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"The whole of life is just like watching a film. Only it's as though you always get in ten minutes 

after the big picture has started, and no-one will tell you the plot, so you have to work it out all 

yourself from the clues." Terry Pratchett 

 

 

 

 

 

 

 

 

 

 

 

Acknowledgements: 

First of all, my deep thanks goes to my supervisors at the Chair VIII for Artificial Intelligence at 

the Faculty of Informatics at the Technical University of Dortmund, Mrs. Prof. Dr. Katharina Morik 

and Dipl.-Inf. Christian Pölitz for the support and direction during my research in the field of 

computational linguistics and machine learning. I thank Katharina for her comments and ideas 

about the implemented visualization module, and Christian who provided insights and expertise 

about learning on text corpora in RapidMiner. 

My thanks also go to Thomas Bartz and many other linguists who have spent a lot of time and 

energy to prepare the many different text corpora that were provided to me for the experiments. 

I am also immensely grateful to Sebastian Buschjäger, Sebastian Gerard, Lukas Pfahler, and 

Jörg Nitschke for their comments on an earlier version of the manuscript, although any errors are 

my own and should not tarnish the reputations of my esteemed fellow students. Last but not 

least, I thank my wife Jia for her daily support, love, and the many delicious Chinese meals she 

cooked. 



 
8 

Chapter 1  

 

Introduction 

Computational linguistics is an interdisciplinary research field in which natural language is studied 

from a computational perspective. It focuses on the development of models for various kinds of 

linguistic phenomena in order to enable machines to recognize, process, represent, and 

produce natural language in both spoken and written form.  

In the context of text corpus based learning, experts in linguistic research often have a distinct 

question in mind to which computer scientists attempt to provide an answer with the help of 

machine learning methods. The term 'text corpus' refers to a set of documents where each 

document may consist of several sentences but often contains only a single sentence. In the 

following course of this work, the terms 'document' and 'sentence' are used synonymously. 

Typical tasks could be the association of sentences to specific topics or text corpora, or the 

distinction of sentences if a  specific grammatical phenomenon is present or not. 

In this work text classification tasks are considered where sentences may be distinguished 

according to specific expressions or some type of linguistic feature like tokens, parts-of-speech, 

lemmas, dependencies or grammatical constituents. Establishing an overall routine that classifies 

documents of text corpora by means of machine learning methods requires us to first obtain and 

prepare these features. Figure 1-1 presents a pipeline that consists of different processing steps 

where each step is covered by a single chapter: 

 

Figure 1-1: A processing pipeline concept combining feature preparation steps and 
machine learning methods in order to perform a text classification. 

 

In order to perform a machine learning, only the sentences of an acquired text corpus (step 1) 

could be used, but features like tokens, parts-of-speech, lemmas, dependencies or constituents 

reveal patterns that may prove relevant for a text classification task. For instance, such patterns 

can be characterized by a specific word usage, parts-of-speech sequences or relational 

structures like dependencies or constituents. 

In Chapter 2 features and linguistic tools are investigated, followed by a comprehensive 

presentation of methods that perform a feature processing in various ways (step 2). More 

precisely, Section 2.1 provides a hierarchy of various linguistic features. A common technique to 

obtain these features is by means of annotation tools that are often designed to annotate a 

document with a single feature type. In Section 2.2 linguistic tools of the most relevant features 

are introduced. Furthermore, in Section 2.3 a list of available annotation toolkits is compiled with 

regard to finding the most suitable for the integration into a feature annotation tool for RapidMiner. 
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Then, Section 2.4 provides a detailed introduction to the chosen toolkit "WebLicht". As the last 

step in feature preparation, Section 2.6 presents the process for feature extraction that is 

implemented in a RapidMiner operator. 

Chapter 3 deals with the implementation of a visualization module (step 3) to display parse trees 

that encode the dependencies or grammatical constituents of the sentences. Section 3.3 

introduces conventions in order to formalize the optimization problem of obtaining layouts that 

produce tidy trees spanning a minimal width. Section 3.4 then, presents algorithms to construct 

tree layouts in linear time. Additionally, the implemented visualization module offers the option to 

manually label sentences of a text corpus which can be used in supervised machine learning 

(Appendix A.3). 

In Chapter 4 kernel methods (KMs) are introduced that allow an efficient detection of patterns in a 

given set of linguistic features (Section 4.1). Conceptually, KMs perform a mapping of features to 

a feature space (step 4). In this space non-linear relations become linear separable which allow 

the integration of a machine learning method (step 5). Here, the prominent support vector 

machine (SVM) is employed which is presented in Section 4.2. The Sections 4.3-4.7 briefly 

introduce KMs that are specifically designed for comparing strings and trees. Since classical 

string kernels are computationally slow, the 'Fast Kernel (Method) for String and Tree Matching' 

[Vishwanathan & Smola] is presented where the kernel computation performs in linear time 

(Section 4.7). In addition to the implemented operator for RapidMiner (Section 4.7.3), various 

weight functions are provided in order to differently emphasize arbitrary matching substrings 

(Section 4.7.4). Section 4.8 addresses the problem of a high memory consumption during the 

kernel computation and provide an effective solution by implementing different caching 

mechanisms. Finally, the runtime performance of the 'Fast String Kernel' operator is measured in 

a benchmark test and the results are outsourced in Section 5.4. 

Chapter 5 presents three machine learning experiments that were run on different corpora in order 

to investigate which combination of feature type and weight function is the most suitable to 

achieve the highest possible separability of two different text corpora with regard to each 

specific text classification task. At the same time, the use of the annotation and extraction 

operators is shown, and where applicable the visualization operator which additionally allows to 

assign labels to the annotated sentence. 

In the Summary and Outlook a brief review provides an overview of the established linguistic 

processing capabilities and properties of the learning framework. Further, the advantages of own 

contributions are outlined while pointing out opportunities for further research. 
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Chapter 2  

 

Annotation and Extraction of Linguistic Features 

This chapter investigates various linguistic features and deals with the preparation of these 

features in the context of a processing pipeline with the intention to perform a text classification. 

The preparation includes the annotation of text corpora with features and the extraction of these 

so that they can be forwarded to a machine learning method. Linguistic features are basically of 

so called flat or structured type. A flat feature is usually of nominal type. In natural language 

processing (NLP) these are given by linguistic units like tokens, lemmas or part-of-speech (PoS) 

tags. Structured features refer to data that encodes the representation of a tree containing all the 

structural relations within a linguistic unit like a sentence. 

Furthermore, flat features can be incorporated into structural features like bag-of-terms or n-

grams. Here, the bag-of-terms is a vector that contains frequencies of tokens or the 

corresponding part-of-speech tags. Another structural feature is the n-gram which is comprised 

of a sequences of units (like characters or words) whereas all sequences have the same 

number of units. 

Section 2.1 provides a hierarchical overview of linguistic tools on different levels of analysis. 

Further, Section 2.2 introduces common linguistic tools used for natural language processing 

(NLP) tasks. In order to establish NLP for RapidMiner, Section 2.3 presents a list of available 

toolkits and libraries where their suitability is evaluated with regard to processing English and 

German text corpora. Then, Section 2.4 introduces 'WebLicht', which is a service oriented 

architecture (SOA) that allows us to directly communicate with various services to enrich a text 

corpus with desired features. 

A particular problem is to obtain structural features that build upon basic features. Therefore, 

Section 2.5 presents a flexible tool chain that is implemented into a feature annotation tool and 

further describes the configuration of WebLicht services. Section 2.6 describes the feature 

extraction process from annotated corpora and points out important properties of the 

implemented operator in RapidMiner. 

Finally, in Section 2.7 the different types of linguistic features are discussed against the 

background of a hypothetic task of detecting metaphors in a text corpus. 

2.1 Overview of linguistic tools for NLP 

Many linguistic tools enrich a linguistic resource with annotations either because a higher 

accessibility is required or because this resource needs to be passed for further processing. 

Depending on the task, specific tools annotate paragraphs, sentence parts, phrases or single 

words with additional data. The data can contain information about a word sense (semantics), 
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part-of-speech (syntax), references, or any other unit of the linguistic resource that seems useful 

for the analysis task. Other annotated information may describe the phonetics of single words or 

consist of markers for a proper identification of named entities (e.g. persons, organizations). 

Generally, linguistic tools can be described as programs that analyze or process linguistic units 

like tokens, phrases or sentences. Tokens are not only the words of the text, but may also refer 

to numbers, named entities or punctuation characters. 

Tools that play a major role with regard to a text analysis (highlighted in Table 2-1) are 

tokenisers (Section 2.2.1) that segment sentences into sets of tokens, lemmatisers that 

determine to each word the corresponding lemma (2.2.3), and part-of-speech (PoS) taggers 

(Section 2.2.2) that automatically identify the parts-of-speech and tag the tokens accordingly. 

Furthermore, named entity recognizers (Section 2.2.8) which are often contained in tokenisers, 

and word sense disambiguators are important tools, as well.   

 

 Discipline Units & Categories Tools 

 

 
 
Higher levels 
of analysis 

Pragmatics, 
Discourse theory, 
Rhetoric, 
Speech act theory 

discourse types, 
genres, classes  of 
speech act, emotions 

emotion analyzers, metaphor 
analyzers, rhetorical coherency 
analyzers, dependency analyzers, 

named entity recognizers 

Semantics  
word sense disambiguators, 
semantic role analyzers, 
coreference and anaphora tools 

 

Lower levels 
of analysis 

Syntax 
sentences, phrases, 
words 

constituency parsers, 
dependency parsers, chunkers 

Morphology and 
Lexical analysis 

words, prefixes and 
suffixes, singular and 
plural, conjugations, 
declensions 

stemmers, 

lemmatisers, 
tokeniser, 
part-of-speech taggers 

Phonetics and 
Phonology 

sounds, phonemes, 
syllables, Intonational 
categories 

speech recognition, 
spectrograms / sonograms 

 
Table 2-1: Disciplines of linguistic tools distributed along different levels of analysis 

 

Tools of a higher complexity usually depend on tools with a lower one. As shown in  

Table 2-1, the linguistic tools can be divided into different levels of analysis [hierarchy]. As an 

example, a syntax analyzer like a parser requires sentences to be clearly separated from each 

other, words to be clearly delineated by a tokeniser, and a part-of-speech tagger to have 

performed first. Constituency and dependency parsers (Section 2.2.4) that analyse the syntax of 

a sentence depend on the output of linguistic tool that extract flat features from the same 

sentence beforehand. 
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2.2 Introduction to linguistic tools  

The following subsections describe common, linguistic tools that are used for the annotation of 

text corpora with relevant features. 

2.2.1 Tokeniser 

A computational analysis of a text corpus normally starts with the segmentation of the text into a 

set of individual words, also known as tokenization. Additionally, a sentence-splitting tool is often 

used in combination with the tokenization. An easy way to tokenize a text corpus into its tokens 

is by simply decomposing the text along its whitespace characters followed by punctuation 

marks. In alphabetic texts additional challenges have to be met as there exist many linguistically 

anomalous elements like numbers, abbreviations, named entities, punctuation (e.g. used in URLs) 

and many more. Given those difficulties it is often more practical to consider tokens instead of 

words when segmenting a text, since a token encompasses these anomalous elements 

[tokeniser]. 

Most of the tokenisers need to be trained for a large set of idiosyncrasies in a given language. 

For example it is being expected from a tokeniser to recognize and decompose the entities in a 

compound word like the famous German word "Donaudampfschiffahrtselektrizitätenhaupt-

betriebswerkbauunterbeamtengesellschaft" or linguistically similar compounds like "low-budget" 

or "first-class". Short phrases like idioms that are composed of multiple words and separated by 

spaces like "im Großen und Ganzen" in German or "pain in the neck" are best to be treated as 

a single term. Furthermore, a tokeniser should also properly recognize terms of the same 

meaning but that can be written in different ways like "egg beater", "egg-beater" and 

"eggbeater". 

After performing the segmentation process, a tokeniser delivers linguistic features as a set of 

ideally all properly identified tokens. This set of features is usually known under the term "bag of 

words" (for the definition see Section 4.4).  

Some tokenisers additionally return a list of sentences in which each token corresponds to a 

specific sequence of characters in the text - according to the rules and idiosyncrasies of the 

given language.   

2.2.2 Part-Of-Speech-Taggers 

The task of a part-of-speech (PoS) tagger is to classify the syntax of words in a given text. 

However, a tokenization has to be performed beforehand. While considering the context of a 

word a PoS tagger chooses the parts-of-speech tags from a specific set of parts-of-speech, 

usually referred to as tagset. For German texts a frequently used tagset is the "Stuttgart-

Tübingen Tagset" (STTS) [Schiller et al.], and for English texts the Penn Treebank Tagset (PTTS) 

[Santorini] and the CLAWS Tagset [Garside] are frequently used. 
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Ambiguity of parts-of-speech tags for a given word poses a frequent problem for a tagger, as 

shown in the following sentence:  

Example 2-1: Ambiguous case with possible PoS-tags with regard to the word "einen". 
The given sentence translates to "The teacher drinks a coffee". 

 

Without considering the context, the German word "einen" has two possible meanings, either 

being used as an article in masculine form for accompanying a noun or it is used as a verb with 

the meaning to "unify" something. Hence the available tags are "ART", "VVINF" (infinitive verb, 

full) and "VVFIN" (finite verb, full). 

Various supervised learning methods have been established to train a PoS tagger to choose the 

correct tags in case of ambiguity, for example by means of hidden markov models (HMM) 

[Charniak 1997] and decision trees [Schmid]. Another approach uses a simple, rule-based PoS 

tagger [Brill]. During training, tags are learned from specific corpora (mostly of the same genre 

like corpora of newspapers) whose parts-of-speech tags have been manually annotated. For 

the actual tagging phase it is recommended that the tokens of a text match those tokens to 

which the tagger has been trained to recognize. Respectively it is important that the tokeniser 

employed in the preprocessing is used for the training phase as well. 

In an unsupervised setting no previously defined tagset  can be chosen, where no training data 

is available and hence no error signal can be computed to evaluate a potential solution. Instead 

a new tagset is generated during the tagging phase by means of stochastic methods. 

While in a naive approach the frequencies of occurring PoS-tags are simply learned from a given 

training corpus, HMM-based or decision tree based taggers perform far better by considering 

the context of a tag like the preceding and following tag [Brill]. Following this approach, learning 

methods of performant PoS taggers make use of sequences of PoS-tags. In this context, a 

sequence of   linguistic units (like words, parts-of-speech or characters) is referred to as an n-

gram. Usually learning methods make use of bi- or trigrams. In the given Example 2-1 the word 

sequence "trinkt einen" has the bi-grams VVFIN-ART, VVFIN-VVINF and VVFIN-VVFIN. Training 

from text corpora, the sequence VVFIN-ART likely has the highest probability. Conclusively, a 

PoS tagger assigns the tag ART to the word "einen". 

2.2.3 Stemmers and lemmatisers 

Both stemming and lemmatization aim to reduce inflectional forms and sometimes derivationally 

related forms of a word to a common base form [stemming]. Since the inflectional morphology 

of most European languages is indicated by suffixes, a stemmer is a program that usually refers 

to a crude heuristic process that chops off the ends of words in the hope of achieving this goal 

correctly most of the time, and often includes the removal of derivational affixes. Stemmers were 

developed originally to improve information retrieval and are usually very simple programs that 

Der Lehrer  trinkt  einen  Kaffee  . 

ART NN  VVFIN  VVINF  NN $. 
     VVFIN 

     ART 
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use a catalog of regular expressions to simplify the word-forms found in digital texts. They are 

linguistically not very sophisticated, and miss many kinds of morphological variations.  

Whenever possible, a lemmatiser is preferred to a stemmer. Usually a combination of a lexicon 

and a set of rules is being used in order to remove inflectional endings and then to return the 

base (or dictionary) form of a word, which is known as the lemma. A lemmatiser using this 

approach can determine the lemmas to each annotated token in the input text corpus.  

2.2.4 Parsers 

A parser is a tool that performs syntactic analysis of natural language either in an automated or 

manual way. Although parsing of natural language superficially resembles parsing in computer 

science, the former one operates in a very different way, since the diversity and complexity of 

human language still exceeds those parsers that make use of finite-state grammars and 

recognition rules. 

Far more accurate and robust parsers today incorporate statistical principles to some degree 

and often these parsers have been trained from manually parsed texts using machine learning 

techniques, which has been done analogously successfully for the part-of-speech tagger as 

described in Section 2.2.2. Many common parsers like the Stanford constituency parser, the 

Stanford phrase structure parser or the Berkeley parser work with a PoS-tagger as a 

preprocessor. In this context, it is important that the tagset of the integrated PoS-tagger has to 

match the tagset that is expected from the parser. 

Parsers usually require tokenized input text, and they output these tokens wrapped into a 

structural form. The structured data is known as a parse tree, which encodes different syntactic 

connections between parts of the sentence.  

Most parsers implement the syntactical analysis of the two major categories dependency 

grammars and constituency grammars. Both types are introduced in the next two sections. Less 

frequently used parsers combine the results of both analysis categories into a hybrid form.   

2.2.5 Constituency parsers 

In the analysis of constituency grammar the relation of constituents derive from an initial binary 

division by splitting the clause into a subject noun phrase (NP) and a predicate verb phrase (VP). 

Subclauses are then iteratively decomposed up to the smallest constituents according to a given 

constituency grammar. 

The following Figure 2-1 presents a constituency parse tree of an exemplary sentence in German. 

Before feeding the sentence to a constituency parser the sentence was tokenized and the parts-

of-speech were identified by a PoS-tagger of the NLP project. The parser used tags from the 

'Tiger Treebank Tagset' to annotate the nodes in the tree [Tiger]: 
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Figure 2-1: The result of a constituency parser for a German sentence. 

 

In the case of structural ambiguous sentences not every constituent parser detects the ambiguity 

and usually delivers only one interpretations of the parsed sentence. 

In the exemplary sentence "Visiting relatives can be dangerous" the constituency parser of the 

'OpenNLP project' (left side of Figure 2-2) considers "Visiting relatives" as a noun phrase (NP) 

with "relatives" as the head while the 'Stanford Core NLP' parser (right side of Figure 2-2) 

basically treats "Visiting relatives" as a verb phrase (VP) with "Visiting" as its head: 

 

Figure 2-2: Different parsing results of the constituent parser of the NLP project and the Stanford Core NLP parser 

  

2.2.6 Dependency parsers 

The analysis of dependency grammar considers dependency relations between single words of 

a given sentence, while for a single word multiple connections to other ones can exist 

[Neumann]. The principal idea for syntactic connections is to choose the verb as the root of all 

clause structures. Tokens can then iteratively be connected with a parent node where -

according to a given dependency grammar, the PoS-tag of each token is subordinated in a 

hierarchy of word categories. As an example, Figure 2-3 presents a German sentence in a 
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dependency tree, with the verb "haben" (which translates to "to have") as the root of the 

hierarchy of dependency relations. The edges carry PoS-tags from the 'STTS' tagset [Tiger]:  

 

Figure 2-3: Result of the Stuttgart Dependency Parser for an German example sentence. 

 

The above parse tree is only one way to represent dependencies, the following notation 

schemes illustrate other common conventions [DepConst]:  

 

 

Figure 2-4: Different conventions to draw dependency trees 
 

 

Convention (f.) in Figure 2-4, also referred to as bracket notation, is especially useful since it can 

practically encode a parse tree to a string which can then be forwarded to a consecutive tool. 

Alternatively, the bracket notation can integrate both PoS-tags and tokens regarding the above 

sentence "The conventions can vary": 

                                      

Example 2-2: A parse tree represented in bracket notation 

 

Representing the parsed dependency grammar as a tree is a one-to-one relation, since every 

element in the sentence corresponds to exactly one node in the tree structure. The result of this 

correspondence is that dependency grammars are word grammars, as shown in Figure 2-5:  

 

Figure 2-5: Difference between a dependency and a constituency tree 

 

In the dependency tree on the left two words are represented with two nodes, whereas the 

constituency tree on the right contains three nodes. Constituency trees require the number of 

nodes to exceed the number of elements in a sentence of at least by one [depVsConst]. 
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2.2.7 Word sense disambiguators 

A word sense disambiguator is a tool that is specialized in the automatic identification of the 

correct meaning of a word (or sense) in a text. Such tools usually use a combination of digitized 

dictionaries that contain a database of words and their possible meanings, and information 

about the context in which the given words is likely to have a particular meaning. 

As an example, let us consider the words "white" and "snow". A disambiguation tool can 

associate a set of attributes that describe each of the single words, but the words in the order 

"Snow white" most likely has a different meaning. The input for word sense disambiguation tools 

are usually tokenized text, although PoS-tags and even parsing may be required before 

disambiguation.  

2.2.8 Named Entity recognizers 

The linguistic phenomenon of a named entity is the generalization of the idea of a proper noun. 

Examples for named entities refer to places, brand names, non-generic things, people, and 

sometimes highly subject-specific terms. Named entity recognition plays an important role in 

information retrieval, machine translation or in topic identification. 

Basically, there are no limits that may restrict where named entities can be derived from. Named 

entities can have frequent usage in texts, and are usually not listed in common dictionaries. The 

detection of named entities is based on rules, statistical methods, machine learning algorithms, 

or a combination of these methods. 

For example, while analyzing sequences of two or more words, a simple rule may check if 

these words are written with capital letters. Another possibility to setup named entity recognition 

is often done by integrating databases that contain large lists of named entities. 
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2.3 Natural language processing toolkits 

In order to establish preprocessing routines that extract various linguistic features, a manageable 

selection of frameworks is examined that have been developed for natural language processing 

(NLP) tasks. The complete list of NLP toolkits is too comprehensive in order to be listed here 

[OutlineNLP], and numerous highly specialized tools perform all kinds of tasks on a wide range 

[tasksNLP].  

For our purposes, the list is restricted to toolkits that are offered as libraries or services, and 

whose processing capabilities fall into consideration for the implementation of a processing 

operator in RapidMiner. Tools that come into consideration need to be capable of detecting and 

annotating text corpora with sentences, tokens, lemmas, part-of-speech tags, named entities, 

and parsing constituents and dependencies. The following Table 2-2 lists toolkits or libraries that 

are evaluated on a closer inspection:  

Toolkit 

[URL] 
Creator License 

Processing 

capabilities 
Supported language 

OpenNLP 

[TK_OpenNLP] 
Apache Software 

Foundation 
Apache License 

2.0 

sentence segmentation, 
tokenization, 

lemmatizing, PoS-  
tagging, NER, and more 

English and others; 
German: sentence 

segmentation, tokenizing 
and PoS tagging only 

Stanford 
CoreNLP 

[TK_Stanford] 

The Stanford NLP 
Group 

GNU Public 
License v3 

sentence segmentation, 
tokenization, 

lemmatizing, PoS  
tagging, constituency 

parsing, NER, and more 

English, Spanish & Chinese; 
German: PoS tagging, NER, 

parsing only 

Natural 
Language 

Toolkit 
[TK_NLTK] 

Team NLTK 
Apache License 

2.0 
n-gram, PoS tagging, 

tokenization, NER 
English, Arabic 

LinguaStream 

[TK_Lingua] 

Computer 
Research Group 

"GREYC" 

Free for 
research 

sentence segmentation, 
tokenization, PoS 

tagging, statistical tools 
English, French 

Mate Tools  
[TK_Mate] 

IMS - Institute for 
Computational 

Language 
Processing 

GNU Public 
License v3 

lemmatizing, part-of-
speech tagging, 

morphological tagging, 
dependency parsing, 

and semantic role 
labeling 

English, German 

MontyLingua 

[TK_Monty] 
MIT 

Free for 
research 

tokenization, 
lemmatizing, PoS  
tagging, parsing 

English 

WebLicht 
[WebLicht] 

SfS - University of 

Tübingen 

Free for 
research 

sentence segmentation, 
tokenization, lemma-
tizing, PoS  tagging, 

NER, and many more 

Various languages 

Table 2-2: A selected list of available toolkits for different NLP tasks and languages 

 

All listed toolkits are offered with a license that make them potential candidates for an integration 

into the implementation of a RapidMiner operator. Unfortunately, not many toolkits offer NLP for 

German language, hence only toolkits are considered that fully or partially support German: 
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 The 'OpenNLP' toolkit offers basic processing (sentence segmentation, tokenizing, PoS 

tagging), but lacks constituency or dependency parsing. 

 

 The 'Stanford CoreNLP' toolkit offers PoS tagging, named entity recognition and 

constituency parsing trained on the Negra corpus [NEGRA]. On a side node, the 

NEGRA corpus is a large set of tokens and sentences of German newspaper text, 

taken from the 'Frankfurter Rundschau'. Still, using only one distinct training corpus like 

NEGRA may not suffice to represent the German language as editors of the Frankfurter 

Rundschau are probably not using terms, phrases and sayings that are common to 

people in other cultural regions of Germany. Furthermore, the 'Stanford CoreNLP' does 

not contain tools that extract German tokens or their lemmas, and offers no dependency 

parser which we want to integrate into a RapidMiner, as well. 

 

 The toolkit 'Mate Tools' contains basic linguistic processing as well as parsing and 

semantic role labeling. The tools provide processing of linguistic units like lemmas and 

PoS-tags, but no tokenization.  

 

 The language processing environment 'WebLicht' is a service oriented architecture (SOA) 

that has been established by partners of the KobRA project at the University of 

Tübingen [Hinrichs et al., WebLicht]. The term WebLicht refers to Web-Based Linguistic 

Chaining Tool. Since WebLicht is offered as a SOA, no libraries need to be integrated 

into a programming code, but instead all the services can be accessed remotely. The 

repertoire of services amounts a comprehensive list of processing tools for both English 

and German (among other languages). Furthermore, the environment allows a chaining 

of tools so that they consecutively add linguistic features to a text corpus, as presented 

in Section 2.4.2. 

For the integration in a feature preprocessing pipeline in RapidMiner, the choice fell on 'WebLicht' 

as the advantages above make this SOA an applicable and highly interesting candidate for the 

implementation of a processing operator in RapidMiner. The next section presents a selection of 

tools that are available in the large repertoire of NLP tools provided by WebLicht. 
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2.4 Web-Based Linguistic Chaining Tool (WebLicht) 

2.4.1 The WebLicht services for natural language processing 

WebLicht offers a large repertoire of tools, many of them process texts in English and German 

language. The Table 2-3 depicts a list of interesting tools that come into question for a language 

processing in RapidMiner:  

 

Tool name Developed by 
Supported 
Languages 

Extracted features 

Tokeniser ASV: Uni Leipzig de sentences, tokens 

Tokeniser IMS: Uni Stuttgart 
en, de, cs, hu, 
sl, fr, it 

sentences, tokens 

Tokeniser - OpenNLP Project SfS: Uni Tübingen en, de tokens 

Tokeniser/Sentences - OpenNLP 
Project 

SfS: Uni Tübingen en, de sentences, tokens 

Tokeniser and Sentence Splitter BBAW: Berlin de sentences, tokens 

Part-of-Speech-Tagger BBAW: Berlin de PoS-tags 

POS Tagger - OpenNLP Project SfS: Uni Tübingen en, de PoS-tags 

RFTagger IMS: Uni Stuttgart de, cs, hu, sl PoS-tags 

TreeTagger IMS: Uni Stuttgart en, de, fr, it lemmas, PoS-tags 

Stanford Core NLP SfS: Uni Tübingen en 

sentences, tokens, 
lemmas, PoS-tags, 
named entities, const. 
parsing 

Berkeley Parser - Berkeley NLP SfS: Uni Tübingen de Parsing 

Constituent Parser IMS: Uni Stuttgart en, de const. parsing 

Constituent Parser - Open NLP 
Project 

SfS: Uni Tübingen en 
const. parsing, PoS-
tags 

Stanford Dependency Parser SfS: Uni Tübingen en dep. parsing, PoS-tags 

Stanford Phrase Structure Parser SfS: Uni Tübingen en, de parsing , PoS-tags 

Stuttgart Dependency Parser IMS: Uni Stuttgart de 
dep. parsing, lemmas, 
PoS-tags 

German Named Entity Recognizer SfS: Uni Tübingen de named entities 

Open NLP Named Entity Recognizer SfS: Uni Tübingen en, es named entities 

Person Named Recognizer BBAW: Berlin de named entities 

Table 2-3: A list of relevant services of WebLicht that perform NLP tasks for English and German text corpora. 

 

The repertoire of the SOA WebLicht provides all important tools for annotating text corpora with 

the most common linguistic features. More importantly, all of these tools are able to process 

English and German texts. 
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2.4.2 The web environment of WebLicht 

WebLicht comes along with an interactive web interface that can be accessed by authorized 

research users1. 

This section briefly describes how linguistic tools can be chained together in order to perform 

NLP tasks on texts: First, the user uploads or directly enters a text via a form. In order to 

assemble a processing chain, the user can drag tools into an appropriate area of the web 

interface. While doing so, the WebLicht interface interactively adapts the palette of the remaining 

applicable tools according to the last appended tool. 

When starting the execution of a "constructed" tool chain the given text is first converted into an 

XML2 structure whose scheme follows a specific text corpus format (TCF) [Heid et al.].  

Depending on the "stage" of the tool chain, each processing tool enriches the text corpus with 

additional linguistic features. Finally, the finished annotated text and the extracted features can be 

viewed in a separate web interface or directly downloaded as a TCF file. 

The screenshot in Figure 2-6 shows an exemplary processing tool chain in the web environment 

of WebLicht. It consists of a text loader, a text to TCF converter, a tokeniser, a part-of-speech 

tagger, and a constituent parser.  

 

 

Figure 2-6: An exemplary preprocessing tool chain in WebLicht. 

  

                                            
1 The login mechanism makes use of a so called  authentification- and authorization infrastructure of the 
German research net (DFN-AAI). That way, researches who have an account at an university or 
institutions that is connected to the German research net (DFN) are able to login to the environment. This 
however, does not concern the WebLicht services which can be accessed freely. 
 
2 XML is a short term for extensible markup language and basically defines a set of rules for encoding 
documents in a format that can be read by humans as well as processed by machines [XML].  An XML 
scheme definition (XSD) aids in formally specifying the elements in an XML document [XSD]. Thus an 
XML document can be validated against its scheme definition by checking if the elements contained in the 
document are conform to a given set of rules in the scheme.   
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2.4.3 Communication with WebLicht services 

One aspect that makes WebLicht an ideal choice for language processing capabilities in 

RapidMiner is due to the possibility to directly communicate with the services over the web via 

the POST method of the HTTP protocol [HTTP]:  

 

 

 

 
 
 

Figure 2-7: Communication with WebLicht services by using the HTTP POST protocol. 

 

The web URL to each available service is given in the properties view of the web environment. 

This view provides additional information like input and output features that are used in the 

implementations later (Section 2.5.2). The properties of each service further indicate the content 

types, one for the data type that the service accepts, and the other type describes what type of 

data is sent back by the service. Content types are also known under the term MIME, short for 

Multipurpose Internet Mail Extensions3 [MIME]. Simply put, clients that send HTTP requests to a 

service need to indicate the MIME type expected from a service, so that the transmitted content 

can be properly processed by the WebLicht service. Respectively, a service sends a MIME type 

together with the content back to a client. Most of the time, WebLicht services expect and send 

content of the MIME type 'text/tcf+xml'. The first part 'text' indicates the general type of the file, 

whereas 'tcf+xml' indicates the subtypes. In this case the services accept file contents in 'tcf' 

and 'xml' format.  

2.4.4 Preparing text corpora for WebLicht services 

As mentioned above in Section 2.4.2, a text corpus needs to be converted into TCF first. To this 

end, requests are sent to either one of the following converter services:  

Name of the tool Developed by 
Supported 
Languages 

performed task 

BBAoS&H Converter Berlin Brandenburg Academy 
of Sciences and Humanities 

de text to text corpus (TCF) 

SfS Converter SfS: University of Tübingen de, en, fr, it, 
and many 
more 

text to text corpus (TCF) 

Table 2-4: Available conversion tools to process texts to the text corpus format (TCF). 

 

By sending a POST-request with the appended text content to one of the converter services, the 

returned text is being wrapped into the text corpus format (TCF). The next section demonstrates 

such a request.  

 

                                            
3 Nowadays, MIME do not only describe file extensions used as attachments in emails, but describe 
numerous different content types in general. In communication protocols like HTTP for the WWW MIME 
types play an important role for applications that transmit and process file contents. 

Respons

e 

POST 

Input (TCF) Output (TCF) Webservice: 

 Extraction of relevant data from input 

 Generation of new data 

 Returning TCF with new annotations 
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2.4.5 Testing the accessibility of WebLicht services 

By using a simple communication program like "wget" the accessibility of a WebLicht service 

can be tested [Wget]. Wget allows sending files via the HTTP POST request and retrieves a 

response from the targeted web server. The following example demonstrates how a simple text 

is converted  to an XML file (whose scheme follows the text corpus format (TCF) ): 

1. Input text (saved in file "Ballerina.txt"): 

The ballerina was a swan, gliding over the stage. 

 

2. HTTP POST request (sent via Wget): 

wget --post-file="D:/Ballerina.txt" --header='Content-Type: text/plain' -O D:/Ballerina.xml 
"http://weblicht.sfs.uni-tuebingen.de/rws/service-
converter/convert/qp?informat=plaintext&language=en&outformat=tcf04" 

 

3. Service response (saved in "Ballerina.xml"): 

<?xml version="1.0" encoding="UTF-8"?> 

<D-Spin xmlns="http://www.dspin.de/data" version="0.4"> 

  <MetaData xmlns="http://www.dspin.de/data/metadata"> 

    <source></source> 

  </MetaData> 

  <TextCorpus xmlns="http://www.dspin.de/data/textcorpus" lang="en"> 

    <text>The ballerina was a swan, gliding over the stage.</text> 

  </TextCorpus> 

</D-Spin> 

List 2-1: A returned text corpus converted into TCF in version 0.4. 

 

After converting the input text to TCF, the text corpus can now be annotated with further 

linguistic features. In the next example, "Ballerina.xml" is sent to the tokeniser from the OpenNLP 

project via: 

wget --post-file="D:/Ballerina.xml" --header='Content-Type: text/tcf+xml' 

-O D:/Ballerina_tokens.xml "http://weblicht.sfs.uni-tuebingen.de/rws/service-opennlp/annotate/tok-

sentences?language=en" 

 

4. The returned text corpus (saved in "Ballerina_tokens.xml"): 

<?xml version="1.0" encoding="UTF-8"?> 

<D-Spin xmlns="http://www.dspin.de/data" version="0.4"> 

  <MetaData xmlns="http://www.dspin.de/data/metadata"><source></source></MetaData> 

  <TextCorpus xmlns="http://www.dspin.de/data/textcorpus" lang="en"> 

    <tc:text xmlns:tc="http://www.dspin.de/data/textcorpus"> 

 The ballerina was a swan, gliding over the stage.</tc:text> 

    <tc:tokens xmlns:tc="http://www.dspin.de/data/textcorpus" charOffsets="true"> 

      <tc:token end="3" start="0" ID="t_0">The</tc:token> 

      <tc:token end="13" start="4" ID="t_1">ballerina</tc:token> 
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      <tc:token end="17" start="14" ID="t_2">was</tc:token> 

      <tc:token end="19" start="18" ID="t_3">a</tc:token> 

      <tc:token end="24" start="20" ID="t_4">swan</tc:token> 

      <tc:token end="25" start="24" ID="t_5">,</tc:token> 

      <tc:token end="33" start="26" ID="t_6">gliding</tc:token> 

      <tc:token end="38" start="34" ID="t_7">over</tc:token> 

      <tc:token end="42" start="39" ID="t_8">the</tc:token> 

      <tc:token end="48" start="43" ID="t_9">stage</tc:token> 

      <tc:token end="49" start="48" ID="t_10">.</tc:token> 

    </tc:tokens> 

    <tc:sentences xmlns:tc="http://www.dspin.de/data/textcorpus"> 

      <tc:sentence tokenIDs="t_0 t_1 t_2 t_3 t_4 t_5 t_6 t_7 t_8 t_9 t_10"></tc:sentence> 

    </tc:sentences> 

  </TextCorpus> 

</D-Spin> 

List 2-2: A returned text corpus annotated with Sections for tokens and sentences. 

 

As shown in List 2-2, a tokeniser does not only extract all the tokens, but also annotates the 

text corpus with a section for sentences in which the tokens are given in the same order as in 

each sentence. The next section presents the concept of combining different WebLicht services 

to a tool chain.  
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2.5 Annotating linguistic features in RapidMiner 

2.5.1 Flexible tool chain concept for the 'WebLicht Feature Annotator' 

Although the web environment of WebLicht is not relevant for our purposes, the idea of chaining 

tools is a useful concept for the software design of a 'Feature Annotation' operator in RapidMiner. 

Here, a text corpus is also annotated with different linguistic features (by means of WebLicht 

services) in an incremental way. 

The following activity diagram (Figure 2-8) presents the concept of a flexible tool chain that is 

implemented as a RapidMiner operator with the name 'WebLicht Feature Annotator':  

 

 

Figure 2-8: The concept of a flexible tool chain for the 'WebLicht Feature Annotator' 

 

After loading a document via the "read document" operator in RapidMiner, the text corpus is 

forwarded to the feature annotation operator. In the parameter settings of this operator a 

RapidMiner user can select one of the following tool chains (documented in the Appendix A.1.2): 

 converter  

 converter  tokeniser  

 converter  tokeniser  lemmatizer (not shown in Figure 2-8) 

 converter  tokeniser  PoS tagger 

 converter  tokeniser  PoS tagger  constituency parser 

 converter  tokeniser  PoS tagger  dependency parser 

The exemplary selection (highlighted with an orange border in Figure 2-8) includes only the first 

three linguistic tools (converter, tokeniser and PoS tagger). It should be noted, that the depicted 

tools in the program are placeholders for the distinct tools. Section 2.5.4 describes in detail, how 

specific WebLicht tools/services can be chosen.  
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The cascade like nature of the flexible tool chain behaves as follows:  

1. In (1a) the converter sends a text corpus to the WebLicht connector (Section 2.5.3) 

which prepares and sends a HTTP POST request to a WebLicht converter. On a service 

response the connector converts the received text corpus (in TCF) to a RapidMiner 

document and forwards it to the next tool in the selected chain (1b), provided that the 

end of the selected chain is not reached. 

2. In (2a) the tokeniser triggers the connector to send the text corpus to a tokeniser 

WebLicht service. The received TCF content contains an XML section that lists all the 

tokens in the text corpus (2b). 

3. In the last step of the selected tool chain the tokenized text corpus is sent to a PoS-

tagger and obtain a corpus that is annotated with the PoS-tags according to the tokens. 

However, not every service can be connected with one another in the tool chain. For example, 

the tokeniser from the OpenNLP project annotates the text corpus with tokens only while different 

PoS taggers additionally require an XML section for sentences. When a specific language 

parameter for a text corpus should be defined, the problem is that not every service supports 

that language. Due to these restrictions, all the dependencies of services among one another 

have to be considered. 

In order to implement a RapidMiner operator that is easily manageable and allows adjustments in 

the case of future changes of any of the WebLicht services, or allows adding new WebLicht 

services, it is desirable to establish a configurable tool chain that has the following properties: 

 Flexibility: Allow to easily modify the configuration of a WebLicht service  

 Scalability: Add or remove a tool (in a tool category4) that is added/removed in the tool 

chain 

 Adjustments: Easily change any parameter of the service: URL, in-/output features, 

supported languages, and more 

 Syntactical correctness: Using XML & XSD allows to ensure a correct configuration setup 

 

One possible way to provide a flexible setup is achieved with an XML configuration file [XML].  

Furthermore, by defining an own XML Scheme Definition [XSD] (listed in Appendix A.1.3) it is 

ensured that the elements and attributes of the configuration XML remain syntactically correct so 

that a configuration loader can properly read the necessary information from each service.  

 

How the different service parameters are incorporated into the XML configuration is presented in 

the next section.  

 

                                            
4 Due to programmatic limitations in the implementation of the RapidMiner operator we have to restrict the 

flexibility of the configuration to the set of known tool categories. 
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2.5.2 XML Configuration of the WebLicht tool chain 

According to the properties view that is given along with each service in the web environment of 

WebLicht, the following service properties are mapped into single XML elements:  

 Creator 

 Contact (email address) 

 Description 

 Input features 

 Output features 

 PID (basically, a service ID registered at WebLicht) 

 URL (server address in the WWW) 

 

Based on the XML Scheme Definition in the Appendix A.1.3, an XML structure allows to configure 

a specific tool. In List 2-3 the exemplary configuration of the "IMS PoS tagger" from the 

University of Stuttgart is shown: 

<tool_group category="pos-tagger"> 

 <tool id="1"> … </tool> 

 <tool id="2"> 

  <creator>IMS: University of Stuttgart</creator> 

  <contact>clarin@ims.uni-stuttgart.de</contact> 

  <description lang="en">[IMS] PoS TreeTagger(2008): Italian, English, French, 
    and German part-of-speech tagger and lemmatiser 

  </description> 

  <input_features lang="it,en,fr,de" mime_type="text/tcf+xml"    
    type_description="tokens" version="0.4" /> 

  <output_features lang="" mime_type="" postags.tagset="stts"   
     type_description="lemmas, POStags" version="" /> 

  <pid>http://hdl.handle.net/11858/00-247C-0000-0007-3739-5</pid> 

  <url>http://clarin05.ims.uni-stuttgart.de/treetagger2008</url> 

  <url_params></url_params> 

 </tool> 

 <tool id="3"> … </tool> 
</tool_group> 

List 2-3: An extract of the XML configuration for a WebLicht service that is available in the tool chain 

 

The only attribute in the element description defines the language that is used for the description 

text of the given service. The input_features and output_features only contain XML attributes 

that define the language ("lang"), the MIME type ("mime_type") and the linguistic features 

("type_description") accepted and returned by the service.  In the case of a PoS-tagger tool, 

the element output_features specifically contains the attribute "postags.tagset". This information 

is later on used during the visualization of linguistic features (Chapter 3). Lastly, the XML element 

url_params is a placeholder for parameters that can additionally be appended to the URL used 

in an HTTP request to the WebLicht service. Other service categories have similar XML sections. 

The full XML configuration is listed in the Appendix A.1.4.     
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2.5.3 Implementing the WebLicht connector 

In order to let the 'WebLicht Feature Annotator' communicate with WebLicht services that are 

selected in the tool chain, a "WebLicht connector" is implemented that sends HTTP requests to a 

service in a simple way. For this purpose, the RESTful services JAX-RS 2.0 [JAX-RS] provides 

a comfortable application programming interface (API). This framework is included in the JAX-

RPC API which is part of the Java Platform since Java Enterprise Edition 5 [JAX-RPC]. In Code 

Snippet 2-1 the implementation of a straightforward connection setup is listed: 

final ServiceTool serviceTool = webLichtServices.getServiceTool(toolCategory, toolID); // (1) 

final Client client = ClientBuilder.newClient(configuration); // (2) 

WebTarget target = client.target( "http://" + 

         serviceTool.getHost() + ":" +  

         serviceTool.getPort() ).path( serviceTool.getPath() ); // (3) 

 

for ( Entry<String, String> param : serviceTool.getUrlParams().entrySet() ) // (4) 

 target = target.queryParam(param.getKey(), param.getValue()); // (5) 

        

Entity<String> uploadEntity = Entity.entity( inputDocument.getText(),"text/tcf+xml"); // (6) 

Response response = target.request("text/tcf+xml").post(uploadEntity); // (7) 

 

String responseText = response.readEntity(String.class); // (8) 

Document returnDoc = new Document(responseText); // (9) 

Code Snippet 2-1: Connection setup of the 'WebLicht Feature Annotator' which allows 
uploading content to a WebLicht service and receiving a response. 

 

The Code Snippet 2-1 demonstrates the steps of a HTTP POST communication with a WebLicht 

service: In the first step (1), the tool with a specific category and identifier is fetched from the list 

of available tools (previously loaded from the configuration XML). Then, an instance of the JAX-

RS specific class Client is created (2) which is used to build and execute client requests and 

which consumes responses from a WebLicht service. In (3) a WebTarget object is created 

which targets a WebLicht service by a specified URL (composed of the parts host address, 

access port and the local path under which the service can be found on the destination server). 

The current serviceTool accesses all the required information (which are read from the XML 

configuration) via the methods getHost(), getPort() and getPath(). With getUrlParams() in (4) 

service specific parameters  like "?language=de" are obtained. With queryParam() in (5) pairs 

of keys and values of each parameter are appended to the URL  (several key-value-pairs are 

separated by "&"). 

In (6) the input document is prepared for sending. This is done via Entity.entity(…) where the 

input text is passed as the first parameter, and the MIME type as the second parameter. With 

target.request(…).post( uploadEntity ) not only the entity is sent to the destination service, but 

also a Response object is created that silently waits for a response from the service (7). Via 

target.request("text/tcf+xml") the MIME types 'TCF' and 'XML' are defined that the client is 

allowed to receive. On a service response in (8) the client reads the received entity via 
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response.readEntity() and stores the saved string into a new document that now contains the 

annotated text corpus (9). 

2.5.4 Compatible WebLicht services in the tool chain 

Based on the parameters of each service that a configuration loader reads in from the XML 

configuration file (Section 2.5.2), the 'WebLicht Feature Annotator' operator determines 

allowable tool chain combinations. The list of valid combinations is presented in the following 

Figure 2-9: 

Figure 2-9: Combinations of supported tool chains 
 

As shown in Figure 2-9, the tool chains (mentioned in Section 2.5.1) are divided into the 

language parameter 'English' and 'German'. Services that support other languages can be 

added, and the configuration actually integrates services to process French and Italian texts, as 

well (for brevity these are not shown in Figure 2-9).   

 

By defining the language parameter for the input text corpus, the operator determines the 

available tool chains together with the list of valid tools that support the chosen language.  

Then, in the parameters of this operator (see Appendix A.1.2) tool lists of specific categories 

(converter, tokeniser, lemmatizer, PoS tagger, and parser) contain available services. Since 

these lists never contain tools that are not supported, a RapidMiner user can only choose valid 

combinations to form a tool chain5. For instance, by setting the language parameter to English 

and choosing the first tool chain "ConverterTokeniserLemmatiser" (first column in Figure 2-9) 

the list of converters only consists of C2. Figure 2-9 represents this by hiding C1. 

Regarding tokenisers in the last four columns in Figure 2-9, the tokeniser from the OpenNLP 

project does not deliver sentences as its output feature, but PoS-taggers depend on this feature. 

Therefore, the user may only choose from services T2 - T3. 

                                            
5 The set of services shown in Figure 2-9 does not match with those in Table 2-3 since (at the time of writing) few 

services are declared as "in development" and thus not suitable for productive use. 
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As mentioned in section (2.5.1), the implemented 'WebLicht Feature Annotator' includes a 

dependency mechanism to check if the required input features of a selected service are 

provided by previous tools in the chain. The dependency mechanism is realised by the specific 

method "checkToolCompatibility()" as shown in the class diagram in Appendix A.1.5. It checks if 

the input features of a selected service are contained in the set of output features that have 

been collected in the tool chain so far.  

One shortcoming is that both dependency parsers offered by WebLicht do not support analyzing 

English text corpora (second last column in Figure 2-9). This, may change in the future if such a 

parser is added to the repository of tools in WebLicht. 

Overall, the implementation of the 'WebLicht Feature Annotator' appears justified as the benefits 

of the tool chain outweigh the single disadvantage of a (currently) lacking dependency parser for 

English texts: 

 The RapidMiner user / linguistic researcher has the possibility to quickly replace tools 

that deliver unsatisfactory results. For example, each Weblicht service may annotate a 

text corpus with features differently since it has been trained on a specific text corpora 

or makes use of different detection mechanisms. This is the case for tokenisers that 

have named entity recognizers included, and as such may return different recognized 

named entities for the same tokens. Another example is where two constituency 

parsers deliver different results in the case of structural ambiguous sentences as shown 

in Figure 2-2.  

 The flexibility of the tool chain allows the user to easily try out different combinations 

of services while the implementation ensures the validity and correctness of the chosen 

tool chain. 

 The configuration is straightforward to manage and allows adding, editing or 

removing of WebLicht services. 

The detailed documentation to the 'WebLicht Feature Annotator' operator is given in the 

Appendix A.1. 
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2.6 Extraction of linguistic features in RapidMiner 

2.6.1 Motivation for implementing a parser for annotated text corpora 

The developers of WebLicht at the University of Tübingen provide a library that contains a TCF 

parser [TCF0.3Parser]. However, the parser is incompatible with the XML corpora delivered by 

the WebLicht services as it only accepts input in TCF version 0.3 (specification 2009) while the 

WebLicht services produce XML corpora in TCF version 0.4 (specification 2011) [TCFSpec]. If 

the version were intentionally changed from 0.3 to 0.4 for all input text corpora, this would result 

in an unknown number of exceptions in which the provided parsers could not properly recognize 

specific XML content. 

Due to the above reason and for easier adaptability in the future, a parser is implemented in 

order to read all the different XML elements, attributes and data contents that may occur in an 

annotated text corpus. For processing of XML content the implementation makes use of JAXP, 

the Java API for XML processing, which is a standard component in many Java development 

kits [JAXP].  

2.6.2 Parsing linguistic features from annotated text corpora 

After an annotated text corpus has been received, a process is required that extracts and 

outputs linguistic features for further use in RapidMiner. More precisely, an XML parser is 

implemented and integrated into the 'WebLicht TCF to ExampleSet' operator (see Appendix A.2) 

that properly detects the relevant sections in the XML structures of a given text corpus. 

Afterwards, the operator places the features of each type into distinct columns of a new 

ExampleSet6
. Figure 2-10 depicts the involved input and output of this operator:   

 

                                            
6 An ExampleSet is the most frequently used data structure in RapidMiner and allows the user to forward 
data to various operators for further processing. 

Figure 2-10: The extraction process of linguistic features from a text corpus 
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As shown in Figure 2-10, the original text is not forwarded to the output ExampleSet, but instead 

the sentences         are placed one after the other in the column "Sentence". Flat features 

associated with each sentence are placed in the columns "Tokens", "Lemmas" and "PosTags". 

The label of the column "PoS-tags" additionally carries the information which tagset the PoS-tags 

belong to. Note that features are always stored as strings in the cells of the ExampleSet. 

If a text corpus contains parse trees, the parser detects the type of the trees. The trees are then 

transformed into string representations that use the bracket notation as described in Section 

2.2.6. In the following course of this work, the term 'tree string' refers to this representation.  The 

encoded tree strings               are then placed in the column "Tree string" in the 

corresponding order of the sentences given in the first column.  

While the parser performs the feature extraction from corresponding XML sections in the corpus 

(Section 2.6.3), it is important to take into account that WebLicht services may occasionally 

return incomplete sets of features. This problem occurs when a requested service is unable to 

properly analyze a specific sentence. Unfortunately, in this situation the service denies to further 

process the remaining sentences and only delivers the partial set of features according to the 

initial sentences that were properly parsed so far.  

Since it is desirable to associate tokens, lemmas or PoS-tags with each according sentence, the 

parser deals with incomplete feature sets by processing each feature type independently. The 

parsing process is proceeded on the following assumptions: 

1. The selected tool chain contains a tokeniser. Since tokenization usually involves no 

complex analytical processing (as no text corpora with Asian language is processed), 

and therefore each chosen tokeniser service is robust enough to provide a full list of 

tokens that occur in the given text corpus. 

2. The selected tokeniser annotates the corpus with a section for sentences. 

In the exceptional case where the parser notices a partial set of a distinct feature type (lemmas, 

PoS-tags, parse trees) the highest token ID   in the text corpus is determined. Then, only the first 

  features are associated with the corresponding sentences, and the last    –     entries of the 

corresponding feature type remain empty. With these circumstances at hand, the parser is 

implemented with the following properties: 

 Preserve the order of features as occurring in the XML text corpus 

 Flexible parsing: Only parse existing feature sections in the XML text corpus, and produce 

the output columns in the ExampleSet accordingly 

 Robustness: Continue the parsing process despite errors in the XML text corpus like 

missing XML elements or different naming conventions 

 Readability: Encode parse trees via string bracket notation 

 Enrich parse trees: If parse trees are contained in the XML text corpus, add columns in 

the ExampleSet for each existing flat feature type (tokens, lemmas, PoS-tags). Then in 
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each column add a list of features as they would occur in the parse tree when 

performing a pre-order traversal of that parse tree. 

The visualization operator for parse trees makes use of the last property (see Section 3.5). 

Since parse trees only contain tags from a specific tagset it is desirable to visualize tokens and 

lemmas in the nodes, as well. By simply traversing each parse tree in pre-order the parser can 

match each tag with the corresponding token or lemma (if existing7) and appends the token or 

lemma to a 'tree string (tokens)', or 'tree string (lemmas)' respectively. The pre-order traversal 

is a recursive method that is defined as follows [treeTraversal]: 

1. Read the data of the root element of the current tree 

(or subtree)  

2. traverse to the left subtree by recursively calling the 

pre-order method 

3. traverse the right subtree by recursively calling the 

pre-order method.  

Figure 2-11 depicts an exemplary tree whose pre-order 

traversal is given by: F, B, A, D, C, E, G, I, H. Appending 

the data in the visited nodes to a 'tree string' yields:  

                            

 

By matching the tokens, lemmas or PoS-tags according to the tags in each leaf of the parse 

tree, the parser produces the tree strings according to Figure 2-11 in the following way: 

TreeString:                          

Tokens (Tree):                                        

Lemmas (Tree):                                        

PoS-tags (Tree):                                              

 

2.6.3 Feature extraction from XML sections in the TCF document 

The following list briefly describes the parsing of different XML sections in an text corpus that has 

been annotated with various features. Since not all WebLicht services follow the TCF 0.4 

specification [TCFSpec], different cases are considered in which the implemented parser takes 

special care in order to properly extract annotated features: 

1. Tokens (a mandatory section in the input text corpus): 

<tc:tokens xmlns:tc="http://www.dspin.de/data/textcorpus" charOffsets="true"> 
   <tc:token end="3" start="0" ID="t_0">The</tc:token> 

                                            
7 An unmatched tag in the parse tree results in an empty string.  

Figure 2-11: Pre-order traversal 
of an exemplary tree 
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   … 
</tc:tokens> 

By searching for an XML element that contains "tokens" the parser can find the token 

section. Because not every WebLicht service follows the same naming convention 

prepended strings like "tc:" are ignored. When the section is found, simply one token 

after the other is parsed and stored in an internal list.  

 

2. Sentences (a mandatory section in the input text corpus):  

<tc:sentences> 

   <tc:sentence tokenIDs="t_0 t_1 ..."/> 

   ... 

 </tc:sentences> 

 

This sentence section is added by every tokeniser service in the tool chain (with the 

exception of the tokeniser from the OpenNLP project). By parsing the attribute 

"tokenIDs" the parser is able to associate a set of tokens to the appropriate sentence. 

XML data has to be parsed carefully as WebLicht services use different naming and 

numbering conventions. Some services start the list of "tokenIDs" with "t0", while other 

services start it with "t_1". Since all features like lemmas or PoS-tags carry a reference 

to the tokenID all features can be associated with the according sentence. 

 

3. PoS-tags (an optional section in the input text corpus): 

<tc:POStags tagset="STTS"> 

   <tc:tag tokenIDs="t_0">ART</tc:tag> 
   … 

</tc:POStags> 

 

While scanning for "POStags", the parser additionally reads the attribute "tagset" 

indicating the tagset of the given PoS-tags. Again, special care needs to be taken during 

the parsing: For example, when indicating sentence punctuation, some services prepend 

"$" or "\$" to the tag and other services, however, return them directly as is.  

 

4. Lemmas (an optional section in the input text corpus): 

<tc:lemmas> 

   <tc:lemma ID="l_0" tokenIDs="t_0">the</tc:lemma> 

</tc:lemmas> 

 

5. Constituency parse trees (an optional section in the input text corpus): 

<tc:parsing tagset="tuebadztb"><parse> 
 <constituent cat="VROOT" ID="c_56"> 

  <constituent tokenIDs="t_1" cat="ART" ID="c_1"></constituent> 

  ... 
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 </constituent> 

</parse> 
   ... 

</parsing> 

 

The section for constituency parse trees usually starts with an XML element "tc:parsing". 

Because some services omit the leading "tc:" or use a different naming scheme, the 

parser only searches for "parsing" in order to find this section. 

The constituents in each sentence are enclosed by a pair of "<parse> </parse>" 

elements. The parser inherits the tree structure by following the constituents nested within 

other constituents in a pre-order traversal. A leaf is simply represented by a pair of 

opening and closing "constituent" tags without having any content in between. Siblings 

on the same level of the tree are represented by placing the "constituent" elements one 

after another.   

 

6. Dependency parse trees (an optional section in the input text corpus): 

<ns3:depparsing emptytoks="false" multigovs="false" tagset="tiger"> 

   <ns3:parse> 

      <ns3:dependency govIDs="t_2" depIDs="t_0" func="MO"/> 

      <ns3:dependency govIDs="t_0" depIDs="t_1" func="NK"/> 

      <ns3:dependency depIDs="t_2" func="ROOT"/> 

      <ns3:dependency govIDs="t_4" depIDs="t_3" func="NK"/> 

   </ns3:parse> 
   ... 

</ns3:depparsing> 

 

The section for dependency parse trees is recognized by an XML element that contains 

"depparsing". Again, some services omit the leading "nc:" or make use of a different 

naming scheme. In the same way as for constituency parse trees, each sentence is 

enclosed by a pair of opening and closing "parse" elements. The parser follows the tree 

structure by starting from the dependency whose attribute "func" has the value "ROOT".  

Then, the depending ID "depIDs" indicates the child element in the tree one level below. 

The dependent elements can be found by examining the values of the attribute "govID". 

While parsing down the tree, the attribute "func" of each element carries a PoS tag or 

grammar related tag (depending on the used tagset of the WebLicht service) and is 

determined by the parser. 
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2.7 Discussing linguistic features in the context of a hypothetical 

task 

This section deals with the idea of detecting metaphors in sentences according to the types of 

linguistic features that can be obtained from the 'WebLicht Feature Annotator'. 

2.7.1 Definition of a metaphor 

A metaphor is a figure of speech in which an implied comparison is made between two unlike 

things that in fact have something in common. According to the simple model by [Richards] a 

metaphor consists of an unfamiliar part (tenor) and a familiar part (vehicle). The tenor is the 

subject to which attributes are ascribed while the vehicle is the object to which these attributes 

are borrowed. In the German sentence "Der Mann ist ein Schrank" which translates to "the man 

is a cupboard" the tenor is "Mann" and the vehicle is "Schrank". Further examples are: "He is a 

walking dictionary" or "The ballerina was a swan, gliding across the stage". 

For the discussion in the next section let us only consider metaphors of the above simple model 

where both tenor and vehicle only consist of nouns. Other metaphorical expressions use a wide 

range of possibilities to combine nouns with verbal phrases or particles which in turn would be 

far more difficult to analyze. Another condition that should be excluded is when the tenor is 

omitted since the speaker assumes that the recipient concludes the tenor from the given context. 

Furthermore, metaphors need to be distinguished between creative and dead ones: On one 

hand, creative metaphors are essentially of innovative nature either because they occur very 

rarely (e.g. "reshuffle the deckchairs on the Titanic") or in specific contexts (e.g. "Pyrrhic victory") 

or they have found their way in language use at some time (e.g. "to google").  

On the other hand, dead metaphors subsume two types: In the first type the sense of a 

transferred image is absent, like in the German verb "begreifen" which means "to understand" 

where the physical action is used as a metaphor for understanding. Such metaphors are no 

more visualized, and usually go unnoticed. The second type of metaphors have such a high 

frequency in linguistic usage that they have been lexicalized (e.g. the German noun "Fundgrube" 

which translates to "bonanza").  

The distinction between creative and dead metaphors is usually achieved by dictionaries 

containing a large set of dead metaphors so that these can simply filtered out from a given text 

corpus.  

2.7.2 Discussing linguistic features for pattern detection 

In the context of the processing pipeline for a classification task (Figure 1-1), the following Figure 

2-12 depicts how linguistic features are obtained right at the start, then transform them in a 

processing step, and finally forward them to a machine learning method in order to perform a 

pattern detection. Generally, these steps also resemble a typical data mining task that bridges 

computational linguistics with machine learning in an interdisciplinary manner:  
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Figure 2-12: An interdisciplinary perspective on an exemplary data mining task 

 

With different types of linguistic features at hand (Figure 2-12, center box), first it is unclear which 

feature type or combination of feature types is most applicable for a given NLP task like the 

exemplary idea of detecting metaphors. The following Table 2-5 demonstrates the case where 

parts-of-speech tags are considered alone, in the attempt of finding patterns that correspond to 

a possible metaphor in a sentence:  

Example Sequence of PoS-tags interesting PoS-tags Metaphor? 

Der Mann ist groß 
This man is tall 

ART NN VAFIN ADJD NN ADJD no 

Der Mann ist Lehrer 
Wolfgang is (a) teacher 

ART NN VAFIN NN ART NN NN no 

Der Mann ist ein Schrank 
This man is a cupboard 

ART NN VAFIN ART NN ART NN ART NN yes 

Julia war ein Schwan 
Julia was a swan 

NE VAFIN ART NN NE ART NN yes 

Table 2-5: A set of examples with sequences of PoS-tags; the tags are taken from the 

"Stuttgart-Tübingen Tagset" (STTS); the translations are given in the second lines 

 

 

The column with "interesting PoS-tags" shows possible subsets of part-of-speech tags that are 

considered relevant in the given sentences. The last two sentences contain metaphors and show 

that the tenor ("Der Mann", "Wolfgang", "Julia") either is a common noun (NN) or a named entity 

(NE), and that the vehicle of the metaphor is tagged with NN or NE, as well. Concerning the 

German language, the vehicle of a metaphor often appears in combination with an article (ART). 

In order to decide whether a sentence contains a metaphor or not, first of all an exemplary case 

is required that provides a distinct set of features with an unambiguous pattern. In terms of 

machine learning, this detection task resembles a binary classification problem in which a given 

set of training data needs to be separated in two classes. In order to perform a machine 

learning, we need to know if a specific set of features exists such that a decision rule can 

unambiguously decide to which class a given sentence belongs. If such a set exists, a decision 

rule could be learned and later on a classification could be performed on unseen data. 
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Let us consider n-grams comprised of sequences of parts-of-speech tags (with n=5):  

Example 2-3: Sequence of n-grams with n=5; the blue coloring indicates the subject or the tenor 
of a metaphor. The orange coloring indicates the object phrase or the vehicle of a metaphor. 

 

In Example 2-3 the only difference between the n-grams is  given by the tags 'NN' (for "Lehrer") 

and 'ART NN' (for "ein Schrank"). Another factor we have to take into account are tokens that 

are not related to a metaphorical expression. These tokens potentially feature arbitrary PoS-tags, 

and potentially add more ambiguous cases which further permits any clear distinction. 

Another example is given below to demonstrate a shortcoming of n-gram features due to their 

fix length. Since sentences are usually arbitrary long, interesting words can potentially have 

arbitrary words in between. For example, by choosing n=4 the second sentence yields two 

combinations of 4-grams: 

Example 2-4: Sequence of 4-grams; the second sentence yields two 4-grams of PoS-tags. 

 

By comparing the 4-grams of the first sentence and the first sequence of the second sentence, 

a difference is obtained in the tags 'NN' (vehicle) and 'ART'. However, this does not give any 

clue at all. When we compare the n-gram of the first sentence with the second sequence of PoS-

tags, we obtain the matching tags 'ART NN' (tenor) from the first example and 'ART NN' 

(vehicle) from the second sequence, although we want to compare 'NN' (vehicle) with 'ART NN' 

(vehicle). This problem would additionally require to determine correct start positions of 

interesting PoS-tag sequence in order to compare only relevant pairs of PoS-tags. 

Considering the first sentence, there are no rules in German that define when to add or omit an 

indefinite article (like "ein") to a common noun. Both in written and colloquial language the 

difference is sensed very subtly. Thus, the first sentence could equally be written as: 

Example 2-5 proves that PoS-tags alone are not suitable for an unambiguous distinction 

between sentences. Furthermore, if structural features like constituency parse trees (Section 

2.2.5) are considered, we could determine the proper tag for each constituent that forms a 

1. Der Mann ist Lehrer   
                  
                 ART NN VAFIN NN (no metaphor) 

2. Der Mann ist ein Schrank  
                  
                  ART NN VAFIN ART NN  (metaphor) 

1. Der Mann ist Lehrer   
                                        
                   ART NN VAFIN NN 

2. Der Mann ist ein   
                       
                     ART NN VAFIN ART 

         Mann ist ein Schrank  
                      
                            NN VAFIN ART NN 

1. Der Mann ist ein Lehrer  
                      
                  ART NN VAFIN ART NN (no metaphor) 

2. Der Mann ist ein Schrank  
                      
                   ART NN VAFIN ART NN  (metaphor) 

Example 2-5: Variation of Example 2-3 with an indefinite article added to the common noun in the first sentence. 
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subject or object phrase, and still end up in ambiguous cases. This leads to the conclusion that 

no feature type, that has been presented so far, would allow a proper binary classification.  

However, the following concept may offer an approach to examine and decide ambiguous 

cases: First, we determine pairs of "candidate" tokens that possibly form a metaphorical 

expression. This can be achieved by only searching for pairs of their corresponding PoS-tags. If 

we constrain sentences with metaphors to only be made up of nouns or named entities in the 

subject and object phrases, we could simply search for pairs of 'NN' or 'NE' tags. 

In the given example above, the tag 'NN' refers to the token "Mann" and the 'NN' tags to the 

tokens "Lehrer" and "Schrank". In the next step, a word sense disambiguation tool could 

retrieve the senses to each corresponding tokens. 

The basic idea is as follows: If the sense of one of the "candidate tokens" is not related to the 

semantic field8 of the other token then the given pair of tokens are likely to form a metaphorical 

expression. 

Figure 2-13 shows an exemplary semantic 

field of the word "purple". In linguistics, a 

specific term (here "purple") whose 

semantic field is included within the semantic 

field of another more general term ("color"), 

is called a hyponym. Respectively, the 

semantic field of a hypernym subsumes 

instances of more specific terms ("purple" , "red", and so on). Terms on the same level in the 

field are called co-hypernyms.   

Regarding the distinction between the sentences from Example 2-3 a word sense 

disambiguation tool could provide the following senses (given in brackets after the PoS-tags): 

Example 2-6: The exemplary sentences are now annotated with PoS-tags and their word senses. 
These senses can then be compared regarding their semantic fields. 

 

With this detection concept, the second sentence in Example 2-6 could be unambiguously 

classified as a metaphorical expression since the term "person" for the token "Mann" does not 

share the same semantic  field with the term "object" for the token "Schrank". 

                                            
8 A semantic field is a set of words grouped by a meaning that is referred to a specific subject [Jackson et al.]. From 

an intuitive point of view, words in a semantic field are not simply synonyms, but rather are possible words that 

describe the same general phenomenon [Akmajian et al.]. Furthermore, the sense of a word is partly depending on its 

relation to other words in the same conceptual area [Hintikka]. 

1. Der Mann ist Lehrer   
                      
                  NN (person) NN (job) 

2. Der Mann ist ein Schrank  
                      
                   NN(person) NN (object) 

Figure 2-13: An exemplary semantic field of the term "purple" 
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Chapter 3  

 

Feature Visualization 

This chapter deals with the visualization of structural features extracted by the "WebLicht TCF to 

ExampleSet" operator (Section 2.6). A commonly used representation for linguistic structures is 

the tree graph, also referred to as tree bank. As already described in previous chapters these 

tree banks mainly come in two types: Constituency trees that display hierarchies of phrases 

(Section 2.2.5) and dependency trees that represent relations by drawing lines between 

dependencies within a text corpus (Section 2.2.6). 

Before different concepts for tidy tree drawing are presented, various definitions of graphs and 

trees are give in Section 3.1. Afterwards, Section 3.2 describes the representation of relational 

data used to describe parse trees. According to [Battista], the drawing of a graph in a pleasing 

and tidy way can be divided into the categories of drawing convention (Section 3.3.1), aesthetic 

standards, and the constraints on aesthetics in a drawing (Section 3.3.2). Following these 

constraints, two different drawing algorithms are presented in Section 3.4: First, the  "Layered-

Tree-Draw" algorithm that constructs tidy tree layouts (Section 3.4.1). However, because this 

algorithm does not produce tree layouts with minimal breadth, the drawing algorithm proposed 

by Reingold & Tilford is shown Section 3.4.2. Finally, Section 3.5 presents the implemented 

visualization operator that provides visual insights into structural relations of parse trees. 

3.1 Terminology of graphs and trees 

This section contains the most relevant definitions of graphs and trees that are used later on. We 

start with the general type of a graph         which consists of a finite set    of vertices and 

a finite set    of edges consisting of unordered pairs of vertices. A vertex is often called node, 

and the terms arc, link, or connection are used instead of edge. The end-vertices of an edge 

          are the vertices   and  . These nodes are also called adjacent to each other and 

the edge   is incident to   and  . The neighbors of   are its adjacent vertices. The degree of   

is the number of its neighbors. An edge       with     is a self-loop. Furthermore, an edge 

that is contained more than once in   is called a multiple edge. A simple graph does not contain 

any self-loops and no multiple edges. 

A directed graph (digraph) is defined similarly to a graph. The only exception is that the set of 

edges  , called directed edges, contain ordered pairs of vertices. A directed edge       is 

defined by an outgoing edge of   and an incoming edge of  . Usually a directed edge is drawn 

as an arrow. Vertices without outgoing edges are called sinks. Respectively, vertices without 

incoming edges are called sources.  
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A (directed) path in a (directed) graph         is a sequence              of distinct 

vertices of  , such that             for        .  A path is a cycle if          . In 

this context, a graph in which any two vertices are connected by exactly one path is called 

acyclic.  

A tree is a connected acyclic (and thus simple) graph. Furthermore, a tree is called a rooted 

tree if one vertex has been designated as the root. Commonly, a tree is considered as a 

directed graph while all edges are oriented away from the root. One property of a rooted tree is 

that the            of any vertex    lies on the path            to the root      . Furthermore, 

every vertex          has a unique parent. A rooted tree in which each vertex has at most   

children is also referred to as n-ary tree. In the case of two children the tree is called binary tree. 

Vertices that have no children at all are called leaves. 

A graph            with      and              is called a subgraph of        . 

Respectively, a subtree    rooted at vertex           consists of the subgraph induced by 

all vertices on paths originating from  , with            . The depth of a vertex   of a tree   

is defined by the number of edges that lead on a path from         to  . The height of   is the 

maximum depth of a vertex of T. 

We call an edge       of a digraph transitive if a directed path from   to   exists while 

       . The transitive closure    of a digraph   has an edge       for every path from   to 

  in  .  

Next, we define the term drawing: A drawing   of a graph (digraph)   is a function that maps 

each vertex     to a distinct point     . Every edge       is mapped to a so called simple 

open Jordan curve, with endpoints      and      [Battista, JordanCurve]. Furthermore, we call 

  planar if no two Jordan curves intersect. Thus, a graph is planar if it admits a planar drawing. 

 

3.2 Modeling relational structures of parse trees 

In order to express parse trees of annotated text corpora (Sections 2.2.5 and 2.2.6) an 

appropriate model is required that represents these trees. A parse tree is given as a relational 

structure which consists of entities and the relationship between them. These entities are linguistic 

units like words (in a dependency parse trees) or constituents (in a constituency parse tree).   

Modeling relational structures as trees can be done in many ways. The representation of an 

entity is usually a vertex (drawn as points or boxes), while the relationship between two entities 

is visualized by an edge (drawn as straight or curved lines) that connects the associated 

vertices. 
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One way to describe parse trees is by using the list notation9 with list entries    of edges that 

are incident to vertex   for each    . The following Table 3-1 shows an exemplary tree   

(which is the parse tree shown Figure 3-4 below):  

   (1,2) 

   (2,3), (2,4), (2,5) 

   (3,6), (3,7), (3,8), (3,9) 

   (4,10), (4,11) 

    (11,12), (11,13) 

    (13,14), (13,15), (13,16) 

Table 3-1: The list notation of an exemplary tree   

 

A more compact description of a graph is a     adjacency matrix   whose columns and 

rows correspond to   vertices, with       if         and       otherwise: 

 1 2 … 13 14 15 16 

1 0 1 … 0 0 0 0 

2 1 0 … 0 0 0 0 

… … … 0 … … … … 

13 0 0 … 0 1 1 1 

14 0 0 … 1 0 0 0 

15 0 0 … 1 0 0 0 

16 0 0 … 1 0 0 0 

Table 3-2: The adjacency matrix of an exemplary graph  ; the entries 

      indicate that the vertex     has no self-loop. 

With the set of relational data at hand, we can now deal with drawing trees according to some 

specific drawing conventions, as defined in the next section. 

3.3 Tree drawing 

3.3.1 Drawing conventions 

A drawing convention is a basic constraint of geometrical representations of nodes and edges. 

For example, in flow diagrams (Figure 2-8), vertices are drawn as boxes and edges as 

orthogonal chains consisting of horizontal and vertical lines. Drawing conventions vary depending 

on the field of application and thus involve many different details of the drawing. This section 

outlines a few central conventions for the visualization of parse trees. 

Representations of vertices include boxes, circles, diamonds, parallelograms, ellipses, or filled 

dots (thicker than the edge lines). For our purposes vertices are drawn as boxes so that labels 

can be placed within. However, instead of displaying a simple label, this box can be used to 

place extracted features of the parse tree. 

                                            
9 The WebLicht parsers make use of list notation in the XML structures of the annotated text corpus, as 
shown in 0, 5) and 6) 
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Since all tags in a parse tree carry a reference to the token ID, all flat 

features can be matched with the corresponding nodes in the parse 

tree. As shown in Figure 3-1, each node can display a PoS tag, token 

and lemma if a match is found and the feature type has been 

annotated in the text corpus. The ID is additionally displayed in order 

to track the alphabetical order of tokens.   

 

 

  

 

Common conventions for drawing edges include orthogonal, straight or bent lines. Straight lines 

or lines with a sharp bent are preferred in order to achieve parallel lines. 

Along with conventions for edges and vertices, different options are available to arrange the 

elements of a tree in a two dimensional space. In graph drawing theory, a graphical construction 

is a grid if the relations between all elements are expressed by the same graphical component in 

a two dimensional plane [Bertin]. The following Figure 3-2 presents a set of grid conventions that 

use different notation types for the edges and vertices, and arrange the grid onto an ordered 

field:  

 

Figure 3-2: Grid types for trees with different ways to draw components and connections. 

 

When visualizing trees according to the grid types (2) and (4), it would become difficult to 

visually grasp its relational structures if a tree contains a large number of hierarchies. For our 

purposes trees are drawn according to the common and visually comprehensible grid type (1). 

 

3.3.2 Aesthetics and constraints of a tree drawing 

A major factor that influences the usefulness of a drawn tree is its readability. Although all 

possible drawings contain the same information, the conveyance of the relational structures can 

be very different and strongly depends on the following properties of a drawing [Battista]: 

 Bends 

 Crossings (planarity) 

 Positioning of vertices 

 Edge Length 

 Symmetry 

 Area 

 

Regarding the aesthetics bends and crossings it is desirable to produce drawings with as fewest 

bends and crossings as possible so that the readability of a tree is increased [Bhanji et al., 

Purchase et. al]. Additionally, these are directly influenced by the positioning of the vertices, as 

Figure 3-1: 
The implemented 

representation of a 
vertex in parse trees 
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demonstrated in Figure 3-3 below. Here, the drawing is a constituency parse tree of the 

processed sentence "The quick brown fox jumps over the lazy dog.". To emphasize the impact 

of the positioning of the vertices, Figure 3-3 shows the transitive closure of the tree         

with   being the extracted constituents and   the relations between them:  

 

Figure 3-3: An exemplary tree   with a very low readability 

 

The numerous overlapping edges and crossings make it impossible to comprehend the relational 

structures of the parsed tree. On the opposite, Figure 3-4 presents the reduced graph    (the 

transitive reduction of  ) with a high readability: 

 

Figure 3-4: The reduced tree    of   with a high readability 

 

The tree   is drawn in such a way that the leaves are placed on the lowest line 

and the internal vertices with a specific depth are arranged on the same height in the drawing. 

The parallel edges are achieved by placing bends in between the edges (on the same x-

coordinate as the node below) and preferably on the same height in order to achieve a 

maximum display of symmetry. This aesthetics is, as we see, directly influenced by positioning 

vertices and bends on the same height, by using as many parallel edges as possible, and 

furthermore by creating isomorphic subtrees that have the same drawing.  
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Regarding the aesthetics area, it is of utmost importance that a spatial layout is produced that 

covers an area with minimal breadth. Since parse trees can be very large, a drawing should 

not waste space on a computer screen (or printed medium) so that it is still viewable. 

With all the central aesthetic criteria at hand, the following parameters for a multi-objective 

optimization problem can be formalized in order to produce a tree drawing with a maximum 

readability: 

 minimization of the number of crossings 

 minimization of the number of bends of edges 

 minimization of the number of different gradients 

 minimization of the covered surface 

 maximization of displaying symmetries 

Generally, drawing algorithms for graphs cannot satisfy all constraints, and thus deliver trade-off 

solutions [Battista]. However, since we deal with trees, an optimum can be achieved regarding 

all optimization objectives due to a specific drawing algorithm introduced below (Section 3.4.2).  

 

3.4 Drawing algorithms for parse trees 

This section introduces specialized algorithms that are suitable to produce tidy drawings of parse 

trees received from WebLicht. A natural way of visualizing these rooted trees is by constructing 

downward planar drawings. 

In the first step of a drawing process a layer assignment is performed in which each vertex of a 

tree   is assigned to a layer              such that an edge       with      and      

goes from layer    to a layer    below, with    .  

In the general case of acyclic graphs, the goals during the layer assignment are to 

simultaneously produce a small number of layers, as few edges as possible that span large 

numbers of layers, and a balanced assignment of vertices to layers [Battista].  

In the case of trees the layer assignment is simple: The number of layers is given by the 

maximum depth of a vertex in the tree. Therefore, a vertex with depth   is directly placed into 

layer   , thus each vertex can be assigned the y-coordinate        . The drawing starts with 

          by assigning   to    and y-coordinate       , which is the top of the drawing. 

If   has more vertices than the root, the assignment continues with its children. Each child vertex 

  with depth     is then assigned to a new layer      below. 

The edges of a parse tree can be drawn without crossings by ensuring that the left-to-right 

relative order of any two vertices   and   in layer    is the same order of their parents    and 
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   in layer     . As mentioned in Section 2.6.3, each vertex of a parse tree is indicated by a 

unique number (id) and  the order of vertices is given by an increasing numbering. 

Due to the layer assignment, all vertices have prescribed y-coordinates so that an algorithm for 

constructing a drawing only needs to compute the x-coordinates. An intuitive requirement is to 

position the x-coordinate of a parent vertex within the horizontal span of its children.  

3.4.1 The "Layered-Tree-Draw" Algorithm 

In order to construct a layered drawing of an n-ary rooted tree, the 'Layered-Tree-Draw' 

Algorithm is present first. It is a basic recursive approach that makes use of a divide-and-

conquer strategy to draw subtrees (divide) and their children (conquer) in the tree. The 

Algorithm 3-1 to this approach is defined as follows: 

Algorithm 3-1: The "Layered-Tree-Draw" Algorithm 

 

The term bounding box (mentioned in the conquer step of Algorithm 3-1) refers to a rectangle 

that embraces the drawing of a subtree. According to this approach, an exemplary rooted tree 

is presented in the next Figure 3-5. 

The properties of a drawing   produced by the 'Layered-Tree-Draw' Algorithm are given as 

follows: 

   clearly encodes the depth levels by using a layered layout in which each vertex with 

depth   is placed on a layer    with y-coordinate        . 

   is planar, and consists of strictly downward straight lines. 

   contains no crossings since the left-to-right order of the children of each vertex is 

preserved. 

 Minimum horizontal and vertical distance of at least 1 unit between any two vertices. 

 The area covered by   is      . 

 Every parent vertex is placed horizontally in the center of a subtree. 

Input: Rooted n-ary tree    

Output: Layered drawing   of    

 

1. Trivial case: If   consists of only one vertex, output the trivial drawing.  

2. Divide: Apply the algorithm recursively on each subtree    (e.g. in a left-to-right order). 

3. Conquer: Draw each subtree    for         separately. Then, place the drawing of    to the 

right of the drawing of      so that their bounding boxes are not overlapping. Now, shift    to the 

left until the leftmost node in    has a distance of     units to the rightmost node in     .  

Finally, the root   is positioned vertically one unit above and horizontally in the center of the 

drawing of a new subtree. If    only has one subtree, then place the root directly above that 

subtree. 
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Figure 3-5: An exemplary rooted tree whose nodes are placed by the Layered-Tree-Draw Algorithm along the x-axis 

and by the layer assignment along the y-axis. The steps beneath the drawing describe the construction of subtree  . 

 

As we can see in Figure 3-5, a major disadvantage of Algorithm 3-1 is that the produced 

drawing spans a large breadth, and even larger trees lead to an exponential growth in the width 

of the drawing.  

Let us briefly describe the steps of constructing the subtree  : Due to the recursive nature of the 

divide-and-conquer approach, the algorithm traverses down to the lowest level    (1) and 

positions the nodes along the x-axis with a distance of     towards each other. Then, in the 

same conquer step, the parent vertex is centered above its children at the x-coordinate     (2). 

In the conquer step of the previous step during the recursive run, the leaf nodes on layer    are 

drawn (4). In (5) the subtree    can be added and properly shifted to the right by so many units 

that the leftmost node in    has a distance of     units to the rightmost node that is drawn at 

the x-coordinate   . Note, that the vertex at     could equally contain a subtree to which T' 

would be placed with     to the rightmost node in that subtree. Finally, in (6) the parent of the 

nodes on    is positioned in the center of the resulting drawing which spans from the x-

coordinate    to    . After that Algorithm 3-1 continues with    analogously. 
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3.4.2 The "Reingold & Tilford" Algorithm 

Reingold and Tilford modified the Layered-Tree-Draw Algorithm to produce a layout that makes 

smarter use of space, maximizes the density and still displays symmetries in the drawing 

[Reingold&Tilford]. Since their original algorithm processes binary trees only, [Walker] extended 

it to draw n-ary rooted trees as well. In order to perform the drawing in linear time, [Buchheim et 

al.] further improved Walker's algorithm. 

The 'Reingold & Tilford' Algorithm follows the same divide-and-conquer strategy as the 'Layered-

Tree-Draw' Algorithm (Section 3.4.1). However, at each conquer step it makes use of a local 

optimization heuristic in order to reduce the width, and centers a parent vertex horizontally with 

regards to its children. The modified Algorithm 2 is defined as follows:  

Algorithm 3-2: The "Reingold & Tilford" Algorithm 

 

The modification in Algorithm 3-2 compared to the "Layered-Tree-Draw" Algorithm is the 

positioning of subtrees according to their contours. A left contour of a tree   with height   is 

defined as the sequence of vertices         such that each    is the leftmost vertex with depth 

  in  . The right contour is defined analogously. In the conquer step the right contour of the left 

subtree     and the left contour of the right subtree    need to be followed simultaneously while 

ensuring that both contours keep the minimum distance of two units. This compacting step is 

visualized in the following Figure 3-6:  

 

Figure 3-6: Compacting subtrees along their contours during the conquer step in the "Reingold&Tilford"-Algorithm 

 

The basic steps of the implementation of the "Reingold & Tilford" Algorithm consists of two 

traversals of the input tree  : In the first traversal the horizontal shifts of each child vertex relative 

to its parent vertex are determined. Then, in the second traversal the x-coordinates of the 

Input: Rooted n-ary tree    

Output: Compact layered drawing   of     

 

1. Trivial case: If   consists of only one vertex, output the trivial drawing.  

2. Divide: Apply the algorithm recursively on each subtree    (e.g. in a left-to-right order). 

3. Conquer: First, draw each subtree    for          separately. Then, place the drawing of    to 

the right of the drawing of     . Now, shift     to the left until its left contour has a horizontal 

distance of     to the right  contour of     . Finally, the root   is positioned vertically one unit 

above and horizontally in the center of its children. If    only has one subtree, then position the root 

directly above that subtree. 
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vertices are computed by accumulating the shifts on the path from each vertex to the root. 

Finally, the same graph as in Figure 3-6 is obtained according to the "Reingold & Tilford" 

Algorithm: 

 

Figure 3-7: The exemplary tree from Figure 3-5 drawn by the "Reingold&Tilford" Algorithm. 

 

Figure 3-7 shows an aesthetically pleasing drawing of a rooted tree constructed by the "Reingold 

& Tilford" Algorithm. Note, that the  -coordinates are calculated by the layer assignment as 

described in the introduction of Section 3.4. 

To conclude this section, the properties of a drawing   according to the "Reingold & Tilford" 

layout are given as follows: 

   clearly encodes the depth level 

   is planar with strictly downward straight lines. 

   contains no crossings since the left-to-right order of the children of each vertex is 

preserved. 

   is compact 

 A minimum distance of 1 unit between any two vertices 

   covers an area of       

   preserves symmetry by producing simply isomorphic structures that have congruent 

drawings, up to a translation in the drawing. 
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3.5 Visualization of structural features in RapidMiner 

This section presents concepts and results of the implemented 'Visualize and Label Parse Trees' 

operator for RapidMiner. The idea is to provide linguistic research experts a visual insight into 

structural relations of a given sentence based on the annotations of a constituency or 

dependency parser.  

In order to visualize the parse tree of a sentence, a given sentence has to be annotated with the 

'WebLicht Feature Annotator' with the tool chain containing either a constituency or a 

dependency parse service from WebLicht (see Section 2.5). After that, the 'WebLicht TCF to 

ExampleSet' operator has to be employed in order to extract the 'tree string' which encodes the 

parse tree (see Section 2.6.2). The tree string can then be forwarded to the 'Visualize and 

Label Parse Trees' operator10. 

Figure 3-8 depicts a concept for presenting drawings of both constituency and dependency parse 

trees:  

 

Figure 3-8: A conceptual dialog presenting lists of visualized parse trees that can be labeled. 

 

Basically, the 'Visualize and Label Parse Trees' operator reconstructs parse trees from 'tree 

strings'. Since "[", "]" and "," are reserved characters in the bracket notation, the reconstruction 

is achieved by simply parsing "words" that are delimited by these special characters.  

Another feature of this operator is the option to assign a label to each sentence. 

                                            
10  Alternatively, the parse trees could have been forwarded as serialized objects, where each object would be 

represented as a sequence of bytes. However, by encoding/decoding trees to strings in bracket notation, these 'tree 

strings' can directly be viewed and used in learning methods. 
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The following Figure 3-9 presents the visualization of a dependency parse tree of an exemplary 

German sentence:  

 

Compared to the concept in Figure 3-8 the leaf nodes are not placed on the lowest line in the 

drawing. Doing so would not yield a compact "Reingold & Tilford" layout (as shown in Figure 

3-7), and as such the resulting tree would span even more horizontal space. Also, instead of 

drawing a list of trees beneath one another (which would be difficult to navigate), only one tree 

at a time is shown in a panel. By providing intuitive controls the user can quickly rotate through 

the list of trees. 

This section is concluded with a brief presentation of the performance of this operator: The 

implemented visualization operator runs in about linear runtime. The visualization process 

includes the parsing of the encoded 'tree strings', the internal construction of trees, the caching 

of all parse trees, and the final visualization of the first tree. For 1.000 encoded strings (with a 

random length between 500 and 1000 characters) the operator uses roughly one second on a 

mobile platform equipped with an Intel i7-3630QM@2.4Ghz CPU, with 2GB of limited memory 

space, while RapidMiner running on a single core. 

The full documentation of the implemented RapidMiner operator 'Visualize and Label Parse 

Trees' is given in the Appendix A.3. A class diagram is added in Appendix A.3.3 that depicts the 

major classes involved in the implementation. 

Figure 3-9: A tidy and compact drawing of an exemplary dependency parse tree for an exemplary German sentence. 
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Chapter 4  

 

Machine Learning in Text Corpora 

This chapter presents machine learning methods that are intended to be used for pattern 

detection in text corpora. A text corpus usually consists of sentences given as text strings. The 

central idea is to detect patterns in linguistic features like tokens, lemmas, PoS-tags or 'tree 

strings' that have previously been obtained by the feature extraction tool (Section 2.6). 

For the analysis of text corpora kernel-based learning methods (KMs) are introduced in Section 

4.1 which provide a powerful approach to efficiently detect nonlinear relations without the 

problem of overfitting [Shawe-Taylor & Cristianini]11. Since classification tasks are the main focus 

in this work, KMs are combined with the prominent support vector machine (SVM) (Section 4.2). 

With this machine learning concept, the following kernel methods are introduced that come into 

question for the analysis of text corpora: 

 String Subsequence Kernel (Section 4.3) 

 Bag of Words Kernel and N-gram Kernel (Section 4.4) 

 Spectrum Kernel (Section 4.5) 

 Tree Kernel (Section 4.6) 

 Fast Kernel for String and Tree Matching (Section 4.7) 

 

Figure 4-1 depicts the process in which preprocessed linguistic data can be used in machine 

learning:  

 

 

Figure 4-1: A machine learning framework with different kernel methods 
used by the SVM in a supervised learning surrounding 

                                            
11 Overfitting occurs when a learned model is too complex, that is too many parameters (relative to the number of 

examples in the training set) are used to memorize data rather than to learn to generalize from trend. The predictive 
performance of such a model is usually poor on unseen data since it exaggerates minor fluctuations in the data 
[StatLearn] 
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In order to feed a KM with examples, the extracted features regarding each sentence are first 

concatenated to text strings. Then, a chosen KM computes the similarity values between pairs 

of strings. The result is a so called kernel matrix (Section 4.1) that consists of similarity values 

between all examples, which is then forwarded to the SVM.  

A particular focus in this chapter is put on the 'Fast Kernel Method for String and Tree Matching' 

(Section 4.7) [Vishwanathan & Smola] which is implemented and made use of during the 

machine learning experiments in Chapter 5. Compared to classic string kernels, this 'Fast String 

Kernel' method computes string kernels in linear time in the size of the arguments (Section 4.7.3), 

independent of any weights that can be associated with matching substrings. In this context, 

Section 4.7.4 presents various weight functions that allow a different emphasis of matching 

substrings. Finally, in Section 4.8 various aspects are outlined that concern the implementation of 

the 'Fast String Kernel' operator for RapidMiner.  

 

4.1 Kernel Methods (KMs) 

Kernel methods (KMs) provide a powerful way of detecting nonlinear relations in data  

           that is transformed to feature vectors living in an  -dimensional Euclidian feature 

space   (with   possibly being infinite). General types of relations analyzed by KMs are 

clusters, principal components, correlations and classifications. 

In the case of character strings gained from text corpora, these features cannot readily be 

described by explicit feature vectors. Constructing a module that transforms data to feature 

vectors in   is a difficult problem since important information can get lost during that process. It 

is clear that the transformation of features plays a key role in the effectiveness of detecting 

patterns [Lodhi et al.]. 

Furthermore, the explicit computation of the coordinates of features in   has a very high 

computational cost which is implicit in the number of dimensions of  . To circumvent this 

problem, kernel-based learning methods (KMs) offer an effective alternative. The building block 

of a KM is a function known as the kernel function (or short kernel)   that efficiently computes 

the inner product between mapped examples in the feature space: 

       

                                            

The function   maps a feature      into some feature space  . In this work, these features 

are given as sets of linguistic units. For a vector space    the inner product       is defined as: 
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The inner product is an appropriate measure for the similarity between two data items. More 

generally, an inner product space is a vector space   over the real values   if there exists a 

real-valued symmetric bilinear map       which is linear in each argument and satisfies        . 

This bilinear map is known as the dot or scalar product [Shawe-Taylor & Cristianini].  

The mapping of features      to feature vectors        has not yet been specified, but 

this is actually not necessary since only the inner products need to be computed: 

                     

This mathematical shortcut, often known as kernel trick, allows learning in implicit feature space 

without ever computing coordinates of data points in that space. In the context of classification, 

the learning refers to a linear decision function represented by a weight vector in  . This weight 

vector is a linear combination of feature vectors of the training points. For some point   we can 

look up a function    via             and thus find the corresponding weight vector. Therefore, 

finding the weight vector is equivalent to identifying the corresponding element in feature space 

  [Shawe-Taylor & Cristianini]. 

In the optimal case that the data becomes linearly separable in  , a linear classifier like the 

support vector machine (see Section 4.2) can learn a linear decision function   with an 

associated weight vector     . Figure 4-2 and Figure 4-3 depict a simply case: Instead of mapping 

each feature to this space we use the kernel trick to directly compute the inner product of two 

features according to some kernel function. 

 

 

 

 

 
  

 

 

   

Figure 4-2: An exemplary set      of non-
linear separable examples  

Figure 4-3: Data set   mapped to the feature 

space   after applying a mapping function   

 

The learned decision function, also called hypothesis, can then be applied to previously unseen 

examples in the same vector space in order to make predictions. 

A major advantage of KMs is that this approach allows decoupling algorithms for similarity 

computation from the specification of a feature space. Numerous kernels were developed to 
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compute similarities of arbitrary data types. Of particular importance in this work are kernels that 

are able to compare text strings.   

Alternatively, the similarity computed by        can be seen as the angle between two vectors 

of the mapped inputs   and   which is also known as the cosine similarity. The cosine between 

two vectors can be derived from the Euclidean dot product                          . 

       
   

       
 with    

                            

  
 

 
                     

  

 

For text matching, the angle between vectors of similar strings is small with a possible minimum 

of zero, while dissimilar strings have vectors that are orthogonal towards each other. 

The central data structure of all kernel-based algorithms that holds the similarities of all compared 

examples is the so called Gram matrix, or simply kernel matrix [Shawe-Taylor & Cristianini]. The 

Gram matrix   is defined as an     matrix whose entries are the similarities/inner products 

between each two examples: 

                           

  can be displayed as follows: 

  1 2 … m 

1                   …          

2                   …          

… … … … … 

m                   …          

 

In the case that the features    and    originate from the same data set   the gram matrix is 

symmetric due to         which means that the transposed matrix    equals  . Furthermore, 

the Gram matrix is positive semi-definite. A symmetric matrix        is positive semi-definite, 

if its eigenvalues are all non-negative. This is true only if       , with the vectors    . 

Lastly, when comparing features like two strings   and   then their lengths directly impact the 

similarity value that is computed by       . Therefore, a given kernel function is normalized as 

follows [Shawe-Taylor & Cristianini]: 
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4.2 The Support Vector Machine (SVM) 

The SVM is a very universal learner due to the fact that its integral kernel function, or simply 

called kernel, can be exchanged like a simple "plug-in" [Joachims2000]. The SVM implements a 

large margin approach in which a separating hyperplane is optimally placed between two 

classes of examples that have been mapped by some KM to a feature space beforehand. The 

idea is then to maximize a large margin between two classes in order to obtain a model that 

generalizes well to unseen data without having learned too closely to the set of training 

examples (also known as overfitting). The classification is then done as follows: By applying the 

learned model on a previously unseen example the according decision function determines on 

which side of the hyperplane a new example lies and associates the according class to that 

example. In the context of classification, the SVM results in a non-probabilistic binary linear 

classifier. 

Since the SVM performs supervised learning the sentences of a text corpus have to be labeled 

according to some classes. However, the SVM is not restricted to binary classification, but also 

allows multiclass classification. For instance, for   classes   binary classifications can be 

performed in which each SVM considers in a one-vs.-rest strategy one class as the positive 

examples and separates it from the     other classes that are treated as negative examples. 

Afterwards new examples are predicted according to the class with the largest confidence, that 

is where distance to the corresponding hyperplane is the largest [Joachims 2000]. 

In supervised learning the SVM analyzes previously labeled training data (e.g. with the labels 

         in binary classification) to infer a function for predicting the labels of new examples 

(either     or     ). The discrepancy between the true labels and the predicted label is 

measured by a loss function [Shawe-Taylor]. This loss is called the classification error. Basically, 

in supervised learning the SVM iteratively predicts examples of a training set while adjusting the 

large margin until the classification error converges to a minimum.  

The advantage of the SVM lies in a low generalization error 12  if a large margin can be 

determined. That is, depending on the separability of a training set, the SVM generalizes well 

enough when classifying unseen examples. 

In the next section the ideal case is described where examples are linearly separable, and in 

Section 4.2.3 the realistic scenario is shown where non-separable data is used for learning. 

  

                                            
12 The generalization error is defined as mean-square error 

 

 
         

   , for the examples        , 

with the predicted label    and the true label  . The generalization is a theoretical concept to measure the 
distance between the error on the training set and the test set and is averaged over the entire set of 
possible training data that can be generated after each iteration of the learning process. This theoretical 
model assumes the true probability distribution of the examples by means of a hypothetical function that 
predicts the labels without error. 
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Figure 4-4: Linear separating hyper-
planes for the separable case. 
Encircled points represent the 

support vectors. 
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4.2.1 The linear separable case 

Regarding the linear separable case the SVM learns a decision 

function that accurately separates the data according to their 

associated labels [Burges]. Figure 4-4 shows a set of training 

examples residing in feature space      that can be 

separated by a hyperplane   in two classes. In space      

a hyperplane is given by the normal vector          and some 

bias    , as follows: 

                    

          is again the inner product, with                 
 
   . 

Any point   which would lie on   satisfies             , 

where      is the normal to  . The perpendicular distance from   to the origin is given by 
    

      
, 

while                    
 

 is the Euclidean norm of      . Let    (    be the shortest distance from   

to a positive (negative) example. The working principle of the support vector algorithm is to 

determine the separating hyperplane   in such a way that a maximum margin       can be 

obtained. As shown in Figure 4-4 the hyperplanes    and    delimit the margin. With the same 

normal vector      these planes run parallel to  . By scaling      and  , the hyperplanes    and    

can be expressed in normal form as follows: 

                  and                   

In the case of linear separability, all examples    satisfy the following conditions: 

               for       (1) 

                for       (2) 

Points that lie between origin and    or lie on    satisfy the inequality (2) and are assigned the 

class    (white points). Points on    or beyond    receive the class label +1 (black points). 

By construction, no points lie in between    and   . The perpendicular distance from    (    

to the origin amounts to 
      

      
  (

      

      
). Hence, the width of the margin is given by 

 

      
. By 

formalizing the margin, we can determine the hyperplanes    and   . Maximizing 
 

      
 is 

achieved by minimizing        with regard to the constraints (1) and (2). By combining these 

constraints, we obtain a single inequation: 

                                  (3) 

All points that satisfy (3) are lying on one of the hyperplanes    or    and are denoted by 

support vectors (in Figure 4-4 these points are drawn with an extra circle). By solving      and  , 
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we obtain the separating hyperplane. By means of a simple decision function, the SVM can then 

classify new examples: 

                                 (4) 

In order to compute      and  , the given minimization problem under the constraints (3) can be 

turned into a Lagrangian formalization. A Lagrangian function is obtained by subtracting the sum 

of constraints from a target function. Here, 
 

 
        is used as the target function since we want 

to minimize       . For each of the   constraints (3) the Lagrangian formalization requires to 

introduce Lagrange multipliers       : 

                                     (5) 

By summarizing these   constraints, we obtain the Lagrangian function of the problem, also 

known as the primal optimization function   : 

   
 

 
                           

 

   

    

 

   

 (6) 

 

In order to compute the minimum of    , the gradients of    regarding the unknowns      and   

need to be determined as follows:  

   

     
 
                      

 

   

 (7) 

   

  

 
            

 

   

   (8) 

   is a convex quadratic programming problem due to the fact that the points that satisfy the 

constraints (7) and (8) form a convex set [Burges].  

An easier optimization problem is obtained by turning the primal form into the so called Wolfe 

dual as it only requires to solve the Lagrangian multipliers     , as shown below. The Wolfe 

dual has the property that a maximum of    in (6), subject to a set of constraints    

             , occurs for the same values of      ,   and  , as the minimum of   , subject to 

constraints                  [Fletcher]. Therefore, instead of minimizing    with regard to 

     and   we can now maximize   . By substituting (7) and (8) in    we obtain the dual 

optimization function   : 

      

 

   

 
 

 
                   

 

   

 

   

 (9) 
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After solving the maximization problem    the normal      to a hyperplane   can be determined 

by simply inserting the    in constraint (7). For any      the according points    are the 

support vectors, whereas for      the points satisfying (3) lie on one side of the margin 

defined by  . 

The advantage of using a Lagrangian function is the operational simplicity for the calculation of a 

possible decision function (4). With the given maximization problem   , the training data can 

now be given as inner products between vectors which is the essential property of kernel 

methods, as presented in Section 4.1.  

4.2.2 Karush-Kuhn-Tucker conditions 

The so called Karush-Kuhn-Tucker (KKT) conditions which are basically a generalization of the 

Lagrangian multipliers are necessary conditions to guarantee an optimal solution of the non-linear 

optimization problem [Fletcher]. In the case of the primal optimization function    there is an 

optimal solution since all side constraints are linear. Furthermore, the KKT conditions are 

sufficiently fulfilled since the objective function 
 

 
        is convex and all side conditions yield a 

convex feasible region: 

   

      
                

 
     , with dim          (10) 

   
   

  
      

 
           (11) 

                                         (12) 

                                 (13) 

                                          (14) 

The solution of the optimization problem of the SVM is equivalent to the solution of the set of KKT 

conditions. This approach is a starting point for algorithms that solve the linear restricted, 

quadratic convex problem. Details about nonlinear programming are given in [Fletcher]. Note 

that solving the Lagrangian function only yields the normal vector     , but the bias   is not 

calculated explicitly. However, the bias can be determined via condition (14) by simply using an 

arbitrary example     that is a support vector in the found solution (with     ). According to 

[Burges] it is recommended to finally average over the values   from all equations with such 

examples. 
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4.2.3 The non-separable case 

Realistic data sets of two classes are usually not 

separable by a linear hyperplane since many 

examples (either as outliers or due to errors in the 

training set) may lie on the side that belongs to the 

other class. In such a case the previously presented 

SVM with a separating hyperplane would fail to 

deliver valid solutions. In order to retain this concept, 

the constraints (1) and (2) are relaxed by integrating 

slack variables    into the description of the 

hyperplanes    and   : 

                   for       (15) 

                   for       (16) 

         (17) 

 

The slack variables only appear in those equations where the corresponding example is on the 

side of the opposite class, as shown in Figure 4-5. This is reflected in equations (15) and (16) if 

the    exceeds the value one. The upper bound of the training error is then given as    
 
   . By 

introducing a penalty factor   this error sum can be weighted and the resulting product added to 

the objective function which results to: 

 

 
             

 

   

 

 

 

A high value for factor   increases the weight for the penalty, while for a constant     we 

obtain a convex programming problem. Setting     yields a quadratic programming problem, 

and     has the advantage that neither the slack variables    nor the Lagrangian multipliers 

appear in the Lagrangian function, thus allowing us to continue to use the dual problem   : 

      

 

   

 
 

 
                   

 

   

 

   

 

 

 (18) 

 

Nonetheless, a new constraint has to be added, in which   is the upper bound for the 

Lagrangian multiplier  : 

         (19) 

 

Furthermore, in order to find a maximum for   , the constraint (8) has to be satisfied, as well.  

Figure 4-5: Hyperplanes in the non-
separable case. Encircled points 
represent the support vectors. 
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Finally, the solution of the separating hyperplane is given by the normal vector, with 'SV' 

indicating the number of support vectors: 

                

  

   

 

 

 (20) 

 

In order to guarantee a solution for the optimization problem, the following necessary KKT 

conditions need to be satisfied with regard to the primal problem   : 

   
 

 
            

 

   

                           

 

   

      

 

   

 (21) 

 

Furthermore, new Lagrangian multipliers    are introduced in order to enforce the positivity of   . 

Therefore, the KKT conditions are given as follows:  

   

      
                

 

   

    with dim         (22) 

   

  
      

 

   

   

 

 (23) 

   

   
           

 
 (24) 

                                 (25) 

                 (26) 

                 (27) 

                 (28) 

                                        (29) 

                   (30) 

 

Analogously to the separable case (Section 4.2.1), the bias   can be determined via the 

conditions (29) and (30). Combining condition (24) with (30) shows that      if      since  

       , with     . Thus, any example for which        is true can be chosen to 

calculate  . 
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4.3 The String (Subsequence) Kernel 

The string subsequences kernel (SSK) considers the number of subsequences shared by two 

strings [Lodhi et al.]. These strings are a finite sequence of symbols that do not need to be of 

the same length. Intuitively, the SSK can be understood as a function to measure the similarity 

between pairs of strings. The more substrings are in common, the more similar the strings are. 

We start by defining the feature space as       
where    is the set of all strings of length   

of a finite alphabet  . Let us consider   as a subsequence        of   with the start position   

and the end position  , or        for short. The length      of   is given by       . Then, 

by defining the   coordinate       for each     , we obtain a feature mapping  . 

Furthermore, the length of a substrings with some start position   can be weighted by a 

parameter  , with      , as follows: 

            

        

 

Simply, a feature in    is a measure of the number of occurrences of subsequences in a string   

which are weighted according to their length. Weighting a subsequence by an exponentially 

decaying factor up to the full length in the text, allows to put a stronger emphasis on those 

occurrences that are close to contiguous [Lodhi et al.]. More clearly [Croce et al.]: 

 longer subsequence receive lower weights 

 gaps contribute to a weight since the exponent of   is the number of characters and 

gaps between the first and last character 

 characters like gaps can be omitted 

The kernel function that calculates the inner product of two feature vectors of string   and   is 

then expressed as the sum over all common subsequences weighted according to their 

frequency of occurrence and lengths: 

                      

    

  

       

            

      

        

              

                    

 

 

These features have the complexity                both in computational time and storage 

space where   and   are the lengths of the two strings while   is the length of the largest 

subsequence [Croce et al.]. Furthermore, in the works of [Lodhi et al.] analytical steps are 

described to obtain an efficient computation of the inner products via a dynamic programming 

technique. 
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4.4 Bag of Words Kernel / n-gram Kernel 

The bag-of-words (BoW) model, also known as the vector space model (VSM) is a simplifying 

representation that is commonly applied in the area of NLP as well as in information retrieval (IR). 

Representing a document as a word vector is generally understood as a bag-of-words. Herein, 

each word that occurs in a document is given by its frequency in a document, while the ordering 

of words as well as characters for text structuring are ignored [Joachims 2000]. The 

representation of a bag-of-word vector is the mapping function   in feature space     : 

           
        

        
 

        

     

         is the term frequency of each term    ,           in a document   whereas 'term' 

and word is used synonymously. Given this representation, a document is mapped to an n-

dimensional vector           that has the size of the dictionary with   being the number 

of terms occurring in the whole text corpus. When considering distinct words the size of the 

vocabulary is usually very large. Hence, each BoW vector is usually an extremely sparse 

histogram of that vocabulary. 

Inspired by the attribute-value representation used in [Joachims 2000, Section 2.2.1] we can 

abstract from words and instead make use of other linguistic features like lemmas or part-of-

speech-tags. 

Table 4-1 shows exemplary sequences of part-of-speech tags processed to 'bag of PoS-tags'. 

The dictionary consists of the terms   =ADJD,   =ART,   =NE,   =NN, and   =VAFIN: 

Document Example Sequence of PoS-tags / terms      

   Der Mann ist groß. ART NN VAFIN ADJD             

   Der Mann ist Lehrer. ART NN VAFIN NN             

   Der Mann ist ein Schrank. ART NN VAFIN ART NN             

   Julia war ein Schwan. NE VAFIN ART NN             

Table 4-1: Representing the part-of-speech tags as bag of terms 

 

For a given set of documents (sentences) a practicable representation is the document-term 

matrix   in which the column stores the frequencies of all terms that occur in the given 

documents while each row holds a bag of term vector according to each document. 

The similarity computation between two documents   and   is achieved by calculating the inner 

product between the according 'bag of term' vectors. The BoW kernel is defined as follows 

[Sonnenburg et al.]: 
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In order to not depend on the length of the 'bag of term'-vectors the kernel is normalized: 

           
    

      
 

    

      
  

      

             
 

Instead of bag of terms, we can use n-grams as an alternative characterization of a document. 

Here, sequences of   consecutive characters (n-grams) can be mapped into a feature space 

  which is spanned by all possible strings of length  . The computation is the same as for the 

bag-of-word kernel. Since n-grams take any character into account, a single mismatching 

character leads to only   affected n-gram kernels, while the surrounding kernels remain intact 

[Sonnenburg et al.]. 

4.5 The Spectrum Kernel 

The basic idea of the spectrum kernel (SpK) is to count the occurrences of a k-spectrum of 

contiguous subsequences in two given sequences   and  . A k-spectrum of a sequence is 

defined as the set of all k-length contiguous subsequences (also called 'k-mers') that this 

sequence contains. For example the 3-spectrum of the sequence "gattaca" has the contiguous 

subsequences ["gat","att","tta","tac","aca"]. These counts are then mapped to a feature space 

  which is spanned by      many dimensions, with   being the alphabet of the text corpus. The 

mapping is done by indexing a feature map of all possible k-mers      and simply storing the 

number of occurrence       at the according index in this map. The spectrum kernel is then 

defined as: 

                               

    

 

The spectrum kernel can efficiently be computed in                by using tries [Leslie et. al] 

and in            by using suffix trees [Vishwanathan & Smola] (Section 4.7). 

 

4.6 The Tree Kernel  

Given two trees (e.g. parse trees), the tree kernel (TK) captures common structural information 

by considering all tree fragments that occur in both trees [Collins et al.]. More precisely, the 

similarity between two trees is expressed by counting the subtrees they share. For trees   and 

 , the tree kernel is defined as: 
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The function        recursively counts the number of shared subtrees that are rooted in the 

nodes   and  : 

                     

   

   

 

For the nodes   and   that are not derived from the same production, we define         . If 

  and   are leaf nodes of the same production, we obtain          where   is a trade-off 

parameter with       that balances the contribution of subtrees. For instance, choosing a 

small value for   causes the contribution of lower nodes in large subtrees to decay. Figure 4-6 

illustrates the shared subtrees of the trees   and  : 

 

Figure 4-6: Shared subtrees in two parse trees; the numbers in brackets 
indicate the number of occurrences for each shared subtree pair 

 

 

Due to the recursive definition of        and the identity of                         , 

tree kernels are computed in worst case in            time. In the best case the computation 

time is close to linear in the number of nodes           [Collins et al.]. 
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4.7 Fast Kernels for String and Tree Matching 

This section presents the linear time algorithm of [Vishwanathan & Smola] to compute 'Fast 

Kernels for String and Tree Matching', or short 'fast string kernels' (FSK). 

A few notations need to be introduced: Let   be a finite set of characters forming the alphabet. 

Any      with           is called a string.    then represents the set of all non-empty 

strings defined over the alphabet  . Furthermore,                    denote strings and 

        single characters.  

Similarly to string kernels (Section 4.3), the FSK is expressed as the sum over all common 

subsequences      between two strings. The kernel function is furthermore extended by a 

weight parameter    which allows to weight arbitrary matching substrings  : 

                  

        

                     

    

 (1) 

 

Here, the function         denotes the number of occurrences of   in some string  . In order to 

use trees like constituency or dependency parse trees, a 'tree to string' conversion needs to be 

performed beforehand (Section 2.6.2). 

When two strings   and   are compared, the algorithm makes use of two central data 

structures: The suffix tree (Section 4.7.1) which is created for a string   in linear time, and the 

matching statistics (Section 4.7.2) based on a string   with regard to  , built in linear time as 

well. Then, these structures are queried during an efficient kernel computation (Section 4.7.3).  

Albeit arbitrary weights    can be associated to any matching substrings, the kernel 

computation still performs in linear time. The weights can be defined either a priori, for instance 

via a dictionary, or after seeing the data by employing one of the weight functions presented in 

Section 4.7.4. 

Implementation details about the 'Fast String Kernel' as an operator for RapidMiner are 

presented in Section 4.8. It computes the kernel matrix for two example sets that can be 

forwarded to learners like the SVM. Due to the consumption of      space for each suffix tree, 

the memory quickly becomes a bottle neck for large sets. Therefore, different caching strategies  

are implemented that allow an efficient computation on limited memory. 

Finally, a benchmark test of the operator was performed while differently sized example sets 

were used. The results are outsourced to Chapter 5, Section 5.4. 
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4.7.1 The suffix tree 

The suffix tree is a compacted trie that contains all the suffixes of a given text string [Knuth]. In 

the following, a brief summary is given about tries: A standard trie for a set of strings   is an 

ordered tree that has the following properties:   

 Each node except for the root is labeled with a character. 

 The children of each node are sorted in alphabetic order. 

 Following a path from root to one of the leaves yields one of the strings of  . 

Obtained from a standard trie, the nodes in a compressed trie have a degree of at least two. 

Furthermore, the chains of redundant nodes are compressed to single nodes. Figure 4-8 shows 

an exemplary compressed trie obtained from the standard trie in Figure 4-7 with the set of 

strings  ={bear, bell, bid, bull, buy, sell, stock, stop}: 

 

 

Figure 4-7: The standard trie of a set   of strings  Figure 4-8: The compressed trie of a set   of strings 

 

Now, a suffix tree is the compacted version of a compressed trie which uses index ranges at 

the nodes. This concept is made more clearly with an example further below. 

For the construction of a suffix tree a sentinel character     is introduced which is 

lexicographically smaller than all the elements in  . Then, each input string   (pattern string) is 

enhanced by appending   at the end. The length of a string   is given by    . Again, the notation 

       describes a substring of string   with the start position   and end the position   (both 

inclusive),  with          . For some string      ,   is known as a prefix of   while   

is called the substring, and   the suffix of  . 
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Figure 4-9 illustrates the suffix-tree      of an enhanced exemplary string         . The 

compact representation of string   with index range           is given in Figure 4-10: 

  

Figure 4-9: The suffix tree      for the string   
         

Figure 4-10: The compact representation of the suffix tree 

     

For the kernel computation further below the following notations are required beforehand: 

    denotes a path from root to a node while parsing the tree for a string  . 

      denotes the subtree rooted at a node   . 

         yields the number of leaves of    . 

             denotes the set of all non-empty prefixes   for some (possibly empty) 

string   such that                      . Thus,             is the set of all possible 

substrings of   . 

 For every                 we define         as the node    such that      and   

is the shortest (possibly empty) substring such that                 . Thus, when 

leading up the path to   then            is the immediate next node. 

 For every                 we define          as the node    such that      and   

is the shortest non-empty substring such that                 . Thus, when leading up 

the path to   then             is the last encountered node. 

For some internal node    with            the parent node is         . As shown in Figure 

4-9,             is the second node with depth one reached by following the edge "b" from 

root. The only word                     is found along the path       , with      . 

           is the third node with depth two, following the edge "b" from root and then further the 

edge "abc$".  

Suffix trees can be constructed by employing the algorithms of [McCreight], [Ukkonen], and 

[Weiner] in linear time. For the implementation of the 'Fast String Kernel' operator, Ukkonen's 

online construction algorithm for suffix trees13 is adapted and further enhanced (Section 4.8, 

bullet 1). 

                                            
13  For brevity, an introduction to this algorithm is omitted. [Gusfield] and [SO_Ukkonen] provide a 
comprehensible and extensive description of Ukkonen's linear time algorithm. 
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Figure 4-9 shows a suffix link from the internal node       to the node   . Ukkonen's algorithm 

produces suffix links as an intermediate step in order to achieve a linear time construction of the 

tree. Furthermore, suffix links prove to be useful for an efficient string matching. Suppose that we 

found a substring    of the string   by parsing the suffix tree     . Trivially,   is a also a 

substring of  . If in a later query we need the corresponding node to  , we find it in      time 

via suffix links instead of parsing the tree once again.  

A suffix tree has an important property: If two substrings of   (e.g.            with 

         and         ) have a common prefix (    ) they share the same path up to a 

common ceil node. 

Generally, if we want to count the number of occurrences of a substring    in string   we first 

have to determine        . Since all suffixes of   have to pass through        , we could 

simply count the occurrences of the sentinel character ' ' which can only be found in the leaves. 

Instead, we access the number of leaves in each node    in      time by precalculating       ) 

via a depth first search (DFS) and storing the value in each node   . 

Finally, in order to obtain         for a matching substring in      time, the matching statistics 

need to be prepared, as described next.  

 

4.7.2 Matching statistics 

The matching statistics are the central data structure in the computation of fast string kernels. 

They are calculated for a string   with respect to a pattern string   for which the suffix tree is 

created beforehand. In order to construct the matching statistics in linear time the algorithm of 

[Chang & Lawler] is integrated and adapted14 in the 'Fast String Kernel' operator for RapidMiner.  

The idea is as follows: For each substring      defined by start positions           we 

determine the length    of the longest substring of   that matches a prefix of     . Given these 

lengths, we can identify the ceil nodes                   and floor nodes                     

that correspond to each match in the suffix tree     . 

In a nutshell, the matching statistics consist of the following vectors:  

                
   

: Each  -th component    stores a ceil node                  

                 
   

: Each  -th component     store a floor node                   

         : Each  -th component    denotes the length of the longest common substring 

(LCS) of   that matches a prefix of      with                   and     

               . Here,     denotes the end location of a LCS, with           . 

                                            
14 As explained in Section 4.8, bullet 1, the algorithm had to be enhanced in order to operate with 'items'. 
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Table 4-2 depicts the matching statistics of an exemplary string           with respect to the 

suffix tree             : 

start pos.   1 2 3 4 5 

         bc c bab ab b 

   2 1 3 2 1 

   (ceil) bc$ c$ babc$ ab b 

    (floor) b root b root root 

Table 4-2: Matching statistics of the string "bcbab" with respect to the suffix tree            

 

For a start position  ,        , a substring that occurs in both   and   is a prefix of         . 

Too see this, let us consider a substring        that occurs in both           and 

         . This implies that         , here with     and    . But the longest prefix of 

     that matches a substring of   is         , with     and             . Therefore, it 

can only be that       and the substring   is a prefix of         . 

For brevity, the central idea of the algorithm of [Chang & Lawler] is outlined: The key 

observation is that the lengths    of matching substrings behave for consecutive starting 

positions   and     as follows:  

          

This is true for all positions  , because if          is a substring of   then            is trivially a 

substring of  , as well. Besides this, each matching substring in   must have            as a 

prefix. 

The algorithm of [Chang & Lawler] uses this observation by walking down the suffix links in      

in an intelligent manner to compute the matching statistics in        time:  

 Let us consider that for some matching substring          a floor node     is given, and 

that we further want to determine      ,       , and     . Therefore, we first find an intermediate 

node      =                   by walking down the suffix link of      and then walking along 

the edges that correspond to the remaining portion of            until we reach that node      . 

Now, by simply following the edges that match             the next node that we encounter is 

the ceil node      . When we can no further parse elements in     , we obtain the length     . 

In order to determine   , we can simply walk down the suffix tree      and find the longest 

prefix of   that matches a substring of  .  

To summarize this section: Let   and   be two strings with the lengths       and      , 

with    . By using the online construction algorithm of [Ukkonen] a pattern string   is read in 
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and the suffix tree      is constructed in      steps15. Then, the matching statistics are built for 

  with regard to   in        time, and we can read off the lengths     of matching substrings for 

each start position   in constant time. Thus, it takes      steps, to determine if a substring 

         of   is found in   or not. If so, each match contributes to the total sum in the similarity 

computation described in the next section.  

4.7.3 Efficient Kernel computation 

For the kernel computation a function         is defined that assigns a weight to any matching 

substring      of   in constant time: 

               

           

 (2) 

 

Let us assume that we want to determine the sum of 

weights for the substring           according to the 

suffix tree      shown in Figure 4-11. Recall that    is the 

floor node which is the last encountered node on the 

path leading up to     . Hence "b" resembles the 

prefix  . We now consider the weights     for all 

substrings   : By defining   as the set of all prefixes of 

 , we "catch" all the substrings that follow   on the path 

    . In this trivial example             is "a" of 

the ceil node    labeled with "abc$". In a large suffix tree, 

however, this results in a set of suffixes that share the same substring  , also known as the 

longest common prefix (LCP). 

Briefly,        is the summed weight of all prefixes of substrings   in   reduced by the 

summed weight of all prefixes of their LCP. Thus, only weights are taken into account whose 

elements in the ceil node correspond to the remaining portion of a match. 

Finally, the function to compute fast string kernels in            time is given as follows: 

                  
                         

   

   

 (3) 

   

with                                        (4) 

and             (5) 

                                            
15 If the two strings have different length, then the suffix tree is created from the longer string. 

Figure 4-11: Weighting an exemplary matching 

substring        in the suffix tree      for 

the string             
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Here,         computes the value of the parent of the ceil node    plus the contributions due to all 

strings that end on the edge connecting the ceil node    to its parent which is the floor node.  

Claim: The kernel function (3) can be computed in linear time. 

Proof: As mentioned above, the number of leaves in each node of      can be computed in 

       time via a DFS. Furthermore, the matching statistics algorithm constructs the vectors  ,   

and    in        time. We assume a weight function        and utilize the recursive nature of 

        to precompute        for all                 by a top down procedure in the suffix 

tree in        time. Now, in order to compute each term in (3) in constant time we can simply 

look up the precomputed       
   and         and compute for each substring the weight 

              in constant time. Due to the sum that iterates through          , we have     

many terms that are calculated in       . Therefore, the complexity of (3) is           .  

Claim: The kernel function (3) computes the string kernel (1). 

Lemma 4-1: 

 

Proof: By applying the Lemma 4-1 to the basic kernel function (1), we can decompose the sum 

into a sum over matches between the pattern string   and each of the prefixes         . With this, 

we only need to show that each term in the sum of (3) corresponds to the contributions of all 

prefixes of         . 

The following observation plays a key role in the computation: All substrings of   that share the 

same ceil node    in the suffix tree      also have the same number of occurrences in  . This 

value is exactly reflected by              . Therefore, we can factor out         in (3) in order to 

properly scale up the contribution of each of the prefixes in         . 

For instance, if we want to compute            in the suffix tree              we need to 

take the contributions due to "bab", "ba" and "b" into account. Trivially, "b" appears twice in the 

string  , namely as a prefix of "babc" and "bc", which in the suffix tree is equally reflected by 

                . Hence, its contribution must be counted twice, while "ba" and "bab" occur 

only once in   and thus their contributions must be counted once. 

For each                the recursive function         uses the above observation and 

calculates the contribution to the kernel due to    and all its prefixes. 

Let       be an arbitrary substring that has the floor node            . In order to compute 

the contribution of   to the kernel, we have to consider: 

The set of matching substrings of   and   is the set of all prefixes of         . 
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 the contributions due to   and all its prefixes of   

 all strings of the form    with             

As mentioned above, because each substring occurs exactly               times in  , the kernel 

function        can use an efficient bracketing and a weight function       .   

Constructing the suffix tree      once and annotating each internal node with its     beforehand, 

reduces the time for further kernel computations to       . This option is considered in the 

implementation of caching mechanisms which are presented in Section 4.8.  

 

4.7.4 Weight functions 

Various weight functions               are suitable for the computation of fast string kernels: 

1. Length Dependent Weights: We simply let the weights    depend on the length of     by 

setting        . Further, we define       
 
   . We precompute these weights 

beforehand up to    where       for all  . Because the sums in        telescope, 

the weight function can be simplified to:  

                      

   

            

    

   

   

    

          

   

                  

 

The values in the final step can simply be looked up in constant time from the 

precomputed matching statistics of the string  . 

 

2. Exponential decay: In this weighting scheme exponential decay factors        are used 

while       and              denote the string boundaries:  

 

       
       

   
 with     

 

The value of a decaying factor for some       becomes smaller the larger a string 

boundary is. On the opposite, for some given   and  , with    , the resulting        

puts a stronger emphasis on the matching substring the smaller   is. 

 

3. Constant weight: This approach simply measures the difference between the string 

boundaries   and  : 
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4. Bag-of-characters: When matching sequences of characters, we can simply set the 

weight      for all strings   with       and obtain a bag-of-characters kernel 

(Section 4.4): 

        
                   
                              

  

5. Bag-of-Words: When matching single words (like part-of-speech tags), we may assign 

weights      for all strings   bounded by whitespace, and thus obtain the bag-of-

words kernel (Section 4.4): 

        
            
           

  

 

6. K-spectrum: By setting specifically      for all strings   with       for some 

sequence length   we obtain the k-spectrum kernel (Section 4.5).  

 

7. TF-IDF weights: Another possibility is to choose TF-IDF weights that are achieved by first 

creating a list of all strings   including their frequencies of occurrence and then by 

rescaling the weights    accordingly. TF-IDF, short for term frequency-inverse document 

frequency (TF-IDF), is a measure to reflect how important a term is to a document   

(sentence) in a collection D (text corpus). The simple form of the term frequency 

              counts the number of occurrence of a term t in a given document d. 

The inverse document frequency                           with         

  measures how much information the term provides, that is if the term is common or 

rare across all   documents. Then, the TF-IDF then is defined as the multiplication: 

                             

 

4.8 The 'Fast String Kernel' operator for RapidMiner 

The implementation of the 'Fast String Kernel' (FSK) as an operator in RapidMiner is the central 

building block in order to obtain a kernel method that is able to process text corpora in linear 

time. Details about this operator are documented in Appendix A.4. In the following list various 

important circumstances are outlined that have a direct impact on the practical implementation of 

the FSK operator: 

1. Atomic words vs. character sequences: When analyzing sequences of tags (e.g. PoS-tags). 

no substring matching can be performed on these tags. Therefore, the implementation 

has to consider words as atomic elements that we denote by items. By implementing a 

generic approach the FSK operator either accepts sequences of characters (strings) or 

sequences of items. In the latter case the labels of the edges in a suffix tree carry items 

instead of sequences of characters. Further, all implemented methods had to be 

extended in order to deal with items, as well. An important preparation step again is to 
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enhance each sequence of items with the sentinel character $, for instance   

                    . Finding matches between two sequences of items works in 

the same way as with matching strings. Lastly, the FSK operator accepts sequences of 

items as strings (by internally detecting the commas and appending each items to a list). 

  

2. Normalising the kernel: In order to measure the similarities of two strings   and   on a 

common scale, the operator always computes normalized kernels (Section 4.1). 

 

3. The upper triangular matrix: When comparing only the strings / itemsets    and    with 

        within an example set    the operator computes the upper gram matrix due 

to                      . Since the normalized similarity value of a string    

compared with itself is  , the diagonal entries are directly set to             . 

 

4. Weight functions: The FSK operator provides weighting of strings and items according to 

the functions 1 - 5 given in Section 4.7.4.  

 

5. Caching strategies: Let us consider two different example sets    with the strings     

(     ) and     with the strings     (     ). Since a suffix tree consumes 

     memory space that is linear to the length of the input string, it is desirable to avoid 

rebuilding any of the suffix trees when comparing    with   . Because all kernels are 

normalized, the suffix trees have to be constructed for all input strings. Therefore, the 

minimum amount of suffix trees is       . While iterating through the kernel matrix   

in order to compute        similarities, different caching strategies are implemented to 

keep or discard once constructed suffix trees:  

 

 No caching: While iterating through both         and         no suffix 

tree is kept in memory. Hence, the number of tree constructions is       . 

 

 Caching suffix trees from   : The set of   suffix trees is constructed and kept in 

memory. While iterating through the rows         each  -th suffix tree is 

constructed on demand. Thus, only        trees are required in total.  

 

                        

                                         

          

      

          

Table 4-3: Caching strategy where   suffix trees are kept in memory 

while iterating through the rows         
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 Windowing: In this caching strategy, a rectangular window is defined with width 

  and height   on the interval ranges         and        . In this 

window a set of      suffix trees is constructed and the computation is 

performed line-by-line. Afterwards the window is shifted to the right, while the 

suffix trees                are kept in memory. If the window exceeds the 

outmost right column it is shifted back to the first column and down by   many 

rows. No trees are kept in memory, then. 

Iterating through the rows requires     
 

 
   trees and    

 

 
    

 

 
        

when shifting the window along the columns. Therefore, the total sum of tree 

constructions amounts to        
 

 
      .  

 

                        

       

                                  

          

                                        

      

Table 4-4: Caching strategy with a window of size     
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Chapter 5  

 

Experiments 

This chapter presents three experiments in which the implemented operators annotate 

documents (Appendix A.1) and extract linguistic features (Appendix A.2). Where applicable the 

visualization operator (Appendix A.3) demonstrates a comfortable way to label each sentence. 

After performing a learning on linguistic features, the effectiveness of the implemented weight 

functions could be tested. More precisely, the classification rates for unseen examples were 

measured after a binary classification model was trained by the SVM (Section 4.2). 

5.1 Experiment I: "Tranches" 

5.1.1 Acquiring labeled data 

In the first experiment a set of sentences from various German newspapers was considered 

where each sentence had been manually obtained from [DWDS]. Each sentence was given a 

topic word whereas the word was also contained in the corresponding sentence. 

Next, two tranches were taken from this set: The first tranche, to be used for training, consisted 

of 6650 sentences with the initial letters of topics ranging from Q to T. The second tranche 

contained 6697 sentences with topics ranging from T to Z and was used for the testing phase. 

The idea for a classification task was to assign a positive label to a sentences where the topic 

word was appropriately describing the sentence. In the case that the topic word was different 

than the actual topic of the sentence, a negative label was given. Two exemplary sentences are 

shown in Table 5-1 regarding the topic 'quality criteria': 

Topic: Example describing the topic? Label: Source: Date: 

Qualitäts-
kriterien 

Es sei an der Zeit, Qualitätskriterien für die 
Pflege festzulegen. 

+1 Frankfurter 
Allgemeine Zeitung 

27.09.1995 

Qualitäts-
kriterien 

Wie ehrlich ist es, die Privattheater nach 
strengeren Qualitätskriterien zu bewerten? 

-1 Die Welt 02.03.2001 

Table 5-1: Two examples that differently fit to a given topic. 

 

The first example which translates to 'It is about time to determine the rules quality criteria for 

(health) care' is labeled with '+1' as it fits the topic well. The second sentence which translates 

to 'How honest is it to evaluate private theaters according to more stringent quality criteria?' is 

labeled with a '-1' since the topic is about private theaters. 

A comfortable way to label the sentences from both tranches is to use the 'Visualize and Label 

Parse Trees' operator (Appendix A.3). However, this operator expects features like tokens and 

parse trees as a minimum. Therefore, the 'WebLicht Feature Annotator' (Appendix A.1) was 
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first applied on each sentence. In the settings of this operator the language parameter was set 

to 'de' and the following tool chain was chosen (see Appendix A.1.2 for each employed 

WebLicht service): 

Converter#1 Tokenizer#3PoS-Tagger#2Dependency-Parser#1 

 

The operator annotated the sentences with tokens, lemmas (annotated by PoS-Tagger#2), 

PoS-tags and dependency parse trees. Afterwards, the 'WebLicht TCF to ExampleSet' operator  

extracted these features to strings. Parse trees were converted to 'tree strings' and 'tree string 

(tokens)' (Section 2.6.2). Table 5-2 lists these features according to the first example sentence: 

Feature type: Extracted string: 

original sentence Es sei an der Zeit, Qualitätskriterien für die Pflege festzulegen. 

tokens Es,sei,an,der,Zeit,,,Qualitätskriterien,für,die,Pflege,festzulegen,. 

lemmas es,sein,an,der,Zeit,--,Qualitätskriterium,für,der,Pflege,festlegen,-- 

PoS-tags PPER,VAFIN,APPR,ART,NN,$,,NN,APPR,ART,NN,VVIZU,$. 

tree string [Root[VAFIN[PPER[VVIZU[NN[APPR[NN[ART]]],$.]],APPR[NN[ART,$,]]]]] 

tree string (PoS-tags) , VAFIN, PPER, VVIZU, NN, APPR, NN, ART, $., APPR, NN, ART, $, 

tree string (tokens) , sei, Es, festzulegen, Qualitätskriterien, für, Pflege, die, ., an, Zeit, der, , 

tree string (lemmas) , sein, es, festlegen, Qualitätskriterium, für, Pflege, der, --, an, Zeit, der, -- 

Table 5-2: Extracted features of an exemplary sentence. 

 

The 'Visualize and Label Parse Trees' operator could then present the dependency parse trees 

with the option to label the according sentence, like in Figure 5-1. Note that the checkbox "Label" 

indicates a positive label "+1" when checked, and respectively, "-1" when left unchecked.  

Figure 5-1: Labeling sentences with the 'Visualize and Label Parse Trees' operator. 

To use space optimally, the parse tree is shown in a horizontal layout. 
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For the sake of completeness, the parse tree for the second exemplary sentence above is 

shown in Figure 5-2: 

 

The files to this experiment containing the tranches for training and testing, the RapidMiner 

processes for annotating the original sentences, and the output files with the preprocessed 

sentences are placed in the folder 'Experiments\Tranche' on the CD that is enclosed with this 

work: 

Input file: RapidMiner process file: Output file: 

Tranche_TestSet.csv Annotate&Extract_TrancheTest_Write2CSV.rmp TranchePreppedTestSet.csv 

Tranche_TrainingSet.csv Annotate&Extract_TrancheTraining_Write2CSV.rmp TranchePreppedTrainingSet.csv 

Table 5-3: List of files used or created during Experiment I 

 

The annotation process took around seven hours for each set containing roughly 6.700 

sentences. Then, the files with the prepared examples were examined and those examples that 

provided no information were removed. For instance, this was the case when the set of tokens 

only consisted of a single token like a punctuation character. 

In cases where the WebLicht services could not properly detect the sentence boundaries the 

original sentences were manually fixed by extending abbreviations or removing chapter numbers 

like "X.". Afterwards, the RapidMiner process for feature annotation and extraction was 

executed for that particular sentence again.  

  

Figure 5-2: Assigning a negative label by leaving the label control field unchecked 
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5.1.2 Training phase 

To produce a training set, 3000 examples were randomly taken from the first tranche, that is 

from 'TranchePreppedTrainingSet.csv'. More precisely, via stratified sampling 16  a randomized 

subset was obtained from the list of examples. 

Since we want to study the influence of linguistic features on the prediction ability, that is, to 

determine if a sentence is or is not a "good" example for the corresponding topic, one particular 

feature type was considered in each training run. Figure 5-3 shows the list of different training 

data used for Experiment I: 

 =3000 

annotated 
training  

sentences 
 

  

tokens 

lemmas 

PoS-tags 

tree string 

tree string 
(tokens) 

 

 

3000 strings with tokens 

3000 strings with lemmas 

3000 strings with PoS-tags 

3000 strings with tree string 

3000 strings with tree string 
(tokens) 

 

 
Figure 5-3: Training sets in Experiment I with each set considering one particular feature type 

 

Then, the 'Fast String Kernel' (FSK) operator calculated a kernel matrix of the   examples for 

each feature type. In order to learn models, the matrix was forwarded to the SVM learner which 

is available as the 'LibSVM' operator in RapidMiner17.  

It is important to note that in both the learning and testing runs the FSK operator treated PoS-

tags and 'tree strings' as items (described in Section 4.8). For the other features the FSK 

operator performed a substring matching on the full strings. 

During the training of the SVM learner a 'Parameter Optimization' operator was used to find the 

optimum value for the penalty term   that leads to the largest possible margin between two 

classes regarding the training set. In order to find the optimum in each training run, the 

optimization process performed 40 classification runs on the training set with an interval of 

           . After the highest accuracy and the optimal value for   was determined, the 

interval range was fine tuned and the optimization process was started once again. 

Additionally, in each optimization step, a (leave-k-out) cross-validation technique was applied to 

avoid overfitting with regard to a specific subset of the data. Therefore, the 'X-validation' 

operator performed a partitioning of the training data in      randomized subsets of equal 

size. In each validation step a single subset was retained as testing data while     remaining 

subsets were used for the training of the SVM learner. The cross-validation process was then 

                                            
16 In stratified sampling a random subset is chosen in such a way that the class distribution in the subset is 
the same as in the whole example set. 
17 In the parameter settings of the SVM we chose 'precomputed' as the kernel type and set the cache 
size to a sufficient memory limit of 1024MB. 
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repeated   times while each of the   subsets was used once as testing data. At the end of 

each cross-validation the performance results were averaged to provide an estimation of how 

accurately each learned model may perform on the testing data. 

Furthermore, each feature type was combined with a particular weight function (Section 4.7.4) in 

order to observe how a weight function or feature type influences the resulting prediction 

accuracies. Table 5-4 lists the optimized   and λ values with the corresponding accuracies 

obtained from all training runs: 

Optimized 
  in Exp. I: 

Constant 
weight 

Length 
Dependent 

Exponential Decay B-o-C B-o-W 

Tokens 
55.77% ± 

2.39%, 
C=2.3275 

56.50% ± 

1.99%, 
C=5.045 

57.57% ± 2.26%, C=1.778, 

λ=1,0000000000000002 

54.27% ± 

0.39%, 
C=4.06 

57.53% ± 

1.28%, 
C=6.8505 

Lemmas 
55.90% ± 

1.32%, 
C=8.312 

56.43% ± 

0.65%, 
C=1.09 

57.40% ± 2.59%, C=2.3275, 

λ=1,0000000000000002 

54.17% ± 

0.87%, 
C=6.835 

56.73% ± 

1.71%, 
C=8.312 

PoS-Tags 
56.57% ± 

1.41%, 
C=3.956 

56.20% ± 

1.27%, 
C=100.0 

56.57% ± 1.41%, C=3.956, 

λ=1,0000000000000002 

54.63% ± 

0.82%, 
C=9.851 

57.70% ± 

1.29%, 
C= 5.05 

Tree string 
57.33% ± 

2.13%, 
C=8.312 

56.67% ± 

2.23%, 
C=2.3275 

57.33% ± 2.13%, C=8.312, 

λ=1,0000000000000002 

54.43% ± 

0.50%, 
C=1.195 

57.30% ± 

1.77%, 
C=3.956 

Tree string 
(tokens) 

56.73% ± 

2.26%, 
C=0.01 

57.37% ± 

1.72%, 
C=1.2385 

56.73% ± 2.26%, C=0.001, 

λ=1,0000000000000002 

54.47% ± 

1.01%, 
C=2.893 

57.53% ± 

1.01%, 
C=0.689 

Table 5-4: The optimized   values and with the according accuracies (and standard deviations) 

obtained from the training runs in Experiment I. 

 

In general, the training data appears not to be easily separable due to the overall low 

accuracies measured in all combinations (lowest: 54.17%, highest: 57.70%). Using the 'bag-of-

words' (B-o-W) function in combination with PoS-tags is particular interesting as the matching 

series of PoS-tags between two examples appear to be useful enough to lead to the highest 

accuracy. 

However, the differences between the accuracies (with standard deviations up to 2.59%) are 

still too little to make a reliable statement when comparing each feature type with a weight 

function. The only exception hereto is the 'bag-of-character' (B-o-C) function that achieves the 

lowest accuracies for all feature types. 

The file to the RapidMiner process for training on various features can be found in the folder 

'Experiments\Tranche' on the CD: 

RapidMiner process file: 

Experiments\Tranche\FSK_Tranche_X-Validation_Of_TrainingSet.rmp 

Table 5-5: RapidMiner file used for the training phase in Experiment I 
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5.1.3 Testing phase 

For the testing phase all 6697 sentences of the second tranche ('TranchePreppedTestSet.csv') 

have been used. Furthermore, in each run the following steps were performed:   

 In the first step, the string kernels from the training data were computed and the resulting 

kernel matrix was then forwarded to the SVM learner in which the optimized parameter   was 

applied. This re-established the optimized models that were determined in the training phases 

before. When using the 'exponential decay' function, the optimized   were applied in the FSK 

operator.  

In the second step, a second FSK operator was employed to compute the kernels of training 

examples compared with unseen examples. The kernel matrix was then forwarded to the 'Apply 

Model' operator which made use of the optimized SVM models in order to perform the testing on 

unseen data. 

Figure 5-4 depicts the RapidMiner process in which the 3000 training examples are obtained in 

the upper subprocess and the 6697 test examples in the lower subprocess:  

 

 

Figure 5-4: The RapidMiner process in which the optimized SVM models are applied to unseen test examples. 

 

 

The file containing the RapidMiner process for performing the classification tests can be found in 

'Experiments\Tranche' on the CD: 

RapidMiner process file: 

Experiments\Tranche FSK_Tranche_PREDICT_LABELs_Testset.rmp 

Table 5-6: RapidMiner file used for the testing phase in Experiment I 
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Table 5-7 shows the classification results with all the combinations of feature type and weight 

function: 

 

Table 5-7: Classification results (%) of Experiment I "Tranches" obtained from 
different combinations of linguistic features and weight functions 

 

The classification on unseen examples achieves accuracies with the lowest value at 58.6% and 

a peak value of 68.12%. The 'bag-of-characters' (B-o-C) and 'bag-of-words' (B-o-W) functions 

achieve in most combinations far better accuracies than their competitors. This is surprising for 

the B-o-C function as the accuracies achieved in the training phase did not stand out from the 

other values. Recall that the B-o-C function considers only the first character in a matching 

substring and in case of PoS-tags and 'tree strings' the first item is considered. 

The best result is achieved by combining the B-o-W function with PoS-tags where a prediction 

probability of up to 0.68 was obtained, and with 'tree strings' a prediction probability of 0.67. 

With the assumption in the training phase above, these pleasing results here lead us to the 

conclusion that unseen sentences (that are "good" examples for the corresponding topic word) 

can be predicted best by considering the PoS tags and the underlying grammar of the 

sentences rather than by considering matching tokens. 

Interestingly, the combination of the 'exponential decay' function with the 'tree string (tokens)' 

feature achieved an accuracy of (64,49%) which is 5,48% better than the second best 

accuracy reached with PoS-Tags (59,01%). This slightly outstanding classification result might be 

due to the fact that the 'tree string (tokens)' feature combines the structural information of a 

dependency parse tree with the tokens in each sentence. 

 

  

Const. 
Length 
Dep. 

Exp. 
Decay 

B-o-C B-o-W 

Tokens 59,28 59,26 58,81 64,49 62,28 

TreeString(Tokens) 58,89 59,53 64,49 64,49 65,19 

Lemmas 59,34 59,44 58,63 64,21 61,55 

PoS-Tags 59,01 58,84 59,01 64,51 68,12 

TreeString 58,60 58,83 58,60 64,25 67,10 

0,00 
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Classification Results of Experiment I: "Tranches" 
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5.2 Experiment II: "Literature types" 

5.2.1 Acquiring texts from different periods 

In the second experiment two data sets with sentences containing the German word "Leiter" 

(English: ladder, leader or conductor) were analyzed. The first set consisted of 3188 sentences 

collected from general literature (containing the subcategories: functional writing, science and 

belletristic) of the 19th century and earlier, up to the 16th century. The second corpus consisted 

of 3097 sentences from contemporary literature (mainly taken from newspaper texts) starting 

from around the second half of the 20th century up to the present. Table 5-8 lists two exemplary 

sentences that represent both types of literature: 

Example sentence: Literature type: Label: 

Bey diesem Gesicht aber bleibet es nicht sondern daß jm das liebste ist 
so ist Gott selber verhanden vnd stehet oben auff der Leiter vnd thut 
dem Jacob ein tröstliche Predigt. 

general literature -1 

Der Leiter des Komitees lebt mit seiner Familie in einem Stadtteil, der 
vom Regime kontrolliert wird. 

contemporary 
literature 

+1 

Table 5-8: Two examples of general and contemporary literature 

 

 

Similarly to Experiment I, the sentences from both data sets were annotated with features in 

roughly seven hours and afterwards written to output files. Also here, the list of annotated 

sentences was purged from irrelevant examples and, in cases of erroneously detected sentence 

boundaries, the sentences were manually fixed.  

The original data sets, the RapidMiner processes for annotating the original sentences, and the 

output files can be found in the folder 'Experiments\Leiter' on the enclosed CD: 

Input file: RapidMiner process file: Output file: 

LeiterAllg.csv Annotate&Extract_LeiterAllg_Write2CSV.rmp preppedLeiterAllg.csv 

LeiterZeit.csv Annotate&Extract_LeiterZeit_Write2CSV.rmp preppedLeiterZeit.csv 

Table 5-9: List of files used or created during Experiment II 
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5.2.2 Training phase 

For the classification task a binary label was assigned to each sentence in order to indicate the 

type of literature. During testing, the SVM should predict the label of a previously unseen 

sentence regarding to which type of literature it belongs. 

In order to produce a training set, the first 1500 examples of a distinct feature type were taken 

from each data set, that is, 1500 examples from general literature plus 1500 examples from 

contemporary literature. 

The remaining sentences were then used for testing. Figure 5-5 shows the different training data 

obtained  for Experiment II: 

general 
literature 

(first 1500) 

general 
literature 

(first 1500) 
 

 

3000 
training 

examples 
("Leiter") 

 

  

tokens 

lemmas 

PoS-tags 

tree string 

tree string 
(tokens) 

 

 

3000 strings with tokens 

3000 strings with lemmas 

3000 strings with PoS-tags 

3000 strings with tree string 

3000 strings with tree string 
(tokens) 

 

Figure 5-5: Training sets for Experiment II 
 

In the same way as for Experiment I, the computed kernel matrix was forwarded to the SVM. 

Again, the SVM was wrapped by an optimization process in order to determine optimal values 

for the parameters   and λ, and a cross validation was performed in each optimization step.  

The file to the RapidMiner process for training on various features can be found in the folder 

'Experiments\Tranche' on the CD: 

RapidMiner process file: 

Experiments\Tranche\FSK_Leiter_X-Validation_Of_TrainingSet.rmp 

Table 5-10: RapidMiner file used for the training phase in Experiment II 

 

  



 
86 

Again, by combining each feature type with a particular weight function (Section 4.7.4) the 

following training accuracies were obtained, as shown in Table 5-4: 

Optimized 
  in Exp. II: 

Constant 
weight 

Length 
Dependent 

Exponential Decay B-o-C B-o-W 

Tokens 
87.00% ± 

1.80%, 
C=11.0 

82.75% ± 

2.19%, 
C=8.48 

87.05% ± 1.72%, C=3.7, 

λ=1,0000000000000002 

72.00% ± 

2.66%, 
C=0.0632 

82.85% ± 

1.55%, 
C=19.204 

Lemmas 
87.10% ± 

1.55%, 
C=4.75 

82.05% ± 

1.81%, 
C=6.4036 

87.10% ± 1.46%, C=3.565, 

λ=1,0000000000000002 

74.45% ± 

2.69%, 
C=0.1099 

83.40% ± 

1.81%, 
C=7.5136 

PoS-tags 
81.30% ± 

2.38%, 
C=1.8355 

80.50% ± 

1.63%, 
C=2.008 

81.90% ± 2.51%, C=4.515, 

λ=1,0000000000000002 

60.50% ± 

2.82%, 
C=1.75825 

78.95% ± 

3.11%, 
C= 15.75 

TreeString 
80.93% ± 

1.99%, 
C=3.0705 

79.45% ± 

3.39%, 
C=6.8675 

80.90% ± 1.98%, C=3.07, 

λ=1,0000000000000002 

56.80% ± 

2.54%, 
C=7.123 

78.13% ± 

2.58%, 
C=9.575 

TreeString 
(Tokens) 

87.93% ± 

1.59%, 
C=2.3275 

84.50% ± 

1.45%, 
C= 2.3275 

87.90% ± 1.71%, C=7.2775, 

λ=1,0005 

52.77% ± 

3.62%, 
C= 9.2575 

83.27% ± 

1.43%, 
C=9.7525 

Table 5-11: The optimized   values with the according accuracies (and standard deviations) 

obtained from the training runs in Experiment II. 

 

Based on the high trend of all accuracies we may assume that the training data is generally very 

well separable. Certainly, this can be traced back to the fact that the written language used in 

general literature from the 19th century and earlier (up to the 16th century) differs greatly from the 

word usage in contemporary texts of modern times (20th century up to the present). 

By comparing the weight functions we observe that the 'exponential decay' function achieves 

the highest accuracies. Similar high values are also achieved by the 'constant weight' function. 

Both the 'length dependent' and 'bag-of-words' (B-o-W) functions achieved roughly similar 

accuracies. The 'bag-of-characters' (B-o-C) function obtained a prediction performance that is 

far below average. Regarding the B-o-C function this appears comprehensible as each matching 

substring only consists of the first character, or they consist of the first item in case of PoS-tags 

and tags used in dependency parse trees. 

When comparing the different linguistic features, we notice that the highest accuracies are 

achieved by using tokens, lemmas, and 'tree strings (tokens)' 18 (again, with exception to the  

B-o-C function). Particular pleasing is that using the 'tree strings (tokens)' resulted to the highest 

possible accuracies. We can further observe that using PoS-tags and the 'tree strings' lead to 

the lowest accuracies - independent of the chosen weight function. 

This leads to the assumption that the best accuracies for predicting the memberships of unseen 

sentences to one of the two literature types can be expected by considering tokens, lemmas 

and 'tree strings (tokens)'. 

                                            
18 'Tree string (tokens)' are tree strings in which the tags in the leaves of the original parse tree have been 
replaced by the tokens of the corresponding sentence. 
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5.2.3 Testing phase 

In the testing phase the remaining n-1500 examples of a distinct feature type were taken from 

each data set, that is, the last 1688 sentences from the first set (general literature) plus the last 

1597 sentences from the second set (contemporary literature). 

Again, in each classification run each feature type was combined with each of the weight 

functions. The results are presented in Table 5-12: 

 

Table 5-12: Classification results (%) of Experiment II "Literature types" obtained from 
different combinations of linguistic features and weight functions 

 

The classification of unseen examples performs very well with the exception of the B-o-C 

function. As expected in the training phase, the highest accuracies are achieved when the 'Fast 

String Kernel' operator makes use of tokens, 'tree strings (tokens)', and lemmas. Here, the 

'constant weights' function and the 'exponential decay' function compete on accuracies between 

93.06% and 93.82%.  

Using PoS-tags or 'tree strings' (consisting of  grammar tags) leads to classification rates that 

are generally worse than the winners, and except for B-o-C all functions achieve a prediction 

performance that is up to 4,9% worse than considering tokens, lemmas and tree string (tokens). 

This further supports the assumption that both data sets containing contemporary and general 

literature can be separated very well due to the word usage in these literature types. 

  

Const. 
Length 
Dep. 

Exp. 
Decay 

B-o-C B-o-W 

Tokens 93,73 91,94 93,79 72,52 87,86 

TreeString(Tokens) 93,12 92,12 93,06 48,81 87,04 

Lemmas 93,70 91,87 93,82 71,03 86,94 

PoS-Tags 88,83 90,02 90,51 54,90 83,96 

TreeString 90,20 90,99 90,20 55,23 83,14 
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Classification Results of Experiment II: "Literature types" 
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5.3 Experiment III: "Bild vs. Spiegel" 

5.3.1 Acquiring sentences from online articles 

The idea for a classification task in the third experiment was to distinguish arbitrary sentences 

taken from articles of the German newspaper "Bild" from sentences obtained from articles of the 

German magazine "Spiegel" [Bild, Spiegel]. 

More precisely, the sentences of 30 online articles from "Bild.de", and the sentences of 33 

online articles from "Spiegel.de" were manually collected and stored in two separate data sets. 

The articles were from March 2015, and only the text bodies were considered while headlines 

and subtitles were omitted since both publishers use catching phrases that may have similar 

grammatical structure. 

A negative binary label was then assigned to all the sentences originating from articles of 

"Bild.de" and a positive label to the sentences taken from "Spiegel.de" articles. During testing, 

the SVM should predict the label of a previously unseen sentence and therefore decide from 

which source the sentence originally came.   

 

By using the 'WebLicht Feature Annotator' (Appendix A.1), the collected articles were annotated 

with features and afterwards written to output files. Since the 'WebLicht TCF to ExampleSet' 

operator is outputting  single annotated sentence, all the annotated articles were extracted to 

sets of sentences. In the end, for the first data set 784 sentences could be obtained from 

"Bild.de" articles, and for the second set 932 sentences could be extracted from "Spiegel.de" 

articles. Table 5-13 lists an exemplary sentence from each source: 

Example sentence: Source: Date: Label: 

Ausgerechnet am Tag, an dem die Welt in Sotschi den olympischen 
Geist beschwor, ordnete Putin die geheime Krim-Operation an. 

Bild.de 09.03.2015 -1 

Ein mögliches Übereinkommen würde Teil internationalen Rechtes 
und könnte von einem neuen US-Präsidenten nicht so einfach 
wieder aufgehoben werden. 

Spiegel.de 12.03.2015 +1 

Table 5-13: Two exemplary sentences taken from online articles from Bild.de and Spiegel.de 

 

The original data sets, the RapidMiner processes for annotating the original sentences, and the 

output files can be found in the folder 'Experiments\Bild_vs_Spiegel' on the enclosed CD: 

Input file: RapidMiner process file: Output file: 

Bild_article.csv Annotate&Extract_Bild-Articles_Write2CSV.rmp Bild_article_prepped.csv 

Spiegel_article.csv Annotate&Extract_Spiegel-Articles_Write2CSV.rmp Spiegel_article_prepped.csv 

Table 5-14: List of files used or created during Experiment III 
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5.3.2 Training phase & Testing phase 

In order to produce a training set, the first 350 examples of a distinct feature type were taken 

from each preprocessed data set, that is, 350 examples from "Bild.de" plus 350 examples 

from "Spiegel.de". The remaining sentences were then used for testing. Figure 5-5 shows the list 

of different training data obtained for Experiment II: 

Bild.de 
(first 350) 

Spiegel.de 
(first 350) 

 

 

700 
training 

examples 
 

  

tokens 

lemmas 

PoS-tags 

tree string 

tree string 
(tokens) 

 

 

700 strings with tokens 

700 strings with lemmas 

700 strings with PoS-tags 

700 strings with tree string 

700 strings with tree string 
(tokens) 

 

Figure 5-6: Training sets for Experiment III 
 

In the same way as in the previous experiments, the computed kernel matrix was forwarded to 

the SVM. The SVM was wrapped by an optimization process as well, in order to determine 

optimal parameters   and λ, and a cross validation was performed in each optimization step.  

The file to the RapidMiner process for training on various features can be found in the folder 

'Experiments\Tranche' on the CD: 

RapidMiner process file: 

Experiments\Bild_vs_Spiegel\FSK_Bild_vs_Spiegel_X-Validation_Of_TrainingSet.rmp 

Table 5-15: RapidMiner file used for the training phase in Experiment III 

 

 

In each training run one feature type was combined with a particular weight function (Section 

4.7.4). Table 5-4 presents the training accuracies: 

Optimized 
  in Exp. III: 

Constant 
weight 

Length 
Dependent 

Exponential Decay B-o-C B-o-W 

Tokens 
78.00% ± 

5.39%, 
C=3.751 

73.86% ± 

5.07%, 
C=3.751 

78.00% ± 5.39%, C=3.751, 

λ=1.0000000000000002 

57.71% ± 

7.59%, 
C=1.338 

68.86% ± 

3.66%, 
C=9.258 

Lemmas 
76.29% ± 

4.34%, 
C=3.565 

73.57% ± 

4.10%, 
C=6.683 

76.29% ± 4.25%, C=3.385, 

λ=1.0000000000000002 

59.57% ± 

5.31%, 
C=0.4775 

65.29% ± 

5.19%, 
C=8.772 

PoS-tags 
68.86% ± 

5.06%, 
C=2.264 

67.57% ± 

6.79%, 
C=3.859 

68.86% ± 5.06%, C=2.264, 

λ=1.0000000000000002 

60.43% ± 

5.15%, 
C=10.0 

66.29% ± 

4.66%, 
C= 9.575 

TreeString 
66.29% ± 

5.83%, 
C=2.117 

65.71% ± 

3.44%, 
C=1.7425 

66.29% ± 5.83%, C=2.117, 

λ=1.0000000000000002 

56.29% ± 

2.80%, 
C=1.110 

66.29% ± 

3.27%, 
C=3.698 

TreeString 
(Tokens) 

79.00% ± 

4.19%, 
C=1.213 

74.14% ± 

3.35%, 
C= 9.201 

79.00% ± 4.19%, C=1.213, 

λ=1.0000000000000002 

52.86% ± 

3.94%, 
C= 3.485 

68.00% ± 

3.90%, 
C=7.875 

Table 5-16: The optimized   values with the according accuracies (and standard deviations) 

obtained from the training runs in Experiment III. 



 
90 

Except for the B-o-C function, the obtained accuracies range from the lowest value of 65.71% 

up to a peak value of 79.00% which indicates that the training data can be separated quite well. 

Particularly outstanding is the 'tree string (tokens)' feature which achieves the highest accuracies 

in combination with all functions other than B-o-C. However, since the standard deviation is 

generally high with values up to 7.59% no reliable statements can be made regarding a 

particular weight function or feature type. On a side note: Because the parameter λ of the 

'exponential decay' function has been learned to be close to 1 with regards to all features, the 

accuracies for 'constant weight' and 'exponential decay' in combination with a distinct feature 

are the same. 

5.3.3 Testing phase 

For all runs in the testing phase the last 435 examples from the first data set ('Bild.de') plus the 

last 582 examples from the second data set ('Spiegel.de') were used. Table 5-12 presents the 

classification results with all the combinations of feature type and weight function: 

 

Table 5-17: Classification results (%) of Experiment III "Bild vs. Spiegel" obtained from 
different combinations of linguistic features and weight functions 

 

The classification of unseen examples performs very well with the exception of the 'B-o-C' 

function, as before. The highest accuracies are achieved by the 'length dependent' function with 

the peak probability of 0.81 to predict the source of a previously unseen sentence correctly. The 

second highest values are achieved by the 'constant' and 'exponential decay' functions (again 

with same values as λ is close to 1). 

When we take a look at the combination of the 'tree string' feature with the 'constant' and 

'exponential decay' functions, we observe that this feature leads to the highest prediction 

performance (79,04%). This is particularly interesting as the 'tree string' feature consists of the 

grammatical structure of each sentence and is sufficient to achieve a good data separation. 

Const. 
Length 
Dep. 

Exp. 
Decay 

B-o-C B-o-W 

Tokens 74,70 81,00 74,70 57,28 73,33 

TreeString(Tokens) 76,77 80,91 76,28 50,39 72,44 

Lemmas 73,03 76,67 73,03 57,09 71,26 

PoS-Tags 78,74 79,43 78,74 56,50 69,19 

TreeString 79,04 80,61 79,04 48,82 65,75 
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Classification Results of Experiment III: "Bild vs. Spiegel" 
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5.4 Benchmark test of the 'Fast String Kernel' operator 

In the last experiment the runtime performance of the FSK operator was measured. Therefore, 

very large example sets were prepared with sentences containing fix lengths of 500 and 1000 

characters. In order to obtain such strings, a set of roughly 18,000 documents was annotated  

in the same way as in the previous experiments. Then, each sentence plus all the extracted 

features was appended as a single line to an output file. Since each document consisted of 

several sentences, the extraction operator obtained a resulting set of around 54,000 sentences.  

The corresponding RapidMiner process, as well as the original and annotated output file can be 

found in the folder 'Experiments\ FSK_benchmark_test' on the CD enclosed with this work: 

Input file: RapidMiner process file: Output file: 

bringenB-N_ 
K2.csv 

Annotate&Extract_BringenB-N_ 
K2_Write2CSV.rmp 

bringenB-N-
K2_annotated_sentences.csv 

Table 5-18: The list of files used or created for preparing sentences of fix length 

 

Then, this output file was duplicated twice. In the first copy each line was cut off after the 500th 

character with the help of an external text editing tool, and in the second copy each line was cut 

off after the 1000th character. Sentences that were shorter than the required lengths were 

removed. 

In a simple RapidMiner process 1,000 to 5,000 strings were loaded from both prepared files, 

and the FSK operator computed the full kernel matrix while outputting the runtime statistics. The 

corresponding files are added to the folder 'Experiments\ FSK_benchmark_test', as well: 

Input file: RapidMiner process file: 

Bringen_Sentences_500chars.csv 
FSK_benchmark_test.rmp 

Bringen_Sentences_1000chars.csv 

Table 5-19: The list of prepared text files used for the RapidMiner benchmark process 
 

 

The FSK operator then computed the full kernel matrix between example sets of the same size 

(                  ). Further, the 'constant' weight function was chosen and the caching 

strategy set to 'cache_exampleset_2' (Appendix A.4.2). The test was performed on Windows 7, 

on a mobile platform equipped with an Intel i7-3630QM@2.4Ghz CPU while RapidMiner was 

running on a single CPU core with a limited memory of 4 GB. No other processes were running 

in the background during the test. 
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Figure 5-7 shows the computation runtimes of different sized kernel matrices: 

 

Figure 5-7: Benchmark results of the 'Fast String Kernel' operator with differently sized 
example sets with each set consisting of strings with 500 and 1000 characters 

 

One may expect that the computation has a quadratic increase since the FSK operator always 

computes     many kernels, for a given set of   examples. However, we observe that the 

computation is noticeably below that which shows that the runtime clearly benefits from the 

implemented caching strategies. 

Next, the runtimes of different processes involved in the kernel computation were measured.  

These processes are the parsing of input strings, the construction of suffix trees (including the 

computation of contributions), the building of matching statistics, computation of similarities 

(including the computation of weight function       ), and the time spent during other 

processes (function calls, object creation/destruction, etc.). Figure 5-8 presents the averaged 

runtime fractions19
 of these subprocesses: 

 

Figure 5-8: Runtime fractions during the kernel computations 

                                            
19 These are the averaged runtimes obtained during the benchmark test. 
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Clearly, most of the runtime is spent on the computation of the matching statistics. These runtime 

relations are, however, biased due to the time spent on comparing        many strings and 

due to caching strategies like 'cache_exampleset_2' where only        many suffix trees 

are constructed.  

The runtime performance of the process for matching statistics as shown by Figure 5-9 proves 

that this process is nonetheless independent of the amount of similarities computations. 

Regarding the slight increase in the runtime we may suppose that this was caused due to the 

increasing amount of matching substrings that were found with the increasing number of 

examples: 

 

Figure 5-9: Runtime performance of the matching statistics process per similarity 

 

Lastly, Figure 5-10 shows that the implemented algorithm for suffix tree construction runs in 

generally constant time. Here, we may assume that the slow, but steady decrease in the runtime 

may be due to caching effects caused by the operating system. 

 

Figure 5-10: Runtime performance of the suffix construction process per suffix tree 
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Chapter 6 Summary and Outlook 

The implemented operators for feature annotation and extraction make up a fast and robust 

preprocessing pipeline which allows us to obtain linguistic features from annotated texts. 

Furthermore, the extraction operator combines basic and structural features in order to produce 

variations of the 'tree strings' features which may prove useful in a given machine learning task. 

As shown in the experiments, the 'tree string (tokens)' feature lead to high classification 

performances that could compete with other basic features. 

Special care has been taken to establish a flexible configuration framework that allows to 

enhance the annotation process with other WebLicht services, and with little adaptation effort 

other linguistic features could simply be integrated, as well.  

The visualization module displays structural data given by dependency and constituency parse 

trees and additionally makes use of the basic features to enrich the visual representation of each 

sentence. At the same time, this tool can be used to manually label sentences. 

With regards to machine learning, the 'Fast String Kernel' (FSK) operator has been implemented 

in order to achieve linear runtimes while computing string kernels of linguistic features. In 

combination with the SVM a machine learning framework was established that allows to perform 

text classification tasks based on freely selectable linguistic feature types. 

The FSK operator builds suffix trees and matching statistics, but the implementation makes no 

use of compressed data structures like suffix arrays as suggested by [Vishnawathan & Teo]. 

However, the memory costs for constructed suffix trees could be circumvented by implementing 

effective caching mechanisms. This allows the operator to work with very little memory while still 

computing string kernels in linear time. 

Based on pleasing performance results in the experiments, the implemented weight functions 

proved to be great assets for the FSK operator. However, in the limited time TF-IDF weights 

could not be integrated. These weights would have allowed to emphasize single terms regarding 

their frequency and information value against the background of all other matching terms. Other 

approaches like dictionary weights which make use of static dictionary matching could neither be 

taken into consideration. These weights would not only require to extend the algorithm for suffix 

tree construction, but would as well afford a manual preparation of dictionaries by tailoring them 

to the analyzed text corpora. 

Due to the fact that not only the choice of a weight function, but also the choice of a specific 

feature type has a direct impact on the classification results, more room is assumed for studying 

other sophisticated features that could to be used in combination with the 'Fast String Kernel' 

method.  
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Appendix 

A.1 RapidMiner operator 'WebLicht Feature Annotator'  

A.1.1 Installation and usage in RapidMiner 

The implementation of this RapidMiner operator is bundled in a jar-file "rmx_kobra_wlst-0.7.2.jar" 

(at the time of writing in the version 0.7.2). The file can simply be copied into the plugin folder of 

RapidMiner. After that, the list of operators in RapidMiner contains the group "KoBra WebLicht 

Service Tools" in which the "WebLicht Feature Annotator" can be found. This operator expects 

the RapidMiner data type "document" as its input, and produces the same output type that 

contains the annotated XML corpus according to the TCF specification.  

Especially when annotating a 

large text corpus, it is 

recommended to save the 

output of the 'WebLicht Feature 

Annotator' to an XML file with 

the 'Write Document' operator, 

and load the text later in a separate process (as shown in Figure A - 1). This is especially useful 

as it keeps the processing time in RapidMiner short, and additionally avoids unnecessary server 

load on the WebLicht services. The synopsis of this operator is given in the help description as 

follows: 

 

A.1.2 Description of parameters 

Figure A - 2 shows a screenshot of the 

parameters of the 'WebLicht Feature 

Annotator'. In this sceenshot the 

settings are chosen to annotate a 

German text corpus with tokens, PoS- 

tags and a dependency parse trees. 

 

  

Uploads a text document to a chain of remote WebLicht services and receives the response as an 

annotated text corpus (TCF). However, this operator delivers the TCF data as a document (doc). It is 

recommended to save the returned data as an XML with a "Write Document" operator. IMPORTANT: 

All WebLicht parsers require sentences in the TCF. Please make sure to select the proper Tokeniser! 

Figure A - 2: Interactive list of parameters in the 'WebLicht Feature 
Annotator' realizing the concept of the flexible tool chain 

Figure A - 1: An exemplary RapidMiner process using the 'WebLicht Feature 
Annotator' 
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The parameters of this operator parameter are as follows: 

 'language': This parameter is a drop list with all the available languages as defined in the 

attribute availableLanguages="de,en,fr,it" of the XML element <services> in the XML 

configuration (Section A.1.4). In the case that a WebLicht service does not support the 

selected language, the corresponding drop list below will not contain this service. Also, if 

none of the services of a specific category supports the selected language, the parameter 

drop list is not shown at all. Accordingly, the available languages are shown in the help 

description of the operator.  

 'WL Tool chain Selection': This parameter is a drop list with the following WebLicht (WL) tool 

chains: 

 

Depending on which tool chain is selected, the according tool categories (converter, 

tokeniser, PoS tagger, dependency and constituency parser) appear as parameter drop 

lists where each drop list contains the WebLicht services of that category. For brevity, the 

parameters lists contain labels consisting of the tool category followed by the tool id of that 

category. The association of each label to a specific WebLicht service is displayed in the 

help description of this operator and uses the description of service as defined in the XML 

configuration. 

 'WL Converter Selection(<lang>)' – A list of converters: 

Converter #1: [BBAoS&H] conversion of plaintext to TCF0.4, 

Converter #2: [SfS] Converter, converts text in different document formats to TCF. If the language 

is specified as "unknown", the language is guessed from the text content. The following languages 

can be guessed: it, is, hu, th, sv, fr, ru, fi, ro, es, en, el, ee, pt, de, da, pl, bg, no, nl, lv 

 

 'WL Tokeniser Selection(<lang>)' –  A list of tokenisers: 

Tokeniser #1: [SfS] Tokeniser from the OpenNLP Project. ***No sentences are delivered!***, 

Tokeniser #2: [SfS] Tokeniser/sentences from the OpenNLP project. The 'newlineBounds' 

parameter treats newlines as a hard break (a sentence boundary). 

Tokeniser #3: [IMS] Czech, Slovenian, Hungarian, Italian, French, German, English tokeniser and 

sentence boundary detector, 

Tokeniser #4: [BBAoS&H] tokenizes a text and splits it up into sentences 

 

 'WL Lemmatiser Selection(<lang>)' – A list of lemmatisers: 

Lemmatizer #1: [IMS] SMOR lemmatizer: produces possible STTS tags and lemmas for a given list 

of words, 

 converter  

 converter  tokeniser  

 converter  tokeniser  lemmatiser 

 converter  tokeniser  PoS tagger 

 converter  tokeniser  PoS tagger  constituency parser 

 converter  tokeniser  PoS tagger  dependency parser 



 

97 

Lemmatizer #2: [IMS] PoS TreeTagger(2008): Italian,English,French,German part-of-speech tagger 

and lemmatiser, 

Lemmatizer #3: [IMS] PoS TreeTagger(2013): Italian,English,French,German part-of-speech tagger 

and lemmatiser 

 

 'WL PoSTagger Selection(<lang>)' – A list of PoS taggers: 

PoS-Tagger #1: [BBAoS&H] Part of Speech Tagger for German, 

PoS-Tagger #2: [IMS] PoS TreeTagger(2008): Italian,English,French,German part-of-speech tagger 

and lemmatiser, 

PoS-Tagger #3: [IMS] PoS TreeTagger(2013): Italian,English,French,German part-of-speech tagger 

and lemmatiser 

 

 'WL ConstParser Selection(requires Sentences!)(<lang>)' – A list of constituency parsers:  

Constituency Parser #1: [SfS] Constituent Parser from the Berkeley NLP Project, 

Constituency Parser #2: [IMS] German and English constituent parser 

 

 'WL DepParser Selection(requires Sentences!)(<lang>)' – A list of dependency parsers: 

Dependency Parser #1: [IMS] Stuttgart Dependency Parser, 

Dependency Parser #2: [SfS] MaltParser is a system for data-driven dependency parsing, which 

can be used to induce a parsing model from treebank data and to parse new data using an 

induced model. MaltParser is developed by Johan Hall, Jens Nilsson and Joakim Nivre at Växjö 

University and Uppsala University, Sweden. 

 

A.1.3 XML scheme definition for the XML configuration of the tool chain 

The following XML scheme definition [XSD] (bundled in the .jar file of this operator) formally 

specifies the allowable elements in the XML document for the configuration of the tool chain 

presented in the next Section 2.5.2: 

<?xml version="1.0" encoding="ISO-8859-1"?> 

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 

<xsd:element name="services"> 

  <xsd:complexType> 

    <xsd:sequence> 

      <xsd:element name="tool_group" maxOccurs="unbounded"> 

        <xsd:complexType> 

          <xsd:sequence> 

            <xsd:element name="tool" maxOccurs="unbounded"> 

              <xsd:complexType> 

                <xsd:sequence> 

                  <xsd:element name="creator" type="xsd:string" maxOccurs="1" minOccurs="1" /> 

                  <xsd:element name="contact" type="emailAddress" maxOccurs="1" minOccurs="0" /> 

                  <xsd:element name="description" maxOccurs="1" minOccurs="1"> 

                    <xsd:complexType> 

                      <xsd:simpleContent> 

                        <xsd:extension base="xsd:string"> 

                          <xsd:attribute name="lang" type="xsd:string" /> 
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                        </xsd:extension> 

                      </xsd:simpleContent> 

                    </xsd:complexType> 

                  </xsd:element> 

                  <xsd:element name="input_features" maxOccurs="1" minOccurs="1"> 

                    <xsd:complexType> 

                    <xsd:attribute name="lang" type="xsd:string" /> 

                    <xsd:attribute name="mime_type" type="xsd:string" /> 

                    <xsd:attribute name="posttags.tagset" type="xsd:string" /> 

                    <xsd:attribute name="type_param" type="xsd:string" /> 

                    <xsd:attribute name="type_description" type="xsd:string" /> 

                    <xsd:attribute name="version" type="xsd:string" /> 

                    </xsd:complexType> 

                  </xsd:element> 

                  <xsd:element name="output_features" maxOccurs="1" minOccurs="1"> 

                    <xsd:complexType> 

                      <xsd:attribute name="depparsing.emptytoks" type="xsd:string" /> 

                       <xsd:attribute name="depparsing.multigovs" type="xsd:string" /> 

                      <xsd:attribute name="depparsing.tagset" type="xsd:string" /> 

                      <xsd:attribute name="lang" type="xsd:string" /> 

                      <xsd:attribute name="mime_type" type="xsd:string" /> 

                      <xsd:attribute name="parsing.tagset" type="xsd:string" /> 

                      <xsd:attribute name="posttags.tagset" type="xsd:string" /> 

                      <xsd:attribute name="type_description" type="xsd:string" /> 

                      <xsd:attribute name="version" type="xsd:string" /> 

                    </xsd:complexType> 

                  </xsd:element> 

                  <xsd:element name="pid" type="xsd:string" maxOccurs="1" minOccurs="1" /> 

                  <xsd:element name="url" type="xsd:anyURI" maxOccurs="1" minOccurs="1" /> 

                  <xsd:element name="url_params" type="xsd:string" maxOccurs="1" minOccurs="0" /> 

                </xsd:sequence> 

                <xsd:attribute name="id" type="xsd:int" /> 

              </xsd:complexType> 

            </xsd:element> 

          </xsd:sequence> 

          <xsd:attribute name="category" type="xsd:string" /> 

        </xsd:complexType> 

      </xsd:element> 

    </xsd:sequence> 

  <xsd:attribute name="availableLanguages" type="xsd:string" /> 

  </xsd:complexType> 

</xsd:element> 

  <xsd:simpleType name="emailAddress"> 

    <xsd:restriction base="xsd:string"> 

      <xsd:pattern 
 value="([0-9a-zA-Z]([-.\w]*[0-9a-zA-Z])*@([0-9a-zA-Z][-\w]*[0-9a-zA-Z]\.)+[a-zA-Z]{2,9})" /> 

    </xsd:restriction> 

  </xsd:simpleType> 

</xsd:schema> 
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A.1.4 XML configuration for storing available WebLicht services 

<?xml version="1.0" encoding="UTF-8"?> 

<services xsi:noNamespaceSchemaLocation="weblicht_urls.xsd"  

  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" availableLanguages="de,en,fr,it"> 

<tool_group category="converter"> 

   <tool id="1"> 

      <creator>Berlin-Brandenburg Academy of Sciences and Humanities</creator> 

      <contact>didakowski@bbaw.de</contact> 

      <description lang="en">[BBAoS&amp;H] conversion of plaintext to TCF0.4</description> 

      <input_features lang="de" mime_type="text/plain" type_description="text" version="" /> 

      <output_features lang="de" mime_type="text/tcf+xml" type_description="text" version="0.4" /> 
      <pid>http://fedora.deutschestextarchiv.de:8088/fedora/objects/WebLichtWebServices:2/ 
                  datastreams/cmdi/content?asOfDateTime=2014-01-20T15:36:57Z</pid> 

      <url>http://dspin.dwds.de:8080/services/rohling_v_0_4</url> 

      <url_params></url_params> 

   </tool> 

   <tool id="2"> 

      <creator>SfS: Uni-Tuebingen</creator> 

      <contact>wlsupport@sfs.uni-tuebingen.de</contact> 

      <description lang="en">[SfS] Converter, converts text in different document formats to TCF. If the 
language is specified as "unknown", the language is guessed from the text content. The following languages 
can be guessed: it, is, hu, th, sv, fr, ru, fi, ro, es, en, el, ee, pt, de, da, pl, bg, no, nl, lv.</description> 

      <input_features lang="de,en,fr,it,is,hu,th,sv,ru,fi,ro,es,el,ee,pt,da,pl,bg,no,nl,lv" 

         mime_type="application/msword,application/vnd.openxmlformats-officedocument.wordprocessingml. 
  document,application/pdf,text/plain,application/rtf" 

         type_param="doc,pdf,plaintext,rtf" type_description="Word-Doc,Office-Doc,PDF,TXT,RTF" version="" /> 

      <output_features lang="" mime_type="text/tcf+xml" type_description="text" version="0.4" /> 

      <pid>11858/00-1778-0000-0004-BA56-7</pid> 

      <url>http://weblicht.sfs.uni-tuebingen.de/rws/service-converter/convert/qp</url> 

      <url_params>informat=plaintext&amp;language=de&amp;outformat=tcf04</url_params> 

   </tool> 

</tool_group> 

<tool_group category="tokeniser"> 

   <tool id="1"> 

      <creator>SfS: Uni-Tuebingen</creator> 

      <contact>wlsupport@sfs.uni-tuebingen.de</contact> 

      <description lang="en">[SfS] Tokeniser from the OpenNLP Project. ***No sentences are  
            delivered!***</description> 

      <input_features lang="de,en" mime_type="text/tcf+xml" type_description="text" version="0.4" /> 

      <output_features lang="" mime_type="" type_description="tokens" version="" /> 

      <pid>11858/00-1778-0000-0004-BA63-7</pid> 

      <url>http://weblicht.sfs.uni-tuebingen.de/rws/service-opennlp/annotate/tokens</url> 

      <url_params></url_params> 

   </tool> 

   <tool id="2"> 

      <creator>SfS: Uni-Tuebingen</creator> 

      <contact>wlsupport@sfs.uni-tuebingen.de</contact> 

      <description lang="en">[SfS] Tokeniser/sentences from the OpenNLP project. The 'newlineBounds'  
         parameter treats newlines as a hard break (a sentence boundary).</description> 

      <input_features lang="de,en" mime_type="text/tcf+xml" type_description="text" version="0.4" /> 

      <output_features lang="" mime_type="" type_description="sentences,tokens" version="" /> 

      <pid>11858/00-1778-0000-0004-BA7B-4</pid> 
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      <url>http://weblicht.sfs.uni-tuebingen.de/rws/service-opennlp/annotate/tok-sentences</url> 

      <url_params>newlineBounds=false</url_params> 

   </tool> 

   <tool id="3"> 

      <creator>IMS: University of Stuttgart</creator> 

      <contact>clarin@ims.uni-stuttgart.de</contact> 

      <description lang="en">[IMS] Czech, Slovenian, Hungarian, Italian, French, German, English tokeniser  
         and sentence boundary detector</description> 

      <input_features lang="cz,si,hu,it,fr,de,en" mime_type="text/tcf+xml" type_description="text" 
            version="0.4" /> 

      <output_features lang="" mime_type="" type_description="sentences,tokens" version="" /> 

      <pid>http://hdl.handle.net/11858/00-247C-0000-0007-3736-B</pid> 

      <url>http://clarin05.ims.uni-stuttgart.de/cgi-bin/dspin/tokeniser4.perl</url> 

      <url_params></url_params> 

   </tool> 

   <tool id="4"> 

      <creator>Berlin-Brandenburg Academy of Sciences and Humanities</creator> 

      <contact>didakowski@bbaw.de</contact> 

      <description lang="en">[BBAoS&amp;H] tokenizes a text and splits it up into sentences</description> 

      <input_features lang="de" mime_type="text/tcf+xml" type_description="text" version="0.4" /> 

      <output_features lang="" mime_type="" type_description="sentences,tokens" version="" /> 

      <pid>http://hdl.handle.net/11858/00-203C-0000-0023-21B9-7</pid> 

      <url>http://dspin.dwds.de:8080/services/tokeniser_v_0_4</url> 

      <url_params></url_params> 

   </tool> 

</tool_group> 

<tool_group category="lemmatizer"> 

   <tool id="1"> 

      <creator>IMS: University of Stuttgart</creator> 

      <contact>clarin@ims.uni-stuttgart.de</contact> 

      <description lang="en">[IMS] SMOR lemmatizer: produces possible STTS tags and lemmas for a given  
            list of words</description> 

      <input_features lang="de" mime_type="text/tcf+xml" type_description="tokens" version="0.4" /> 

      <output_features lang="" mime_type="" posttags.tagset="stts" type_description="lemmas" version="" /> 

      <pid>http://hdl.handle.net/11858/00-247C-0000-0007-373A-3</pid> 

      <url>http://clarin05.ims.uni-stuttgart.de/cgi-bin/dspin/smor-lemmatizer4.perl</url> 

      <url_params></url_params> 

      </tool> 

      <tool id="2"> 

      <creator>IMS: University of Stuttgart</creator> 

      <contact>clarin@ims.uni-stuttgart.de</contact> 

      <description lang="en">[IMS] PoS TreeTagger(2008): Italian,English,French,German part-of-speech  
            tagger and lemmatiser</description> 

      <input_features lang="it,en,fr,de" mime_type="text/tcf+xml" type_description="tokens" version="0.4" /> 

      <output_features lang="" mime_type="" posttags.tagset="stts" type_description="POStags, lemmas"  
         version="" /> 

      <pid>http://hdl.handle.net/11858/00-247C-0000-0007-3739-5</pid> 

      <url>http://clarin05.ims.uni-stuttgart.de/treetagger2008</url> 

      <url_params></url_params> 

   </tool> 

   <tool id="3"> 

      <creator>IMS: University of Stuttgart</creator> 
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      <contact>clarin@ims.uni-stuttgart.de</contact> 

      <description lang="en">[IMS] PoS TreeTagger(2013): Italian,English,French,German part-of-speech  
         tagger and lemmatiser</description> 

      <input_features lang="it,en,fr,de" mime_type="text/tcf+xml" type_description="tokens" version="0.4" /> 

      <output_features lang="" mime_type="" posttags.tagset="stts" type_description="POStags, lemmas"  
            version="" /> 

      <pid>http://hdl.handle.net/11858/00-247C-0000-0022-D906-1</pid> 

      <url>http://clarin05.ims.uni-stuttgart.de/treetagger</url> 

      <url_params></url_params> 

   </tool> 

</tool_group> 

<tool_group category="pos-tagger"> 

   <tool id="1"> 

      <creator>Berlin-Brandenburg Academy of Sciences and Humanities</creator> 

      <contact>didakowski@bbaw.de</contact> 

      <description lang="en">[BBAoS&amp;H] Part of Speech Tagger for German</description> 

   <input_features lang="de" mime_type="text/tcf+xml" type_description="sentences,tokens" version="0.4" /> 

      <output_features lang="" mime_type="" posttags.tagset="stts" type_description="POStags" version="" /> 

      <pid>http://hdl.handle.net/11858/00-203C-0000-0023-21B4-2</pid> 

      <url>http://dspin.dwds.de:8080/services/tagger_v_0_4</url> 

      <url_params></url_params> 

   </tool> 

   <tool id="2"> 

      <creator>IMS: University of Stuttgart</creator> 

      <contact>clarin@ims.uni-stuttgart.de</contact> 

      <description lang="en">[IMS] PoS TreeTagger(2008): Italian,English,French,German part-of-speech  
            taggerand lemmatiser</description> 

      <input_features lang="it,en,fr,de" mime_type="text/tcf+xml" type_description="tokens" version="0.4" /> 

      <output_features lang="" mime_type="" posttags.tagset="stts" type_description="lemmas, POStags" 
             version="" /> 

      <pid>http://hdl.handle.net/11858/00-247C-0000-0007-3739-5</pid> 

      <url>http://clarin05.ims.uni-stuttgart.de/treetagger2008</url> 

      <url_params></url_params> 

   </tool> 

   <tool id="3"> 

      <creator>IMS: University of Stuttgart</creator> 

      <contact>clarin@ims.uni-stuttgart.de</contact> 

      <description lang="en">[IMS] PoS TreeTagger(2013): Italian,English,French,German part-of-speech 
             tagger and lemmatiser</description> 

      <input_features lang="it,en,fr,de" mime_type="text/tcf+xml" type_description="tokens" version="0.4" /> 

      <output_features lang="" mime_type="" posttags.tagset="stts" type_description="lemmas, POStags" 
             version="" /> 

      <pid>http://hdl.handle.net/11858/00-247C-0000-0022-D906-1</pid> 

      <url>http://clarin05.ims.uni-stuttgart.de/treetagger</url> 

      <url_params></url_params> 

   </tool> 

</tool_group> 

<tool_group category="constituency-parser"> 

   <tool id="1"> 

      <creator>SfS: Uni-Tuebingen</creator> 

      <contact>wlsupport@sfs.uni-tuebingen.de</contact> 

      <description lang="en">[SfS] Constituent Parser from the Berkeley NLP Project</description> 
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   <input_features lang="de" mime_type="text/tcf+xml" type_description="sentences,tokens" version="0.4" /> 

      <output_features lang="" mime_type="" parsing.tagset="tuebadztb" posttags.tagset="stts"  
         type_description="constituents" version="" /> 

      <pid>http://hdl.handle.net/11022/0000-0000-1CB2-8</pid> 

      <url>http://weblicht.sfs.uni-tuebingen.de/rws/BerkeleyParser_04/resources/parser</url> 

      <url_params></url_params> 

   </tool> 

   <tool id="2"> 

      <creator>IMS: University of Stuttgart</creator> 

      <contact>clarin@ims.uni-stuttgart.de</contact> 

      <description lang="en">[IMS] German and English constituent parser</description> 

      <input_features lang="de,en" mime_type="text/tcf+xml" type_description="sentences,tokens"  
            version="0.4" /> 

      <output_features lang="" mime_type="" parsing.tagset="tigertb" type_description="constituents"  
            version="" /> 

      <pid>http://hdl.handle.net/11858/00-247C-0000-0007-3738-7</pid> 

      <url>http://clarin05.ims.uni-stuttgart.de/cgi-bin/dspin/bitpar4.perl</url> 

      <url_params></url_params> 

   </tool> 

</tool_group> 

<tool_group category="dependency-parser"> 

   <tool id="1"> 

      <creator>IMS: University of Stuttgart</creator> 

      <contact>clarin@ims.uni-stuttgart.de</contact> 

      <description lang="en">[IMS] Stuttgart Dependency Parser</description> 

   <input_features lang="de" mime_type="text/tcf+xml" type_description="sentences,tokens" version="0.4" /> 

      <output_features depparsing.emptytoks="false" depparsing.multigovs="false" depparsing.tagset="tiger"  
         lang="" mime_type="" posttags.tagset="stts" type_description="dependencies" version="" /> 

      <pid>http://hdl.handle.net/11858/00-247C-0000-0007-3734-F</pid> 

      <url>http://ws1-clarind.esc.rzg.mpg.de/webservice-parser</url> 

      <url_params></url_params> 

   </tool> 

   <tool id="2"> 

      <creator>SfS: Uni-Tuebingen</creator> 

      <contact>wlsupport@sfs.uni-tuebingen.de</contact> 

      <description lang="en">[SfS] MaltParser is a system for data-driven dependency parsing, which can be 
       used to induce a parsing model from treebank data and to parse new data using an induced model.  
      MaltParser is developed by Johan Hall, Jens Nilsson and Joakim Nivre at Växjö University and Uppsala  
       University, Sweden.</description> 

      <input_features lang="de" mime_type="text/tcf+xml" posttags.tagset="stts" 
            type_description="sentences,tokens" version="0.4" /> 

      <output_features depparsing.emptytoks="false" depparsing.multigovs="true"  
            depparsing.tagset="tuebadz" lang="" mime_type="" type_description="dependencies" version="" /> 

      <pid>http://hdl.handle.net/11022/0000-0000-1D4D-B</pid> 

      <url>http://ws1-clarind.esc.rzg.mpg.de/webservice-parser</url> 

      <url_params>depparsing.multigovs=true&amp;depparsing.tagset=tuebadz</url_params> 

   </tool> 

</tool_group> 

</services> 
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A.1.5 Class diagram of the 'WebLicht Feature Annotator' 

Depending classes involved in the implementation of the 'WebLicht Feature Annotator' 

(implemented by the class 'Doc2WLTextCorpus'):  
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A.2 RapidMiner operator 'WebLicht TCF to ExampleSet'  

A.2.1 Installation and usage in RapidMiner 

Equally to the 'WebLicht Feature Annotator', the implementation of 'WebLicht TCF to 

ExampleSet' operator is bundled in the jar-file "rmx_kobra_wlst-0.7.2.jar" and installed in the 

same way as described in Section A.1.1. 

This RapidMiner operator accepts the data type 

"document" as input and produces an 

'ExampleSet'. Figure A - 3 shows the beginning of 

a process in which an annotated text corpus is 

loaded by a 'Read Document' operator. Directly 

after, the 'WLTCF2ExampleSet' operator pro-

cesses all the linguistic features that are available in the document (as described in Section 

2.6.2), and extracts them to different columns of a new 'ExampleSet' which is then the output of 

this operator.  

The columns of the resulting 'ExampleSet' can contain the following features (depending on the 

annotated text corpus): Sentence, Tokens, Lemmas, PosTags, TreeString, PoSTags(tree), 

Tokens(tree), Lemmas(tree), Label. The synopsis of this operator is given as follows: 

 

A.2.2 Description of parameters 

The parameters of the 'WebLicht TCF to ExampleSet' operator shown in Figure A - 4 are 

described as follows: 

 'add a label attribute': If checked, the next two 

parameter fields appear and a binary label can be 

associated to each example in the ExampleSet. 

 'label attribute': Defines the name of the label 

attribute. 

 'default value': Default value of the label. Accepts a 

binomial value of either "-1" or "1". 

 

Extracts features from a text corpus (TCF) (previously annotated by using the 'WebLicht Feature 

Annotator'), and outputs them to an ExampleSet. Additionally, offers the option to label an example 

with a user-defined attribute. The default value of the label can be defined as "-1" or "1".  

Figure A - 4: Parameters of the 'WebLicht 
TCF to ExampleSet' operator. 

Figure A - 3: An exemplary RapidMiner process 
using the operator 'WebLicht TCF to ExampleSet' 
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A.3 RapidMiner operator 'Visualize and Label Parse Trees'  

A.3.1 Installation and usage in RapidMiner 

The implementation of the RapidMiner operator 'Visualize and Label Parse Trees' is bundled in 

the jar-file "rmx_kobra_wlst-0.7.2.jar" and the operator is installed as described in Section A.1.1. 

Figure A - 5 shows a RapidMiner process in which an 

ExampleSet that contains various linguistic features is 

loaded by a 'Read CSV' operator, and directly after 

visualized by the 'Visualize and Label Parse Trees' operator. 

The synopsis of this operator is given as follows: 

 

An exemplary visualized (dependency) parse tree is 

shown in Figure A - 6. By clicking on a checkbox in the 

controls of the panel the user can manipulate the label 

of the currently presented sentence/parse tree – if the 

user has added a label in the parameter settings of the 

'WebLicht TCF to ExampleSet' operator. By clicking the 

'Finish' button, the set of all examples is then outputted. 

The control buttons in the top area of the panel allow the 

user to switch to the first, previous, next or last 

sentence. This triggers the panel to clear the drawing 

canvas and update it with a parse tree that corresponds 

to the new selected sentence. 

By clicking and holding the mouse on the canvas, the 

drawing can be translated inside the panel. Using the 

mouse wheel allows the user to resize the parse tree. 

Therefore, in cases of too large drawings, the user is 

able to navigate all of the subtrees or scale down the 

graph in order to view the full structure of the parse tree.  

The button 'Switch Layout' toggles the tree layout to change from a vertical arrangement of the 

nodes to a horizontal one. That is, nodes on the same depth are now placed on the same x-

coordinate while keeping an alphabetical order in a top-down manner. 

Visualize and label parse trees of sentences that were previously annotated by a WebLicht parser. This 

operator can only be used directly after the 'WebLicht TCF to Example Set' operator or by providing an 

ExampleSet that contains the attributes produced by the 'WebLicht TCF to Example Set' operator (…). 

Other feature types that have been annotated by the 'WebLicht Feature Annotator', are associated to 

the nodes in that parse tree and can additionally be shown in the visualization. 

Figure A - 5: An exemplary RapidMiner 
process using the 'Visualize and Label 

Parse Trees' operator 

Figure A - 6: The visualization panel with an 
exemplary parse tree 
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The control button "Align Tree" places the tree to the left top edge of the panel. To adjust the 

edges of the tree to be direct or parallel lines, the position of the bends can be changed so that 

all edges either connect two boxes in straight lines or the bend is positioned on the x-coordinate 

of the lower box and gradually between the y-coordinates of both boxes.  

The drawing of the parse tree (for the current selected sentence) is placed in a sub window 

which is also called "tab widget". This tab widget carries the label "Sentence" together with the 

number of the selected sentence, followed by the maximum number of sentences.  Additionally, 

the tab widget "Table" provides a list with the extracted features. Note that the PoS-tags in this 

table are not necessarily the same tags produced by a parser service in the tool chain, 

especially in the case where the text corpus is annotated by a constituency parser.  

A.3.2 Description of parameters 

The parameters of the 'Visualize and Label 

Parse Trees' operator shown in Figure A - 7 

are described as follows: 

 'first example' / 'last example': These 

parameters allow the user to define a 

range of examples for the viewing process. 

 'invert filter': This parameter inverts the 

selection of examples which is the 

ExampleSet without the range of Examples 

from first example   to last example  . 

 'unique char for string termination': This 

parameter defines the termination symbol 

during the visualization of the parse tree as 

suffix tree. This character must not be contained in any of the strings in the ExampleSet. 

 'show lemmas' / 'show tokens': If available these feature types will be placed in the boxes 

of the visualized parse tree. 

 'sentence attribute' / 'treestring attribute' / posTags(tree) attribute' / 'lemma(tree) 

attribute' / 'tokens(tree) attribute': The attribute name for each feature type in the 

ExampleSet as provided by the 'WebLicht TCF to ExampleSet' operator. 

 'label attribute': The label of the ExampleSet as chosen by the user in the 'WebLicht TCF to 

ExampleSet' operator 

 

  

Figure A - 7: Parameters of the 'Visualize and Label 
Parse Trees' operator 
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A.3.3 Class diagram of the visualization framework for drawing parse trees 
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A.4 RapidMiner operator 'Fast String Kernel'  

A.4.1 Installation and usage in RapidMiner 

The implemented 'Fast String Kernel' operator is bundled in the jar-file "rmx_fast_string_kernels-

0.7.1.jar". In order to use this operator, the file has to be placed into the plugin folder of 

RapidMiner. After that, a new group 'Fast String Kernels' appears in the of list of RapidMiner 

operators in which the 'Fast String Kernel' can then be found. This operator expects one or two 

"ExampleSet(s)" as its input, and outputs the same data structure. Furthermore, the data type of 

the attribute from the ExampleSet(s) that is required for the string kernel computation needs to 

be text. 

This operator expects that either the first or both input ports are connected. If two ExampleSets 

are connected, the 'Fast String Kernel' computes the similarities          between the   strings 

from the first set and the    strings from the second set, with       and      .  If only 

one ExampleSet is connected, the similarity computation compares all strings with all other 

strings in that set while the operator only needs to calculate the upper triangle matrix with 

      and       and mirrors the values to the lower triangle matrix. In this special case, 

the warning shown in RapidMiner regarding this operator can be ignored. The result output of 

each operator is an ExampleSet that stores the computed kernel matrix with the entries 

         in   columns and   rows. Additionally, the operator adds a column "id" to the 

ExampleSet with integer values that indicate the current row in the kernel matrix. 

Figure A - 8 shows an exemplary 

RapidMiner process in which two 

'ExampleSets' (each contains a column 

with strings) are loaded by a 'Read CSV' 

operator. The 'Multiply' operator 

duplicates the first ExampleSet which is 

then forwarded to the upper 'Fast String 

Kernel' for computing the similarities 

between strings in that set, while the 

second 'Fast String Kernel' computes the 

similarities between the first and second set.  

The synopsis of the 'Fast String Kernel' operator is given as follows: 

  

Extracts features from a text corpus (TCF) (previously annotated by using the 'WebLicht Feature 

Annotator'), and outputs them to an ExampleSet. Additionally, offers the option to label an example 

with a user-defined attribute. The default value of the label can be defined as "-1" or "1". 

Figure A - 8: An exemplary RapidMiner process with 
two 'Fast String Kernel' operators. 
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A.4.2 Description of parameters 

The parameters of the 'Fast String Kernel' 

operator shown in Figure A - 9 are described 

as follows: 

 'compare string x/y': Defines the name of 

the input strings   and  . 

 'unique char for string termination': This 

parameter defines the termination symbol 

for the suffix tree. This character must not 

be contained in any of the input strings in 

the ExampleSet. 

 'remove characters from string': If 

checked, the next parameter field defines 

the set of characters to be removed from 

the input string. 

 'weight function': Any found match can 

be weighted by one of the implemented 

functions (see Section 4.7.4): "constant", 

"length_dependent", "exponential", "bag_of_characters" and "bag_of_words". 

 'weight per item': Weighting parameter depending on the chosen weight function. 

 'log total computation time': Logs the total runtime of the fast string kernel operator. 

 'log similarities': Logs the calculated similarity values of all compared pairs of input strings. 

 'log kernel computation': Outputs the summed and normalized kernel value after each 

comparison of the strings        , with        and       . 

 'log kernel computation details': Outputs any matched substring that the kernel finds during 

the similarity computation. Enabling this option usually leads to a reduced runtime 

performance of RapidMiner, due to the amount of produced logging messages. This option 

should be used for "debugging" data or for small data sets only. 

 'precache strategy': We provide the following caching strategies that are applied during the 

kernel computation: "Cache_ExampleSet_2" (default), "window" and "no_caching". Detailed 

descriptions are given in Section (4.8). 

  

Figure A - 9: Parameters of the 'Fast String Kernel' 
operator. 
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