
Where Traffic meets DNA: Mobility Mining using Biological
Sequence Analysis Revisited∗

Ahmed Jawad, Kristian Kersting, and Natalia Andrienko
Knowledge Discovery Dept., Fraunhofer IAIS

53754 Sankt Augustin, Germany
firstname.lastname@iais.fraunhofer.de

ABSTRACT
Traffic and mobility mining are fascinating and fast growing areas
of data mining and geographical information systems that impact
the lives of billions of people every day. Another well-known scien-
tific field that impacts lives of billions is biological sequence analy-
sis. It has experienced an incredible evolution in the recent decade,
especially since the Human Genome project. Although, a very first
link between both fields has been established already in the early
90ies, many recent papers on mobility mining seem to be unaware
of it. We therefore revisit the link and show that many unexplored
and novel mobility mining methods fall naturally out of it. Specifi-
cally, using advanced discretization techniques for stay-point detec-
tion and map matching, we turn traffic sequences into a "biological"
ones. Then, we introduce a novel distance function that enables us
to directly apply the rich toolbox for biological sequence analysis to
it. For instance, by just looking at complex traffic data through the
biological glasses of sequence logos we get a novel, easy-to-grasp
visualization of data, called "Traffic Logos". For clustering and pre-
diction tasks, our empirical evaluation on three real-world data sets
demonstrates that revisiting the link can yield performance as good
as state-of-the-art data mining techniques.

Categories and Subject Descriptors
H.2.8. [Database applications]: Data mining, Spatial databases and GIS.

General Terms
Applications, Experimentation

Keywords
mobility mining, visualization, biological sequence analysis

1. INTRODUCTION
Location-based services signify a change in how we as a soci-

ety use computers to mine data. As Mitchell pointed out [12], we
are beginning to analyse ’our reality’ — data recording personal
activities, conversations, and movements — in space and time in
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an attempt to improve human health, guide traffic, and advance the
scientific understanding of human behaviour in general. In a sense,
sensor-equipped computing devices overcome longstanding tempo-
ral and spatial boundaries to human perception [?]. Therefore it
comes as no surprise that mining one type of reality data, namely
movement and traffic data, is currently receiving a lot of attention.
Another well-known scientific field that is receiving a lot of atten-
tion is biological sequence analysis( see e.g [5] for an introduction)
especially since the Human Genome project. Additionally, both of
these fields have something in common i.e. the identification of rel-
evant patterns in massive sequential information. Indeed, whereas
biological sequence analysis focusses on sequences of (few) sym-
bols, mobility mining focusses on sequences of continuous values.
Thus, one may argue that building bridges between them is insur-
mountable. However, it is not the case as the first link between
biological sequence analysis and mobility has been established al-
ready in the early 90ies (see e.g. [1]). In this paper we revisit the
link established as many recent papers on mobility mining seem to
be unaware of it. Furthermore, previous efforts were not exploiting
the link to the full extent. They either extended standard biological
sequences alignment to the multi-dimensional case [?] — loosing
the biological glasses to view further into this direction for clus-
tering, classification, visualization, and probabilistic modelling of
data, among other tasks — or they used standard similarity scores
from biology [16, 15] and in turn run the risk of missing the invari-
ances of traffic sequences.

In this paper, we demonstrate that advanced descretization tech-
niques (e.g. map matching [8], stay point extraction, etc.) together
with a novel, data-driven similarity score allows one to keep wear-
ing the biological glasses while keeping the traffic invariance intact.
Specifically, our main contributions are (1) a novel, data-driven sim-
ilarity score suitable for traffic data, (2) the introduction of ‘Traf-
fic Logos’, a novel visualization technique that provides a com-
pact yet descriptive view on the information content of traffic se-
quences, and (3) the demonstration of state-of-the-art performance
for important traffic analysis tasks such as user activity analysis us-
ing ’off-the-shelf’ biological techniques with our similarity score.
Essentially, user activity analysis from geographic data comprises
models that abstract a person’s movement from raw GPS data to
places of interest and analyse travel rhythms [14] between them.

Mobility mining techniques naturally deal with the two most com-
mon problems that come with traffic data: (a) Traffic data is com-
posed of sequences over continuous time and space and not discrete
symbols. (b) The amount of raw traffic data is huge. Since we ab-
stract the raw data into sufficiently small alphabets using standard
discretization, we can instantly solve (a) and in turn (b). Why? Bi-
ological sequence analysis will do the rest for us. It was designed
to deal with large numbers of variable length sequences.



2. FROM RAW TRAFFIC TO SYMBOLS
Let X be some raw traffic data. We now convert X into a set
S of traffic sequences using a so-called translation method M i.e
M = (AM,∆M,F) where AM = {a1, a2, ..., al} is an al-
phabet (set of symbols the sequences are composed of) and ∆M
is an l-by-l matrix of pair-wise similarities between symbols in
AM. Now, a traffic sequence TM for M is a temporally tagged
sequence of symbols chosen from alphabet AM, that is TM =
{(at1 , t1), (at2 , t2), ..., (ate , te)}. Finally, F denotes a discretiza-
tion function which maps raw traffic data X to the set of traffic
sequences S according to M, that is F(X ) ← SM. In general,
the discretization function to be used in application dependent. Ex-
amples include map matching i.e the process of assigning raw tra-
jectories to street segments, see e.g. [8], region based division of
Euclidean space in T-Pattern mining, frequency bins from sensor
readings and stay point extraction from user trajectories, among
others. Let us now touch upon the alphabet and similarity score
used in more detail. Every symbol a ∈ A corresponds to a set
of traffic objects. Therefore, it is natural to assume that for any
two symbols ai, aj ∈ AM, ai ∩ aj = ∅, that is ai and aj corre-
spond to disjoint/non-overlapping sets of traffic objects. Note that
the symbols usually represent spatial and unary objects like regions
of a city or streets in a street network, however they can also rep-
resent non-spatial entities of interest like frequency bins for sensor
readings or categories of streets like highway, link road, etc. The
similarity matrix ∆M describes the similarity between symbols in
AM. In the context of computational biology, ∆M is driven by
the following insight: two molecules have higher similarity if they
can be converted through chemical reactions readily and vice versa.
Therefore, standard matrices have been developed. For traffic ap-
plications, the situation is different. There is a multitude of traffic
data sets, all with their own characteristics and invariants. Hence, it
is unlikely that there is a single good similarity matrix. Instead, it
depends upon the application at hand. For example, we have cho-
sen shortest path distances for the model where the input alphabet
consists of streets from a street network and the application of in-
terest is ’trajectory clustering’. For cases, where we do not have
such domain knowledge available, we now propose a ’data driven’
approach to devise a similarity matrix ∆. To illustrate, we turn a
sequence into a graph in the following way. Each unique symbol
in the sequence is a node. Then if two symbols are consecutive in
the sequence, there is an edge between the corresponding nodes in
the graph. Finally, we weight the edge with the average temporal
differences between the two symbols in the sequence. Now, we cal-
culate the shortest path distances between all nodes in the graph.
If there are muliple sequences, we simply average all resulting dis-
tance matrices. Unfortunately, it may very well happen (in particu-
lar for rather small data sets) that there are pairs of symbols which
never co-occur in a traffic sequence. In turn, the average temporal
difference distance cannot be computed. For example, in the dataset
we used for the analysis of user activities, the user never does sports
and shopping in a sequence together. In this case, we assign some
value larger than the maximum similarity values computed for the
’observed’ symbol pairs. In other words, we just ensure that the
two symbols are maximally dissimilar. We note that now we are
in a very similar situation as the well-known IsoMap approach for
computing low-dimensional Euclidean embedding [9]. Simply fol-
lowing it, i.e., we embed the weighted graph into Euclidean space
R2 resulting in distances dij using multi-dimensional scaling [9].
This new distance respects well the intrinsic geometry of the data
manifold described by the weighted graph. Finally, we turn the Eu-
clidean distances into similarities by using RBF kernels [8], i.e.,
∆ij = exp(−dij). Now, we have everything together to run the
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Figure 2: (a). Convex hulls of labelled stay points (blue poly-
gons over gray-edged street network). The main stay points
are Home, Office, Bank, Tennis, Shopping-1(ALDI), Shopping-
2(REAL) and City Center. (b–i)8 Clusters of raw trajectories
(blue points) based on map-matched street segments from street
nework (gray edges). Additionally, cluster plots describe spe-
cific routes that user follows between stay-points. Clustering
algorithm used is DBscan [6](a density based clustering algo-
rithm) with ε = 0.58 and minn = 3. Clustering captures
262 objects, describe in order of cluster labels from ‘a’ to ‘h’
i.e {119, 78, 28, 11, 7, 7, 6, 6}. After clustering, trajectories are
projected back in the original space and shown collectively for
each cluster in a separate plot. Clusters of routes indicate of-
fice travel, shopping routine, sports, weekend routine and city
center roaming. Finally, intra-cluster distance is low as all tra-
jectories in a cluster are compact and follow same route.

traffic sequence analysis techniques as discussed in the last section.
For instance, we can align a set of sequences. However, we can do
even better. For instance, standard alignment assumes that the time
lapsed between two consecutive symbols is constant. This is not
true for most traffic data. To accommodate for variable-size steps
in time, that means to balance between duration of a time step and
the Euclidean distance between the two corresponding symbols, we
add a penalty term to the Euclidean distance between them. Specif-
ically, let π∗ denote the alignment between two traffic sequences s
and s′ of length m and n respectively. Furthermore, let d(si, s

′
j)

denote the distance after embedding between symbols in s and s′ at
position i and j. Now, we define a similarity based on d:

d′(si, s
′
j) = d(si, s

′
j) + λ · (ti − t′j)2 (1)

where λ ∈ [0, 1] denotes the regularizer for variable-size time steps.
Its value is application dependent. In case of a gap, we simply fix
the gap penalty as a constant i.e d′(si,−) = d′(−, s′j) = c
Now, we simply use the alignment algorithm in [4] to compute
the optimal alignment π∗ and it’s score θ(π∗) using the similarity
∆′ = exp(−d′). Moreover, we can naturally turn the score of the
alignment into a similarity score among pairs of whole sequences
by normalizing it i.e.

Ks,s′ =
θ(π?

s,s′)

sqrt(θ(π?
s,s), θ(π?

s′,s′))
(2)

Now, we finally have everything together to employ the toolbox for
biological sequence analysis for mobility mining.
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Figure 1: Traffic logos for stay-point based clustering after approx 99% compression of original data. x-axis denotes sequence
positions and y-axis denotes ’information’ present in each column. Every cluster describes one of the possible routines that user
follows in her daily life. The symbols in the figure denote labels of activities based on stay points i.e: H denotes staying at Home;
W–Working; A–shopping at ALDI; R–shopping at Real; B–getting cash from Bank, T–playing Tennis and O denotes Other activities
for leisure (i.e city center roaming and visiting friends). Colours of symbols denote the time of day i.e green denotes Morning(before
9.am); yellow–daytime(9am-6pm) and blue-evening(after 6pm). The height of a symbol denotes the certainty of an acitivty in the
clusters. For example, staying at work place in the evening is less certain in than going Home in the evening (cluster ‘a’). Similarly,
during weekends, doing other activities in the day after shopping is less certain than coming back home(cluster ‘c’).

3. MOBILITY MINING USING BIOLOGY
To validate the usefulness of biological sequence analysis method

for traffic data, we investigated the following questions: (Q1) Is it
possible to solve Traffic problems with the help of out-of-the-box
biological sequence analysis methods? (Q2) If so, how do they
perform compared to state-of-the-art methods? (Q3) Can we gain
interesting insights into traffic data with the help of biological se-
quence methods? To answer these questions, we choose two mo-
bility mining tasks being investigated by GIS community, namely
‘Traffic event detection’ and ‘Analysis of user activities’. We fol-
lowed two complementary approaches to analysing user routines
at different abstraction levels. In the first approach, we extracted
daily sequences of the user’s stay points, clustered them using align-
ments, and analysed the resulting clusters using traffic logos. In the
second one, we digged deeper and analysed the user’s routines us-
ing ’map-matched’ trajectories. This helps in grouping functionally
relevant trajectories and in turn in identifying specific routes over
the street network. Specifically, we used DBscan [6] using the the
pair-wise alignment score and then visualized the resulting clusters.
The second approach also helps us in comparing the performance to
state-of-the-art methods (as we will show). Both approaches were
applied to the same dataset of 112k recorded position within 363
trajectories , see [2] for details.

(Q1, Q3) Stay Points Discretization: To extract frequent stay
points of user, first we marked GPS positions from raw trajecto-
ries, which stayed within a radius r = 100 meters for time t = 10
minutes. Then we clustered these marked points with the help of
DBscan [6] to find area which are more dense among these marked
positions. In the end, we took the convex hull of each cluster to get
the shape of a stay point. Our next step is stay point labelling. To do
this, we first looked at the temporal distributions of the stay points
in order to label the most important stay points, in our case ’home’
and ’work’. The rest of the stay points are labelled with the help of
Google maps (e.g restaurants, post office, bank, shopping markets,
Tennis court, etc.). The extracted stay points along with their la-
bellings are shown in Fig. 2; for the sake of keeping privacy, we are
omitting the latitudes and longitudes. After the extraction of stay
points, we built the similarity matrix as described above using time
regularization. These stay points served as the symbols for activi-
ties in our traffic sequences. We calculate distance matrix between
daily activity sequences from user with pairwise sequence align-
ment. Then, the sequences were clustered based using DBscan [6].
The sequences of each clustering were additionally aligned and we
produced traffic logos for them shown in Fig. 1(a-d). As one can

see, traffic logos show a very dense and illustrative view of clusters
for user’s daily routines. Fig. 1(a) describes the largest cluster. This
is an affirmative answer to questions (Q1) and Q3).

(Q1-Q3) Map Matching Discretization: To investigate whether
our methods can perform comparably with state-of-the-art meth-
ods, we focused on clustering trajectories [13]. Whereas the state-
of-the-art method clusters raw trajectories, we used the sequences
of map matched street segments to cluster our data set. This helps
us in analysing specific map routes that user selects during her trav-
els. For map matching we followed [8]. After clustering on the map
matched level, we projected the labelled trajectories back into Eu-
clidean space and visualized them over the street networkin Fig. 2.
As one can see, we find meaningful clusters. However, are they
also as good as state-of-the-art? To see this, i.e., for a quantitative
comparison, we computed the Hausdorff distance for both cluster-
ing solutions as well as the error. The error term RMSSTD is
a measure of clustering compactness which gives sum of average
within cluster variances [11]. For clustering, our alignment-based
method used again DBscan [6]. As state-of-the-art baseline, we
used OPTICS [3] route similarity search, see [13]. As both cluster-
ing methods are density based and filter outliers, this comparison is
fair. Using K-means as baseline for example is not a fair option as it
does not filter outliers. In other words, it will produce apriori much
higher error. The parameters of both density based algorithms are
ε (minimum similarity threshold to consider two points as neigh-
bours) and minn (minimum number of neighbours needed to de-
fine a point as a ‘core point’). We used a grid search to determine
the best parameters for the same number of clusters as found by
the baseline, namely 7. Our method produced (using a grid search
on ε ∈ [0.5 : 0.01 : 1.0] and minn = [2 : 1 : 6]) an error of
RMSSTD = 197 with parameter settings ε = 0.65 andminn = 5
as compared to RMSSTD = 271 with ε = 1KM and minn = 5
for the baseline. However, the number of trajectories clustered by
our method was 232 whereas the baseline clustered 261 trajectories.
The remaining ones of the in total 363 trajectories were filtered out.
This, however, is only giving a ’point estimate’ of our performance.
To see the general picture, i.e., performance over the range of grid
search, we provide the performance averaged per number of clusters
in Tab.1. As one can see, pairwise traffic sequence alignment is able
to capture similar number of objects with a better mean of error than
the baseline by filtering out the noise in a better way. We believe
that this happens because of high gap costs in the alignment compu-
tation. They penalize to group together trajectories with dissimilar
sub-parts. Consequently, more compact clusters are found. More-



Similarity method Clusters µRMS σRMS #objs(µ±σ)
Route Search 7 271.5 NA 261

Pairwise Traffic
Sequence
Alignment

7 249.24 36.4 255.6± 7
5 211.78 112.43 221.2± 21
6 236.58 75.74 243.6± 14
≥ 8 313.98 20.13 275.1± 6

Table 1: Comparison of clustering results using the Hausdorff
distance to compute errors. As we can see both capture a simi-
lar number of trajectories and similarly good clusters, see also
Fig. 2(a-g). Row 3,4 have a lower error but also capture a
smaller number of trajectories because of small ε and large
minn. Row 5 shows that the alignment-based method can cap-
ture more patterns than the original method, cf. Fig. 2(h), at the
cost of a higher error with large ε and small minn.
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Figure 3: Traffic Logos for Baseballs games in training set for
’+-1 hour’ of game endings. Symbols denote frequency of traf-
fic i.e. L-Low, A-Avg , H-High and C-Congestion. (Top)5-
conserved regions. (From left to right) region 1 describes ‘low
to average’ traffic during play. Regions 2–4 collectively describe
traffic frequency for game endings and show high density traf-
fic with real congestion starting approx. 15 minutes after game
endings. This trend declines approx. 45 minutes after the games
where conserved region region no.5 starts showing a tendency
towards normal traffic i.e average and low density.

over, it finds a similar number of clusters as the baseline, namely
7 − 8. Fig.2 shows the 8-distinct patterns found by our algorithm.
Here, the clusters in Figs 2(a-g) were also found by the baseline.
The additional cluster shown in Fig.2(h) is Home to City Center.
Moreover, we contacted the owners of the dataset and they agreed
with the possibility of clusters found. This is clearly an affirmative
answer to question (Q1)- (Q3).

(Q3) Visual Analysis of Sensor Data: We consider a real world
data sets also used by [7]. This loop sensor data was collected for
a free-way in Los Angeles. It is close enough to the stadium to see
unusual traffic after a Dodgers game, but not so close that the signal
for the extra traffic is overly obvious. The observations were taken
over 25 weeks with 288 time slices per day in 5 minute counts.
Here, the goal is to analyse the presence of congestion during base-
ball games at Dodgers stadium. We discretize the traffic frequencies
into Low (L), Average (A), High (H) and Congestion (C) and then
prepare a profile HMM from the traffic sequences related to base
ball games. A comparison of profile HMM with the test data for
event detection shows that we get a better recall (lower number of
false positives) for event detection compared to [7]. Due to space
constraints we cannot provide full results, however we show traffic
logos in Fig. 3 to reveal the trends in training data .

4. CONCLUSION AND FUTURE WORK
In this paper, we have revisited the link between ‘biological se-

quence analysis’ and ‘mobility mining’. Specifically, we demon-
strated that advanced discretization techniques can be combined

with a novel, data-driven similarity score and used with off-the-
shelf biological sequence analysis techniques to get state-of-the-art
performance. We introduce Traffic Logos, which provide a con-
densed, yet illustrative of picture of patterns in traffic sequence
data. There are several attractive avenues for future work. First of
all, one should investigate the benefits of out-of-the-box biological
sequence techniques for other traffic mining applications. We are
currently working on generating more complex profiles and diaries
of user’s activities to compare them for getting user similarity.
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