm along the x-axis

and by the layer assignment along the y-axis. The steps beneath the drawing describe the construction of subtree .

As we can see in Figure 3-5, a major disadvantage of Algorithm 3-1 is that the produced

drawing spans a large breadth, and even larger trees lead to an exponential growth in the width

of the drawing.

Let us briefly describe the steps of constructing the subtree : Due to the recursive nature of the

divide-and-conquer approach, the algorithm traverses down to the lowest level (1) and

positions the nodes along the x-axis with a distance of towards each other. Then, in the

same conquer step, the parent vertex is centered above its children at the x-coordinate (2).

In the conquer step of the previous step during the recursive run, the leaf nodes on layer are

drawn (4). In (5) the subtree can be added and properly shifted to the right by so many units

that the leftmost node in has a distance of units to the rightmost node that is drawn at

the x-coordinate . Note, that the vertex at could equally contain a subtree to which T'

would be placed with to the rightmost node in that subtree. Finally, in (6) the parent of the

nodes on is positioned in the center of the resulting drawing which spans from the x-

coordinate to . After that Algorithm 3-1 continues with analogously.

48

3.4.2 The "Reingold & Tilford" Algorithm

Reingold and Tilford modified the Layered-Tree-Draw Algorithm to produce a layout that makes

smarter use of space, maximizes the density and still displays symmetries in the drawing

[Reingold&Tilford]. Since their original algorithm processes binary trees only, [Walker] extended

it to draw n-ary rooted trees as well. In order to perform the drawing in linear time, [Buchheim et

al.] further improved Walker's algorithm.

The 'Reingold & Tilford' Algorithm follows the same divide-and-conquer strategy as the 'Layered-

Tree-Draw' Algorithm (Section 3.4.1). However, at each conquer step it makes use of a local

optimization heuristic in order to reduce the width, and centers a parent vertex horizontally with

regards to its children. The modified Algorithm 2 is defined as follows:

Algorithm 3-2: The "Reingold & Tilford" Algorithm

The modification in Algorithm 3-2 compared to the "Layered-Tree-Draw" Algorithm is the

positioning of subtrees according to their contours. A left contour of a tree with height is

defined as the sequence of vertices such that each is the leftmost vertex with depth

 in . The right contour is defined analogously. In the conquer step the right contour of the left

subtree and the left contour of the right subtree need to be followed simultaneously while

ensuring that both contours keep the minimum distance of two units. This compacting step is

visualized in the following Figure 3-6:

Figure 3-6: Compacting subtrees along their contours during the conquer step in the "Reingold&Tilford"-Algorithm

The basic steps of the implementation of the "Reingold & Tilford" Algorithm consists of two

traversals of the input tree : In the first traversal the horizontal shifts of each child vertex relative

to its parent vertex are determined. Then, in the second traversal the x-coordinates of the

Input: Rooted n-ary tree

Output: Compact layered drawing of

1. Trivial case: If consists of only one vertex, output the trivial drawing.

2. Divide: Apply the algorithm recursively on each subtree (e.g. in a left-to-right order).

3. Conquer: First, draw each subtree for separately. Then, place the drawing of to

the right of the drawing of . Now, shift to the left until its left contour has a horizontal

distance of to the right contour of . Finally, the root is positioned vertically one unit

above and horizontally in the center of its children. If only has one subtree, then position the root

directly above that subtree.

49

vertices are computed by accumulating the shifts on the path from each vertex to the root.

Finally, the same graph as in Figure 3-6 is obtained according to the "Reingold & Tilford"

Algorithm:

Figure 3-7: The exemplary tree from Figure 3-5 drawn by the "Reingold&Tilford" Algorithm.

Figure 3-7 shows an aesthetically pleasing drawing of a rooted tree constructed by the "Reingold

& Tilford" Algorithm. Note, that the -coordinates are calculated by the layer assignment as

described in the introduction of Section 3.4.

To conclude this section, the properties of a drawing according to the "Reingold & Tilford"

layout are given as follows:

 clearly encodes the depth level

 is planar with strictly downward straight lines.

 contains no crossings since the left-to-right order of the children of each vertex is

preserved.

 is compact

 A minimum distance of 1 unit between any two vertices

 covers an area of

 preserves symmetry by producing simply isomorphic structures that have congruent

drawings, up to a translation in the drawing.

50

3.5 Visualization of structural features in RapidMiner

This section presents concepts and results of the implemented 'Visualize and Label Parse Trees'

operator for RapidMiner. The idea is to provide linguistic research experts a visual insight into

structural relations of a given sentence based on the annotations of a constituency or

dependency parser.

In order to visualize the parse tree of a sentence, a given sentence has to be annotated with the

'WebLicht Feature Annotator' with the tool chain containing either a constituency or a

dependency parse service from WebLicht (see Section 2.5). After that, the 'WebLicht TCF to

ExampleSet' operator has to be employed in order to extract the 'tree string' which encodes the

parse tree (see Section 2.6.2). The tree string can then be forwarded to the 'Visualize and

Label Parse Trees' operator10.

Figure 3-8 depicts a concept for presenting drawings of both constituency and dependency parse

trees:

Figure 3-8: A conceptual dialog presenting lists of visualized parse trees that can be labeled.

Basically, the 'Visualize and Label Parse Trees' operator reconstructs parse trees from 'tree

strings'. Since "[", "]" and "," are reserved characters in the bracket notation, the reconstruction

is achieved by simply parsing "words" that are delimited by these special characters.

Another feature of this operator is the option to assign a label to each sentence.

10 Alternatively, the parse trees could have been forwarded as serialized objects, where each object would be

represented as a sequence of bytes. However, by encoding/decoding trees to strings in bracket notation, these 'tree

strings' can directly be viewed and used in learning methods.

51

The following Figure 3-9 presents the visualization of a dependency parse tree of an exemplary

German sentence:

Compared to the concept in Figure 3-8 the leaf nodes are not placed on the lowest line in the

drawing. Doing so would not yield a compact "Reingold & Tilford" layout (as shown in Figure

3-7), and as such the resulting tree would span even more horizontal space. Also, instead of

drawing a list of trees beneath one another (which would be difficult to navigate), only one tree

at a time is shown in a panel. By providing intuitive controls the user can quickly rotate through

the list of trees.

This section is concluded with a brief presentation of the performance of this operator: The

implemented visualization operator runs in about linear runtime. The visualization process

includes the parsing of the encoded 'tree strings', the internal construction of trees, the caching

of all parse trees, and the final visualization of the first tree. For 1.000 encoded strings (with a

random length between 500 and 1000 characters) the operator uses roughly one second on a

mobile platform equipped with an Intel i7-3630QM@2.4Ghz CPU, with 2GB of limited memory

space, while RapidMiner running on a single core.

The full documentation of the implemented RapidMiner operator 'Visualize and Label Parse

Trees' is given in the Appendix A.3. A class diagram is added in Appendix A.3.3 that depicts the

major classes involved in the implementation.

Figure 3-9: A tidy and compact drawing of an exemplary dependency parse tree for an exemplary German sentence.

52

Chapter 4

Machine Learning in Text Corpora

This chapter presents machine learning methods that are intended to be used for pattern

detection in text corpora. A text corpus usually consists of sentences given as text strings. The

central idea is to detect patterns in linguistic features like tokens, lemmas, PoS-tags or 'tree

strings' that have previously been obtained by the feature extraction tool (Section 2.6).

For the analysis of text corpora kernel-based learning methods (KMs) are introduced in Section

4.1 which provide a powerful approach to efficiently detect nonlinear relations without the

problem of overfitting [Shawe-Taylor & Cristianini]11. Since classification tasks are the main focus

in this work, KMs are combined with the prominent support vector machine (SVM) (Section 4.2).

With this machine learning concept, the following kernel methods are introduced that come into

question for the analysis of text corpora:

 String Subsequence Kernel (Section 4.3)

 Bag of Words Kernel and N-gram Kernel (Section 4.4)

 Spectrum Kernel (Section 4.5)

 Tree Kernel (Section 4.6)

 Fast Kernel for String and Tree Matching (Section 4.7)

Figure 4-1 depicts the process in which preprocessed linguistic data can be used in machine

learning:

Figure 4-1: A machine learning framework with different kernel methods
used by the SVM in a supervised learning surrounding

11 Overfitting occurs when a learned model is too complex, that is too many parameters (relative to the number of

examples in the training set) are used to memorize data rather than to learn to generalize from trend. The predictive
performance of such a model is usually poor on unseen data since it exaggerates minor fluctuations in the data
[StatLearn]

53

In order to feed a KM with examples, the extracted features regarding each sentence are first

concatenated to text strings. Then, a chosen KM computes the similarity values between pairs

of strings. The result is a so called kernel matrix (Section 4.1) that consists of similarity values

between all examples, which is then forwarded to the SVM.

A particular focus in this chapter is put on the 'Fast Kernel Method for String and Tree Matching'

(Section 4.7) [Vishwanathan & Smola] which is implemented and made use of during the

machine learning experiments in Chapter 5. Compared to classic string kernels, this 'Fast String

Kernel' method computes string kernels in linear time in the size of the arguments (Section 4.7.3),

independent of any weights that can be associated with matching substrings. In this context,

Section 4.7.4 presents various weight functions that allow a different emphasis of matching

substrings. Finally, in Section 4.8 various aspects are outlined that concern the implementation of

the 'Fast String Kernel' operator for RapidMiner.

4.1 Kernel Methods (KMs)

Kernel methods (KMs) provide a powerful way of detecting nonlinear relations in data

 that is transformed to feature vectors living in an -dimensional Euclidian feature

space (with possibly being infinite). General types of relations analyzed by KMs are

clusters, principal components, correlations and classifications.

In the case of character strings gained from text corpora, these features cannot readily be

described by explicit feature vectors. Constructing a module that transforms data to feature

vectors in is a difficult problem since important information can get lost during that process. It

is clear that the transformation of features plays a key role in the effectiveness of detecting

patterns [Lodhi et al.].

Furthermore, the explicit computation of the coordinates of features in has a very high

computational cost which is implicit in the number of dimensions of . To circumvent this

problem, kernel-based learning methods (KMs) offer an effective alternative. The building block

of a KM is a function known as the kernel function (or short kernel) that efficiently computes

the inner product between mapped examples in the feature space:

The function maps a feature into some feature space . In this work, these features

are given as sets of linguistic units. For a vector space the inner product is defined as:

54

The inner product is an appropriate measure for the similarity between two data items. More

generally, an inner product space is a vector space over the real values if there exists a

real-valued symmetric bilinear map which is linear in each argument and satisfies .

This bilinear map is known as the dot or scalar product [Shawe-Taylor & Cristianini].

The mapping of features to feature vectors has not yet been specified, but

this is actually not necessary since only the inner products need to be computed:

This mathematical shortcut, often known as kernel trick, allows learning in implicit feature space

without ever computing coordinates of data points in that space. In the context of classification,

the learning refers to a linear decision function represented by a weight vector in . This weight

vector is a linear combination of feature vectors of the training points. For some point we can

look up a function via and thus find the corresponding weight vector. Therefore,

finding the weight vector is equivalent to identifying the corresponding element in feature space

 [Shawe-Taylor & Cristianini].

In the optimal case that the data becomes linearly separable in , a linear classifier like the

support vector machine (see Section 4.2) can learn a linear decision function with an

associated weight vector . Figure 4-2 and Figure 4-3 depict a simply case: Instead of mapping

each feature to this space we use the kernel trick to directly compute the inner product of two

features according to some kernel function.

Figure 4-2: An exemplary set of non-
linear separable examples

Figure 4-3: Data set mapped to the feature

space after applying a mapping function

The learned decision function, also called hypothesis, can then be applied to previously unseen

examples in the same vector space in order to make predictions.

A major advantage of KMs is that this approach allows decoupling algorithms for similarity

computation from the specification of a feature space. Numerous kernels were developed to

55

compute similarities of arbitrary data types. Of particular importance in this work are kernels that

are able to compare text strings.

Alternatively, the similarity computed by can be seen as the angle between two vectors

of the mapped inputs and which is also known as the cosine similarity. The cosine between

two vectors can be derived from the Euclidean dot product .

 with

For text matching, the angle between vectors of similar strings is small with a possible minimum

of zero, while dissimilar strings have vectors that are orthogonal towards each other.

The central data structure of all kernel-based algorithms that holds the similarities of all compared

examples is the so called Gram matrix, or simply kernel matrix [Shawe-Taylor & Cristianini]. The

Gram matrix is defined as an matrix whose entries are the similarities/inner products

between each two examples:

 can be displayed as follows:

 1 2 … m

1 …

2 …

… … … … …

m …

In the case that the features and originate from the same data set the gram matrix is

symmetric due to which means that the transposed matrix equals . Furthermore,

the Gram matrix is positive semi-definite. A symmetric matrix is positive semi-definite,

if its eigenvalues are all non-negative. This is true only if , with the vectors .

Lastly, when comparing features like two strings and then their lengths directly impact the

similarity value that is computed by . Therefore, a given kernel function is normalized as

follows [Shawe-Taylor & Cristianini]:

56

4.2 The Support Vector Machine (SVM)

The SVM is a very universal learner due to the fact that its integral kernel function, or simply

called kernel, can be exchanged like a simple "plug-in" [Joachims2000]. The SVM implements a

large margin approach in which a separating hyperplane is optimally placed between two

classes of examples that have been mapped by some KM to a feature space beforehand. The

idea is then to maximize a large margin between two classes in order to obtain a model that

generalizes well to unseen data without having learned too closely to the set of training

examples (also known as overfitting). The classification is then done as follows: By applying the

learned model on a previously unseen example the according decision function determines on

which side of the hyperplane a new example lies and associates the according class to that

example. In the context of classification, the SVM results in a non-probabilistic binary linear

classifier.

Since the SVM performs supervised learning the sentences of a text corpus have to be labeled

according to some classes. However, the SVM is not restricted to binary classification, but also

allows multiclass classification. For instance, for classes binary classifications can be

performed in which each SVM considers in a one-vs.-rest strategy one class as the positive

examples and separates it from the other classes that are treated as negative examples.

Afterwards new examples are predicted according to the class with the largest confidence, that

is where distance to the corresponding hyperplane is the largest [Joachims 2000].

In supervised learning the SVM analyzes previously labeled training data (e.g. with the labels

 in binary classification) to infer a function for predicting the labels of new examples

(either or). The discrepancy between the true labels and the predicted label is

measured by a loss function [Shawe-Taylor]. This loss is called the classification error. Basically,

in supervised learning the SVM iteratively predicts examples of a training set while adjusting the

large margin until the classification error converges to a minimum.

The advantage of the SVM lies in a low generalization error 12 if a large margin can be

determined. That is, depending on the separability of a training set, the SVM generalizes well

enough when classifying unseen examples.

In the next section the ideal case is described where examples are linearly separable, and in

Section 4.2.3 the realistic scenario is shown where non-separable data is used for learning.

12 The generalization error is defined as mean-square error

 , for the examples ,

with the predicted label and the true label . The generalization is a theoretical concept to measure the
distance between the error on the training set and the test set and is averaged over the entire set of
possible training data that can be generated after each iteration of the learning process. This theoretical
model assumes the true probability distribution of the examples by means of a hypothetical function that
predicts the labels without error.

57

Figure 4-4: Linear separating hyper-
planes for the separable case.
Encircled points represent the

support vectors.

Origin

H2
H

H1

4.2.1 The linear separable case

Regarding the linear separable case the SVM learns a decision

function that accurately separates the data according to their

associated labels [Burges]. Figure 4-4 shows a set of training

examples residing in feature space that can be

separated by a hyperplane in two classes. In space

a hyperplane is given by the normal vector and some

bias , as follows:

 is again the inner product, with

 .

Any point which would lie on satisfies ,

where is the normal to . The perpendicular distance from to the origin is given by

,

while

 is the Euclidean norm of . Let (be the shortest distance from

to a positive (negative) example. The working principle of the support vector algorithm is to

determine the separating hyperplane in such a way that a maximum margin can be

obtained. As shown in Figure 4-4 the hyperplanes and delimit the margin. With the same

normal vector these planes run parallel to . By scaling and , the hyperplanes and

can be expressed in normal form as follows:

 and

In the case of linear separability, all examples satisfy the following conditions:

 for (1)

 for (2)

Points that lie between origin and or lie on satisfy the inequality (2) and are assigned the

class (white points). Points on or beyond receive the class label +1 (black points).

By construction, no points lie in between and . The perpendicular distance from (

to the origin amounts to

 (

). Hence, the width of the margin is given by

. By

formalizing the margin, we can determine the hyperplanes and . Maximizing

 is

achieved by minimizing with regard to the constraints (1) and (2). By combining these

constraints, we obtain a single inequation:

 (3)

All points that satisfy (3) are lying on one of the hyperplanes or and are denoted by

support vectors (in Figure 4-4 these points are drawn with an extra circle). By solving and ,

58

we obtain the separating hyperplane. By means of a simple decision function, the SVM can then

classify new examples:

 (4)

In order to compute and , the given minimization problem under the constraints (3) can be

turned into a Lagrangian formalization. A Lagrangian function is obtained by subtracting the sum

of constraints from a target function. Here,

 is used as the target function since we want

to minimize . For each of the constraints (3) the Lagrangian formalization requires to

introduce Lagrange multipliers :

 (5)

By summarizing these constraints, we obtain the Lagrangian function of the problem, also

known as the primal optimization function :

 (6)

In order to compute the minimum of , the gradients of regarding the unknowns and

need to be determined as follows:

 (7)

 (8)

 is a convex quadratic programming problem due to the fact that the points that satisfy the

constraints (7) and (8) form a convex set [Burges].

An easier optimization problem is obtained by turning the primal form into the so called Wolfe

dual as it only requires to solve the Lagrangian multipliers , as shown below. The Wolfe

dual has the property that a maximum of in (6), subject to a set of constraints

 , occurs for the same values of , and , as the minimum of , subject to

constraints [Fletcher]. Therefore, instead of minimizing with regard to

 and we can now maximize . By substituting (7) and (8) in we obtain the dual

optimization function :

 (9)

59

After solving the maximization problem the normal to a hyperplane can be determined

by simply inserting the in constraint (7). For any the according points are the

support vectors, whereas for the points satisfying (3) lie on one side of the margin

defined by .

The advantage of using a Lagrangian function is the operational simplicity for the calculation of a

possible decision function (4). With the given maximization problem , the training data can

now be given as inner products between vectors which is the essential property of kernel

methods, as presented in Section 4.1.

4.2.2 Karush-Kuhn-Tucker conditions

The so called Karush-Kuhn-Tucker (KKT) conditions which are basically a generalization of the

Lagrangian multipliers are necessary conditions to guarantee an optimal solution of the non-linear

optimization problem [Fletcher]. In the case of the primal optimization function there is an

optimal solution since all side constraints are linear. Furthermore, the KKT conditions are

sufficiently fulfilled since the objective function

 is convex and all side conditions yield a

convex feasible region:

 , with dim (10)

 (11)

 (12)

 (13)

 (14)

The solution of the optimization problem of the SVM is equivalent to the solution of the set of KKT

conditions. This approach is a starting point for algorithms that solve the linear restricted,

quadratic convex problem. Details about nonlinear programming are given in [Fletcher]. Note

that solving the Lagrangian function only yields the normal vector , but the bias is not

calculated explicitly. However, the bias can be determined via condition (14) by simply using an

arbitrary example that is a support vector in the found solution (with). According to

[Burges] it is recommended to finally average over the values from all equations with such

examples.

60

Origin

H2

H

H1

4.2.3 The non-separable case

Realistic data sets of two classes are usually not

separable by a linear hyperplane since many

examples (either as outliers or due to errors in the

training set) may lie on the side that belongs to the

other class. In such a case the previously presented

SVM with a separating hyperplane would fail to

deliver valid solutions. In order to retain this concept,

the constraints (1) and (2) are relaxed by integrating

slack variables into the description of the

hyperplanes and :

 for (15)

 for (16)

 (17)

The slack variables only appear in those equations where the corresponding example is on the

side of the opposite class, as shown in Figure 4-5. This is reflected in equations (15) and (16) if

the exceeds the value one. The upper bound of the training error is then given as

 . By

introducing a penalty factor this error sum can be weighted and the resulting product added to

the objective function which results to:

A high value for factor increases the weight for the penalty, while for a constant we

obtain a convex programming problem. Setting yields a quadratic programming problem,

and has the advantage that neither the slack variables nor the Lagrangian multipliers

appear in the Lagrangian function, thus allowing us to continue to use the dual problem :

 (18)

Nonetheless, a new constraint has to be added, in which is the upper bound for the

Lagrangian multiplier :

 (19)

Furthermore, in order to find a maximum for , the constraint (8) has to be satisfied, as well.

Figure 4-5: Hyperplanes in the non-
separable case. Encircled points
represent the support vectors.

61

Finally, the solution of the separating hyperplane is given by the normal vector, with 'SV'

indicating the number of support vectors:

 (20)

In order to guarantee a solution for the optimization problem, the following necessary KKT

conditions need to be satisfied with regard to the primal problem :

 (21)

Furthermore, new Lagrangian multipliers are introduced in order to enforce the positivity of .

Therefore, the KKT conditions are given as follows:

 with dim (22)

 (23)

 (24)

 (25)

 (26)

 (27)

 (28)

 (29)

 (30)

Analogously to the separable case (Section 4.2.1), the bias can be determined via the

conditions (29) and (30). Combining condition (24) with (30) shows that if since

 , with . Thus, any example for which is true can be chosen to

calculate .

62

4.3 The String (Subsequence) Kernel

The string subsequences kernel (SSK) considers the number of subsequences shared by two

strings [Lodhi et al.]. These strings are a finite sequence of symbols that do not need to be of

the same length. Intuitively, the SSK can be understood as a function to measure the similarity

between pairs of strings. The more substrings are in common, the more similar the strings are.

We start by defining the feature space as
where is the set of all strings of length

of a finite alphabet . Let us consider as a subsequence of with the start position

and the end position , or for short. The length of is given by . Then,

by defining the coordinate for each , we obtain a feature mapping .

Furthermore, the length of a substrings with some start position can be weighted by a

parameter , with , as follows:

Simply, a feature in is a measure of the number of occurrences of subsequences in a string

which are weighted according to their length. Weighting a subsequence by an exponentially

decaying factor up to the full length in the text, allows to put a stronger emphasis on those

occurrences that are close to contiguous [Lodhi et al.]. More clearly [Croce et al.]:

 longer subsequence receive lower weights

 gaps contribute to a weight since the exponent of is the number of characters and

gaps between the first and last character

 characters like gaps can be omitted

The kernel function that calculates the inner product of two feature vectors of string and is

then expressed as the sum over all common subsequences weighted according to their

frequency of occurrence and lengths:

These features have the complexity both in computational time and storage

space where and are the lengths of the two strings while is the length of the largest

subsequence [Croce et al.]. Furthermore, in the works of [Lodhi et al.] analytical steps are

described to obtain an efficient computation of the inner products via a dynamic programming

technique.

63

4.4 Bag of Words Kernel / n-gram Kernel

The bag-of-words (BoW) model, also known as the vector space model (VSM) is a simplifying

representation that is commonly applied in the area of NLP as well as in information retrieval (IR).

Representing a document as a word vector is generally understood as a bag-of-words. Herein,

each word that occurs in a document is given by its frequency in a document, while the ordering

of words as well as characters for text structuring are ignored [Joachims 2000]. The

representation of a bag-of-word vector is the mapping function in feature space :

 is the term frequency of each term , in a document whereas 'term'

and word is used synonymously. Given this representation, a document is mapped to an n-

dimensional vector that has the size of the dictionary with being the number

of terms occurring in the whole text corpus. When considering distinct words the size of the

vocabulary is usually very large. Hence, each BoW vector is usually an extremely sparse

histogram of that vocabulary.

Inspired by the attribute-value representation used in [Joachims 2000, Section 2.2.1] we can

abstract from words and instead make use of other linguistic features like lemmas or part-of-

speech-tags.

Table 4-1 shows exemplary sequences of part-of-speech tags processed to 'bag of PoS-tags'.

The dictionary consists of the terms =ADJD, =ART, =NE, =NN, and =VAFIN:

Document Example Sequence of PoS-tags / terms

 Der Mann ist groß. ART NN VAFIN ADJD

 Der Mann ist Lehrer. ART NN VAFIN NN

 Der Mann ist ein Schrank. ART NN VAFIN ART NN

 Julia war ein Schwan. NE VAFIN ART NN

Table 4-1: Representing the part-of-speech tags as bag of terms

For a given set of documents (sentences) a practicable representation is the document-term

matrix in which the column stores the frequencies of all terms that occur in the given

documents while each row holds a bag of term vector according to each document.

The similarity computation between two documents and is achieved by calculating the inner

product between the according 'bag of term' vectors. The BoW kernel is defined as follows

[Sonnenburg et al.]:

64

In order to not depend on the length of the 'bag of term'-vectors the kernel is normalized:

Instead of bag of terms, we can use n-grams as an alternative characterization of a document.

Here, sequences of consecutive characters (n-grams) can be mapped into a feature space

 which is spanned by all possible strings of length . The computation is the same as for the

bag-of-word kernel. Since n-grams take any character into account, a single mismatching

character leads to only affected n-gram kernels, while the surrounding kernels remain intact

[Sonnenburg et al.].

4.5 The Spectrum Kernel

The basic idea of the spectrum kernel (SpK) is to count the occurrences of a k-spectrum of

contiguous subsequences in two given sequences and . A k-spectrum of a sequence is

defined as the set of all k-length contiguous subsequences (also called 'k-mers') that this

sequence contains. For example the 3-spectrum of the sequence "gattaca" has the contiguous

subsequences ["gat","att","tta","tac","aca"]. These counts are then mapped to a feature space

 which is spanned by many dimensions, with being the alphabet of the text corpus. The

mapping is done by indexing a feature map of all possible k-mers and simply storing the

number of occurrence at the according index in this map. The spectrum kernel is then

defined as:

The spectrum kernel can efficiently be computed in by using tries [Leslie et. al]

and in by using suffix trees [Vishwanathan & Smola] (Section 4.7).

4.6 The Tree Kernel

Given two trees (e.g. parse trees), the tree kernel (TK) captures common structural information

by considering all tree fragments that occur in both trees [Collins et al.]. More precisely, the

similarity between two trees is expressed by counting the subtrees they share. For trees and

 , the tree kernel is defined as:

65

The function recursively counts the number of shared subtrees that are rooted in the

nodes and :

For the nodes and that are not derived from the same production, we define . If

 and are leaf nodes of the same production, we obtain where is a trade-off

parameter with that balances the contribution of subtrees. For instance, choosing a

small value for causes the contribution of lower nodes in large subtrees to decay. Figure 4-6

illustrates the shared subtrees of the trees and :

Figure 4-6: Shared subtrees in two parse trees; the numbers in brackets
indicate the number of occurrences for each shared subtree pair

Due to the recursive definition of and the identity of ,

tree kernels are computed in worst case in time. In the best case the computation

time is close to linear in the number of nodes [Collins et al.].

66

4.7 Fast Kernels for String and Tree Matching

This section presents the linear time algorithm of [Vishwanathan & Smola] to compute 'Fast

Kernels for String and Tree Matching', or short 'fast string kernels' (FSK).

A few notations need to be introduced: Let be a finite set of characters forming the alphabet.

Any with is called a string. then represents the set of all non-empty

strings defined over the alphabet . Furthermore, denote strings and

 single characters.

Similarly to string kernels (Section 4.3), the FSK is expressed as the sum over all common

subsequences between two strings. The kernel function is furthermore extended by a

weight parameter which allows to weight arbitrary matching substrings :

 (1)

Here, the function denotes the number of occurrences of in some string . In order to

use trees like constituency or dependency parse trees, a 'tree to string' conversion needs to be

performed beforehand (Section 2.6.2).

When two strings and are compared, the algorithm makes use of two central data

structures: The suffix tree (Section 4.7.1) which is created for a string in linear time, and the

matching statistics (Section 4.7.2) based on a string with regard to , built in linear time as

well. Then, these structures are queried during an efficient kernel computation (Section 4.7.3).

Albeit arbitrary weights can be associated to any matching substrings, the kernel

computation still performs in linear time. The weights can be defined either a priori, for instance

via a dictionary, or after seeing the data by employing one of the weight functions presented in

Section 4.7.4.

Implementation details about the 'Fast String Kernel' as an operator for RapidMiner are

presented in Section 4.8. It computes the kernel matrix for two example sets that can be

forwarded to learners like the SVM. Due to the consumption of space for each suffix tree,

the memory quickly becomes a bottle neck for large sets. Therefore, different caching strategies

are implemented that allow an efficient computation on limited memory.

Finally, a benchmark test of the operator was performed while differently sized example sets

were used. The results are outsourced to Chapter 5, Section 5.4.

67

4.7.1 The suffix tree

The suffix tree is a compacted trie that contains all the suffixes of a given text string [Knuth]. In

the following, a brief summary is given about tries: A standard trie for a set of strings is an

ordered tree that has the following properties:

 Each node except for the root is labeled with a character.

 The children of each node are sorted in alphabetic order.

 Following a path from root to one of the leaves yields one of the strings of .

Obtained from a standard trie, the nodes in a compressed trie have a degree of at least two.

Furthermore, the chains of redundant nodes are compressed to single nodes. Figure 4-8 shows

an exemplary compressed trie obtained from the standard trie in Figure 4-7 with the set of

strings ={bear, bell, bid, bull, buy, sell, stock, stop}:

Figure 4-7: The standard trie of a set of strings Figure 4-8: The compressed trie of a set of strings

Now, a suffix tree is the compacted version of a compressed trie which uses index ranges at

the nodes. This concept is made more clearly with an example further below.

For the construction of a suffix tree a sentinel character is introduced which is

lexicographically smaller than all the elements in . Then, each input string (pattern string) is

enhanced by appending at the end. The length of a string is given by . Again, the notation

 describes a substring of string with the start position and end the position (both

inclusive), with . For some string , is known as a prefix of while

is called the substring, and the suffix of .

68

Figure 4-9 illustrates the suffix-tree of an enhanced exemplary string . The

compact representation of string with index range is given in Figure 4-10:

Figure 4-9: The suffix tree for the string

Figure 4-10: The compact representation of the suffix tree

For the kernel computation further below the following notations are required beforehand:

 denotes a path from root to a node while parsing the tree for a string .

 denotes the subtree rooted at a node .

 yields the number of leaves of .

 denotes the set of all non-empty prefixes for some (possibly empty)

string such that . Thus, is the set of all possible

substrings of .

 For every we define as the node such that and

is the shortest (possibly empty) substring such that . Thus, when

leading up the path to then is the immediate next node.

 For every we define as the node such that and

is the shortest non-empty substring such that . Thus, when leading up

the path to then is the last encountered node.

For some internal node with the parent node is . As shown in Figure

4-9, is the second node with depth one reached by following the edge "b" from

root. The only word is found along the path , with .

 is the third node with depth two, following the edge "b" from root and then further the

edge "abc$".

Suffix trees can be constructed by employing the algorithms of [McCreight], [Ukkonen], and

[Weiner] in linear time. For the implementation of the 'Fast String Kernel' operator, Ukkonen's

online construction algorithm for suffix trees13 is adapted and further enhanced (Section 4.8,

bullet 1).

13 For brevity, an introduction to this algorithm is omitted. [Gusfield] and [SO_Ukkonen] provide a
comprehensible and extensive description of Ukkonen's linear time algorithm.

69

Figure 4-9 shows a suffix link from the internal node to the node . Ukkonen's algorithm

produces suffix links as an intermediate step in order to achieve a linear time construction of the

tree. Furthermore, suffix links prove to be useful for an efficient string matching. Suppose that we

found a substring of the string by parsing the suffix tree . Trivially, is a also a

substring of . If in a later query we need the corresponding node to , we find it in time

via suffix links instead of parsing the tree once again.

A suffix tree has an important property: If two substrings of (e.g. with

 and) have a common prefix () they share the same path up to a

common ceil node.

Generally, if we want to count the number of occurrences of a substring in string we first

have to determine . Since all suffixes of have to pass through , we could

simply count the occurrences of the sentinel character ' ' which can only be found in the leaves.

Instead, we access the number of leaves in each node in time by precalculating)

via a depth first search (DFS) and storing the value in each node .

Finally, in order to obtain for a matching substring in time, the matching statistics

need to be prepared, as described next.

4.7.2 Matching statistics

The matching statistics are the central data structure in the computation of fast string kernels.

They are calculated for a string with respect to a pattern string for which the suffix tree is

created beforehand. In order to construct the matching statistics in linear time the algorithm of

[Chang & Lawler] is integrated and adapted14 in the 'Fast String Kernel' operator for RapidMiner.

The idea is as follows: For each substring defined by start positions we

determine the length of the longest substring of that matches a prefix of . Given these

lengths, we can identify the ceil nodes and floor nodes

that correspond to each match in the suffix tree .

In a nutshell, the matching statistics consist of the following vectors:

: Each -th component stores a ceil node

: Each -th component store a floor node

 : Each -th component denotes the length of the longest common substring

(LCS) of that matches a prefix of with and

 . Here, denotes the end location of a LCS, with .

14 As explained in Section 4.8, bullet 1, the algorithm had to be enhanced in order to operate with 'items'.

70

Table 4-2 depicts the matching statistics of an exemplary string with respect to the

suffix tree :

start pos. 1 2 3 4 5

 bc c bab ab b

 2 1 3 2 1

 (ceil) bc$ c$ babc$ ab b

 (floor) b root b root root

Table 4-2: Matching statistics of the string "bcbab" with respect to the suffix tree

For a start position , , a substring that occurs in both and is a prefix of .

Too see this, let us consider a substring that occurs in both and

 . This implies that , here with and . But the longest prefix of

 that matches a substring of is , with and . Therefore, it

can only be that and the substring is a prefix of .

For brevity, the central idea of the algorithm of [Chang & Lawler] is outlined: The key

observation is that the lengths of matching substrings behave for consecutive starting

positions and as follows:

This is true for all positions , because if is a substring of then is trivially a

substring of , as well. Besides this, each matching substring in must have as a

prefix.

The algorithm of [Chang & Lawler] uses this observation by walking down the suffix links in

in an intelligent manner to compute the matching statistics in time:

 Let us consider that for some matching substring a floor node is given, and

that we further want to determine , , and . Therefore, we first find an intermediate

node = by walking down the suffix link of and then walking along

the edges that correspond to the remaining portion of until we reach that node .

Now, by simply following the edges that match the next node that we encounter is

the ceil node . When we can no further parse elements in , we obtain the length .

In order to determine , we can simply walk down the suffix tree and find the longest

prefix of that matches a substring of .

To summarize this section: Let and be two strings with the lengths and ,

with . By using the online construction algorithm of [Ukkonen] a pattern string is read in

71

and the suffix tree is constructed in steps15. Then, the matching statistics are built for

 with regard to in time, and we can read off the lengths of matching substrings for

each start position in constant time. Thus, it takes steps, to determine if a substring

 of is found in or not. If so, each match contributes to the total sum in the similarity

computation described in the next section.

4.7.3 Efficient Kernel computation

For the kernel computation a function is defined that assigns a weight to any matching

substring of in constant time:

 (2)

Let us assume that we want to determine the sum of

weights for the substring according to the

suffix tree shown in Figure 4-11. Recall that is the

floor node which is the last encountered node on the

path leading up to . Hence "b" resembles the

prefix . We now consider the weights for all

substrings : By defining as the set of all prefixes of

 , we "catch" all the substrings that follow on the path

 . In this trivial example is "a" of

the ceil node labeled with "abc$". In a large suffix tree,

however, this results in a set of suffixes that share the same substring , also known as the

longest common prefix (LCP).

Briefly, is the summed weight of all prefixes of substrings in reduced by the

summed weight of all prefixes of their LCP. Thus, only weights are taken into account whose

elements in the ceil node correspond to the remaining portion of a match.

Finally, the function to compute fast string kernels in time is given as follows:

 (3)

with (4)

and (5)

15 If the two strings have different length, then the suffix tree is created from the longer string.

Figure 4-11: Weighting an exemplary matching

substring in the suffix tree for

the string

72

Here, computes the value of the parent of the ceil node plus the contributions due to all

strings that end on the edge connecting the ceil node to its parent which is the floor node.

Claim: The kernel function (3) can be computed in linear time.

Proof: As mentioned above, the number of leaves in each node of can be computed in

 time via a DFS. Furthermore, the matching statistics algorithm constructs the vectors ,

and in time. We assume a weight function and utilize the recursive nature of

 to precompute for all by a top down procedure in the suffix

tree in time. Now, in order to compute each term in (3) in constant time we can simply

look up the precomputed
 and and compute for each substring the weight

 in constant time. Due to the sum that iterates through , we have

many terms that are calculated in . Therefore, the complexity of (3) is .

Claim: The kernel function (3) computes the string kernel (1).

Lemma 4-1:

Proof: By applying the Lemma 4-1 to the basic kernel function (1), we can decompose the sum

into a sum over matches between the pattern string and each of the prefixes . With this,

we only need to show that each term in the sum of (3) corresponds to the contributions of all

prefixes of .

The following observation plays a key role in the computation: All substrings of that share the

same ceil node in the suffix tree also have the same number of occurrences in . This

value is exactly reflected by . Therefore, we can factor out in (3) in order to

properly scale up the contribution of each of the prefixes in .

For instance, if we want to compute in the suffix tree we need to

take the contributions due to "bab", "ba" and "b" into account. Trivially, "b" appears twice in the

string , namely as a prefix of "babc" and "bc", which in the suffix tree is equally reflected by

 . Hence, its contribution must be counted twice, while "ba" and "bab" occur

only once in and thus their contributions must be counted once.

For each the recursive function uses the above observation and

calculates the contribution to the kernel due to and all its prefixes.

Let be an arbitrary substring that has the floor node . In order to compute

the contribution of to the kernel, we have to consider:

The set of matching substrings of and is the set of all prefixes of .

73

 the contributions due to and all its prefixes of

 all strings of the form with

As mentioned above, because each substring occurs exactly times in , the kernel

function can use an efficient bracketing and a weight function .

Constructing the suffix tree once and annotating each internal node with its beforehand,

reduces the time for further kernel computations to . This option is considered in the

implementation of caching mechanisms which are presented in Section 4.8.

4.7.4 Weight functions

Various weight functions are suitable for the computation of fast string kernels:

1. Length Dependent Weights: We simply let the weights depend on the length of by

setting . Further, we define

 . We precompute these weights

beforehand up to where for all . Because the sums in telescope,

the weight function can be simplified to:

The values in the final step can simply be looked up in constant time from the

precomputed matching statistics of the string .

2. Exponential decay: In this weighting scheme exponential decay factors are used

while and denote the string boundaries:

 with

The value of a decaying factor for some becomes smaller the larger a string

boundary is. On the opposite, for some given and , with , the resulting

puts a stronger emphasis on the matching substring the smaller is.

3. Constant weight: This approach simply measures the difference between the string

boundaries and :

74

4. Bag-of-characters: When matching sequences of characters, we can simply set the

weight for all strings with and obtain a bag-of-characters kernel

(Section 4.4):

5. Bag-of-Words: When matching single words (like part-of-speech tags), we may assign

weights for all strings bounded by whitespace, and thus obtain the bag-of-

words kernel (Section 4.4):

6. K-spectrum: By setting specifically for all strings with for some

sequence length we obtain the k-spectrum kernel (Section 4.5).

7. TF-IDF weights: Another possibility is to choose TF-IDF weights that are achieved by first

creating a list of all strings including their frequencies of occurrence and then by

rescaling the weights accordingly. TF-IDF, short for term frequency-inverse document

frequency (TF-IDF), is a measure to reflect how important a term is to a document

(sentence) in a collection D (text corpus). The simple form of the term frequency

 counts the number of occurrence of a term t in a given document d.

The inverse document frequency with

 measures how much information the term provides, that is if the term is common or

rare across all documents. Then, the TF-IDF then is defined as the multiplication:

4.8 The 'Fast String Kernel' operator for RapidMiner

The implementation of the 'Fast String Kernel' (FSK) as an operator in RapidMiner is the central

building block in order to obtain a kernel method that is able to process text corpora in linear

time. Details about this operator are documented in Appendix A.4. In the following list various

important circumstances are outlined that have a direct impact on the practical implementation of

the FSK operator:

1. Atomic words vs. character sequences: When analyzing sequences of tags (e.g. PoS-tags).

no substring matching can be performed on these tags. Therefore, the implementation

has to consider words as atomic elements that we denote by items. By implementing a

generic approach the FSK operator either accepts sequences of characters (strings) or

sequences of items. In the latter case the labels of the edges in a suffix tree carry items

instead of sequences of characters. Further, all implemented methods had to be

extended in order to deal with items, as well. An important preparation step again is to

75

enhance each sequence of items with the sentinel character $, for instance

 . Finding matches between two sequences of items works in

the same way as with matching strings. Lastly, the FSK operator accepts sequences of

items as strings (by internally detecting the commas and appending each items to a list).

2. Normalising the kernel: In order to measure the similarities of two strings and on a

common scale, the operator always computes normalized kernels (Section 4.1).

3. The upper triangular matrix: When comparing only the strings / itemsets and with

 within an example set the operator computes the upper gram matrix due

to . Since the normalized similarity value of a string

compared with itself is , the diagonal entries are directly set to .

4. Weight functions: The FSK operator provides weighting of strings and items according to

the functions 1 - 5 given in Section 4.7.4.

5. Caching strategies: Let us consider two different example sets with the strings

() and with the strings (). Since a suffix tree consumes

 memory space that is linear to the length of the input string, it is desirable to avoid

rebuilding any of the suffix trees when comparing with . Because all kernels are

normalized, the suffix trees have to be constructed for all input strings. Therefore, the

minimum amount of suffix trees is . While iterating through the kernel matrix

in order to compute similarities, different caching strategies are implemented to

keep or discard once constructed suffix trees:

 No caching: While iterating through both and no suffix

tree is kept in memory. Hence, the number of tree constructions is .

 Caching suffix trees from : The set of suffix trees is constructed and kept in

memory. While iterating through the rows each -th suffix tree is

constructed on demand. Thus, only trees are required in total.

Table 4-3: Caching strategy where suffix trees are kept in memory

while iterating through the rows

76

 Windowing: In this caching strategy, a rectangular window is defined with width

 and height on the interval ranges and . In this

window a set of suffix trees is constructed and the computation is

performed line-by-line. Afterwards the window is shifted to the right, while the

suffix trees are kept in memory. If the window exceeds the

outmost right column it is shifted back to the first column and down by many

rows. No trees are kept in memory, then.

Iterating through the rows requires

 trees and

when shifting the window along the columns. Therefore, the total sum of tree

constructions amounts to

 .

Table 4-4: Caching strategy with a window of size

77

Chapter 5

Experiments

This chapter presents three experiments in which the implemented operators annotate

documents (Appendix A.1) and extract linguistic features (Appendix A.2). Where applicable the

visualization operator (Appendix A.3) demonstrates a comfortable way to label each sentence.

After performing a learning on linguistic features, the effectiveness of the implemented weight

functions could be tested. More precisely, the classification rates for unseen examples were

measured after a binary classification model was trained by the SVM (Section 4.2).

5.1 Experiment I: "Tranches"

5.1.1 Acquiring labeled data

In the first experiment a set of sentences from various German newspapers was considered

where each sentence had been manually obtained from [DWDS]. Each sentence was given a

topic word whereas the word was also contained in the corresponding sentence.

Next, two tranches were taken from this set: The first tranche, to be used for training, consisted

of 6650 sentences with the initial letters of topics ranging from Q to T. The second tranche

contained 6697 sentences with topics ranging from T to Z and was used for the testing phase.

The idea for a classification task was to assign a positive label to a sentences where the topic

word was appropriately describing the sentence. In the case that the topic word was different

than the actual topic of the sentence, a negative label was given. Two exemplary sentences are

shown in Table 5-1 regarding the topic 'quality criteria':

Topic: Example describing the topic? Label: Source: Date:

Qualitäts-
kriterien

Es sei an der Zeit, Qualitätskriterien für die
Pflege festzulegen.

+1 Frankfurter
Allgemeine Zeitung

27.09.1995

Qualitäts-
kriterien

Wie ehrlich ist es, die Privattheater nach
strengeren Qualitätskriterien zu bewerten?

-1 Die Welt 02.03.2001

Table 5-1: Two examples that differently fit to a given topic.

The first example which translates to 'It is about time to determine the rules quality criteria for

(health) care' is labeled with '+1' as it fits the topic well. The second sentence which translates

to 'How honest is it to evaluate private theaters according to more stringent quality criteria?' is

labeled with a '-1' since the topic is about private theaters.

A comfortable way to label the sentences from both tranches is to use the 'Visualize and Label

Parse Trees' operator (Appendix A.3). However, this operator expects features like tokens and

parse trees as a minimum. Therefore, the 'WebLicht Feature Annotator' (Appendix A.1) was

78

first applied on each sentence. In the settings of this operator the language parameter was set

to 'de' and the following tool chain was chosen (see Appendix A.1.2 for each employed

WebLicht service):

Converter#1 Tokenizer#3PoS-Tagger#2Dependency-Parser#1

The operator annotated the sentences with tokens, lemmas (annotated by PoS-Tagger#2),

PoS-tags and dependency parse trees. Afterwards, the 'WebLicht TCF to ExampleSet' operator

extracted these features to strings. Parse trees were converted to 'tree strings' and 'tree string

(tokens)' (Section 2.6.2). Table 5-2 lists these features according to the first example sentence:

Feature type: Extracted string:

original sentence Es sei an der Zeit, Qualitätskriterien für die Pflege festzulegen.

tokens Es,sei,an,der,Zeit,,,Qualitätskriterien,für,die,Pflege,festzulegen,.

lemmas es,sein,an,der,Zeit,--,Qualitätskriterium,für,der,Pflege,festlegen,--

PoS-tags PPER,VAFIN,APPR,ART,NN,$,,NN,APPR,ART,NN,VVIZU,$.

tree string [Root[VAFIN[PPER[VVIZU[NN[APPR[NN[ART]]],$.]],APPR[NN[ART,$,]]]]]

tree string (PoS-tags) , VAFIN, PPER, VVIZU, NN, APPR, NN, ART, $., APPR, NN, ART, $,

tree string (tokens) , sei, Es, festzulegen, Qualitätskriterien, für, Pflege, die, ., an, Zeit, der, ,

tree string (lemmas) , sein, es, festlegen, Qualitätskriterium, für, Pflege, der, --, an, Zeit, der, --

Table 5-2: Extracted features of an exemplary sentence.

The 'Visualize and Label Parse Trees' operator could then present the dependency parse trees

with the option to label the according sentence, like in Figure 5-1. Note that the checkbox "Label"

indicates a positive label "+1" when checked, and respectively, "-1" when left unchecked.

Figure 5-1: Labeling sentences with the 'Visualize and Label Parse Trees' operator.

To use space optimally, the parse tree is shown in a horizontal layout.

79

For the sake of completeness, the parse tree for the second exemplary sentence above is

shown in Figure 5-2:

The files to this experiment containing the tranches for training and testing, the RapidMiner

processes for annotating the original sentences, and the output files with the preprocessed

sentences are placed in the folder 'Experiments\Tranche' on the CD that is enclosed with this

work:

Input file: RapidMiner process file: Output file:

Tranche_TestSet.csv Annotate&Extract_TrancheTest_Write2CSV.rmp TranchePreppedTestSet.csv

Tranche_TrainingSet.csv Annotate&Extract_TrancheTraining_Write2CSV.rmp TranchePreppedTrainingSet.csv

Table 5-3: List of files used or created during Experiment I

The annotation process took around seven hours for each set containing roughly 6.700

sentences. Then, the files with the prepared examples were examined and those examples that

provided no information were removed. For instance, this was the case when the set of tokens

only consisted of a single token like a punctuation character.

In cases where the WebLicht services could not properly detect the sentence boundaries the

original sentences were manually fixed by extending abbreviations or removing chapter numbers

like "X.". Afterwards, the RapidMiner process for feature annotation and extraction was

executed for that particular sentence again.

Figure 5-2: Assigning a negative label by leaving the label control field unchecked

80

5.1.2 Training phase

To produce a training set, 3000 examples were randomly taken from the first tranche, that is

from 'TranchePreppedTrainingSet.csv'. More precisely, via stratified sampling 16 a randomized

subset was obtained from the list of examples.

Since we want to study the influence of linguistic features on the prediction ability, that is, to

determine if a sentence is or is not a "good" example for the corresponding topic, one particular

feature type was considered in each training run. Figure 5-3 shows the list of different training

data used for Experiment I:

 =3000

annotated
training

sentences

tokens

lemmas

PoS-tags

tree string

tree string
(tokens)

3000 strings with tokens

3000 strings with lemmas

3000 strings with PoS-tags

3000 strings with tree string

3000 strings with tree string
(tokens)

Figure 5-3: Training sets in Experiment I with each set considering one particular feature type

Then, the 'Fast String Kernel' (FSK) operator calculated a kernel matrix of the examples for

each feature type. In order to learn models, the matrix was forwarded to the SVM learner which

is available as the 'LibSVM' operator in RapidMiner17.

It is important to note that in both the learning and testing runs the FSK operator treated PoS-

tags and 'tree strings' as items (described in Section 4.8). For the other features the FSK

operator performed a substring matching on the full strings.

During the training of the SVM learner a 'Parameter Optimization' operator was used to find the

optimum value for the penalty term that leads to the largest possible margin between two

classes regarding the training set. In order to find the optimum in each training run, the

optimization process performed 40 classification runs on the training set with an interval of

 . After the highest accuracy and the optimal value for was determined, the

interval range was fine tuned and the optimization process was started once again.

Additionally, in each optimization step, a (leave-k-out) cross-validation technique was applied to

avoid overfitting with regard to a specific subset of the data. Therefore, the 'X-validation'

operator performed a partitioning of the training data in randomized subsets of equal

size. In each validation step a single subset was retained as testing data while remaining

subsets were used for the training of the SVM learner. The cross-validation process was then

16 In stratified sampling a random subset is chosen in such a way that the class distribution in the subset is
the same as in the whole example set.
17 In the parameter settings of the SVM we chose 'precomputed' as the kernel type and set the cache
size to a sufficient memory limit of 1024MB.

81

repeated times while each of the subsets was used once as testing data. At the end of

each cross-validation the performance results were averaged to provide an estimation of how

accurately each learned model may perform on the testing data.

Furthermore, each feature type was combined with a particular weight function (Section 4.7.4) in

order to observe how a weight function or feature type influences the resulting prediction

accuracies. Table 5-4 lists the optimized and λ values with the corresponding accuracies

obtained from all training runs:

Optimized
 in Exp. I:

Constant
weight

Length
Dependent

Exponential Decay B-o-C B-o-W

Tokens
55.77% ±

2.39%,
C=2.3275

56.50% ±

1.99%,
C=5.045

57.57% ± 2.26%, C=1.778,

λ=1,0000000000000002

54.27% ±

0.39%,
C=4.06

57.53% ±

1.28%,
C=6.8505

Lemmas
55.90% ±

1.32%,
C=8.312

56.43% ±

0.65%,
C=1.09

57.40% ± 2.59%, C=2.3275,

λ=1,0000000000000002

54.17% ±

0.87%,
C=6.835

56.73% ±

1.71%,
C=8.312

PoS-Tags
56.57% ±

1.41%,
C=3.956

56.20% ±

1.27%,
C=100.0

56.57% ± 1.41%, C=3.956,

λ=1,0000000000000002

54.63% ±

0.82%,
C=9.851

57.70% ±

1.29%,
C= 5.05

Tree string
57.33% ±

2.13%,
C=8.312

56.67% ±

2.23%,
C=2.3275

57.33% ± 2.13%, C=8.312,

λ=1,0000000000000002

54.43% ±

0.50%,
C=1.195

57.30% ±

1.77%,
C=3.956

Tree string
(tokens)

56.73% ±

2.26%,
C=0.01

57.37% ±

1.72%,
C=1.2385

56.73% ± 2.26%, C=0.001,

λ=1,0000000000000002

54.47% ±

1.01%,
C=2.893

57.53% ±

1.01%,
C=0.689

Table 5-4: The optimized values and with the according accuracies (and standard deviations)

obtained from the training runs in Experiment I.

In general, the training data appears not to be easily separable due to the overall low

accuracies measured in all combinations (lowest: 54.17%, highest: 57.70%). Using the 'bag-of-

words' (B-o-W) function in combination with PoS-tags is particular interesting as the matching

series of PoS-tags between two examples appear to be useful enough to lead to the highest

accuracy.

However, the differences between the accuracies (with standard deviations up to 2.59%) are

still too little to make a reliable statement when comparing each feature type with a weight

function. The only exception hereto is the 'bag-of-character' (B-o-C) function that achieves the

lowest accuracies for all feature types.

The file to the RapidMiner process for training on various features can be found in the folder

'Experiments\Tranche' on the CD:

RapidMiner process file:

Experiments\Tranche\FSK_Tranche_X-Validation_Of_TrainingSet.rmp

Table 5-5: RapidMiner file used for the training phase in Experiment I

82

5.1.3 Testing phase

For the testing phase all 6697 sentences of the second tranche ('TranchePreppedTestSet.csv')

have been used. Furthermore, in each run the following steps were performed:

 In the first step, the string kernels from the training data were computed and the resulting

kernel matrix was then forwarded to the SVM learner in which the optimized parameter was

applied. This re-established the optimized models that were determined in the training phases

before. When using the 'exponential decay' function, the optimized were applied in the FSK

operator.

In the second step, a second FSK operator was employed to compute the kernels of training

examples compared with unseen examples. The kernel matrix was then forwarded to the 'Apply

Model' operator which made use of the optimized SVM models in order to perform the testing on

unseen data.

Figure 5-4 depicts the RapidMiner process in which the 3000 training examples are obtained in

the upper subprocess and the 6697 test examples in the lower subprocess:

Figure 5-4: The RapidMiner process in which the optimized SVM models are applied to unseen test examples.

The file containing the RapidMiner process for performing the classification tests can be found in

'Experiments\Tranche' on the CD:

RapidMiner process file:

Experiments\Tranche FSK_Tranche_PREDICT_LABELs_Testset.rmp

Table 5-6: RapidMiner file used for the testing phase in Experiment I

83

Table 5-7 shows the classification results with all the combinations of feature type and weight

function:

Table 5-7: Classification results (%) of Experiment I "Tranches" obtained from
different combinations of linguistic features and weight functions

The classification on unseen examples achieves accuracies with the lowest value at 58.6% and

a peak value of 68.12%. The 'bag-of-characters' (B-o-C) and 'bag-of-words' (B-o-W) functions

achieve in most combinations far better accuracies than their competitors. This is surprising for

the B-o-C function as the accuracies achieved in the training phase did not stand out from the

other values. Recall that the B-o-C function considers only the first character in a matching

substring and in case of PoS-tags and 'tree strings' the first item is considered.

The best result is achieved by combining the B-o-W function with PoS-tags where a prediction

probability of up to 0.68 was obtained, and with 'tree strings' a prediction probability of 0.67.

With the assumption in the training phase above, these pleasing results here lead us to the

conclusion that unseen sentences (that are "good" examples for the corresponding topic word)

can be predicted best by considering the PoS tags and the underlying grammar of the

sentences rather than by considering matching tokens.

Interestingly, the combination of the 'exponential decay' function with the 'tree string (tokens)'

feature achieved an accuracy of (64,49%) which is 5,48% better than the second best

accuracy reached with PoS-Tags (59,01%). This slightly outstanding classification result might be

due to the fact that the 'tree string (tokens)' feature combines the structural information of a

dependency parse tree with the tokens in each sentence.

Const.
Length
Dep.

Exp.
Decay

B-o-C B-o-W

Tokens 59,28 59,26 58,81 64,49 62,28

TreeString(Tokens) 58,89 59,53 64,49 64,49 65,19

Lemmas 59,34 59,44 58,63 64,21 61,55

PoS-Tags 59,01 58,84 59,01 64,51 68,12

TreeString 58,60 58,83 58,60 64,25 67,10

0,00
10,00
20,00
30,00
40,00
50,00
60,00
70,00
80,00
90,00

100,00

Accuracy %

Classification Results of Experiment I: "Tranches"

84

5.2 Experiment II: "Literature types"

5.2.1 Acquiring texts from different periods

In the second experiment two data sets with sentences containing the German word "Leiter"

(English: ladder, leader or conductor) were analyzed. The first set consisted of 3188 sentences

collected from general literature (containing the subcategories: functional writing, science and

belletristic) of the 19th century and earlier, up to the 16th century. The second corpus consisted

of 3097 sentences from contemporary literature (mainly taken from newspaper texts) starting

from around the second half of the 20th century up to the present. Table 5-8 lists two exemplary

sentences that represent both types of literature:

Example sentence: Literature type: Label:

Bey diesem Gesicht aber bleibet es nicht sondern daß jm das liebste ist
so ist Gott selber verhanden vnd stehet oben auff der Leiter vnd thut
dem Jacob ein tröstliche Predigt.

general literature -1

Der Leiter des Komitees lebt mit seiner Familie in einem Stadtteil, der
vom Regime kontrolliert wird.

contemporary
literature

+1

Table 5-8: Two examples of general and contemporary literature

Similarly to Experiment I, the sentences from both data sets were annotated with features in

roughly seven hours and afterwards written to output files. Also here, the list of annotated

sentences was purged from irrelevant examples and, in cases of erroneously detected sentence

boundaries, the sentences were manually fixed.

The original data sets, the RapidMiner processes for annotating the original sentences, and the

output files can be found in the folder 'Experiments\Leiter' on the enclosed CD:

Input file: RapidMiner process file: Output file:

LeiterAllg.csv Annotate&Extract_LeiterAllg_Write2CSV.rmp preppedLeiterAllg.csv

LeiterZeit.csv Annotate&Extract_LeiterZeit_Write2CSV.rmp preppedLeiterZeit.csv

Table 5-9: List of files used or created during Experiment II

85

5.2.2 Training phase

For the classification task a binary label was assigned to each sentence in order to indicate the

type of literature. During testing, the SVM should predict the label of a previously unseen

sentence regarding to which type of literature it belongs.

In order to produce a training set, the first 1500 examples of a distinct feature type were taken

from each data set, that is, 1500 examples from general literature plus 1500 examples from

contemporary literature.

The remaining sentences were then used for testing. Figure 5-5 shows the different training data

obtained for Experiment II:

general
literature

(first 1500)

general
literature

(first 1500)

3000
training

examples
("Leiter")

tokens

lemmas

PoS-tags

tree string

tree string
(tokens)

3000 strings with tokens

3000 strings with lemmas

3000 strings with PoS-tags

3000 strings with tree string

3000 strings with tree string
(tokens)

Figure 5-5: Training sets for Experiment II

In the same way as for Experiment I, the computed kernel matrix was forwarded to the SVM.

Again, the SVM was wrapped by an optimization process in order to determine optimal values

for the parameters and λ, and a cross validation was performed in each optimization step.

The file to the RapidMiner process for training on various features can be found in the folder

'Experiments\Tranche' on the CD:

RapidMiner process file:

Experiments\Tranche\FSK_Leiter_X-Validation_Of_TrainingSet.rmp

Table 5-10: RapidMiner file used for the training phase in Experiment II

86

Again, by combining each feature type with a particular weight function (Section 4.7.4) the

following training accuracies were obtained, as shown in Table 5-4:

Optimized
 in Exp. II:

Constant
weight

Length
Dependent

Exponential Decay B-o-C B-o-W

Tokens
87.00% ±

1.80%,
C=11.0

82.75% ±

2.19%,
C=8.48

87.05% ± 1.72%, C=3.7,

λ=1,0000000000000002

72.00% ±

2.66%,
C=0.0632

82.85% ±

1.55%,
C=19.204

Lemmas
87.10% ±

1.55%,
C=4.75

82.05% ±

1.81%,
C=6.4036

87.10% ± 1.46%, C=3.565,

λ=1,0000000000000002

74.45% ±

2.69%,
C=0.1099

83.40% ±

1.81%,
C=7.5136

PoS-tags
81.30% ±

2.38%,
C=1.8355

80.50% ±

1.63%,
C=2.008

81.90% ± 2.51%, C=4.515,

λ=1,0000000000000002

60.50% ±

2.82%,
C=1.75825

78.95% ±

3.11%,
C= 15.75

TreeString
80.93% ±

1.99%,
C=3.0705

79.45% ±

3.39%,
C=6.8675

80.90% ± 1.98%, C=3.07,

λ=1,0000000000000002

56.80% ±

2.54%,
C=7.123

78.13% ±

2.58%,
C=9.575

TreeString
(Tokens)

87.93% ±

1.59%,
C=2.3275

84.50% ±

1.45%,
C= 2.3275

87.90% ± 1.71%, C=7.2775,

λ=1,0005

52.77% ±

3.62%,
C= 9.2575

83.27% ±

1.43%,
C=9.7525

Table 5-11: The optimized values with the according accuracies (and standard deviations)

obtained from the training runs in Experiment II.

Based on the high trend of all accuracies we may assume that the training data is generally very

well separable. Certainly, this can be traced back to the fact that the written language used in

general literature from the 19th century and earlier (up to the 16th century) differs greatly from the

word usage in contemporary texts of modern times (20th century up to the present).

By comparing the weight functions we observe that the 'exponential decay' function achieves

the highest accuracies. Similar high values are also achieved by the 'constant weight' function.

Both the 'length dependent' and 'bag-of-words' (B-o-W) functions achieved roughly similar

accuracies. The 'bag-of-characters' (B-o-C) function obtained a prediction performance that is

far below average. Regarding the B-o-C function this appears comprehensible as each matching

substring only consists of the first character, or they consist of the first item in case of PoS-tags

and tags used in dependency parse trees.

When comparing the different linguistic features, we notice that the highest accuracies are

achieved by using tokens, lemmas, and 'tree strings (tokens)' 18 (again, with exception to the

B-o-C function). Particular pleasing is that using the 'tree strings (tokens)' resulted to the highest

possible accuracies. We can further observe that using PoS-tags and the 'tree strings' lead to

the lowest accuracies - independent of the chosen weight function.

This leads to the assumption that the best accuracies for predicting the memberships of unseen

sentences to one of the two literature types can be expected by considering tokens, lemmas

and 'tree strings (tokens)'.

18 'Tree string (tokens)' are tree strings in which the tags in the leaves of the original parse tree have been
replaced by the tokens of the corresponding sentence.

87

5.2.3 Testing phase

In the testing phase the remaining n-1500 examples of a distinct feature type were taken from

each data set, that is, the last 1688 sentences from the first set (general literature) plus the last

1597 sentences from the second set (contemporary literature).

Again, in each classification run each feature type was combined with each of the weight

functions. The results are presented in Table 5-12:

Table 5-12: Classification results (%) of Experiment II "Literature types" obtained from
different combinations of linguistic features and weight functions

The classification of unseen examples performs very well with the exception of the B-o-C

function. As expected in the training phase, the highest accuracies are achieved when the 'Fast

String Kernel' operator makes use of tokens, 'tree strings (tokens)', and lemmas. Here, the

'constant weights' function and the 'exponential decay' function compete on accuracies between

93.06% and 93.82%.

Using PoS-tags or 'tree strings' (consisting of grammar tags) leads to classification rates that

are generally worse than the winners, and except for B-o-C all functions achieve a prediction

performance that is up to 4,9% worse than considering tokens, lemmas and tree string (tokens).

This further supports the assumption that both data sets containing contemporary and general

literature can be separated very well due to the word usage in these literature types.

Const.
Length
Dep.

Exp.
Decay

B-o-C B-o-W

Tokens 93,73 91,94 93,79 72,52 87,86

TreeString(Tokens) 93,12 92,12 93,06 48,81 87,04

Lemmas 93,70 91,87 93,82 71,03 86,94

PoS-Tags 88,83 90,02 90,51 54,90 83,96

TreeString 90,20 90,99 90,20 55,23 83,14

0,00
10,00
20,00
30,00
40,00
50,00
60,00
70,00
80,00
90,00

100,00

Accuracy %

Classification Results of Experiment II: "Literature types"

88

5.3 Experiment III: "Bild vs. Spiegel"

5.3.1 Acquiring sentences from online articles

The idea for a classification task in the third experiment was to distinguish arbitrary sentences

taken from articles of the German newspaper "Bild" from sentences obtained from articles of the

German magazine "Spiegel" [Bild, Spiegel].

More precisely, the sentences of 30 online articles from "Bild.de", and the sentences of 33

online articles from "Spiegel.de" were manually collected and stored in two separate data sets.

The articles were from March 2015, and only the text bodies were considered while headlines

and subtitles were omitted since both publishers use catching phrases that may have similar

grammatical structure.

A negative binary label was then assigned to all the sentences originating from articles of

"Bild.de" and a positive label to the sentences taken from "Spiegel.de" articles. During testing,

the SVM should predict the label of a previously unseen sentence and therefore decide from

which source the sentence originally came.

By using the 'WebLicht Feature Annotator' (Appendix A.1), the collected articles were annotated

with features and afterwards written to output files. Since the 'WebLicht TCF to ExampleSet'

operator is outputting single annotated sentence, all the annotated articles were extracted to

sets of sentences. In the end, for the first data set 784 sentences could be obtained from

"Bild.de" articles, and for the second set 932 sentences could be extracted from "Spiegel.de"

articles. Table 5-13 lists an exemplary sentence from each source:

Example sentence: Source: Date: Label:

Ausgerechnet am Tag, an dem die Welt in Sotschi den olympischen
Geist beschwor, ordnete Putin die geheime Krim-Operation an.

Bild.de 09.03.2015 -1

Ein mögliches Übereinkommen würde Teil internationalen Rechtes
und könnte von einem neuen US-Präsidenten nicht so einfach
wieder aufgehoben werden.

Spiegel.de 12.03.2015 +1

Table 5-13: Two exemplary sentences taken from online articles from Bild.de and Spiegel.de

The original data sets, the RapidMiner processes for annotating the original sentences, and the

output files can be found in the folder 'Experiments\Bild_vs_Spiegel' on the enclosed CD:

Input file: RapidMiner process file: Output file:

Bild_article.csv Annotate&Extract_Bild-Articles_Write2CSV.rmp Bild_article_prepped.csv

Spiegel_article.csv Annotate&Extract_Spiegel-Articles_Write2CSV.rmp Spiegel_article_prepped.csv

Table 5-14: List of files used or created during Experiment III

89

5.3.2 Training phase & Testing phase

In order to produce a training set, the first 350 examples of a distinct feature type were taken

from each preprocessed data set, that is, 350 examples from "Bild.de" plus 350 examples

from "Spiegel.de". The remaining sentences were then used for testing. Figure 5-5 shows the list

of different training data obtained for Experiment II:

Bild.de
(first 350)

Spiegel.de
(first 350)

700
training

examples

tokens

lemmas

PoS-tags

tree string

tree string
(tokens)

700 strings with tokens

700 strings with lemmas

700 strings with PoS-tags

700 strings with tree string

700 strings with tree string
(tokens)

Figure 5-6: Training sets for Experiment III

In the same way as in the previous experiments, the computed kernel matrix was forwarded to

the SVM. The SVM was wrapped by an optimization process as well, in order to determine

optimal parameters and λ, and a cross validation was performed in each optimization step.

The file to the RapidMiner process for training on various features can be found in the folder

'Experiments\Tranche' on the CD:

RapidMiner process file:

Experiments\Bild_vs_Spiegel\FSK_Bild_vs_Spiegel_X-Validation_Of_TrainingSet.rmp

Table 5-15: RapidMiner file used for the training phase in Experiment III

In each training run one feature type was combined with a particular weight function (Section

4.7.4). Table 5-4 presents the training accuracies:

Optimized
 in Exp. III:

Constant
weight

Length
Dependent

Exponential Decay B-o-C B-o-W

Tokens
78.00% ±

5.39%,
C=3.751

73.86% ±

5.07%,
C=3.751

78.00% ± 5.39%, C=3.751,

λ=1.0000000000000002

57.71% ±

7.59%,
C=1.338

68.86% ±

3.66%,
C=9.258

Lemmas
76.29% ±

4.34%,
C=3.565

73.57% ±

4.10%,
C=6.683

76.29% ± 4.25%, C=3.385,

λ=1.0000000000000002

59.57% ±

5.31%,
C=0.4775

65.29% ±

5.19%,
C=8.772

PoS-tags
68.86% ±

5.06%,
C=2.264

67.57% ±

6.79%,
C=3.859

68.86% ± 5.06%, C=2.264,

λ=1.0000000000000002

60.43% ±

5.15%,
C=10.0

66.29% ±

4.66%,
C= 9.575

TreeString
66.29% ±

5.83%,
C=2.117

65.71% ±

3.44%,
C=1.7425

66.29% ± 5.83%, C=2.117,

λ=1.0000000000000002

56.29% ±

2.80%,
C=1.110

66.29% ±

3.27%,
C=3.698

TreeString
(Tokens)

79.00% ±

4.19%,
C=1.213

74.14% ±

3.35%,
C= 9.201

79.00% ± 4.19%, C=1.213,

λ=1.0000000000000002

52.86% ±

3.94%,
C= 3.485

68.00% ±

3.90%,
C=7.875

Table 5-16: The optimized values with the according accuracies (and standard deviations)

obtained from the training runs in Experiment III.

90

Except for the B-o-C function, the obtained accuracies range from the lowest value of 65.71%

up to a peak value of 79.00% which indicates that the training data can be separated quite well.

Particularly outstanding is the 'tree string (tokens)' feature which achieves the highest accuracies

in combination with all functions other than B-o-C. However, since the standard deviation is

generally high with values up to 7.59% no reliable statements can be made regarding a

particular weight function or feature type. On a side note: Because the parameter λ of the

'exponential decay' function has been learned to be close to 1 with regards to all features, the

accuracies for 'constant weight' and 'exponential decay' in combination with a distinct feature

are the same.

5.3.3 Testing phase

For all runs in the testing phase the last 435 examples from the first data set ('Bild.de') plus the

last 582 examples from the second data set ('Spiegel.de') were used. Table 5-12 presents the

classification results with all the combinations of feature type and weight function:

Table 5-17: Classification results (%) of Experiment III "Bild vs. Spiegel" obtained from
different combinations of linguistic features and weight functions

The classification of unseen examples performs very well with the exception of the 'B-o-C'

function, as before. The highest accuracies are achieved by the 'length dependent' function with

the peak probability of 0.81 to predict the source of a previously unseen sentence correctly. The

second highest values are achieved by the 'constant' and 'exponential decay' functions (again

with same values as λ is close to 1).

When we take a look at the combination of the 'tree string' feature with the 'constant' and

'exponential decay' functions, we observe that this feature leads to the highest prediction

performance (79,04%). This is particularly interesting as the 'tree string' feature consists of the

grammatical structure of each sentence and is sufficient to achieve a good data separation.

Const.
Length
Dep.

Exp.
Decay

B-o-C B-o-W

Tokens 74,70 81,00 74,70 57,28 73,33

TreeString(Tokens) 76,77 80,91 76,28 50,39 72,44

Lemmas 73,03 76,67 73,03 57,09 71,26

PoS-Tags 78,74 79,43 78,74 56,50 69,19

TreeString 79,04 80,61 79,04 48,82 65,75

0,00
10,00
20,00
30,00
40,00
50,00
60,00
70,00
80,00
90,00

100,00

Accuracy %

Classification Results of Experiment III: "Bild vs. Spiegel"

91

5.4 Benchmark test of the 'Fast String Kernel' operator

In the last experiment the runtime performance of the FSK operator was measured. Therefore,

very large example sets were prepared with sentences containing fix lengths of 500 and 1000

characters. In order to obtain such strings, a set of roughly 18,000 documents was annotated

in the same way as in the previous experiments. Then, each sentence plus all the extracted

features was appended as a single line to an output file. Since each document consisted of

several sentences, the extraction operator obtained a resulting set of around 54,000 sentences.

The corresponding RapidMiner process, as well as the original and annotated output file can be

found in the folder 'Experiments\ FSK_benchmark_test' on the CD enclosed with this work:

Input file: RapidMiner process file: Output file:

bringenB-N_
K2.csv

Annotate&Extract_BringenB-N_
K2_Write2CSV.rmp

bringenB-N-
K2_annotated_sentences.csv

Table 5-18: The list of files used or created for preparing sentences of fix length

Then, this output file was duplicated twice. In the first copy each line was cut off after the 500th

character with the help of an external text editing tool, and in the second copy each line was cut

off after the 1000th character. Sentences that were shorter than the required lengths were

removed.

In a simple RapidMiner process 1,000 to 5,000 strings were loaded from both prepared files,

and the FSK operator computed the full kernel matrix while outputting the runtime statistics. The

corresponding files are added to the folder 'Experiments\ FSK_benchmark_test', as well:

Input file: RapidMiner process file:

Bringen_Sentences_500chars.csv
FSK_benchmark_test.rmp

Bringen_Sentences_1000chars.csv

Table 5-19: The list of prepared text files used for the RapidMiner benchmark process

The FSK operator then computed the full kernel matrix between example sets of the same size

(). Further, the 'constant' weight function was chosen and the caching

strategy set to 'cache_exampleset_2' (Appendix A.4.2). The test was performed on Windows 7,

on a mobile platform equipped with an Intel i7-3630QM@2.4Ghz CPU while RapidMiner was

running on a single CPU core with a limited memory of 4 GB. No other processes were running

in the background during the test.

92

Figure 5-7 shows the computation runtimes of different sized kernel matrices:

Figure 5-7: Benchmark results of the 'Fast String Kernel' operator with differently sized
example sets with each set consisting of strings with 500 and 1000 characters

One may expect that the computation has a quadratic increase since the FSK operator always

computes many kernels, for a given set of examples. However, we observe that the

computation is noticeably below that which shows that the runtime clearly benefits from the

implemented caching strategies.

Next, the runtimes of different processes involved in the kernel computation were measured.

These processes are the parsing of input strings, the construction of suffix trees (including the

computation of contributions), the building of matching statistics, computation of similarities

(including the computation of weight function), and the time spent during other

processes (function calls, object creation/destruction, etc.). Figure 5-8 presents the averaged

runtime fractions19
 of these subprocesses:

Figure 5-8: Runtime fractions during the kernel computations

19 These are the averaged runtimes obtained during the benchmark test.

0,6 2,2
9,1 13,7

25,5

41,1

1,2 4,7

19,3

43,9

78,6

123,0

0

20

40

60

80

100

120

140

0 1000 2000 3000 4000 5000 6000

Minutes

Examples

Runtimes of the 'Fast String Kernel' operator:

500 chars 1000 chars

0,03
0,26

94,54

0,91

4,23

0,0

0,1

1,0

10,0

100,0

Parsing Suffix Trees Matching
Statistics

Similarities Other
processes

% of CPU time

93

Clearly, most of the runtime is spent on the computation of the matching statistics. These runtime

relations are, however, biased due to the time spent on comparing many strings and

due to caching strategies like 'cache_exampleset_2' where only many suffix trees

are constructed.

The runtime performance of the process for matching statistics as shown by Figure 5-9 proves

that this process is nonetheless independent of the amount of similarities computations.

Regarding the slight increase in the runtime we may suppose that this was caused due to the

increasing amount of matching substrings that were found with the increasing number of

examples:

Figure 5-9: Runtime performance of the matching statistics process per similarity

Lastly, Figure 5-10 shows that the implemented algorithm for suffix tree construction runs in

generally constant time. Here, we may assume that the slow, but steady decrease in the runtime

may be due to caching effects caused by the operating system.

Figure 5-10: Runtime performance of the suffix construction process per suffix tree

0,27
0,275

0,28
0,285

0,25M 1M 4M 9M 16M 25M

ms/
similarity

computed similarities

0

0,5

1

1K 2K 4K 6K 8K 10K

ms/
suffix tree

 # suffix trees

94

Chapter 6 Summary and Outlook

The implemented operators for feature annotation and extraction make up a fast and robust

preprocessing pipeline which allows us to obtain linguistic features from annotated texts.

Furthermore, the extraction operator combines basic and structural features in order to produce

variations of the 'tree strings' features which may prove useful in a given machine learning task.

As shown in the experiments, the 'tree string (tokens)' feature lead to high classification

performances that could compete with other basic features.

Special care has been taken to establish a flexible configuration framework that allows to

enhance the annotation process with other WebLicht services, and with little adaptation effort

other linguistic features could simply be integrated, as well.

The visualization module displays structural data given by dependency and constituency parse

trees and additionally makes use of the basic features to enrich the visual representation of each

sentence. At the same time, this tool can be used to manually label sentences.

With regards to machine learning, the 'Fast String Kernel' (FSK) operator has been implemented

in order to achieve linear runtimes while computing string kernels of linguistic features. In

combination with the SVM a machine learning framework was established that allows to perform

text classification tasks based on freely selectable linguistic feature types.

The FSK operator builds suffix trees and matching statistics, but the implementation makes no

use of compressed data structures like suffix arrays as suggested by [Vishnawathan & Teo].

However, the memory costs for constructed suffix trees could be circumvented by implementing

effective caching mechanisms. This allows the operator to work with very little memory while still

computing string kernels in linear time.

Based on pleasing performance results in the experiments, the implemented weight functions

proved to be great assets for the FSK operator. However, in the limited time TF-IDF weights

could not be integrated. These weights would have allowed to emphasize single terms regarding

their frequency and information value against the background of all other matching terms. Other

approaches like dictionary weights which make use of static dictionary matching could neither be

taken into consideration. These weights would not only require to extend the algorithm for suffix

tree construction, but would as well afford a manual preparation of dictionaries by tailoring them

to the analyzed text corpora.

Due to the fact that not only the choice of a weight function, but also the choice of a specific

feature type has a direct impact on the classification results, more room is assumed for studying

other sophisticated features that could to be used in combination with the 'Fast String Kernel'

method.

95

Appendix

A.1 RapidMiner operator 'WebLicht Feature Annotator'

A.1.1 Installation and usage in RapidMiner

The implementation of this RapidMiner operator is bundled in a jar-file "rmx_kobra_wlst-0.7.2.jar"

(at the time of writing in the version 0.7.2). The file can simply be copied into the plugin folder of

RapidMiner. After that, the list of operators in RapidMiner contains the group "KoBra WebLicht

Service Tools" in which the "WebLicht Feature Annotator" can be found. This operator expects

the RapidMiner data type "document" as its input, and produces the same output type that

contains the annotated XML corpus according to the TCF specification.

Especially when annotating a

large text corpus, it is

recommended to save the

output of the 'WebLicht Feature

Annotator' to an XML file with

the 'Write Document' operator,

and load the text later in a separate process (as shown in Figure A - 1). This is especially useful

as it keeps the processing time in RapidMiner short, and additionally avoids unnecessary server

load on the WebLicht services. The synopsis of this operator is given in the help description as

follows:

A.1.2 Description of parameters

Figure A - 2 shows a screenshot of the

parameters of the 'WebLicht Feature

Annotator'. In this sceenshot the

settings are chosen to annotate a

German text corpus with tokens, PoS-

tags and a dependency parse trees.

Uploads a text document to a chain of remote WebLicht services and receives the response as an

annotated text corpus (TCF). However, this operator delivers the TCF data as a document (doc). It is

recommended to save the returned data as an XML with a "Write Document" operator. IMPORTANT:

All WebLicht parsers require sentences in the TCF. Please make sure to select the proper Tokeniser!

Figure A - 2: Interactive list of parameters in the 'WebLicht Feature
Annotator' realizing the concept of the flexible tool chain

Figure A - 1: An exemplary RapidMiner process using the 'WebLicht Feature
Annotator'

96

The parameters of this operator parameter are as follows:

 'language': This parameter is a drop list with all the available languages as defined in the

attribute availableLanguages="de,en,fr,it" of the XML element <services> in the XML

configuration (Section A.1.4). In the case that a WebLicht service does not support the

selected language, the corresponding drop list below will not contain this service. Also, if

none of the services of a specific category supports the selected language, the parameter

drop list is not shown at all. Accordingly, the available languages are shown in the help

description of the operator.

 'WL Tool chain Selection': This parameter is a drop list with the following WebLicht (WL) tool

chains:

Depending on which tool chain is selected, the according tool categories (converter,

tokeniser, PoS tagger, dependency and constituency parser) appear as parameter drop

lists where each drop list contains the WebLicht services of that category. For brevity, the

parameters lists contain labels consisting of the tool category followed by the tool id of that

category. The association of each label to a specific WebLicht service is displayed in the

help description of this operator and uses the description of service as defined in the XML

configuration.

 'WL Converter Selection(<lang>)' – A list of converters:

Converter #1: [BBAoS&H] conversion of plaintext to TCF0.4,

Converter #2: [SfS] Converter, converts text in different document formats to TCF. If the language

is specified as "unknown", the language is guessed from the text content. The following languages

can be guessed: it, is, hu, th, sv, fr, ru, fi, ro, es, en, el, ee, pt, de, da, pl, bg, no, nl, lv

 'WL Tokeniser Selection(<lang>)' – A list of tokenisers:

Tokeniser #1: [SfS] Tokeniser from the OpenNLP Project. ***No sentences are delivered!***,

Tokeniser #2: [SfS] Tokeniser/sentences from the OpenNLP project. The 'newlineBounds'

parameter treats newlines as a hard break (a sentence boundary).

Tokeniser #3: [IMS] Czech, Slovenian, Hungarian, Italian, French, German, English tokeniser and

sentence boundary detector,

Tokeniser #4: [BBAoS&H] tokenizes a text and splits it up into sentences

 'WL Lemmatiser Selection(<lang>)' – A list of lemmatisers:

Lemmatizer #1: [IMS] SMOR lemmatizer: produces possible STTS tags and lemmas for a given list

of words,

 converter

 converter tokeniser

 converter tokeniser lemmatiser

 converter tokeniser PoS tagger

 converter tokeniser PoS tagger constituency parser

 converter tokeniser PoS tagger dependency parser

97

Lemmatizer #2: [IMS] PoS TreeTagger(2008): Italian,English,French,German part-of-speech tagger

and lemmatiser,

Lemmatizer #3: [IMS] PoS TreeTagger(2013): Italian,English,French,German part-of-speech tagger

and lemmatiser

 'WL PoSTagger Selection(<lang>)' – A list of PoS taggers:

PoS-Tagger #1: [BBAoS&H] Part of Speech Tagger for German,

PoS-Tagger #2: [IMS] PoS TreeTagger(2008): Italian,English,French,German part-of-speech tagger

and lemmatiser,

PoS-Tagger #3: [IMS] PoS TreeTagger(2013): Italian,English,French,German part-of-speech tagger

and lemmatiser

 'WL ConstParser Selection(requires Sentences!)(<lang>)' – A list of constituency parsers:

Constituency Parser #1: [SfS] Constituent Parser from the Berkeley NLP Project,

Constituency Parser #2: [IMS] German and English constituent parser

 'WL DepParser Selection(requires Sentences!)(<lang>)' – A list of dependency parsers:

Dependency Parser #1: [IMS] Stuttgart Dependency Parser,

Dependency Parser #2: [SfS] MaltParser is a system for data-driven dependency parsing, which

can be used to induce a parsing model from treebank data and to parse new data using an

induced model. MaltParser is developed by Johan Hall, Jens Nilsson and Joakim Nivre at Växjö

University and Uppsala University, Sweden.

A.1.3 XML scheme definition for the XML configuration of the tool chain

The following XML scheme definition [XSD] (bundled in the .jar file of this operator) formally

specifies the allowable elements in the XML document for the configuration of the tool chain

presented in the next Section 2.5.2:

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="services">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="tool_group" maxOccurs="unbounded">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="tool" maxOccurs="unbounded">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="creator" type="xsd:string" maxOccurs="1" minOccurs="1" />

 <xsd:element name="contact" type="emailAddress" maxOccurs="1" minOccurs="0" />

 <xsd:element name="description" maxOccurs="1" minOccurs="1">

 <xsd:complexType>

 <xsd:simpleContent>

 <xsd:extension base="xsd:string">

 <xsd:attribute name="lang" type="xsd:string" />

98

 </xsd:extension>

 </xsd:simpleContent>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="input_features" maxOccurs="1" minOccurs="1">

 <xsd:complexType>

 <xsd:attribute name="lang" type="xsd:string" />

 <xsd:attribute name="mime_type" type="xsd:string" />

 <xsd:attribute name="posttags.tagset" type="xsd:string" />

 <xsd:attribute name="type_param" type="xsd:string" />

 <xsd:attribute name="type_description" type="xsd:string" />

 <xsd:attribute name="version" type="xsd:string" />

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="output_features" maxOccurs="1" minOccurs="1">

 <xsd:complexType>

 <xsd:attribute name="depparsing.emptytoks" type="xsd:string" />

 <xsd:attribute name="depparsing.multigovs" type="xsd:string" />

 <xsd:attribute name="depparsing.tagset" type="xsd:string" />

 <xsd:attribute name="lang" type="xsd:string" />

 <xsd:attribute name="mime_type" type="xsd:string" />

 <xsd:attribute name="parsing.tagset" type="xsd:string" />

 <xsd:attribute name="posttags.tagset" type="xsd:string" />

 <xsd:attribute name="type_description" type="xsd:string" />

 <xsd:attribute name="version" type="xsd:string" />

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="pid" type="xsd:string" maxOccurs="1" minOccurs="1" />

 <xsd:element name="url" type="xsd:anyURI" maxOccurs="1" minOccurs="1" />

 <xsd:element name="url_params" type="xsd:string" maxOccurs="1" minOccurs="0" />

 </xsd:sequence>

 <xsd:attribute name="id" type="xsd:int" />

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="category" type="xsd:string" />

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 <xsd:attribute name="availableLanguages" type="xsd:string" />

 </xsd:complexType>

</xsd:element>

 <xsd:simpleType name="emailAddress">

 <xsd:restriction base="xsd:string">

 <xsd:pattern
 value="([0-9a-zA-Z]([-.\w]*[0-9a-zA-Z])*@([0-9a-zA-Z][-\w]*[0-9a-zA-Z]\.)+[a-zA-Z]{2,9})" />

 </xsd:restriction>

 </xsd:simpleType>

</xsd:schema>

99

A.1.4 XML configuration for storing available WebLicht services

<?xml version="1.0" encoding="UTF-8"?>

<services xsi:noNamespaceSchemaLocation="weblicht_urls.xsd"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" availableLanguages="de,en,fr,it">

<tool_group category="converter">

 <tool id="1">

 <creator>Berlin-Brandenburg Academy of Sciences and Humanities</creator>

 <contact>didakowski@bbaw.de</contact>

 <description lang="en">[BBAoS&H] conversion of plaintext to TCF0.4</description>

 <input_features lang="de" mime_type="text/plain" type_description="text" version="" />

 <output_features lang="de" mime_type="text/tcf+xml" type_description="text" version="0.4" />
 <pid>http://fedora.deutschestextarchiv.de:8088/fedora/objects/WebLichtWebServices:2/
 datastreams/cmdi/content?asOfDateTime=2014-01-20T15:36:57Z</pid>

 <url>http://dspin.dwds.de:8080/services/rohling_v_0_4</url>

 <url_params></url_params>

 </tool>

 <tool id="2">

 <creator>SfS: Uni-Tuebingen</creator>

 <contact>wlsupport@sfs.uni-tuebingen.de</contact>

 <description lang="en">[SfS] Converter, converts text in different document formats to TCF. If the
language is specified as "unknown", the language is guessed from the text content. The following languages
can be guessed: it, is, hu, th, sv, fr, ru, fi, ro, es, en, el, ee, pt, de, da, pl, bg, no, nl, lv.</description>

 <input_features lang="de,en,fr,it,is,hu,th,sv,ru,fi,ro,es,el,ee,pt,da,pl,bg,no,nl,lv"

 mime_type="application/msword,application/vnd.openxmlformats-officedocument.wordprocessingml.
 document,application/pdf,text/plain,application/rtf"

 type_param="doc,pdf,plaintext,rtf" type_description="Word-Doc,Office-Doc,PDF,TXT,RTF" version="" />

 <output_features lang="" mime_type="text/tcf+xml" type_description="text" version="0.4" />

 <pid>11858/00-1778-0000-0004-BA56-7</pid>

 <url>http://weblicht.sfs.uni-tuebingen.de/rws/service-converter/convert/qp</url>

 <url_params>informat=plaintext&language=de&outformat=tcf04</url_params>

 </tool>

</tool_group>

<tool_group category="tokeniser">

 <tool id="1">

 <creator>SfS: Uni-Tuebingen</creator>

 <contact>wlsupport@sfs.uni-tuebingen.de</contact>

 <description lang="en">[SfS] Tokeniser from the OpenNLP Project. ***No sentences are
 delivered!***</description>

 <input_features lang="de,en" mime_type="text/tcf+xml" type_description="text" version="0.4" />

 <output_features lang="" mime_type="" type_description="tokens" version="" />

 <pid>11858/00-1778-0000-0004-BA63-7</pid>

 <url>http://weblicht.sfs.uni-tuebingen.de/rws/service-opennlp/annotate/tokens</url>

 <url_params></url_params>

 </tool>

 <tool id="2">

 <creator>SfS: Uni-Tuebingen</creator>

 <contact>wlsupport@sfs.uni-tuebingen.de</contact>

 <description lang="en">[SfS] Tokeniser/sentences from the OpenNLP project. The 'newlineBounds'
 parameter treats newlines as a hard break (a sentence boundary).</description>

 <input_features lang="de,en" mime_type="text/tcf+xml" type_description="text" version="0.4" />

 <output_features lang="" mime_type="" type_description="sentences,tokens" version="" />

 <pid>11858/00-1778-0000-0004-BA7B-4</pid>

100

 <url>http://weblicht.sfs.uni-tuebingen.de/rws/service-opennlp/annotate/tok-sentences</url>

 <url_params>newlineBounds=false</url_params>

 </tool>

 <tool id="3">

 <creator>IMS: University of Stuttgart</creator>

 <contact>clarin@ims.uni-stuttgart.de</contact>

 <description lang="en">[IMS] Czech, Slovenian, Hungarian, Italian, French, German, English tokeniser
 and sentence boundary detector</description>

 <input_features lang="cz,si,hu,it,fr,de,en" mime_type="text/tcf+xml" type_description="text"
 version="0.4" />

 <output_features lang="" mime_type="" type_description="sentences,tokens" version="" />

 <pid>http://hdl.handle.net/11858/00-247C-0000-0007-3736-B</pid>

 <url>http://clarin05.ims.uni-stuttgart.de/cgi-bin/dspin/tokeniser4.perl</url>

 <url_params></url_params>

 </tool>

 <tool id="4">

 <creator>Berlin-Brandenburg Academy of Sciences and Humanities</creator>

 <contact>didakowski@bbaw.de</contact>

 <description lang="en">[BBAoS&H] tokenizes a text and splits it up into sentences</description>

 <input_features lang="de" mime_type="text/tcf+xml" type_description="text" version="0.4" />

 <output_features lang="" mime_type="" type_description="sentences,tokens" version="" />

 <pid>http://hdl.handle.net/11858/00-203C-0000-0023-21B9-7</pid>

 <url>http://dspin.dwds.de:8080/services/tokeniser_v_0_4</url>

 <url_params></url_params>

 </tool>

</tool_group>

<tool_group category="lemmatizer">

 <tool id="1">

 <creator>IMS: University of Stuttgart</creator>

 <contact>clarin@ims.uni-stuttgart.de</contact>

 <description lang="en">[IMS] SMOR lemmatizer: produces possible STTS tags and lemmas for a given
 list of words</description>

 <input_features lang="de" mime_type="text/tcf+xml" type_description="tokens" version="0.4" />

 <output_features lang="" mime_type="" posttags.tagset="stts" type_description="lemmas" version="" />

 <pid>http://hdl.handle.net/11858/00-247C-0000-0007-373A-3</pid>

 <url>http://clarin05.ims.uni-stuttgart.de/cgi-bin/dspin/smor-lemmatizer4.perl</url>

 <url_params></url_params>

 </tool>

 <tool id="2">

 <creator>IMS: University of Stuttgart</creator>

 <contact>clarin@ims.uni-stuttgart.de</contact>

 <description lang="en">[IMS] PoS TreeTagger(2008): Italian,English,French,German part-of-speech
 tagger and lemmatiser</description>

 <input_features lang="it,en,fr,de" mime_type="text/tcf+xml" type_description="tokens" version="0.4" />

 <output_features lang="" mime_type="" posttags.tagset="stts" type_description="POStags, lemmas"
 version="" />

 <pid>http://hdl.handle.net/11858/00-247C-0000-0007-3739-5</pid>

 <url>http://clarin05.ims.uni-stuttgart.de/treetagger2008</url>

 <url_params></url_params>

 </tool>

 <tool id="3">

 <creator>IMS: University of Stuttgart</creator>

101

 <contact>clarin@ims.uni-stuttgart.de</contact>

 <description lang="en">[IMS] PoS TreeTagger(2013): Italian,English,French,German part-of-speech
 tagger and lemmatiser</description>

 <input_features lang="it,en,fr,de" mime_type="text/tcf+xml" type_description="tokens" version="0.4" />

 <output_features lang="" mime_type="" posttags.tagset="stts" type_description="POStags, lemmas"
 version="" />

 <pid>http://hdl.handle.net/11858/00-247C-0000-0022-D906-1</pid>

 <url>http://clarin05.ims.uni-stuttgart.de/treetagger</url>

 <url_params></url_params>

 </tool>

</tool_group>

<tool_group category="pos-tagger">

 <tool id="1">

 <creator>Berlin-Brandenburg Academy of Sciences and Humanities</creator>

 <contact>didakowski@bbaw.de</contact>

 <description lang="en">[BBAoS&H] Part of Speech Tagger for German</description>

 <input_features lang="de" mime_type="text/tcf+xml" type_description="sentences,tokens" version="0.4" />

 <output_features lang="" mime_type="" posttags.tagset="stts" type_description="POStags" version="" />

 <pid>http://hdl.handle.net/11858/00-203C-0000-0023-21B4-2</pid>

 <url>http://dspin.dwds.de:8080/services/tagger_v_0_4</url>

 <url_params></url_params>

 </tool>

 <tool id="2">

 <creator>IMS: University of Stuttgart</creator>

 <contact>clarin@ims.uni-stuttgart.de</contact>

 <description lang="en">[IMS] PoS TreeTagger(2008): Italian,English,French,German part-of-speech
 taggerand lemmatiser</description>

 <input_features lang="it,en,fr,de" mime_type="text/tcf+xml" type_description="tokens" version="0.4" />

 <output_features lang="" mime_type="" posttags.tagset="stts" type_description="lemmas, POStags"
 version="" />

 <pid>http://hdl.handle.net/11858/00-247C-0000-0007-3739-5</pid>

 <url>http://clarin05.ims.uni-stuttgart.de/treetagger2008</url>

 <url_params></url_params>

 </tool>

 <tool id="3">

 <creator>IMS: University of Stuttgart</creator>

 <contact>clarin@ims.uni-stuttgart.de</contact>

 <description lang="en">[IMS] PoS TreeTagger(2013): Italian,English,French,German part-of-speech
 tagger and lemmatiser</description>

 <input_features lang="it,en,fr,de" mime_type="text/tcf+xml" type_description="tokens" version="0.4" />

 <output_features lang="" mime_type="" posttags.tagset="stts" type_description="lemmas, POStags"
 version="" />

 <pid>http://hdl.handle.net/11858/00-247C-0000-0022-D906-1</pid>

 <url>http://clarin05.ims.uni-stuttgart.de/treetagger</url>

 <url_params></url_params>

 </tool>

</tool_group>

<tool_group category="constituency-parser">

 <tool id="1">

 <creator>SfS: Uni-Tuebingen</creator>

 <contact>wlsupport@sfs.uni-tuebingen.de</contact>

 <description lang="en">[SfS] Constituent Parser from the Berkeley NLP Project</description>

102

 <input_features lang="de" mime_type="text/tcf+xml" type_description="sentences,tokens" version="0.4" />

 <output_features lang="" mime_type="" parsing.tagset="tuebadztb" posttags.tagset="stts"
 type_description="constituents" version="" />

 <pid>http://hdl.handle.net/11022/0000-0000-1CB2-8</pid>

 <url>http://weblicht.sfs.uni-tuebingen.de/rws/BerkeleyParser_04/resources/parser</url>

 <url_params></url_params>

 </tool>

 <tool id="2">

 <creator>IMS: University of Stuttgart</creator>

 <contact>clarin@ims.uni-stuttgart.de</contact>

 <description lang="en">[IMS] German and English constituent parser</description>

 <input_features lang="de,en" mime_type="text/tcf+xml" type_description="sentences,tokens"
 version="0.4" />

 <output_features lang="" mime_type="" parsing.tagset="tigertb" type_description="constituents"
 version="" />

 <pid>http://hdl.handle.net/11858/00-247C-0000-0007-3738-7</pid>

 <url>http://clarin05.ims.uni-stuttgart.de/cgi-bin/dspin/bitpar4.perl</url>

 <url_params></url_params>

 </tool>

</tool_group>

<tool_group category="dependency-parser">

 <tool id="1">

 <creator>IMS: University of Stuttgart</creator>

 <contact>clarin@ims.uni-stuttgart.de</contact>

 <description lang="en">[IMS] Stuttgart Dependency Parser</description>

 <input_features lang="de" mime_type="text/tcf+xml" type_description="sentences,tokens" version="0.4" />

 <output_features depparsing.emptytoks="false" depparsing.multigovs="false" depparsing.tagset="tiger"
 lang="" mime_type="" posttags.tagset="stts" type_description="dependencies" version="" />

 <pid>http://hdl.handle.net/11858/00-247C-0000-0007-3734-F</pid>

 <url>http://ws1-clarind.esc.rzg.mpg.de/webservice-parser</url>

 <url_params></url_params>

 </tool>

 <tool id="2">

 <creator>SfS: Uni-Tuebingen</creator>

 <contact>wlsupport@sfs.uni-tuebingen.de</contact>

 <description lang="en">[SfS] MaltParser is a system for data-driven dependency parsing, which can be
 used to induce a parsing model from treebank data and to parse new data using an induced model.
 MaltParser is developed by Johan Hall, Jens Nilsson and Joakim Nivre at Växjö University and Uppsala
 University, Sweden.</description>

 <input_features lang="de" mime_type="text/tcf+xml" posttags.tagset="stts"
 type_description="sentences,tokens" version="0.4" />

 <output_features depparsing.emptytoks="false" depparsing.multigovs="true"
 depparsing.tagset="tuebadz" lang="" mime_type="" type_description="dependencies" version="" />

 <pid>http://hdl.handle.net/11022/0000-0000-1D4D-B</pid>

 <url>http://ws1-clarind.esc.rzg.mpg.de/webservice-parser</url>

 <url_params>depparsing.multigovs=true&depparsing.tagset=tuebadz</url_params>

 </tool>

</tool_group>

</services>

103

A.1.5 Class diagram of the 'WebLicht Feature Annotator'

Depending classes involved in the implementation of the 'WebLicht Feature Annotator'

(implemented by the class 'Doc2WLTextCorpus'):

104

A.2 RapidMiner operator 'WebLicht TCF to ExampleSet'

A.2.1 Installation and usage in RapidMiner

Equally to the 'WebLicht Feature Annotator', the implementation of 'WebLicht TCF to

ExampleSet' operator is bundled in the jar-file "rmx_kobra_wlst-0.7.2.jar" and installed in the

same way as described in Section A.1.1.

This RapidMiner operator accepts the data type

"document" as input and produces an

'ExampleSet'. Figure A - 3 shows the beginning of

a process in which an annotated text corpus is

loaded by a 'Read Document' operator. Directly

after, the 'WLTCF2ExampleSet' operator pro-

cesses all the linguistic features that are available in the document (as described in Section

2.6.2), and extracts them to different columns of a new 'ExampleSet' which is then the output of

this operator.

The columns of the resulting 'ExampleSet' can contain the following features (depending on the

annotated text corpus): Sentence, Tokens, Lemmas, PosTags, TreeString, PoSTags(tree),

Tokens(tree), Lemmas(tree), Label. The synopsis of this operator is given as follows:

A.2.2 Description of parameters

The parameters of the 'WebLicht TCF to ExampleSet' operator shown in Figure A - 4 are

described as follows:

 'add a label attribute': If checked, the next two

parameter fields appear and a binary label can be

associated to each example in the ExampleSet.

 'label attribute': Defines the name of the label

attribute.

 'default value': Default value of the label. Accepts a

binomial value of either "-1" or "1".

Extracts features from a text corpus (TCF) (previously annotated by using the 'WebLicht Feature

Annotator'), and outputs them to an ExampleSet. Additionally, offers the option to label an example

with a user-defined attribute. The default value of the label can be defined as "-1" or "1".

Figure A - 4: Parameters of the 'WebLicht
TCF to ExampleSet' operator.

Figure A - 3: An exemplary RapidMiner process
using the operator 'WebLicht TCF to ExampleSet'

105

A.3 RapidMiner operator 'Visualize and Label Parse Trees'

A.3.1 Installation and usage in RapidMiner

The implementation of the RapidMiner operator 'Visualize and Label Parse Trees' is bundled in

the jar-file "rmx_kobra_wlst-0.7.2.jar" and the operator is installed as described in Section A.1.1.

Figure A - 5 shows a RapidMiner process in which an

ExampleSet that contains various linguistic features is

loaded by a 'Read CSV' operator, and directly after

visualized by the 'Visualize and Label Parse Trees' operator.

The synopsis of this operator is given as follows:

An exemplary visualized (dependency) parse tree is

shown in Figure A - 6. By clicking on a checkbox in the

controls of the panel the user can manipulate the label

of the currently presented sentence/parse tree – if the

user has added a label in the parameter settings of the

'WebLicht TCF to ExampleSet' operator. By clicking the

'Finish' button, the set of all examples is then outputted.

The control buttons in the top area of the panel allow the

user to switch to the first, previous, next or last

sentence. This triggers the panel to clear the drawing

canvas and update it with a parse tree that corresponds

to the new selected sentence.

By clicking and holding the mouse on the canvas, the

drawing can be translated inside the panel. Using the

mouse wheel allows the user to resize the parse tree.

Therefore, in cases of too large drawings, the user is

able to navigate all of the subtrees or scale down the

graph in order to view the full structure of the parse tree.

The button 'Switch Layout' toggles the tree layout to change from a vertical arrangement of the

nodes to a horizontal one. That is, nodes on the same depth are now placed on the same x-

coordinate while keeping an alphabetical order in a top-down manner.

Visualize and label parse trees of sentences that were previously annotated by a WebLicht parser. This

operator can only be used directly after the 'WebLicht TCF to Example Set' operator or by providing an

ExampleSet that contains the attributes produced by the 'WebLicht TCF to Example Set' operator (…).

Other feature types that have been annotated by the 'WebLicht Feature Annotator', are associated to

the nodes in that parse tree and can additionally be shown in the visualization.

Figure A - 5: An exemplary RapidMiner
process using the 'Visualize and Label

Parse Trees' operator

Figure A - 6: The visualization panel with an
exemplary parse tree

106

The control button "Align Tree" places the tree to the left top edge of the panel. To adjust the

edges of the tree to be direct or parallel lines, the position of the bends can be changed so that

all edges either connect two boxes in straight lines or the bend is positioned on the x-coordinate

of the lower box and gradually between the y-coordinates of both boxes.

The drawing of the parse tree (for the current selected sentence) is placed in a sub window

which is also called "tab widget". This tab widget carries the label "Sentence" together with the

number of the selected sentence, followed by the maximum number of sentences. Additionally,

the tab widget "Table" provides a list with the extracted features. Note that the PoS-tags in this

table are not necessarily the same tags produced by a parser service in the tool chain,

especially in the case where the text corpus is annotated by a constituency parser.

A.3.2 Description of parameters

The parameters of the 'Visualize and Label

Parse Trees' operator shown in Figure A - 7

are described as follows:

 'first example' / 'last example': These

parameters allow the user to define a

range of examples for the viewing process.

 'invert filter': This parameter inverts the

selection of examples which is the

ExampleSet without the range of Examples

from first example to last example .

 'unique char for string termination': This

parameter defines the termination symbol

during the visualization of the parse tree as

suffix tree. This character must not be contained in any of the strings in the ExampleSet.

 'show lemmas' / 'show tokens': If available these feature types will be placed in the boxes

of the visualized parse tree.

 'sentence attribute' / 'treestring attribute' / posTags(tree) attribute' / 'lemma(tree)

attribute' / 'tokens(tree) attribute': The attribute name for each feature type in the

ExampleSet as provided by the 'WebLicht TCF to ExampleSet' operator.

 'label attribute': The label of the ExampleSet as chosen by the user in the 'WebLicht TCF to

ExampleSet' operator

Figure A - 7: Parameters of the 'Visualize and Label
Parse Trees' operator

107

A.3.3 Class diagram of the visualization framework for drawing parse trees

108

A.4 RapidMiner operator 'Fast String Kernel'

A.4.1 Installation and usage in RapidMiner

The implemented 'Fast String Kernel' operator is bundled in the jar-file "rmx_fast_string_kernels-

0.7.1.jar". In order to use this operator, the file has to be placed into the plugin folder of

RapidMiner. After that, a new group 'Fast String Kernels' appears in the of list of RapidMiner

operators in which the 'Fast String Kernel' can then be found. This operator expects one or two

"ExampleSet(s)" as its input, and outputs the same data structure. Furthermore, the data type of

the attribute from the ExampleSet(s) that is required for the string kernel computation needs to

be text.

This operator expects that either the first or both input ports are connected. If two ExampleSets

are connected, the 'Fast String Kernel' computes the similarities between the strings

from the first set and the strings from the second set, with and . If only

one ExampleSet is connected, the similarity computation compares all strings with all other

strings in that set while the operator only needs to calculate the upper triangle matrix with

 and and mirrors the values to the lower triangle matrix. In this special case,

the warning shown in RapidMiner regarding this operator can be ignored. The result output of

each operator is an ExampleSet that stores the computed kernel matrix with the entries

 in columns and rows. Additionally, the operator adds a column "id" to the

ExampleSet with integer values that indicate the current row in the kernel matrix.

Figure A - 8 shows an exemplary

RapidMiner process in which two

'ExampleSets' (each contains a column

with strings) are loaded by a 'Read CSV'

operator. The 'Multiply' operator

duplicates the first ExampleSet which is

then forwarded to the upper 'Fast String

Kernel' for computing the similarities

between strings in that set, while the

second 'Fast String Kernel' computes the

similarities between the first and second set.

The synopsis of the 'Fast String Kernel' operator is given as follows:

Extracts features from a text corpus (TCF) (previously annotated by using the 'WebLicht Feature

Annotator'), and outputs them to an ExampleSet. Additionally, offers the option to label an example

with a user-defined attribute. The default value of the label can be defined as "-1" or "1".

Figure A - 8: An exemplary RapidMiner process with
two 'Fast String Kernel' operators.

109

A.4.2 Description of parameters

The parameters of the 'Fast String Kernel'

operator shown in Figure A - 9 are described

as follows:

 'compare string x/y': Defines the name of

the input strings and .

 'unique char for string termination': This

parameter defines the termination symbol

for the suffix tree. This character must not

be contained in any of the input strings in

the ExampleSet.

 'remove characters from string': If

checked, the next parameter field defines

the set of characters to be removed from

the input string.

 'weight function': Any found match can

be weighted by one of the implemented

functions (see Section 4.7.4): "constant",

"length_dependent", "exponential", "bag_of_characters" and "bag_of_words".

 'weight per item': Weighting parameter depending on the chosen weight function.

 'log total computation time': Logs the total runtime of the fast string kernel operator.

 'log similarities': Logs the calculated similarity values of all compared pairs of input strings.

 'log kernel computation': Outputs the summed and normalized kernel value after each

comparison of the strings , with and .

 'log kernel computation details': Outputs any matched substring that the kernel finds during

the similarity computation. Enabling this option usually leads to a reduced runtime

performance of RapidMiner, due to the amount of produced logging messages. This option

should be used for "debugging" data or for small data sets only.

 'precache strategy': We provide the following caching strategies that are applied during the

kernel computation: "Cache_ExampleSet_2" (default), "window" and "no_caching". Detailed

descriptions are given in Section (4.8).

Figure A - 9: Parameters of the 'Fast String Kernel'
operator.

110

References

Literature

[Akjaman et al.] A. Akmajian, R. A. Demers, A. K. Farmer, R. M. Harnish: Linguistics, MIT Press, p239, 2001.

[Baeza-Yates et al.] R. A. Baeza-Yates, B. Ribeiro-Neto: Modern Information Retrieval. Addison Wesley Longman,

1999.

[Battista et al.] G. Di Battista, P. Eades, R. Tamassia, I.G. Tollis: Graph Drawing. Prentice Hall, 1999.

[Bertin] J. Bertin: Graphische Semiologie. Walter de Gruyter, Berlin, 1974.

[Bhanji et al.] S. Bhanji, H. C. Purchase, R. F. Cohen and M. James: Validating Graph Drawing Aesthetics:

A Pilot Study. Technical Report 336, University of Queensland, Department of Computer

Science, 1995.

[Brill] E. Brill: A simple rule-based part-of-speech tagger. In: Proceedings of the 3rd Conference

on Applied Natural Language Processing (ANLP-92), pages 152-155, 1992.

[Buchheim et al.] C. Buchheim, M. Jünger, S. Leipert: Improving Walker's Algorithm to Run in Linear Time. In:

Proc. GD'02, Springer LNCS 2528, pp. 344–353, 2002.

[Burges] J. C. Burges: A tutorial on Support Vector Machines for Pattern Recognition. In: Journal of

Data Mining and Knowledge Discovery, Volume 2 Issue 2, pages 121-167, June 1998.

[Chang & Lawler] W. I. Chang, E. L. Lawler: Sublinear approximate string matching and biological applications.

Algorithmica, 12(4/5), 327—344, 1994.

[Collins et al.] M. Collins and N. Duffy: Convolution kernel for natural language. In Advances in Neural

Information Processing Systems (NIPS), volume 16, pages 625–632, 2002.

[Croce et al.] D. Croce, A. Moschitti, R. Basili: Structured Lexical Similarity via Convolution Kernels on

Dependency Trees. In: Proceedings of the Conference on Empirical Methods in Natural

Language Processing, 1034—1046, 2011.

[Fletcher] R. Fletcher: Practical Methods of Optimization. John Wiley and Sons, Inc., 1987.

[Garside] R. Garside, G. Leech, A. McEnery: Corpus annotation. Linguistic information from computer

text corpora. Addison Wesley Longman, 1997.

[Gusfield] D. Gusfield: Algorithms on Strings, Trees and Sequences. Computer Science and

Computational Biology. Cambridge University Press New York, 1997.

[Heid et al.] Ulrich Heid, Helmut Schmid, Kerstin Eckart, and Erhard Hinrich: A corpus representation

format for linguistic web services: The D-SPIN text corpus format and its relationship with

ISO standards. In: Proceedings of the Seventh International Conference on Language

Resources and Evaluation (LREC'10), 2010.

[Hinrichs] E. W. Hinrichs, M. Hinrichs, T. Zastrow: WebLicht: Web-Based LRT Services for German. In:

Proceedings of the ACL 2010 System Demonstrations. pages 25–29, 2010.

[Hintikka] J. Hintikka: Aspects of Metaphor, Springer, 1994, p41.

[Hofmann et al.] T. Hofmann; B. Schölkopf; A. J. Smola: Kernel methods in machine learning. In: The Annals

of Statistics 36, no. 3, 1171–1220, 2008.

[Hoffmann 2006] H. Hoffmann: Kernel PCA for novelty detection. In: Journal of Pattern Recognition, Volume 40

Issue 3, pages 863—874, March 2007.

[Jackson et al.] H. Jackson, E. Zé Amvela: Words, Meaning, and Vocabulary, Continuum, p14, 2000.

[Joachims 1998] T. Joachims: Text categorization with support vector machines. In: European Conference on

Machine Learning (ECML). Springer Verlag, 1998.

[Joachims 2000] T. Joachims: The Maximum-Margin Approach to Learning Text Classifiers - Methods,Theory

and Algorithms. Dissertation at the LS8 Faculty of Computer Sciences, Technical University

Dortmund, 2000.

[Knuth] D. E. Knuth: The Art of Computer Programming. Fundamental Algorithms, Vol. 1. Addison-

Wesley, Reading, Massachusetts, 2nd Ed., 1995.

[Leslie et al.] C. Leslie, E. Eskin, W. Noble: The Spectrum Kernel: A String Kernel for SVM Protein

Classification. Pacific Symposium of Biocomputing, 2002.

[Lodhi et al.] H. Lodhi, C. Saunders, J. Shawe-Taylor; N. Cristianini, C. Watkins: Text classification using

string kernels. In: Journal of Machine Learning Research, 419–444, 2002.

http://www.informatik.uni-trier.de/~ley/db/conf/emnlp/emnlp2011.html#CroceMB11
http://www.informatik.uni-trier.de/~ley/db/conf/emnlp/emnlp2011.html#CroceMB11

111
Summary and Outlook

[Markou1] M. Markou, S. Singh: Novelty detection: A review, part 1. In: Statistical approaches,

Signal Processing 83 (12), 2481–2497, 2003.

[Markou2] M. Markou, S. Singh: Novelty detection: A review, part 2. In: Neural network based

approaches, Signal Processing 83 (12), 2499–2521, 2003.

[Neumann] G. Neumann: Einführung in die Dependenzgrammatik. LT lab, DFKI. University

Saarland, 2. July 2013.

[Purchase et al.] H. C. Purchase, R. F. Cohen and M. James: Validating Graph Drawing Aesthetics, In:

Graph Drawing (Proc. GD '95), vol. 1027 of Lecture Notes Comput. Sci., pp. 435-446,

Springer Verlag, 1996.

[Reingold&Tilford] E.M. Reingold, J.S. Tilford: Tidier drawing of trees. IEEE Trans. on Software Engineering,

Vol. SE-7(2), pp. 223–228, 1981.

[Richards] I. A. Richards: The Philosophy of Rhetoric. Oxford University Press, 1936.

[Santorini] B. Santorini: Part-of-speech tagging guidelines for the Penn Treebank project. 3rd

revision, 1990.

[Shawe-Taylor & Cristianini] J. Shawe-Taylor, N. Cristianini: Kernel Methods for Pattern Analysis. Cambridge

University Press, 2004.

[Sonnenburg et al.] S. Sonnenburg, K. Rieck, Fraunhofer First. lda, G. Rätsch: Large Scale Learning with

String Kernels. MIT Press, pp. 73-103, 2007.

[Schiller et al.] A. Schiller, S. Teufel, C. Stöckert, C. Thielen: Guidelines für das Tagging deutscher

Textcorpora mit STTS (Kleines und großes Tagset), 1999.

[Schmid] H. Schmid: Probabilistic part-of-speech tagging using decision trees. In: Proceedings of

the International Conference on New Methods in Language Processing, 1994.

[Schölkopf1998] B. Schölkopf, A. J. Smola, K.-R. Müller: Nonlinear component analysis as a kernel

eigenvalue problem. In: Neural Computation 10, 1299–1319, 1998.

[Schölkopf2002] B. Schölkopf, A. J. Smola: Learning with Kernels. MIT Press, Cambridge, MA, 2002.

[Stanford CoreNLP] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, D. McClosky: The

Stanford CoreNLP Natural Language Processing Toolkit. In Proceedings of 52nd

Annual Meeting of the Association for Computational Linguistics: System

Demonstrations, pp. 55–60, 2014.

[StatLearn] T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical Learning. Springer

Verlag, 2nd ed., 2009.

[Ukkonen] E. Ukkonen: On-line construction of suffix trees. Algorithmica 14 (3), 249–260, 1995.

[Walker] J. Q. Walker II: A Node-Positioning Algorithm for General Trees. Software – Practice

and Experience 10, 553 –561, 1990.

[Vishwanathan & Smola] A.J. Smola, S.V.N. Vishwanathan: Fast Kernels for String and Tree Matching. In: Neural

Information Processing Systems, 569–576, 2002.

[Vishwanathan & Teo] C. H. Teo, S. V. N. Vishwanathan: Fast and space efficient string kernels using suffix

arrays. In: Proceedings, 23rd ICMP, 929–936, ACM Press, 2006.

http://wwwmayr.informatik.tu-muenchen.de/lehre/2014SS/proseminar/literature/Reingold1981.pdf
http://nlp.stanford.edu/pubs/StanfordCoreNlp2014.pdf
http://nlp.stanford.edu/pubs/StanfordCoreNlp2014.pdf

112

URLs

[Bild] http://www.bild.de

[BSD] https://en.wikipedia.org/wiki/BSD_licenses

[Clarin-d] http://clarin-d.de/de/home.html

[dependencies] http://en.wikipedia.org/wiki/Dependency_grammar#Representing_dependencies

[DepConst] http://de.wikipedia.org/wiki/Dependenzgrammatik#Dependenz_vs._Konstituenz

[DWDS] http://www.dwds.de/

[hierarchy] http://weblicht.sfs.uni-tuebingen.de/weblichtwiki/

index.php/Tools_in_Detail#Hierarchies_of_Linguistic_Tools

[HTTP] https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

[hyponymy & hypernymy] https://en.wikipedia.org/wiki/Hyponymy_and_hypernymy

[JAX-RPC] https://java.net/projects/jax-rpc/

[JAX-RS] https://jax-rs-spec.java.net/

[JAXP] https://jaxp.java.net/

[JordanCurve] http://en.wikipedia.org/wiki/Jordan_curve_theorem

[KobRA] http://www.kobra.tu-dortmund.de/mediawiki/index.php?title-

Projektbeschreibung/Methode

[MIME] http://en.wikipedia.org/wiki/MIME

[NEGRA] http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/negra-corpus.html

[TK_Lingua] http://www.linguastream.org/

[TK_Mate] http://www.ims.uni-stuttgart.de/

forschung/ressourcen/werkzeuge/matetools.html

[TK_Monty] http://web.media.mit.edu/~hugo/montylingua/

[TK_NLTK] http://www.nltk.org/

[TK_OpenNLP] http://opennlp.apache.org/index.html

[TK_Stanford] http://nlp.stanford.edu/software/corenlp.shtml

[OutlineNLP] http://en.wikipedia.org/wiki/Outline_of_natural_language_processing

[SO_Ukkonen] http://stackoverflow.com/questions/9452701/ukkonens-suffix-tree-algorithm-in-plain-

english/

[Spiegel] http://www.spiegel.de

[stemming] http://nlp.stanford.edu/IR-book/html/htmledition/

stemming-and-lemmatization-1.html

[tasksNLP] http://en.wikipedia.org/wiki/Natural_language_processing

[TCFSpec] http://weblicht.sfs.uni-tuebingen.de/englisch/tutorials/html/index.html

[TCF0.3Parser] http://weblicht.sfs.uni-tuebingen.de/englisch/tutorials/

html/wlservices/index.html

[Tiger] http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/TIGERCorpus/

annotation/tiger_introduction.pdf

[tokeniser] http://weblicht.sfs.uni-tuebingen.de/weblichtwiki/index.php/Tools_in_Detail#Tokeniser

[treeLayout] https://code.google.com/p/treelayout/

[treeTraversal] https://en.wikipedia.org/wiki/Tree_traversal#Pre-order

[WebLicht] CLARIN-D/SfS-University of Tübingen: WebLicht: Web-Based Linguistic Chaining Tool.

https://weblicht.sfs.uni-tuebingen.de/

[Wget] https://en.wikipedia.org/wiki/Wget, https://www.gnu.org/software/wget/

[XML] http://en.wikipedia.org/wiki/XML

[XSD] http://en.wikipedia.org/wiki/XML_Schema_(W3C)

https://en.wikipedia.org/wiki/BSD_licenses
https://en.wikipedia.org/wiki/BSD_licenses
http://clarin-d.de/de/home.html
http://en.wikipedia.org/wiki/Dependency_grammar#Representing_dependencies
http://de.wikipedia.org/wiki/Dependenzgrammatik#Dependenz_vs._Konstituenz
http://www.dwds.de/
http://weblicht.sfs.uni-tuebingen.de/weblichtwiki/index.php/Tools_in_Detail#Hierarchies_of_Linguistic_Tools
http://weblicht.sfs.uni-tuebingen.de/weblichtwiki/index.php/Tools_in_Detail#Hierarchies_of_Linguistic_Tools
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hyponymy_and_hypernymy
https://java.net/projects/jax-rpc/
https://jax-rs-spec.java.net/
https://jaxp.java.net/
http://en.wikipedia.org/wiki/Jordan_curve_theorem
http://www.kobra.tu-dortmund.de/mediawiki/index.php?title=Projektbeschreibung/Methode
http://www.kobra.tu-dortmund.de/mediawiki/index.php?title=Projektbeschreibung/Methode
http://en.wikipedia.org/wiki/MIME
http://www.coli.uni-saarland.de/projects/sfb378/negra-corpus/negra-corpus.html
http://www.linguastream.org/
http://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/matetools.html
http://www.ims.uni-stuttgart.de/forschung/ressourcen/werkzeuge/matetools.html
http://web.media.mit.edu/~hugo/montylingua/
http://www.nltk.org/
http://opennlp.apache.org/index.html
http://nlp.stanford.edu/software/corenlp.shtml
http://en.wikipedia.org/wiki/Outline_of_natural_language_processing/Natural_language_processing_toolkits
http://stackoverflow.com/questions/9452701/ukkonens-suffix-tree-algorithm-in-plain-english/
http://stackoverflow.com/questions/9452701/ukkonens-suffix-tree-algorithm-in-plain-english/
https://en.wikipedia.org/wiki/BSD_licenses
http://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
http://nlp.stanford.edu/IR-book/html/htmledition/stemming-and-lemmatization-1.html
http://en.wikipedia.org/wiki/Natural_language_processing
http://weblicht.sfs.uni-tuebingen.de/englisch/tutorials/html/index.html
http://weblicht.sfs.uni-tuebingen.de/englisch/tutorials/html/index.html
http://weblicht.sfs.uni-tuebingen.de/englisch/tutorials/html/index.html
http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/TIGERCorpus/annotation/tiger_introduction.pdf
http://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/TIGERCorpus/annotation/tiger_introduction.pdf
http://weblicht.sfs.uni-tuebingen.de/weblichtwiki/index.php/%20Tools_in_Detail%23Tokenizers
https://code.google.com/p/treelayout/
https://en.wikipedia.org/wiki/Tree_traversal#Pre-order
https://weblicht.sfs.uni-tuebingen.de/
https://en.wikipedia.org/wiki/Wget
https://www.gnu.org/software/wget/
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/XML_Schema_(W3C)

113

List of Figures

Figure 1-1: A processing pipeline concept combining feature preparation steps and .. 8

Figure 2-1: The result of a constituency parser for a German sentence. ... 15

Figure 2-2: Different parsing results of the constituent parser of the NLP project and the Stanford Core NLP

parser .. 15

Figure 2-3: Result of the Stuttgart Dependency Parser for an German example sentence. 16

Figure 2-4: Different conventions to draw dependency trees .. 16

Figure 2-5: Difference between a dependency and a constituency tree ... 16

Figure 2-6: An exemplary preprocessing tool chain in WebLicht. ... 21

Figure 2-7: Communication with WebLicht services by using the HTTP POST protocol. 22

Figure 2-8: The concept of a flexible tool chain for the 'WebLicht Feature Annotator' 25

Figure 2-9: Combinations of supported tool chains ... 29

Figure 2-10: The extraction process of linguistic features from a text corpus .. 31

Figure 2-11: Pre-order traversal of an exemplary tree ... 33

Figure 2-12: An interdisciplinary perspective on an exemplary data mining task .. 37

Figure 2-13: An exemplary semantic field of the term "purple" .. 39

Figure 3-2: Grid types for trees with different ways to draw components and connections. 43

Figure 3-1: The implemented representation of a vertex in parse trees.. 43

Figure 3-3: An exemplary tree with a very low readability ... 44

Figure 3-4: The reduced tree of with a high readability .. 44

Figure 3-5: An exemplary rooted tree whose nodes are placed by the Layered-Tree-Draw Algorithm along

the x-axis and by the layer assignment along the y-axis. The steps beneath the drawing

describe the construction of subtree 47

Figure 3-6: Compacting subtrees along their contours during the conquer step in the "Reingold&Tilford"-

Algorithm .. 48

Figure 3-7: The exemplary tree from Figure 3-5 drawn by the "Reingold&Tilford" Algorithm. 49

Figure 3-8: A conceptual dialog presenting lists of visualized parse trees that can be labeled. 50

Figure 3-9: A tidy and compact drawing of an exemplary dependency parse tree for an exemplary

German sentence. ... 51

Figure 4-1: A machine learning framework with different kernel methods used by the SVM in a supervised

learning surrounding ... 52

Figure 4-2: An exemplary set of non-linear separable examples... 54

Figure 4-3: Data set mapped to the feature space after applying a mapping function 54

Figure 4-4: Linear separating hyper-planes for the separable case. Encircled points represent the support

vectors. .. 57

Figure 4-5: Hyperplanes in the non-separable case. Encircled points represent the support vectors. 60

Figure 4-6: Shared subtrees in two parse trees; the numbers in brackets indicate the number of

occurrences for each shared subtree pair ... 65

Figure 4-7: The standard trie of a set of strings.. 67

Figure 4-8: The compressed trie of a set of strings ... 67

Figure 4-9: The suffix tree for the string .. 68

Figure 4-10: The compact representation of the suffix tree ... 68

file:///D:/Dropbox/0_DA/DA_WordDoc/Diploma_Thesis_Marcel_Fitzner_07.docx%23_Toc416041756
file:///D:/Dropbox/0_DA/DA_WordDoc/Diploma_Thesis_Marcel_Fitzner_07.docx%23_Toc416041757
file:///D:/Dropbox/0_DA/DA_WordDoc/Diploma_Thesis_Marcel_Fitzner_07.docx%23_Toc416041759
file:///D:/Dropbox/0_DA/DA_WordDoc/Diploma_Thesis_Marcel_Fitzner_07.docx%23_Toc416041761
file:///D:/Dropbox/0_DA/DA_WordDoc/Diploma_Thesis_Marcel_Fitzner_07.docx%23_Toc416041768
file:///D:/Dropbox/0_DA/DA_WordDoc/Diploma_Thesis_Marcel_Fitzner_07.docx%23_Toc416041768
file:///D:/Dropbox/0_DA/DA_WordDoc/Diploma_Thesis_Marcel_Fitzner_07.docx%23_Toc416041772
file:///D:/Dropbox/0_DA/DA_WordDoc/Diploma_Thesis_Marcel_Fitzner_07.docx%23_Toc416041772
file:///D:/Dropbox/0_DA/DA_WordDoc/Diploma_Thesis_Marcel_Fitzner_07.docx%23_Toc416041773

114

Figure 4-11: Weighting an exemplary matching substring in the suffix tree for the string

 ..71

Figure 5-1: Labeling sentences with the 'Visualize and Label Parse Trees' operator. To use space optimally,

the parse tree is shown in a horizontal layout. ... 78

Figure 5-2: Assigning a negative label by leaving the label control field unchecked 79

Figure 5-3: Training sets in Experiment I with each set considering one particular feature type 80

Figure 5-4: The RapidMiner process in which the optimized SVM models are applied to unseen test

examples. ... 82

Figure 5-5: Training sets for Experiment II ... 85

Figure 5-6: Training sets for Experiment III... 89

Figure 5-7: Benchmark results of the 'Fast String Kernel' operator with differently sized example sets with

each set consisting of strings with 500 and 1000 characters .. 92

Figure 5-8: Runtime fractions during the kernel computations... 92

Figure 5-9: Runtime performance of the matching statistics process per similarity ... 93

Figure 5-10: Runtime performance of the suffix construction process per suffix tree 93

Figure A - 1: An exemplary RapidMiner process using the 'WebLicht Feature Annotator' 95

Figure A - 2: Interactive list of parameters in the 'WebLicht Feature Annotator' (that reflects the concept of

the flexible tool chain) ... 95

Figure A - 3: An exemplary RapidMiner process using the operator 'WebLicht TCF to ExampleSet' 104

Figure A - 4: Parameters of the 'WebLicht TCF to ExampleSet' operator. ... 104

Figure A - 5: An exemplary RapidMiner process using the 'Visualize and Label Parse Trees' operator ... 105

Figure A - 6: The visualization panel with an exemplary parse tree .. 105

Figure A - 7: Parameters of the 'Visualize and Label Parse Trees' operator.. 106

Figure A - 8: An exemplary RapidMiner process with two 'Fast String Kernel' operators. 108

Figure A - 9: Parameters of the 'Fast String Kernel' operator. .. 109

file:///D:/Dropbox/0_DA/DA_WordDoc/Diploma_Thesis_Marcel_Fitzner_07.docx%23_Toc416041779
file:///D:/Dropbox/0_DA/DA_WordDoc/Diploma_Thesis_Marcel_Fitzner_07.docx%23_Toc416041779
file:///D:/Dropbox/0_DA/DA_WordDoc/Diploma_Thesis_Marcel_Fitzner_07.docx%23_Toc416041781
file:///D:/Dropbox/0_DA/DA_WordDoc/Diploma_Thesis_Marcel_Fitzner_07.docx%23_Toc416041790
file:///D:/Dropbox/0_DA/DA_WordDoc/Diploma_Thesis_Marcel_Fitzner_07.docx%23_Toc416041791
file:///D:/Dropbox/0_DA/DA_WordDoc/Diploma_Thesis_Marcel_Fitzner_07.docx%23_Toc416041791
file:///D:/Dropbox/0_DA/DA_WordDoc/Diploma_Thesis_Marcel_Fitzner_07.docx%23_Toc416041792
file:///D:/Dropbox/0_DA/DA_WordDoc/Diploma_Thesis_Marcel_Fitzner_07.docx%23_Toc416041793
file:///D:/Dropbox/0_DA/DA_WordDoc/Diploma_Thesis_Marcel_Fitzner_07.docx%23_Toc416041794
file:///D:/Dropbox/0_DA/DA_WordDoc/Diploma_Thesis_Marcel_Fitzner_07.docx%23_Toc416041795
file:///D:/Dropbox/0_DA/DA_WordDoc/Diploma_Thesis_Marcel_Fitzner_07.docx%23_Toc416041796
file:///D:/Dropbox/0_DA/DA_WordDoc/Diploma_Thesis_Marcel_Fitzner_07.docx%23_Toc416041797
file:///D:/Dropbox/0_DA/DA_WordDoc/Diploma_Thesis_Marcel_Fitzner_07.docx%23_Toc416041798

115

List of Tables

Table 2-1: Disciplines of linguistic tools distributed along different levels of analysis .. 11

Table 2-2: A selected list of available toolkits for different NLP tasks and languages 18

Table 2-3: A list of relevant services of WebLicht that perform NLP tasks for English and German text

corpora. ... 20

Table 2-4: Available conversion tools to process texts to the text corpus format (TCF). 22

Table 2-5: A set of examples with sequences of PoS-tags; the tags are taken from the "Stuttgart-

Tübingen Tagset" (STTS); the translations are given in the second lines 37

Table 3-1: The list notation of an exemplary tree ... 42

Table 3-2: The adjacency matrix of an exemplary graph ; the entries indicate that the vertex

 has no self-loop. ... 42

Table 4-1: Representing the part-of-speech tags as bag of terms .. 63

Table 4-2: Matching statistics of the string "bcbab" with respect to the suffix tree 70

Table 4-3: Caching strategy where suffix trees are kept in memory .. 75

Table 4-4: Caching strategy with a window of size .. 76

Table 5-1: Two examples that differently fit to a given topic. .. 77

Table 5-2: Extracted features of an exemplary sentence. ... 78

Table 5-3: List of files used or created during Experiment I ... 79

Table 5-4: The optimized values and with the according accuracies (and standard deviations) obtained

from the training runs in Experiment I. ... 81

Table 5-5: RapidMiner file used for the training phase in Experiment I .. 81

Table 5-6: RapidMiner file used for the testing phase in Experiment I .. 82

Table 5-7: Classification results (%) of Experiment I "Tranches" obtained from different combinations of

linguistic features and weight functions .. 83

Table 5-8: Two examples of general and contemporary literature ... 84

Table 5-9: List of files used or created during Experiment II .. 84

Table 5-10: RapidMiner file used for the training phase in Experiment II ... 85

Table 5-11: The optimized values with the according accuracies (and standard deviations) obtained

from the training runs in Experiment II. ... 86

Table 5-12: Classification results (%) of Experiment II "Literature types" obtained from different

combinations of linguistic features and weight functions ... 87

Table 5-13: Two exemplary sentences taken from online articles from Bild.de and Spiegel.de 88

Table 5-14: List of files used or created during Experiment III ... 88

Table 5-15: RapidMiner file used for the training phase in Experiment III .. 89

Table 5-16: The optimized values with the according accuracies (and standard deviations) obtained

from the training runs in Experiment III. .. 89

Table 5-17: Classification results (%) of Experiment III "Bild vs. Spiegel" obtained from different

combinations of linguistic features and weight functions ... 90

Table 5-18: The list of files used or created for preparing sentences of fix length ... 91

Table 5-19: The list of prepared text files used for the RapidMiner benchmark process 91

116

Eidesstattliche Versicherung

Fitzner, Marcel 85453
Name, Vorname Matrikel-Nummer

Ich versichere hiermit an Eides statt, dass ich die vorliegende Diplomarbeit mit dem Titel

"Integration of WebLicht Services for Fast Structural Kernel Generations

and Feature Visualization in RapidMiner"

selbstständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen als die

angegebenen Quellen und Hilfsmittel benutzt so wie wörtliche und sinngemäße Zitate kenntlich

gemacht. Die Arbeit hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde

vorgelegen.

Ort, Datum Unterschrift

Belehrung:

Wer vorsätzlich gegen eine die Täuschung über Prüfungsleistungen betreffende Regelung einer

Hochschulprüfungsordnung verstößt, handelt ordnungswidrig. Die Ordnungswidrigkeit kann mit

einer Geldbuße von bis zu 50.000 € geahndet werden. Zuständige Verwaltungsbehörde für die

Verfolgung und Ahndung von Ordnungswidrigkeiten ist der Kanzler/die Kanzlerin der

Technischen Universität Dortmund.

Im Falle eines mehrfachen oder sonstigen schwerwiegenden Täuschungsversuches kann der

Prüfling zudem exmatrikuliert werden. (§ 63 Abs. 5 Hochschulgesetz - HG -)

Die Abgabe einer falschen Versicherung an Eides statt wird mit Freiheitsstrafe bis zu 3 Jahren

oder mit Geldstrafe bestraft. Die Technische Universität Dortmund wird ggfls. elektronische

Vergleichswerkzeuge (wie z.B. die Software „turnitin“) zur Überprüfung von

Ordnungswidrigkeiten in Prüfungsverfahren nutzen.

Die oben stehende Belehrung habe ich zur Kenntnis genommen:

Ort, Datum Unterschrift

