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Abstract. Relation extraction from texts is a research topic since the
message understanding conferences. Most investigations dealt with En-
glish texts. However, the heuristics found for these do not perform well
when applied to a language with free word order, as is, e.g., German.
In this paper, we present a German annotated corpus for relation ex-
traction. We have implemented the state of the art methods of relation
extraction using kernel methods and evaluate them on this corpus. The
poor results led to a feature set which focusses on all words of the sen-
tence and a tree kernel which includes words, in addition to the syntactic
structure. The relation extraction is applied to monitoring a graph of
economic company-directors network.

1 Introduction

Social networks have raised scientific attention, the goals ranging from enhanc-
ing recommender systems [4, 15, 5] to gaining scientific insights [6, 22]. Where the
taggings, mailings, co-authorship, or citations in communities have well been in-
vestigated, the economic relationships between companies and their networking
have less been studied.
Today’s search engines are not prepared to answer questions like “show me all
companies that have merged with Volkswagen”. In order to get that information
anyway, it would be necessary to do an extensive search and consider several
sources. This is time consuming and tedious. This is why question answering
approaches require automatic relation extraction.
Moreover, it is important to represent the extracted information in a compact
and easily to access manner. Especially concerning relation extraction, the ex-
tracted entities and relations can be represented using an (un-)directed graph.
In this paper, we present an approach to monitoring economic information in
the world wide web using a graph-based representation. We will show that it is
possible to extract additional information using relation extraction techniques,
which have not yet successfully been used on German texts, because German
language features problems, which other languages – especially English – do not
face. A comparison of our feature set and enhanced tree kernel with state of the
art methods illustrates the importance of a balanced use of semantic and syn-
tactic information. First, we describe the state of the art in relation extraction
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using kernel methods, then we present our application, before we introduce or
enhancement of the method and the experimental results.

2 Kernel Methods for Relation Extraction

The ACE RDC task [11] defines a relation as a valid combination of two entities
that are mentioned in the same sentence and have a connection to each other.
Relations may be symmetric or asymmetric. The schema of i relations in a
sentence s is defined as follows:

Definition 1. Relation candidates in a sentence:

Ri(Sentence s) =< Typem ∈ relationtypes,
(Argument1 ∈ entitiess, Argument2 ∈ entitiess) >

where entitiess is the set of entities contained in the current sentence, and
relationtypes is the set of possible relations in the corpus.
Structured information of a sentence e.g. is the syntactic parse tree (an example
can be seen in Figure 1), where each node follows a grammar production rule.
By splitting up a tree in subtrees (see Figure 2) it is possible to calculate the
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Fig. 1. A parse tree for a German sen-
tence containing a merger-relation.
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Fig. 2. Some subtrees of a tree

similarity of two trees by counting their common subtrees. The set of subtrees
of a parse tree consists of every substructure that can be built by applying the
grammatical rule set of the original tree.

2.1 Linear Kernels

First experiments on relation extraction have been done by just using feature-
based methods. That made it necessary to manually create a large set of ’flat’
features describing the relation and comparing the similarities of these feature-
vectors in order to find the best discriminating classification function. The most



efficient way to compare feature-vectors is based on kernel functions which can be
embedded in various machine-learning algorithms like support vector machines
or clustering methods. A linear kernel on feature-vectors, x and z, is defined as
their inner product:

Definition 2. A linear kernel:

K(x, z) =
∑

n

φn(x)φn(z) (1)

where φn(x) is the n-th feature of x.

2.2 Convolution Kernels

Converting syntactic structures into feature-vectors is tedious [21] [23]. This
overhead is avoided when using a kernel function, which operates on any discrete
structure [7]. Because of the formulation as a kernel, the calculation of the inner
product requires the enumeration of substructures only implicitly.

Definition 3. Suppose x ∈ X is a composite structure and x = x1, ..., xp are
its parts, where each xi ∈ Xi for i = 1, ..., p and all Xi are countable sets. The
relation R(x, x) is true, iff x1, ..., xp are all parts of x. As a special case, X being
the set of all p-degree ordered, rooted trees and X1 = ... = Xp = X, the relation
R can be used iteratively to define more complex structures in X.
Given x, z ∈ X and x = x1, ..., xp, z = z1, ..., zp and a kernel Ki for Xi measur-
ing the similarity Ki(xi, zi), then the similarity K(x, z) is defined as the following
generalized convolution

K(x, z) =
∑

{x|R(x,x)}

∑
{z|R(z,z)}

p∏
i=1

Ki(xi, zi) (2)

[7]p.5f

Convolution kernels characterize the similarity of parse trees by the similarity
of their subtrees [3]. Within the kernel calculation, all subtrees of the trees are
compared. They are (implicitly) represented as a vector:

Φ(T ) = (subtree1(T ), ..., subtreem(T )) (3)

where subtreei means the number of occurrences of the i-th subtree in T . The
number of common subtrees is summed up. The worst case runtime is O(|N1| ×
|N2|), being Nt the set of nodes of a tree Tt.

Definition 4. The tree kernel computes a scalar product:

K(T1, T2) =< h(T1),h(T2) > (4)

hi(T1) =
∑

n1∈N1

Ii(n1) (5)



where the indicator function Ii is defined for the nodes n1 in N1 of T1 and n2

in N2 for T2 as 1, iff the i−th subtree is rooted in node n. Hence,

K(T1, T2) =
∑

n1∈N1

∑
n2∈N2

∑
i

Ii(n1)Ii(n2) (6)

=
∑

n1∈N1

∑
n2∈N2

∆(n1, n2) (7)

The calculation of ∆ is done recursively by following three simple rules:

– If the grammar production rules of n1 and n2 are different: ∆(n1, n2) = 0
– If the production rules in n1 and n2 are equal and n1 and n2 are pre-terminals

(last node before a leaf): ∆(n1, n2) = λ

– If the production rules in n1 are n2 equal and n1 and n2 are non pre-
terminals:

∆(n1, n2) = λ

nc(n1)∏
j=1

(1 +∆(ch(n1, j), ch(n2, j))) (8)

nc(n1) = number of children of node n1

ch(n1, i) = ith child of node n1

λ = parameter to downweight the contribution of large tree fragments
exponentially with their size.

[13] designed an algorithm for the above calculation that has linear runtime
on average due to a clever preprocessing step. Nodes that don’t need to be
considered by the kernel are filtered out by sorting and comparing the production
rules of both trees in advance ( “Fast Tree Kernel” FTK ).
[24] extended the FTK kernel to become context sensitive by looking back at
the path above the ancestors of the root node of each subtree. The left side
of the production rule is taking into account m-1 steps towards the root. The
kernel calculation itself sums up the calculations for each set of production rules
created for 1 . . .m. In the special case m=1 the kernel result is the same as with
the non context-sensitive kernel.

KC(T [1], T [2]) =
m∑

i=1

∑
ni

1[1]∈N1
i [1],ni

1[2]∈N1
i [2]

∆(ni
1[1], ni

1[2]) (9)

– m the number of ancestor nodes to consider.
– ni

1[j] is a node of tree j with a production rule over i ancestors. n1[j] is the
root node of the context free subtree the ancestor node of nk[j] is nk+1[j].

– N i
1[j] is the set of all nodes with their production rules over i ancestor.
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Fig. 3. Production rules of subtree root node (NE) for different m values

2.3 Composite Kernels

[20] showed that better results can be achieved with a combination of linear and
tree kernels. [7] showed that the class of kernels is closed under product and
addition. This implies that combining two kernels is possible and results in a
new kernel which is called a composite kernel, defined as follows:

K(x, z) = K1(x, z) ◦K2(x, z) (10)

In the case of relation extraction the composite kernel combines a linear and a
convolution tree kernel. [20] propose a linear combination (11) and a polynomial
expansion (12).

K(x, z) = α · K̂L(x, z) + (1− α) · K̂T (x, z) (11)

K(x, z) = α · K̂P
L (x, z) + (1− α) · K̂T (x, z) (12)

where x and z are relation candidates that consist of flat features and structured
information, each kernel is given the right input for its kind. KP

L (x, z) is the
polynomial expansion of KL(x, z) with degree d = 2 i.e. KP

L (x, z) = (KL(x, z) +
1)2. By setting the α value the influence of each kernel type can be adjusted.
Both kernels are normalized in kernel space before the combination:

K ′(T1, T2) =
K(T1, T2)√

K(T1, T2)K(T1, T2)
(13)

2.4 State-of-the-art composite kernels for Relation Extraction

In addition to just using the composite kernel on the full parse tree of a sentence,
[20] examined several ways of pruning the parse tree in order to get differently
shaped subtrees on which the treekernel performs as well or better as on the
full tree. They showed that the shortest path-enclosed tree (SPT) which is the
minimal subtree containing the two entities of a relation candidate performs best
for the ACE 2003 RDC corpus.
But [24] showed that the ACE corpus contains relations for which the SPT is not



sufficient. These relations are indicated by their related verb. Figure 1 shows a
relation of our corpus which is indicated by its related verb, too. But in contrast
to the ACE corpus which just contains a few relations of this type, our corpus
has many. The type of relation and the specialty of the German language are
responsible for this fact.
The strict and binary decisions of the tree kernel are the main disadvantage of
this method. [24] tried to overcome this problem by embedding syntactic features
into the parse tree directly above the leaf-nodes. Moreover, syntactic structure
is already covered by the tree kernel, adding it in terms of features does not
help generalization. [19] generalized the production rules of the parse tree in
order to achieve better performance. The strict decisions of a convolution tree
kernel (remind Section 2.2) make the kernel returning ’unequal’ confronted with
two production rules “NP → Det Adj N” and “NP → Det N” although they
might contain similar terminals (“NP → a red car” and “NP → a car”). To
avoid such behavior they proposed inserting of optional nodes into production
rules to generalize them. Additionally similar part of speech tags in the parse
tree can be processed in an equal way – multiplied with a penalty term.
This is a step into the right direction. However, only syntactic variance is han-
dled. Since words carry most of the semantic information, moving them into the
tree kernel could well help to generalize in a more semantic way.

Related kernels for Relation Extraction There are several related ap-
proaches for relation extraction differing from the ones already presented. [17]
presented a general kernel function for trees and its subtrees. [18] used a kernel
function on shallow parse trees. Bunescu and Mooney used a kernel function on
the shortest path between two entities in a dependency tree [1]. Additionally
they used the context of entities for relation extraction [2].

3 Monitoring the merger event in an economic network

The enhancement of the state of the art in relation extraction which is described
in Section 4 became necessary when we developed the economic network based
on German sources. We did not want to manually build and update its database.
Extracting relations from documents directly allows to automatically accomplish
the data about companies and their board members with relationships between
them. Hence, the network can be monitored and is always up-to-date.

3.1 Building-up the economic network

Building up the economic network starts with extracting companies and their
board of directors. The extraction of the named entities “company” and “board
member” is quite simple, because there exist several web archives of compa-
nies which are semi-structured. Hence, companies and their representatives can
easily be extracted using simple regular expressions. The initial stock of data
is stored in a SQL database. It consists of about 2.000 different big companies



from throughout the world. Basic information includes only address and indus-
try but most entries provide a lot more details about members of the board
of directorate, share ownership, shareholding and some key performance indica-
tors. Many of these companies (here: 1,354) are connected to one other company
at least, by sharing a member of the directorate. The best connected company
even has 37 different outgoing directorate connections. These numbers support
the assumption, that the graph built from these relations can reveal significant
structures in the business world. From the SQL data base, a network G = (V,E)

Fig. 4. Selecting Volkswagen AG (VW)
from all companies, the involved respon-
sible persons are displayed.

Fig. 5. Two directors of the board of
VW are directors of Porsche, as well. The
merger-relation holds between VW and
Porsche (indicated by a thicker line be-
tween the companies).

is built containing entities (v ∈ V ) and relations (e ∈ E) between entities. Its vi-
sualization is performed using the JUNG-Framework [14]. The human-computer
interface allows users to select a company and move to the involved persons,
from which the user may move to all the companies in which they play a role
– thus browsing through the basic social network graph of economy. Figure 4
shows an example. Since the archives do not change their structure whenever
the content changes, the database is easily updated.

3.2 Extracting the merger-relation from web documents

For monitoring the web of economy, the merger-relation is most interesting. To
get a preselection of relevant documents the the web is crawled for information
about the 30 DAX indexed German companies. Given a list of known company



names, the texts of the resulting websites are tagged in the IOB-scheme indicat-
ing “company”-entities. Only those sentences containing at least two company
entities are selected for further processing. It is then the task of relation extrac-
tion to identify the true merger-relations between two companies. Of course,
simple co-occurrence is not sufficient for this task. Note, that a sentence with
three company names can include none, one, or two merger-relations. Hence, we
applied our method described in Section 4. Details on the experiments are given
in Section 5. Figure 5 shows an example of a found merger-relation.

4 Relation extraction with an enhanced composite kernel

We have implemented the state-of-the-art kernel method in Java, extending the
kernel functions of SVM light [8]. We also have developed an information ex-
traction plug-in [9] for RapidMiner (formerly Yale) [12] including the composite
kernel and all necessary preprocessing. When handing over the examples to the
kernel functions, an example is split into the features for the linear kernel and
into the tree for the tree kernel. When passing the tree to the kernel function,
it may be pruned and enriched by new features.
We changed two aspects concerning the state-of-the-art composite kernels used
for relation extraction:

– First, we widened the featureset used for the linear kernel.
– Second, we added semantic information to the tree kernel.

Features which contain words or word-parts of special positions in the sentence
related to the entity’s position showed to be useful for named entity recognition.
However, for relation extraction, the position is no longer decisive. The infor-
mation about the relation is spread all over the sentences, shows up at very
different places, and can, hence, not be generalized. The clue verb fusionieren,
for instance, may occur at various positions of the word sequence (see Figure 1).
Especially for distinguishing between positive and negative relation candidates,
the contextual information is not restricted to the words between the entities or
to some words in front or behind the entities, as assumed by the feature set in
[23]). In order to capture the influence of words that can act as an indicator for
a relation we extract the word vector (containing just the word stems) of the
complete sentence and add it to the linear features. In a separate experiment
setting we use the features presented by [23], for comparison.
The second of our enhancements concerns the tree kernel. Figure 1 shows a parse
tree of our corpus containing two entities (underlined solid) and the merger-
indicating verbs (underlined dashed). It is easy to see that well-known subtrees
for better relation extraction like shortest path-enclosing trees (SPT) will not
work well in this context. But using the whole and unaltered parse tree will not
work as well. The reason is, if a sentence contains positive and negative relation
candidates the identical parse tree would be used for both relation candidate-
types.
Using the context-sensitive parse tree of [24] is promising. But this approach



needs well-trained parsers which are still not available in an appropriate version
for the German language. We therefore generalized the parse tree by adding
syntactical information directly into the tree. First of all we marked the entities
of the current relation candidate in the corresponding parse tree. In addition,
we added semantic information into the parse tree by introducing extra nodes
containing the word stems of the sentence at different depths.
Figure 6 shows four different types of parse trees used in our experimental
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Fig. 6. Word stems at different depth-levels in the parse tree

settings. The first one (1)) is the original parse tree. In parse tree 2) we have
replaced all terminals by their stems. Parse tree 3) is the tree after inserting the
stem at depth 0. The depth is the depth of the stem in relation to the depth of
the pre-terminal symbol. 4) is the tree after inserting the stem at depth 1. The
word ’VW’ has no stem, so nothing is inserted.

5 Experiments

Our companies corpus consists of 1698 sentences containing 3602 relation can-
didates. 2930 of these relation candidates are negative ones (being no merger-
relation), and 672 relation candidates are true merger-relations. Only 98 of these
1689 sentences contain multiple relation candidates with different labels. Com-
pared to other relation extraction datasets this distribution is very skewed and
leads to the behavior described in the following Section. The ACE04 corpus for
instance contains 2981 sentences out of which 1654 sentences contain at least a
true relation and a negative candidate.
We produced several training sets with different attribute sets to compare our
enhancements with the state-of-the-art composite kernel methods for relation
extraction. All the training sets consist of all relation candidates, i.e., pairs of
entities found in one sentence. Each example consists of a relation label, e.g.
merger or nomerger, the syntactic tree of the sentence in which the arguments
occur, and several features which are now described in detail.

The baseline-featureset contains the word-features proposed by [23]. These
features are mainly based on words of the relation candidate entities or words



nearby in the sentence. For its use by the tree kernel, the feature set also contains
the parse tree of the sentence the relation candidate is extracted from.

The word-vector-featureset contains just the word-vector of the sentence from
which the relation candidate is extracted, and the parse tree.

The big-word-vector-featureset contains just the word-vector, the parse tree
and the baseline-featureset.

The stem-x-tree-featuresets are equal to the word-vector-featureset but the
parse tree contains the word stems inserted at depth-level x or as a replacement
of the original terminal symbol.

The parse tree is given by running the Stanford parser [10] trained on the
NEGRA corpus [16]. We applied 10-fold cross validation using the composite
kernel with a parameter setting of C = 2.4, m = 3 and α = 0.6 (see Section 2.2).

Performance Table 1 shows the performance of the state of the art method
and the two versions of our new method. Table 2 shows the standard deviation
of the performance measures in 10-fold cross validation.

Table 1. Performance of relation extraction on
the companies corpus using 10-fold cross valida-
tion.

Featureset Precision Recall F-meas.

baseline 33,47% 52,27% 38,64%

word-vector 36,41% 69,93% 45,45%

big-word-vector 36,83% 74,86% 48,73%

stem-replace-tree 31,46% 76,03% 44,08%

stem-0-tree 37,94% 47,90% 41,79%

stem-1-tree 44,33% 53,42% 47,51%

stem-2-tree 36,28% 62,91% 45,64%

Table 2. Standard deviation
of the performance of relation
extraction

Precision Recall F-meas.

3,88% 21,99% 8,88%

12,16% 11,64% 5,12%

5,15% 9,55% 3,12%

4,63% 8,99% 4,32%

6,29% 14,55% 9,07%

7,58% 9,89% 4.40%

3,95% 10,89% 4.62%

As can be seen, recall increases significantly using word vectors in the linear
kernel and word stems in the tree kernel while at the same time the deviation
decreases. Precision is best when semantic information in the tree is used at level
1. The best F-measure achieved by the big-word-vector is to be explained by the
very few sentences containing a positive and a negative candidate of a relation.
If sentences include either a positive or a negative example of a relation, the
relation extraction is downgraded to sentence classification, where word vectors
are a well suited representation. Hence, for relation extraction, the enhanced
trees remain important.

6 Conclusions and Future Work

We proposed an economic network that is built up extracting semi-structured
websites containing financial stock information.



The network – consisting of entities and relations between them – should be
kept up to date automatically. Therefore we presented an enhancement to state-
of-the-art relation extraction methods. Our enhancements take into account the
problems German language faces in contrast to the well-examined English lan-
guage.
To evaluate our method we extracted a German document corpus of the eco-
nomic domain. We tagged all the firms in our corpus and extracted all possible
relation candidates. We tested state-of-the-art relation extraction methods on our
relation extraction corpus and compared the results with the results achieved by
our enhancements.
Our enhanced composite kernel method achieves significantly better performance
compared to the baseline. Although using just the linear kernel performs best,
the usage of the composite kernel will be needed if the relations become more
frequent and the number of relation-types becomes bigger.
Future work will implement better measures for the evaluation, so that sen-
tence classification effects in relation extraction can properly be detected. Our
approach should be evaluated on English benchmark datasets. Additionally our
approach to add semantic information in the parse trees could be replaced by us-
ing dependency trees. But unfortunatelly the used library (stanford parser) just
offers trained dependency parsers for English and Chinese. Using dependency
trees therefore might be tested on English datasets.
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