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Abstract

Many tasks in AI require representation and manipulation ofcomplex functions. First order
decision diagrams (FODD) are a compact knowledge representation expressing functions over
relational structures. They represent numerical functions that, when constrained to the Boolean
range, use only existential quantification. Previous work has developed a set of operations for
composition and for removing redundancies in FODDs, thus keeping them compact, and showed
how to successfully employ FODDs for solving large-scale stochastic planning problems through
the formalism of relational Markov decision processes (RMDP). In this paper, we introduce
several new ideas enhancing the applicability of FODDs. More specifically, we first introduce
Generalized FODDs (GFODD) and composition operations for them, generalizing FODDs to
arbitrary quantification. Second, we develop a novel approach for reducing (G)FODDs using
model checking. This yields – for the first time – a reduction that maximally reduces the diagram
for the FODD case and provides a sound reduction procedure for GFODDs. Finally we show how
GFODDs can be used in principle to solve RMDPs with arbitraryquantification, and develop a
complete solution for the case where the reward function is specified using an arbitrary number
of existential quantifiers followed by an arbitrary number of universal quantifiers.
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1. Introduction

The problem of an autonomous agent acting optimally in an environment is central to Arti-
ficial Intelligence. There are many variants of this problem. For the case where the stochastic
dynamics of the environment are known and the objective can be described by a reward function,
Markov decision processes (MDP) have become the standard model [1, 2]. Classical dynamic
programming algorithms for solving MDPs [3, 4], however, require explicit state enumeration.
This is often impractical as the number of states grows very quickly with the number of domain
objects and relations. For example in a domain with predicateon(X,Y), andn objects that can be
substituted forX andY, we have at leastn2 ground propositions and 2n2

potential states. Classical
solutions require enumeration of these 2n2

states. In other words, classical dynamic programming
solutions to MDPs do not scale to bigger problems because thesize of the state space is too large.
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One potential solution to this problem is the use of structure in representing state and ac-
tion spaces. Many problems are naturally described by referring to objects and relations among
them. Relational representations naturally factor the state space and they can capture parameter-
ized functions over the state space. The past few years have seen the successes of this approach
in the field of Statistical Relational Learning [5] which combines expressive knowledge repre-
sentation formalisms with statistical approaches to perform probabilistic inference and learning
in relational domains. MDPs enhanced with such representations are known as relational or
first-order MDPs.

Recently, Boutilier et al. [6] have shown how algorithms forrelational MDPs (RMDP) can
be used to solve stochastic planning problems. Inspired by this seminal work, several authors
have developed different representation schemes and algorithms implementingthis idea [7, 8,
9, 10]. In particular, Wang et al. [9] and Joshi and Khardon [11] introduced the First-Order
Decision Diagram (FODD) representation, showed how RMDPs can be solved using FODDs,
and provided a prototype implementation that performs wellon problems from the International
Planning Competition. The use of FODDs to date, however, hastwo main limitations. The first
is representation power. FODDs (roughly speaking) represent existential statements but do not
allow universal quantification. This excludes some basic planning tasks. For example, a company
that has to plan a physical meeting of all employees requiresthat they are all in a single location
thus requiring a quantifier prefix∃∀ for the goal; the goal can be expressed as “there exists a
location such that all employees are in that location”. The second is that manipulation algorithms
for FODDs require special reductions to ensure that their size is small. Such reductions have been
introduced but they are not complete, i.e., they may not yield a small FODD although one exists.

In this article, we show how one can overcome these limitations. Specifically, we make the
following three contributions. First, we introduce Generalized FODDs (GFODD), a novel FODD
variant that allows for arbitrary quantification as well as more general aggregations of values. Ba-
sic algorithms that allow us to perform operations over functions represented by GFODDs are
developed. Second, we show how GFODDs can be used to solve RMDPs with arbitrary quantifi-
cation. Finally, we provide a novel reduction approach based on model checking. This provides
the first reduction for FODDs that guarantees that the resulting FODD is “maximally reduced”
in a sense which is defined precisely in the technical section. This is a significantly stronger
reduction than ones that existed previously for FODDs. In addition we develop model checking
reductions for the∃∗∀∗ quantifier setting of GFODDs, where a finite number of existential quan-
tifiers is followed by a finite number of universal quantifiers. We show that this enables solutions
for RMDPs with reward functions given by∃∗∀∗ statements, where all intermediate constructs
in the algorithm are maintained in this form. The new representations and algorithms developed
form a significant extension of the scope of the FODD approachto decision-theoretic planning
and a significant improvement of our understanding of their reductions.

The new reductions presented in the paper have a relatively high complexity and are not
likely to be efficient in practice for large diagrams. However, they providethe basis for easy-
to-implement heuristic reductions for FODDs. In recent work [12] we developed such heuristic
reductions as well as heuristics for generating the models from problem descriptions. The new
reductions provide significant speedup in planning time, over an implementation using theorem
proving reductions, while maintaining state-of-the-art performance on problems from the inter-
national planning competition. Model checking reductionsare therefore important in expanding
applicability of FODDs to decision theoretic planning. Practical implementations of reductions
for GFODDs will be similarly important for their applicability.

Our results are also closely related to recent work on probabilistic inference with large mod-
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Figure 1: Examples of FODDs. Left going edges represent the branch taken when the predicate istrue and right edges
are thefalse branches.

els. In fact, the relational value iteration algorithm of Boutilier et al. [6] and our implementation
of this algorithm using (G)FODDs can be seen to perform some form of lifted inference in prob-
abilistic models. Recently several algorithms that take advantage of model structure in inference
have been proposed [13, 14, 15, 16, 17, 18, 19, 20, 21]. Whereas, existing approaches essentially
take a single ground model and a single ground question and calculate a numerical solution for
the question, our solutions for RMDPs take a family of modelsand a potentially non-ground
question as input, and calculate numerical solutions for all members of the family. Of course
the planning models must have some structure to make this possible and this is precisely the
structure our algorithms take advantage of.

We proceed as follows. After briefly reviewing FODDs, we present the model checking
reduction operator for FODDs in Section 3. Then, in Section 4, we introduce GFODDs and their
composition operations. Section 5 extends the model checking reduction operator to GFODDs
with the quantifier setting∃∗∀∗. Finally Section 6 shows the utility of GFODDs for solving
RMDPs. To that end we devise a value iteration approach for RMDPs using GFODDs. Note that,
since knowledge of RMDPs is not required for the developmentand algorithms for GFODDs,
we have deferred the introduction of RMDPs to Section 6.

2. First-Order Decision Diagrams

This section briefly reviews previous work on FODDs [9]. We use standard terminology from
first-order logic [22]. A first-order decision diagram is a labeled directed acyclic graph, where
each non-leaf node has exactly 2 outgoing edges labeledtrue andfalse. The non-leaf nodes
are labeled by atoms generated from a predetermined signature of predicates, constants and an
enumerable set of variables. Leaf nodes have non-negative numeric values. The signature also
defines a total order on atoms, and the FODD is ordered with every parent smaller than the child
according to that order.

Example 1. Two examples of FODDs are given in Figure 1; in these and all diagrams in the
paper left going edges represent the branch taken when the predicate istrue and right edges
are thefalse branches.

Thus, a FODD is similar to a formula in first-order logic. Its meaning is similarly defined
relative to interpretations of the symbols. Aninterpretationdefines a domain of objects, identifies
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each constant with an object, and specifies the truth value ofeach predicate over these objects.
In the context of relational MDPs, an interpretation represents a state of the world with the
objects and relations among them. Given a FODD and an interpretation, avaluationassigns each
variable in the FODD to an object in the interpretation. Following Groote and Tveretina [23],
the semantics of FODDs are defined as follows. IfB is a FODD andI is an interpretation, a
valuationζ that assigns a domain element ofI to each variable inB fixes the truth value of every
node atom inB underI . The FODDB can then be traversed in order to reach a leaf. The value of
the leaf is denotedMapB(I , ζ). MapB(I ) is then defined asmaxζMapB(I ), that is, an aggregation
of MapB(I , ζ) over all valuationsζ.

Example 2. Consider the FODD in Figure 1(a) and the interpretation I with objects a,b and
where the only true atoms are p(a),q(b). The valuations{x/a, y/a}, {x/a, y/b}, {x/b, y/a}, and
{x/b, y/b}, will produce the values0, 1, 0, 0 respectively. By the max aggregation semantics,
MapB(I ) = max{0,1,0,0} = 1. Thus, this FODD is equivalent to the formula∃x∃y, p(x) ∧ q(y).

In general,maxaggregation yields existential quantification when leavesare binary. When using
numerical values we can similarly capture value functions for relational MDPs.

The following notation will be used to discuss FODDs and their properties. Ife is an edge
from noden to nodem, then target(e) = m. For noden, the symbolsn↓t andn↓ f denote thetrue
andfalse edges out ofn respectively. Furthermore,l(n) denotes the atom associated with node
n. Node formulas (NF) and edge formulas (EF) are defined recursively as follows. For a node
n labeledl(n) with incoming edgese1, . . . ,ek, the node formula NF(n) = (∨iEF(ei)). The edge
formula for thetrue outgoing edge ofn is EF(n↓t) = NF(n) ∧ l(n). The edge formula for the
false outgoing edge ofn is EF(n↓ f ) = NF(n) ∧ ¬l(n). These formulas, where all variables are
existentially quantified, capture the conditions under which a node or edge are reached. Similarly,
if B is a FODD andp is a path from the root to a leaf inB, then the path formula forp, denoted by
PF(p) is the conjunction of literals alongp. When the variables ofp, are existentially quantified,
satisfiability of PF(p) under an interpretationI is a necessary and sufficient condition for the path
p to be traversed by some valuation underI . If ζ is such a valuation, then we definePathB(I , ζ)
= p. The leaf reached by pathp is denoted aslea f(p).

As seen above FODDs can represent functions over relationalstructures. These functions
can be combined under arithmetic operations, and reduced inorder to remove redundancies, in a
manner that extends ideas developed for propositional (binary and algebraic) decision diagrams
[24, 25]. In particular, Groote and Tveretina [23] introduced four reduction operators (R1. . .
R4) and these were augmented with seven more reductions (R5. . . R11) [9, 11]. Intuitively,
redundancies in FODDs arise in two different ways. In the first scenario, some edges may never
be traversed by any valuation. Reduction operators for suchredundancies are called strong re-
duction operators. The second scenario requires more subtle analysis: there may be parts of the
FODD that are traversed under some valuations but because ofthe max aggregation, the valua-
tions that traverse those parts are never important for determining the map. Operators for such
redundancies are called weak reductions operators. Strongreductions preserveMapB(I , ζ) for
every valuationζ (thereby preservingMapB(I )) and weak reductions preserveMapB(I ) but not
necessarilyMapB(I , ζ) for every ζ. Using this classification R1-R5 are strong reductions and
R6-R11 are weak reductions.

Weak reductions have their basis in the idea that some parts of the FODD dominate the map
and therefore parts that are dominated can be removed or replaced by a 0 leaf. However, there
are cases when two parts of the FODD dominate each other.
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Figure 2: A FODD example illustrating the need for DPOs.

Example 3. Consider the FODD in Figure 2. This simple FODD contains only2 paths leading
to non-zero leaves:

1. p(x),¬p(y)→ 1
2. ¬p(x), p(z)→ 1

Notice that whenever there is a valuation traversing one of the paths, there is another valuation
traversing the other and reaching the same leaf. Either of the two edges reaching the1 leaf can
point to a0 leaf without changing the map. However we cannot allow both the edges to point to
a zero leaf as that would change the map of some interpretations.

To avoid this ambiguity we must specify a total order on the paths, and in this way we can
choose which path to remove. Adescending path ordering(DPO) is constructed specifically for
this purpose.

Definition 1. A descending path ordering (DPO) is an ordered list of all paths from the root to
leaves in a FODD, sorted in descending order by the value of the leaf reached by the path. The
relative order of paths reaching the same leaf can be set arbitrarily.

A DPO provides a preference ordering over paths. Paths with different values are naturally
ordered by their values and this is incorporated in the DPO. Paths with the same value are ordered
according to the (arbitrary) ordering in the DPO where pathswith a lower index are preferred to
paths with a higher index. This preference is captured in thenotion of instrumental paths which
is defined next.

Definition 2. If B is a FODD, and PL is a DPO for B, then a path pj ∈ PL is instrumental with
respect to PL iff there is an interpretation I such that

1. there is a valuationζ such that PathB(I , ζ) = p j , and
2. for all valuationsη, if PathB(I , η) = pk, then k≥ j.

Paths that are not instrumental can be removed from a diagramwithout changing the function
it computes. The choice of DPO can affect the size of the reduced diagram, but it is not clear at
the outset how to best choose a DPO so as to maximally reduce the size of a diagram. This is
illustrated and discussed further in the context of the R12 reduction.

Finally, an additional subtlety arises because for RMDP domains we may have some back-
ground knowledge about the predicates in the domain specifying some constraints on them. For
example, in the blocks world, if blocka is clear thenon(x,a) is false for all values ofx. This
fact might help simplify the diagram. We denote suchbackground knowledgeby B and allow
reductions to rely on such knowledge.
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3. R12: The Model Checking Reduction for FODDs

In this section we introduce a new reduction operator R12 (numbered to agree with previous
work). The basic intuition behind R12 is to use the semanticsof the FODD directly in the
reduction process. According to the semantics of FODDs the map is generated by aggregation
of values obtained by running all possible valuations through the FODD. Therefore, if we run all
possible valuations through the diagram and document the paths taken by the valuations under
all possible interpretations, we can identify parts of the diagram that are never important for
determining the map. Such parts can then be eliminated to reduce the diagram. Crucially, with
some bookkeeping, it is possible to obtain this informationwithout enumerating all possible
interpretations and by enumerating all possible valuations over just the variables in the diagram.
This is the basic intuition behind R12.

We can avoid enumerating all possible interpretations withthe observation that although there
can be many interpretations over a set of domain objects, there are only a fixed number of paths
in the FODD that a valuation can traverse. For a given valuation ζ, any interpretation can be
classified into one of a set of equivalence classes based on the pathp that it forcesζ through. All
interpretations belonging to an equivalence class have thefollowing in common.

1. They forceζ through pathp and leaf(p), the leaf reached by pathp.
2. They are consistent with PF(p)(ζ).

PF(p)(ζ) is, thus, the most general interpretation that forcesζ throughp and can be viewed
as a key or identifier for its equivalence class. For the purpose of reduction we are not interested
in the interpretations themselves but only in the paths thatthey force valuations through. There-
fore we can restrict our attention to the equivalence classes and avoid enumerating all possible
interpretations. In other words, if we collect the abstractinterpretation PF(p)(ζ) for every pathp
that a valuationζ could possibly take (i.e. every path where PF(p)(ζ) is consistent), along with
the corresponding path and leaf reached, we will have all information we need to describe the be-
havior ofζ under all possible interpretations. The proceduregetBehaviorsdescribed below, does
exactly that by simulating the run of a valuation through a FODD. The output of the procedure is
a set of〈lea f,EL, I〉 3-tuples, wherelea f is the leaf reached by the valuationζ by traversing the
pathp (described by the set of edgesEL) andI = PF(p)(ζ). Recall thatB denotes the background
knowledge on the domain. The procedure is as follows.

Procedure 1. getBehaviors(valuationζ, PathFormula PF, EdgeList EL, Node n)

1. If n is a leaf, return{{l(n),EL,PF}}
2. If B |= PF→ l(n)(ζ), then

return getBehaviors(ζ, PF∪ l(n)(ζ), EL∪ n↓t, target(n↓t))
Else IfB |= PF→ ¬l(n)(ζ), then

return getBehaviors(ζ, PF∪ ¬l(n)(ζ), EL∪ n↓ f , target(n↓ f ))
Else

return getBehaviors(ζ, PF∪ l(n), EL∪ n↓t, target(n↓t))
∪ getBehaviors(ζ, PF∪ ¬l(n), EL∪ n↓ f , target(n↓ f ))

Example 4. Figure 3 shows an example of the R12 reduction whose details are developed below.
For this example we focus on the table in the center of the figure. The table illustrates the
result of running the getBehaviors procedure on all possible valuations over the set of domain
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Figure 3: An example of reduction operator R12 for FODDs. Eachentry of the form value-{path}-{interpretation} in
the table (enclosing angle brackets removed in figure to improve readability) expresses the value obtained by running
the valuation of the corresponding row through the diagram under an equivalence class of interpretations. Themax3

aggregation function then calculates the possible aggregates that could be generated under different equivalence classes
of interpretations. Since the edge1f does not appear in any of the paths in the result ofmax3, it is not important toward
determining the map and can be removed.

objects{a,b} and the variables x and y appearing in the left FODD. For example, the traversal of
valuation{x/a, y/b} through the FODD has 3 possible eventualities. Either it reaches a10 leaf
by traversing path{1t} (which is short for the path consisting of the true edge of node 1), under
abstract interpretation{p(a)}, or it reaches a10 leaf by traversing path{1 f 2t} (which is short
for the path consisting of the false edge of node1 followed by the true edge of node 2), under
abstract interpretation{¬p(a), p(b)} or (in all other cases) it reaches a0 leaf.

Note that the different behaviors of a valuation are mutually exclusive because the abstract
interpretations associated with these behaviors partition the space of worlds. Any interpretation
must be consistent with exactly one of these abstract interpretations and hence must force the
behavior corresponding to that abstract interpretation onthe valuation.

Thus, as in Figure 3, with the help of the getBehaviors procedure we can tabulate the possible
behaviors of all valuations over a set of domain objects. Thenext step is to generate all possible
ways in which an aggregate value can be derived. This can be done without enumerating all
interpretations. The table of potential behaviors gives sufficient information to list all possible
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ways to aggregate over the set of all valuations, by considering all combinations of behaviors
over the set of valuations. Every combination, as long as it is consistent, produces the map as
an aggregate value. To facilitate reduction the aggregation has to be augmented so as to expose
the valuations and paths that prove to be important for determining the map. Intuitively, paths
that were not shown to be important in spite of listing all possible ways to aggregate over the set
of all valuations can be removed. To this end, the next section introduces variants of themax
aggregation function,max2 andmax3.

3.1. Generalized Aggregation Function and the R12 Reduction
When calculating the map, the max aggregation operation is applied to values obtained by

evaluating the FODD under different valuations. As discussed above, for R12, we are interested
not just in the aggregate value but also in information that will help us identify which edges are
used to determine the map. Toward that, when calculating themaximum, we collect information
about the winning path, the valuation that leads to it, and the interpretation (captured by the
ground path formula) for which this happens. To enable the such accounting we define three
variants of themaxaggregation operator.

max1:. The first variantmax1 is the usual aggregation operator that given a set of values{v1, · · · vn}

returns the aggregatev = max({v1, · · · vn}).

max2:. requires a DPO to calculate its output. The input tomax2 is a set of 3-tuples of the form
〈vi , pathi , I i〉 with the intention that each 3-tuple was produced by getBehaviors on a different
valuationζi . The output is a 3-tuple〈vo, patho, Io〉 where:

1. vo =max1({v1, v2 · · · vn}).
2. Io =

⋃n
i=1 I i .

3. patho = pathi andpathi has the least index in the DPO among paths with valuevo.

In other words,max2 takes as input one possible behavior from every valuation (one entry from
each row in the valuation table in Figure 3) and aggregates the result, recording the winning path,
and the interpretation that induces the corresponding behavior on each valuation.

Example 5. The example in Figure 3 shows the DPO and the 3 possible aggregation results
derived from the table. Each of the 3 results is derived usingthe max2 variant. For example,
aggregating over

• 〈10, {1t}, {p(a)}〉 for {x/a, y/a},

• 〈10, {1t}, {p(a)}〉 for {x/a, y/b},

• 〈10, {1t}, {p(b)}〉 for {x/b, y/a},

• 〈10, {1t}, {p(b)}〉 for {x/b, y/b},

using the max2 variant gives〈10, {1t}, {p(a), p(b)}〉 indicating that there is a possible aggregation
where the path consisting of the edge{1t} is instrumental in determining the map.

The example illustrates thatmax2 captures the combined behavior of all valuations on the
interpretationI0 which is part of its output. As motivated above, we would liketo capture this
information for all possible interpretations. Instead of enumerating interpretations, we generate
all possible scenarios by considering all possible ways in which rows in the table produced by
getBehaviors can be combined. This is done bymax3.
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max3:. requires a DPO to calculate its output. The input tomax3 is a set of sets of 3-tuples,
where each set of 3-tuples is associated with a valuation (this corresponds to the entire table from
Figure 3), denoted asT = {〈valuation1 − valueset1〉, 〈valuation2 − valueset2〉, · · · 〈valuationn −

valuesetn〉}. Let T′ be the Cartesian product of{valuesetℓ} so thatei ∈ T′ is a set of tuples
〈value, path, Interpretation〉.

max3(T) is defined as

max3(T) = {〈valuer , pathr , Ir〉 = max2(ei) | ei ∈ T′, valuer ≥ 0 andIr is consistent}.

Thus,max3(T) is the collection of results ofmax2 applied to each element ofT′ but restricted to
the cases where the combined interpretation is consistent and the aggregate value is greater than
zero.

Example 6. The example in Figure 3 shows the result of applying max3 to the elements in the
table. There are2 × 3 × 3 × 2 = 36 possible combinations of valuation behaviors, and hence
36 elements in T′ and corresponding calls to max2. However, only3 of these combinations
result in a consistent combined interpretation and positive value. For example, under the given
DPO, max2({〈10, {1t}, {p(a)}〉, 〈10, {1t}, {p(a)}〉, 〈10, {1 f 2t}, {p(a),¬p(b)}〉, 〈10, {1t}, {p(b)}〉}) =
〈10, {1t}, {p(a), p(b),¬p(b)}〉 is omitted from the result of max3(T) because the combined abstract
interpretation is inconsistent. Aggregations resulting in 0 value are ignored because0 being the
smallest obtainable value, is uninteresting under the max aggregation semantics. Observe that
in this example, the path{1t} is the only instrumental path. Intuitively this implies that the target
of any edge not on this path (for instance edge1 f ) can be set to0 without changing the map.
The resulting FODD is shown on the right.

Example 7. Consider the example of Figure 3 but with a DPO that reverses the order of paths
1 and 2. In this case the table produced by getBehaviors is identical, and so is the aggregated
value. But the maximizing paths are not the same. The three outputs of max3 are 〈10, {1t}, {p(a),
p(b)}〉, 〈10, {1 f 2t}, {p(a),¬p(b)}〉, and 〈10, {1 f 2t}, {¬p(a), p(b)}〉. Thus in this case both paths
are instrumental and no reduction is achieved. This illustrates that the choice of DPO can be
important in reducing a diagram. However, it is not clear howto best choose the DPO. A pref-
erence for shorter paths that defaults to lexicographic ordering over equal length paths makes
for an easy implementation but may not be the best. Our implementation [11, 12] heuristically
alternates this DPO and its reverse in hope of enabling more reductions.

The reduction is formalized in procedures 2 and 3.

Procedure 2. R12(FODD B)

1. Let PL be a DPO for B.
2. Let O be a set of v objects where v is the number of variables in B.
3. Let U be the set of all possible valuations of the variables inB over O.
4. Let S be the output of Reduction-Aggregation(B, U, PL).

That is, S= {〈value1, path1, I1〉, 〈value2, path2, I2〉, · · · 〈valuen, pathn, In〉}.
5. Let E′ be the set of all edges that appear on any path pathi in any 3-tuple in the set S .
6. Define E= BE − E′, where BE is the set of all edges in B.
7. For all edges e∈ E, set target(e) in B to0 to produce FODD B′.
8. return B′.
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Procedure 3. Reduction-Aggregation(FODD B, set of valuations U, DPO PL)

1. Let Val= {}.
2. Do for every valuationζ ∈ U.

(a) valueset= getBehaviors(ζ, {}, {}, Broot).
(b) Add the entry〈ζ − valueset〉 to Val.

3. Let T = max3(Val) under PL.
4. return T.

3.2. Proof of Correctness

This section shows that the R12 procedure removes exactly the right edges on its input
FODD. The proof relies on the next lemma which shows that every instrumental path, for any
potential interpretationI , is discovered by the procedure. This is shown by arguing that a small
portion of I suffices for this purpose and that such a portion is constructed byR12.

Lemma 1. If a path pi in FODD B is instrumental under PL, and the path reaches a non-zero
leaf, then there exists an interpretation Io such that{leaf(pi), pi , Io} is in the set S calculated in
Step 4 of the R12 procedure.

Proof: If pi is instrumental underPL then there existI andζ such thatPathB(I , ζ) = pi and such
that for allη, PathB(I , η) = p j implies j ≥ i. Let O′ be the set of objects inI that participate in
ζ. Clearly 1≤ |O′| ≤ |O| whereO is the set of objects constructed in Step 2 of the algorithm. Let
o1 be an object inO′. Add |O| − |O′| new objects toO′ to make the setsO andO′ equal in size.
Construct interpretationI ′ by first projectingI to include only the objects inO′ and then defining
truth values and predicates over the new objects to behave identically too1.

SinceI ′ includes the relevant portion ofI the valuationζ traversespi underI ′. Additionally,
if there exists a valuation̂ζ such thatPathB(I ′, ζ̂) = p j and j < i, we can construct valuation̂ζ′

by replacing the new objects in̂ζ by o1 so thatPathB(I , ζ̂′) = p j . But this is not possible by the
assumption. Therefore we conclude that for allη, PathB(I ′, η) = p j implies j ≥ i.

LetU be the set of all valuations of the variables inBoverO′. Let Io =
⋃

η∈U PF(PathB(I ′, η))η.
That is,Io includes all the atoms ofI ′ that participate in traversing paths inB for all η ∈ U. By
construction, the corresponding partsPF(PathB(I ′, η))η will be included in thevaluesetreturned
by the getBehaviors procedure. ClearlyIo ⊆ I ′. Therefore ifI ′ is consistent then so isIo. By
the definition ofmax3, S = max3(Val) underPL must contain{leaf(pi), pi , Io} when leaf(pi) is
non-zero.

The proof of the previous lemma implicitly assumes that the signature does not include equal-
ity, whose truth value changes when the objects are reassigned. The lemma and all subsequent
discussion can allow for equality by having steps 2-4 of R12 repeated for object set sizes up to
v and step 5 take the union of exposed edges. This makes for longer arguments without adding
any significant insight and we therefore focus on the simplerversion in the paper.

The previous lemma implies that we discover all edges on instrumental paths and this in turn
implies that removing other edges does not change the map of the diagram. This intuition is
captured in the next lemma and theorem.

Lemma 2. If there exists an instrumental path under PL that contains the edge e in B and the
path reaches a non-zero leaf, then e is in the set E′ calculated in Step 5 of the R12 procedure.
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Proof: If there is an instrumental pathpi ∈ PL that contains the edgee and reaches a non-
zero leaf, then by Lemma 1 there exists an interpretationIo such that{leaf(pi), pi , Io} ∈ S. By
definition ofE′, e ∈ E′.

Theorem 1 (soundness).For any FODD B, if FODD B′ is the output of R12(B), then for all
interpretations I, MapB(I ) = MapB′ (I ).

Proof: By the definition of R12, the only difference betweenB andB′ is that some edges that
pointed to subFODDs inB, point to the 0 leaf inB′. These are the edges in the setE at the end of
the R12 procedure. Therefore any valuation crossing these edges achieves a value of 0 inB′ but
could have achieved a higher value inB under the same interpretation. Valuations not crossing
these edges will achieve the same value inB′ as they did inB. Therefore for any interpretationI
and valuationζ, MapB(I , ζ) ≥ MapB′ (I , ζ) and henceMapB(I ) ≥ MapB′ (I ).

Fix any interpretationI andv = MapB(I ). Let ζ be a valuation such thatMapB(I , ζ) = v. If
there is more than oneζ that gives valuev, we choose one whose pathp j has the least index in
PL. By definition,p j is instrumental and by Lemma 2, either leaf(p j) = 0 or none of the edges
of p j are removed by R12. In both cases,MapB′ (I , ζ) = v = MapB(I ). By the definition of the
max aggregation semantics,MapB′ (I ) ≥ MapB′ (I , ζ) and thereforeMapB′ (I ) ≥ MapB(I ).

We next show that the reduction achieved by R12 is the best possible with respect to our
notions of DPO and instrumental paths.

Theorem 2 (maximum reduction w.r.t. DPO). If no path crossing edge e and reaching a non-
zero leaf in B is instrumental under PL, then R12 removes e.

Proof: By definition the set of all edges inB is partitioned into setsE andE′. Now, by con-
struction, if e ∈ E′, then there exist a pathpi ∈ PL and an interpretationIo such thate is an
edge onpi , leaf(pi) is non-zero and{leaf(pi), pi , Io} is in the setS calculated in Step 4 of the
R12 procedure. The existence of{leaf(pi), pi , Io} in S implies that underIo, there is a valuation
ζ ∈ U such thatPathB(Io, ζ) = pi and for allη ∈ U, PathB(Io, η) = p j implies j ≥ i. Thereforepi

is instrumental. Therefore all edges inE′ belong to some instrumental path. This implies thate
from the statement of the theorem is not inE′ and therefore it is removed by R12.

3.3. Discussion

The R12 procedure provides a comprehensive reduction operation for FODDs, by guarantee-
ing maximum reduction w.r.t. a DPOon its own. This is in contrast with the fact that all previous
published reductions, taken together, do not provide the same guarantee. The main reason is that
previous reduction operators rely on theorem proving oversingle path formulasor edge impli-
cations. As the following example shows there are cases where such reduction operators fail to
reduce a diagram but R12 is successful.

Example 8. Figure 4 shows an example where R12 succeeds but previous reductions fail. Notice
that there are two paths reaching the10 leaf in the left FODD. In this diagram, whenever a
valuation reaches the1 leaf there is another valuation that reaches the10 leaf through one of the
two paths. However, neither of the path formulas are individually implied by the formula for the
path reaching the1 leaf. Similarly neither of the edge formulas for the edges terminating in the
10 leaf are implied by the edge formula for the edge terminatingin the1 leaf. R12, on the other
hand, relies on model checking and is able to reduce the FODD on the left to the FODD on the
right.
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Figure 4: Example where R12 can reduce the diagram but previous reductions fail.

It is important to note, however, that one can in principle define a theorem proving reduction
giving the same guarantees.1 For example, to state that pathi is instrumental one can write

[∃xpi PF(pi)] ∧ (∧ j<i [¬∃xp j PF(p j)]).

The path is instrumental if and only if this formula is satisfiable. Thus theorem proving can
provide maximum reduction with respect to a DPO in the same way that R12 does. However,
the theorem proving may be complex because it involves disjunctive reasoning. In fact, the R10
reduction [11] performs similar reasoning except that it checks the pathsj ≤ i one at a time in
order to make for simpler theorem proving, and therefore does not provide the same guarantees.
More importantly, this formulation has a significant disadvantage (shared with R10) in that it
enumerates all the paths whose index is smaller thani. The main point in adopting a decision
diagram representation over a decision tree, is the fact that a diagram can be exponentially smaller
because of repeated sub-trees that are represented only once in a decision diagram. In other
words, the number of paths in a diagram can be exponential in its size. In this case, enumerating
the paths in a DPO is not practical and the theorem proving formulation will fail. In contrast,
R12 does not need to generate the DPO explicitly. Instead theprocedure only needs to be able to
compare two paths (inmax3) and decide which one is higher in the DPO. As mentioned above
this is easy to perform efficiently for suitably chosen DPOs, such as ones preferring shorter path
and using lexicographic ordering. Therefore, when the number of paths is large R12 will be
superior to the theorem proving formulation.

On the other hand the complexity of R12 is also high in that it involves the enumeration of
all possible valuations, and is thus exponential in the number of variables. Therefore, a direct
implementation of R12 as specified here will not be practicalfor FODDs with a large number of
variables. In recent work we have introduced heuristic variants of R12 that are more efficient and
have shown that they lead to significant speedup over theoremproving reductions [12].

1We are grateful to the anonymous reviewer who suggested this.
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Finally, R12 is distinguished from previous reductions by the fact that it employs the aggrega-
tion function of the FODD itself as its main subroutine. Therefore, one can imagine generalizing
it for diagrams containing other aggregation functions. Indeed the next two sections define such
generalized diagrams and model checking reductions for them. Corresponding generalized vari-
ants of the reductions based on theorem proving are not easy to obtain.

4. Generalized FODDs: Syntax and semantics

Themaxaggregation of FODDs makes them sufficiently expressive to represent many plan-
ning problems of interest. However, since themaxaggregation mirrors existential quantification
over the variables of the FODD, many other functions over logical spaces cannot be represented
by FODDs. These functions could be represented if the aggregation function was more complex.
This idea is captured in the following definition.

Definition 3. An aggregation function is any function f that takes as inputa non-empty set of
real values and returns a real value.

Concrete examples of aggregation functions that are discussed further below includemax,
min, sum, andmean. Other functions likeproduct, varianceand so on are also possible. We
will pay special attention tomin aggregation that allows us to capture universally quantified
formulas. In this section and the next, we discuss the properties of generalized FODDs using
arbitrary aggregations and the operations that can be performed to manipulate them. We start by
a formal definition of Generalized First-Order Decision Diagrams.

Definition 4. A Generalized First-Order Decision Diagram (GFODD) is a 2-tuple〈V,D〉, where
(1) V is an ordered list of pairs(vi ,opvi ), where vi is a variable and opvi is an aggregation
operator,
(2) The variables vi are distinct, that is, vi has exactly one aggregation operator in V,
(3) D is a FODD except that the leaves can be labeled by a special characterD (for discard).

An example of a GFODD is given in Figure 5. The corresponding list V as in the for-
mal specification above is [(c,max), (b,min)] but we use the more intuitive alternative notation
max(c) min(b) or maxc minb where this is clear from the context.

The discard valueD in the definition above allows for some paths in the diagram toprovide
no value. This can be useful when multiple types of aggregations are used because one does not
need to have a “default value” (like the value zero for max aggregation) which does not affect the
result. This simplifies the implementation and analysis of one of the reductions presented below.

4.1. Semantics of GFODDs

The semantics for GFODDs follow the same approach of FODDs inthat they first calcu-
late the map for all valuations and then aggregate these values. Whereas in FODDs we take
a maximum over these values the computation for GFODDs is more complex and follows the
aggregation function. To simplify the notation, in the following whenB = 〈V,D〉 and ζ is a
valuation we sometimes refer toMapD(I , ζ)) asMapB(I , ζ).

Formally, letB = 〈V,D〉 be a GFODD whereV = [(v1,op1
v1

), (v2,op2
v2

) · · · (vn,opn
vn

)] and let
I be an interpretation. The map valueMapB(I ) is defined by the following steps:
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Figure 5: A Generalized FODD Example.

(1) Each valuationζ, mappingv1 · · · vn to the domain of interpretationI is associated with
a valueMapD(I , ζ). (2) We can now divide up these valuations into blocks. All valuations in a
block have the same assignment of values to variablesv1 · · · vn−1 but they differ in the value of the
variablevn. (3) We then “collapse” each block to a single valuation overvariablesv1 · · · vn−1 by
eliminating the variablevn and replacing the set of associated values by their aggregate value. If
all the values in the block have the valueD then the aggregate value isD. Otherwise, we remove
D from the set of values and applyopn to the remaining set. This yields a table with the set of
all possible valuations defined over the variablesv1 · · · vn−1 each associated with a value (which
was obtained by aggregating over the valuations of variablevn in the block). (4) We repeat the
same procedure for variablesvn−1 to v1 to produce a final aggregate value. The value ofMapB(I )
is this final aggregate value.

The treatment ofD values in step (3) captures the idea of ignoring the corresponding paths
when calculating the aggregate value. Thus anyD inputs to an aggregation operator are ignored
and if all values areD this information is passed on to the next level.

Example 9. The GFODD B in Figure 5 captures the following statement fromthe logistics do-
main: There exists a city c such that for all boxes b, box b is incity c. The output of B is10 if all
boxes are in one city and0 otherwise.2 In the example GFODD shown, V= [(c,max), (b,min)].
Aggregation is done from right to left, one variable at a time. In the example, the table on the
left shows the value of MapB(I , ζ) for every possible valuationζ. MapB(I ) is calculated by first

2In this example, to keep the GFODD diagram simple, we assume the variables are typed and use only valuations
that conform to the types of the variables. Had we used all possible valuations over the set of objects{b1,b2, c1, c2}, the
diagram would have been more complicated as it would have had torepresent the formula∃c,∀b, city(c) ∧ [box(b) →
in(b, c)].
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aggregating the values MapB(I , ζ) over all assignments for the variable b using the min aggre-
gation. This yields the table in the middle. We then aggregate all of the produced values over
all assignments for variable c using the max operation. The resulting value, 0 in this case, is
MapB(I ).

In the following we need a notation to refer to the map value and its calculation. The pro-
cedure described can be seen to perform aggregation over variables inV by nesting aggregation
operators from left (outermost) to right (innermost). i.e.

MapB(I ) = op1
v1

[

op2
v2

[

· · ·
[

opn
vn

[

MapB (I , [v1, v2, · · · vn])
]

]

· · ·
]]

.

The term in the center,MapB(I , [v1, v2, · · · vn]), is the value obtained by running a valuation
defined by an assignment to the variablesv1, · · · vn throughB under I . In order to reduce the
notational clutter, in the rest of the paper we will drop brackets so that the above equation looks
as follows

MapB(I ) = op1
v1

op2
v2
· · · opn

vn
[MapB(I , [v1, v2, · · · vn])]

= op1
v1

op2
v2
· · · opn−1

vn−1
opn[c[v1···vn−1]

1 · · · c[v1···vn−1]
m ]

where eachc[v1···vn−1]
i is a value corresponding to a different object assignment to variablevn

in the block defined by the values assigned to the variablesv1 · · · vn−1.

4.2. Basic Properties of GFODDs

Several observations can be made on GFODDs and their semantics. First, the order of vari-
ables inV is important. Changing the order of the variables can obviously change the map of the
diagram.

Second, FODDs form a proper subclass of GFODDs where the aggregation operator associ-
ated with every variable ismax. In this case, due to properties of themaxaggregation, the order
of variables inV is not important.

Third, GFODDs with 0/1 leaves express the same functions as closed, function-free first-
order formulas. In particular this can be done by employing themin aggregation operator over
universally quantified variables and themaxaggregation operator over existentially quantified
variables. To see this consider any GFODD〈V,D〉 with 0/1 leaves and letF be a quantifier-
free formula capturing the disjunction of path formulas forpaths leading to the 1 leaf. Then
interpretingV as quantifiersV, F is a closed first order formula that evaluates to true exactlywhen
〈V,D〉 evaluates to true. On the other hand, given a closed first-order formula in prenex normal
form V, F whereF is in disjunctive normal form, we can build a FODDD by representing each
conjunct inF as a FODD directly and then represent their disjunction using the apply procedure
of Wang et al. [9]. Now, as above〈V,D〉 is equivalent toV, F.

Finally, the definition above allows the final aggregate value to beD in the case where all
reachable paths forI yield the valueD. To ensure that GFODDs always represent well defined
functions we disallow this case.

Definition 5. A GFODD B is legal iff it obeys the GFODD syntax and for all interpretations I
there is a valuationζ such that MapB(I , ζ) , D.
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opc opa safe/unsafe

⊕ max safe
⊕ min safe
⊕ sum unsafe
⊕ avg safe
⊗ max safe
⊗ min safe
⊗ sum safe
⊗ avg safe

max max safe
max min safe
max sum unsafe
max avg unsafe

Table 1: List of some safe and unsafe pairs for operators.

4.3. Combining GFODDs

So far we have focused on the syntax and semantics of GFODDs that can represent complex
functions over relational structures. The utility of such arepresentation, though, is in performing
operations over such functions, for examplemax (taking the maximum),+ (addition) and×
(multiplication). We call these operatorscombination operatorsand provide an algorithm Ex-
apply to implement them. Notice that combination operatorsoperate on functions and they are
different from aggregation operators that operate on sets of real values. The next definition
provides the intended meaning of combination.

Definition 6. GFODD B is a combination of GFODDs B1 and B2 under the binary combination
operator opc iff for all interpretations I, MapB(I ) = MapB1(I ) opc MapB2(I ).

In the above we assume that the functions represented byB1 and B2 are independent, i.e.,
that the variables they aggregate over do not constrain eachother. In principle, one could try
to define the meaning of combination when a variable appears in both diagrams and aggregated
similarly. However, this seems awkward and is not necessaryfor the calculus of functions we
use. Therefore, in the following we assume that the functions being combined do not share
variables, that is, their quantifier-free portion is standardized apart.

Aggregation and combination operators can interact, complicating the result of the combi-
nation operation. In the following we show that in some casesthis does not happen and we can
essentially use the algorithm that combines FODDs to combine GFODDs. This is captured by
the following condition on combination and aggregation operators:

Definition 7. A combination operator opc and an aggregation operator opa are a safe pair iff
opc distributes over opa, that is, iff for any set of non-negative values x1, x2, . . . , xk and any
non-negative constant b it holds that

opa(x1, x2, . . . , xk) opc b = opa(x1 opc b, x2 opc b, . . . , xk opc b) .
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Figure 6: A simple example of adding two FODDs.

Example 10. The aggregation operator max and combination operator+ form a safe pair be-
cause for any set S= {c1 · · · cm} and constant b, max{c1 · · · cm} + b = max{c1 + b, · · · cm + b}.
The aggregation operator mean and the combination operatormax do not form a safe pair. For
example max{mean{1,5,3},4} = 4 but mean{max{1,4},max{5,4},max{4,4}} = mean{4,5,4} =
4.33.

Table 1 summarizes the safe and unsafe pairs for operators that are of interest to us. We later use
the fact that themaxandmin aggregation operators are safe with all the combination operators
listed. As mentioned above this condition will allow us to use a simple algorithm for combina-
tion. The cases that are not safe might still be processed using other algorithms but we leave the
details of this for future work.

We next review the details of the procedure apply(B1,B2,op) for combining FODDsB1 andB2

under operationop [9]. Recall that FODDs use an ordering over the atoms labeling nodes, so that
atoms higher in the ordering are always higher in the diagram. Let p andq be the roots ofB1 and
B2 respectively. The apply procedure chooses a new root label (the lower among labels ofp,q)
and recursively combines the corresponding sub-diagrams,according to the relation between the
two labels (≺, =, or≻).

Example 11. Figure 6 illustrates the operation of the apply procedure. In this example, we as-
sume predicate ordering p1 ≺ p2, and parameter ordering x1 ≺ x2. Non-leaf nodes are annotated
with numbers and numerical leaves are underlined for identification during the execution trace.
For example, the top level call adds the functions corresponding to nodes 1 and 3. Since p1(x1)
is the smaller label it is picked as the label for the root of the result. Then we must add both left
and right child of node 1 to node 3. These calls are performed recursively to yield the diagram
on the right.

The next lemma, by Wang et al. [9], shows that the apply procedure provides the correct map
for every valuation:

Lemma 3 ([9]). Let C = apply(A, B,op), then for any I andζ, MAPA(I , ζ) op MAPB(I , ζ) =
MAPC(I , ζ).

We next define the combination procedure for GFODDs and proveits correctness.
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Definition 8. Let B1 = 〈V1,D1〉 and B2 = 〈V2,D2〉 be GFODDs where V1 and V2 do not have
any variables in common, and let opc be any combination operator.

Ex-apply(B1, B2, opc) returns〈V,D〉, where

1. V is the aggregation function obtained by appending V2 to V1.
2. D = apply(D1,D2,opc).

To show that this procedure is correct, we start by observingthat when combining a diagram
B with a constant (a degenerate diagram that has just one leaf node whose value is that constant)
one can push the combination operation to the leaves.

Lemma 4. Let B = 〈V,D〉 be a GFODD, b a non-negative constant, and opc a combination
operator. If for every aggregation operator opa in V, (opa,opc) is a safe pair, then, for all
interpretations I, MapB(I ) opc b = op1

v1
op2

v2
· · · opn

vn
[MapB(I , [v1, v2 · · · vn]) opc b].

Proof: The proof is by induction onn, the number of operators (and variables) inV. By the
semantics of GFODDs,

MapB(I ) opc b = op1
v1
· · · opn

vn
[MapB(I , [v1 · · · vn])] opc b

Whenn = 1, we have

MapB(I ) opc b = op1
v1

[MapB(I , [v1])] opc b

= op1
v1

[MapB(I , [v1]) opc b]

becauseop1 andopc form a safe pair. Assume that the statement is true for allV of n−1 or fewer
aggregation operators. Consider aV with n aggregation operators. We then have,

MapB(I ) opc b = op1
v1
· · · opn

vn
[MapB(I , [v1 · · · vn])] opc b

= op1
v1

[c[v1]
1 · · · c[v1]

m ] opc b

= op1
v1

[c[v1]
1 opc b · · · c[v1]

m opc b]

becauseop1 andopc form a safe pair. Here eachc[v1]
i = op2

v2
· · · opn

vn
[MapB(I , [v1, v2 · · · vn])] for

the ith value of the variablev1. By the inductive hypothesis we know that

op2
v2
· · · opn

vn
[MapB(I , [v1, v2 · · · vn])] opc b = op2

v2
· · · opn

vn
[MapB(I , [v1, v2 · · · vn]) opc b].

Thus,

MapB(I ) opc b = op1
v1

op2
v2
· · · opn

vn
[MapB(I , [v1, v2 · · · vn])opc b].

The next theorem uses the lemma repeatedly with different constants to prove the correctness
of Ex-apply.

Theorem 3. Let B1 = 〈V1,D1〉 and B2 = 〈V2,D2〉 be GFODDs that do not share any variables
and assume that opc forms a safe pair with all operators in V1 and V2. Then B= 〈V,D〉 =
Ex-apply(B1, B2, opc) is a combination of B1 and B2 under operator opc.
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Proof: Let opi, j andvi, j denote theith operator and variable respectively inV j . V is a concate-
nation ofV1 andV2 by the definition of Ex-apply. Therefore by the definition of the GFODD
semantics, for any interpretationI ,

MapB(I ) = op1,1
v1,1
· · · opn,1

vn,1
op1,2

v1,2
· · · opm,2

vm,2
[MapB(I , [v1,1 · · · vn,1v1,2 · · · vm,2])] .

SinceD = apply(D1,D2,opc), by Lemma 3 we have that for all interpretationsI and valuations
ζ, MapD(I , ζ) = MapD1(I , ζ) opc MapD2(I , ζ). In addition, since the variables inV1 andV2

are disjoint, we can write any valuationζ asζ1ζ2 such thatζ1 is the sub-valuation ofζ over the
variables inV1 andζ2 is the sub-valuation ofζ over the variables inV2. Thus we can write

MapB(I ) = op1,1
v1,1
· · ·opn,1

vn,1
op1,2

v1,2
· · · opm,2

vm,2
[MapB1(I , [v1,1 · · · vn,1]) opc MapB2(I , [v1,2 · · · vm,2])] .

Now the important observation is that sinceMapB1(I , [v1,1 · · · vn,1]) does not depend on the vari-
ables inV2, when aggregating over the variables inV2, MapB1(I , [v1,1 · · · vn,1]) can be treated as
a constant. Sinceopc forms a safe pair with all aggregation operators ofV2, by Lemma 4,

MapB(I )

= op1,1
v1,1
· · · opn,1

vn,1
(MapB1(I , [v1,1 · · · vn,1]) opc op1,2

v1,2
· · · opm,2

vm,2
(MapB2(I , [v1,2 · · · vm,2])))

= op1,1
v1,1
· · · opn,1

vn,1
(MapB1(I , [v1,1 · · · vn,1]) opc MapB2(I )).

Similarly when aggregating over variables inV1, MapB2(I ) can be treated as a constant because
it does not depend on the value of any of the variables inV1. Sinceopc forms a safe pair with all
the aggregation operators inV1, by Lemma 4,

MapB(I ) = op1,1
v1,1
· · · opn,1

vn,1
(MapB1(I , [v1,1 · · · vn,1])) opc MapB2(I )

= MapB1(I ) opc MapB2(I )

Thus by definition,B = Ex-apply(B1, B2,opc) is a combination ofB1 andB2 under the combina-
tion operatoropc.

The following theorem strengthens this result showing thatEx-apply has some freedom in
reordering the aggregation operators while maintaining correctness. This property is useful for
our solution of RMDPs.

Theorem 4. Let B1 = 〈V1,D1〉 and B2 = 〈V2,D2〉 be GFODDs that do not share any variables
and assume that opc forms a safe pair with all operators in V1 and V2. Let B= 〈V,D〉 = Ex-
apply(B1, B2,opc). Let V′ be any permutation of V so long as the relative order of operators in
V1 and V2 remains unchanged, and let B′ = 〈V′,D〉. Then for any interpretation I, MapB(I ) =
MapB′ (I ).

Proof: Let V1 = F1
1F1

2 · · · F
1
k andV2 = F2

1F2
2 · · · F

2
k so that eachF i

j is a series of zero or more

consecutive aggregation operators inVi . ThenV′ = F1
1F2

1F1
2F2

2 · · · F
1
kF2

k represents a permutation
of V such that the relative order of operators inV1 andV2 remains unchanged. By the semantics
of GFODDs,

MapB′ (I ) = F1
1F2

1 · · · F
1
kF2

k MapB(I , [v1,1 · · · vn,1v1,2 · · · vm,2])

wherevi, j, is a variable inBj . Now, by applying Lemma 3 we get

MapB′ (I ) = F1
1F2

1 · · · F
1
kF2

k [MapB1(I , [v1,1 · · · vn,1]) opc MapB2(I , [v1,2 · · · vm,2])] .
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SinceB1 andB2 do not share any variables, andopc forms a safe pair with all operators inV1 and
V2, we have the following sequence of equations where in each step we use Lemma 4 and the fact
that one of the arguments is a constant with respect to the corresponding block of aggregation
operators:

MapB′ (I ) = F1
1F2

1 · · · F
1
k [MapB1(I , [v1,1 · · · vn,1]) opc F2

k MapB2(I , [v1,2 · · · vm,2])]

= F1
1F2

1 · · · F
2
k−1[F1

k MapB1(I , [v1,1 · · · vn,1]) opc F2
k MapB2(I , [v1,2 · · · vm,2])]

= · · ·

= F1
1 · · · F

1
k MapB1(I , [v1,1 · · · vn,1]) opc F2

1 · · · F
2
k MapB2(I , [v1,2 · · · vm,2]).

Finally by Theorem 3, the last term is equal toMapB(I ) implying thatMapB′ (I ) = MapB(I ).

5. Model Checking Reductions for GFODDs

The R12 procedure introduced in Section 3 can be extended to operate on GFODDs. In
this section we present extensions of R12 for two forms of aggregation functions. The first is a
set of diagrams using onlymin aggregation. The second is the set of diagrams withmax∗min∗

aggregation. In this case the aggregation function consists of a series of zero or moremax
operators followed by a series of zero or moremin operators. For this case we introduce two
variants,R12D andR120, with differing computational costs and quality of reduction. We will
discuss each of those in turn starting with the R12 procedurefor themin operator.

5.1. R12 for min aggregation

The case ofminaggregation is obtained as a dual of themaxaggregation case. However, it is
worthwhile considering it explicitly as a building block for the next construction. The notion of
instrumental paths here is the dual of the notion of instrumental paths for themaxaggregation:

Definition 9. If B is a GFODD with only the min aggregation function, and PL is the DPO for
B, then a path pj ∈ PL is instrumental with respect to PL iff there is an interpretation I such that

1. there is a valuation,ζ, such that PathB(I , ζ) = p j , and
2. for all valuationsη, if PathB(I , η) = pk, then k≤ j.

The generalized aggregation function for theminaggregation operator is the same as the one
for themaxoperator except that themaxis replaced by theminand no special treatment is given
to paths reaching the 0 leaf. We thus have amin3 generalized aggregation function. Notice that
whereas formaxaggregation we choose the reachable path with smallest index as instrumental
(and record it inmax3), for min3 we pick the reachable path with greatest index as instrumental.
The reduction procedure is identical to the case ofmax aggregation except thatmin3 is used
instead ofmax3 and that edges inE have the targets replaced by the discard valueD instead of
0. This is not strictly necessary, as we can replace the target of the edges with a large value (or
∞). But it is useful in preparation for the next construction.A trivial adaptation of the proofs in
the previous section yields the corresponding properties for minaggregation.

Lemma 5. If a path pi in GFODD B is instrumental under PL, then there exists an interpretation
Io such that{leaf(pi), pi , Io} ∈ S .
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Lemma 6. If there exists an instrumental path under PL that contains the edge e in B then
e ∈ E′.

Theorem 5 (soundness).For any GFODD B using only min aggregation, if GFODD B′ is the
output of R12(B), then for all interpretations I, MapB(I ) = MapB′ (I ).

Theorem 6 (maximum reduction w.r.t. DPO). If no path crossing edge e in B is instrumental
under PL, then R12 removes e.

5.2. Model Checking Reduction for max∗min∗ Aggregation

This section is concerned with GFODDs employingmax∗min∗ aggregation. The aggregation
function consists of a series of zero or moremaxoperators followed by a series of zero or more
min operators. The aggregation functionV is therefore split intoVl − the variables aggregated
over using themaxaggregation operator, andVr − the variables aggregated over using themin
aggregation operator. Thus,V = VlVr . We use the superscriptl andr (for left and right) to refer
to the corresponding blocks ofmaxandminvariables. The setU of all possible valuations of the
variables inB can be split intoU l andUr , the sets of all valuations over the variables inVl and
Vr respectively. Any valuationζ ∈ U can then be written asζ lζr whereζ l ∈ U l andζr ∈ Ur .
Thus by the definition of GFODD semantics, for any interpretation I ,

MapB(I ) = op1
v1
· · · opn

vn
[MapB(I , [v1 · · · vn])]

= maxζ l∈U l [minζr∈Ur [MapB(I , ζ lζr )]] .

5.2.1. The procedure R12D
Our first reduction operator captures a simple notion of instrumental paths. The intuition is

that we can view model evaluation as if performed in blocks. First, for everyζl , an assignment
of objects toVl (of max variables), we perform a min competition among all valuations toVr .
Eachζl is then associated with a path and value that won the min competition and we perform
a max competition among the corresponding values. Therefore, if a path never wins any min
competition we may be able to change its value without changing the map of the diagram. The
new value must be chosen carefully so that it does not affect any min or max competition on any
interpretation, and this requires complex analysis. Instead of choosing such a concrete value we
change the value toD. This makes sure that the path will not win any min or max competitions
and hence does not change the final value of the diagram.

We proceed with the technical details of this idea. A path is instrumental if it wins a min
competition for some interpretationI .

Definition 10. If B is a GFODD with the max∗min∗ aggregation function, and P is a DPO for
B, then a path pi ∈ P is instrumental iff there is an interpretation I and valuationζ = ζ lζr , where
ζ ∈ U, ζ l ∈ U l andζr ∈ Ur , such that,

1. PathB(I , ζ) = pi ,
2. For everyηr ∈ Ur , if PathB(I , ζ lηr ) = p j , then j≤ i under P.

TheR12D procedure for themax∗min∗ aggregation is identical to the R12 procedure for the
minaggregation with the following exceptions.
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1. Recall that the variables are split intoVl with max aggregation followed byVr using min
aggregation. The setU of valuations is built in the following way. LetOl be a set of|Vl |

objects andOr a set of|Vr | objects whereOl andOr are disjoint. LetU l be the sets of all
possible valuations of the variables inVl over the objects inOl and letUr be the set of all
possible valuations of the variables inVr over the objects in the union ofOl andOr . The
setU is then defined asU = {ζ lζr | ζ l ∈ U l andζr ∈ Ur }.
The set of valuationsU therefore captures an arbitrary valuation of the variablesin Vl to
objects inOl that are not constrained. Similarly the valuation ofVr is not constrained
in that it is allows to bind to objects inOl or to other objects (for whichOr serves as
unconstrained objects). The proof below shows that this setis sufficient to expose any
instrumental paths.

2. The setS is defined asS =
⋃

ζ l Reduction-Aggregation(B, Uζ l , PL), whereUζ l is the block
of valuations corresponding toζ l . Thus the setVal in the procedure is divided into blocks,
each containing a set of valuations with the sameζ l . S is the union of the sets generated
as a result of applying Reduction-Aggregation usingmin3 to each block ofVal.

Example 12. Figure 7 shows a small example of this reduction. The processis similar to the
R12 procedure for the max aggregation, except for the generalized aggregation function. A DPO
is first established as shown. Sets Ol = {a} and Or = {b} are constructed and the table (Val) is
generated by running the getBehaviors procedure on the valuations generated from those. Fi-
nally, since Val consists of a single block (since only one variable is associated with the max
operator), min3(Val) is evaluated to produce the 5〈leaf, path, Interpretation〉 3-tuples as shown.
For example combining0-{1t2 f 3 f }-{p(a),¬q(a)} with 10-{1t2 f 3t4t}-{p(a),¬q(a),q(b), r(b)} un-
der min3 we get0-{1t2 f 3 f }-{p(a),¬q(a),q(b), r(b)}. The targets of all edges other than the ones
present in the paths of the resultant 3-tuples, and concretely the edge3t, can be replaced by the
valueD.

The proof of correctness follows the same outline as above but accounts for the extra aggre-
gation operators. We first show that every instrumental path, for any potential interpretationI , is
discovered by the procedure.

Lemma 7. If a path pi in GFODD B employing the max∗min∗ semantics is instrumental under
PL, then there exists an interpretation Io such that{leaf(pi), pi , Io} is in the set S calculated by
the R12D procedure.

Proof: If pi is instrumental underPL then there exists an interpretationI over a set of objectsOI

and a valuationζ = ζ lζr such thatPathB(I , ζ) = pi and for everyηr , if PathB(I , ζ lηr ) = p j , then
j ≤ i underPL. Let O′l be the set of objects that participate inζ l and letO′r be the set of objects
that participate inζr but not inζ l . Clearly 1≤ |O′l | ≤ |Vl | and 1≤ |O′r | ≤ |Vr |. Let o′l1 ∈ O′l and
o′r1 ∈ O′r . Add |Vl | − |O′l | new objects toO′l and|Vr | − |O′r | new objects toO′r .

Construct interpretationI ′ by first projectingI to include only the objects inO′l andO′r and
then defining truth values and predicates over the new objects inO′l andO′r to behave identically
to o′l1 ando′r1 respectively. LetO′l andO′r be the setsOl andOr used in theR12D procedure to
generate the set of valuationsU. The setU can be split into blocks so that each valuation
η = ηlηr belonging toU can be assigned to the block corresponding toηl . Let Uζ l be the block
corresponding toζ l .

Sinceζ ∈ Uζ l , andI ′ contains the relevant portion ofI , ζ traversespi underI ′. Additionally
if there is a valuationη ∈ Uζ l such thatPathB(I ′, η) = p j , and j > i underPL, we could construct
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5)  -p(x) : 0 
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0-{1f}-{-p(a)}, 5-{1t2t}-{p(a),q(a)}, 0-{1t2f3f}-{p(a),-q(a),-q(b)}, 0-{1t2f3t4f}-
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2 

0-{1f}-{-p(a)} 

0-{1t2f3f}-{p(a),-q(a),-q(b)} 

5-{1t2t}-{p(a), q(a)} 

target(3t) can be 

replaced by D   

min3 

Aggregation:  

R12d 

0 

r(y) 

q(y) 

0 10 

p(x) 

q(x) 

5 

0 

0

D

q(y) 
3 

4 

1

0-{1t2f3f}-{p(a),-q(a),q(b),-r(b)} 

0-{1t2f3f}-{p(a),-q(a),q(b),r(b)} 

Figure 7: An example of reduction operatorR12D for GFODDs withmax∗min∗ Aggregation. Each entry of the form
value-{path}-{interpretation} in the table (enclosing angle brackets removed in figure to improve readability) expresses
the value obtained by running the valuation of the corresponding row through the diagram under an equivalence class of
interpretations. Themin3 aggregation function applied to every block (in this case there is just one block withζ l = a
because there is only one variablex associated with themaxaggregation operator) then calculates the possible aggregates
that could be generated under different equivalence classes of interpretations. Since the edge3t does not appear in any of
the paths in the result ofmin3, it is not instrumental and can be removed.

another valuation ˆη = ηl η̂r by replacing the new objects in̂ηr by o′r1 , so thatPathB(I , η̂) = p j .
However, we know that no such ˆη exists. Therefore there is noη ∈ Uζ l such thatPathB(I ′, η) =
p j , and j > i underPL.

Let Io =
⋃

η∈Uζl
PF(PathB(I ′, η))η. That is, Io includes all the atoms ofI ′ that partici-

pate in traversing paths inB for all valuations inUζ l . By construction, the corresponding
parts PF(PathB(I ′, η))η will be included in thevaluesetreturned by the getBehaviors proce-
dure. ClearlyIo ⊆ I ′. Therefore ifI ′ is consistent then so isIo. If Valζ l is the block inVal
corresponding to the valuations inUζ l , then by the definition ofmin3, min3(Valζ l ) must contain
an entry{leaf(pi), pi , Io}. Finally sincemin3(Valζ l ) is a subset ofS, S must contain{leaf(pi), pi ,
Io}.

The lemma implies that all edges on instrumental paths are discovered and as a result that
replacing the values of other edges withD does not change the map of the diagram. This intuition
is formalized in the next lemma and theorem.
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Lemma 8. If there exists an instrumental path in B under PL that contains the edge e then
e ∈ E′.

Proof: If there is an instrumental pathpi ∈ PL that contains the edgee, then by Lemma 7 there
exists an interpretationIo such that{leaf(pi), pi , Io} ∈ S. By definition ofE′, e ∈ E′.

Theorem 7 (soundness).For any GFODD B with max∗min∗ aggregation, if GFODD B′ is the
output of R12D(B) then for all interpretations I, MapB(I ) = MapB′ (I ).

Proof: By the definition ofR12D, the only difference betweenB andB′ is that some edges that
pointed to subFODDs inB, point to the discard leafD in B′. These are the edges in the setE at
the end of theR12D procedure. Therefore any valuation crossing these edges isdiscarded from
the aggregation function. Valuations not crossing these edges will achieve the same value inB′

as they did inB.
Fix any interpretationI over any setOI of objects. LetU be the set of all valuations of the

variables inB overOI . Each valuationη ∈ U can be expressed asη = ηlηr such thatηl ∈ U l and
ηr ∈ Ur . MapB(I ) can then be expressed as

MapB(I ) = maxηl∈U l [minηr∈Ur [MapB(I , ηlηr )].

Now for anyηl ∈ U l , let pi be a path such that there exists a valuationηr ∈ Ur , PathB(I , ηlηr )
= pi and for allιr ∈ Ur , PathB(I , ηl ιr ) = p j implies that j ≤ i under the same DPO employed in
theR12D reduction procedure. By definitionpi is instrumental and hence by Lemma 8 none of
the edges onpi are affected byR12D. ThereforeMapB(I , ηlηr ) = MapB′ (I , ηlηr ). We therefore
conclude that for the block ofηl at least one real value (the minimizing one) exists, and other
values may be replaced withD which is ignored by the aggregation function. Therefore,

minηr∈Ur [MapB(I , ηlηr )] = minηr∈Ur [MapB′ (I , η
lηr )].

Since this is true for everyηl ∈ U l , it is also true for the aggregation, that is

maxηl∈U l [minηr∈Ur [MapB(I , ηlηr )] = maxηl∈U l [minηr∈Ur [MapB′ (I , η
lηr )].

ThereforeMapB(I ) = MapB′ (I ).

5.2.2. The Procedure R120

The introduction of the discard value in the leaves makes handling and interpretation of
diagrams awkward. In this section we show that at some additional computational cost this can
be avoided. With some extra bookkeeping, a variant of the R12procedure can avoid replacing
edge targets with the discard valueD, and in the process, potentially remove more redundancies
from amax∗min∗ GFODD. To motivate the new procedure, consider again what happens during
evaluation of interpretationI on GFODDB. As observed above, each blockb of valuations
corresponding to aζ l is collapsed undermin aggregation. LetPb denote the set of paths inB
traversed by the valuations inb and ordered by the given DPO. We view this procedure as a
competition among the paths inPb. The winner of this competition is the path of highest index
in Pb. Denote this path bypb. Themin competition applied to all blocks creates a “super block”
b̂ of all the winners, each corresponding to aζ l . Finally all theζ ls are collapsed under themax
aggregation. This process can, in turn, be viewed as amaxcompetition among the paths inPb̂.
The winner of this competition is the path with the least index in Pb̂. Obviously this path also
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wins themincompetition inside its own block. Note that the block winning the max competition
is not uniquely determined because there can be more than oneblock with the same path winning
the min competition. We call any such block amaxblock, refer tomaxblocks generically asb∗,
and refer to the unique winning path aspb∗ . Then,MapB(I ) = leaf(pb∗ ).

We use the notation introduced in this discussion in the restof this section. In particular we
have:ζl a valuation to the max variables, its blockb, the set of pathsPb and the path winning the
min competitionpb. In addition we have each max blockb∗ with the the correspondingPb∗ and
the unique winning pathpb∗ . All these implicitly depend on the interpretationI , but we suppress
I from the notation because it will always be clear from the context.

Using this analysis we observe the following:

1. If the value of the leaf reached by any path in amaxblock isreducedto a value at least as
large as leaf(pb∗ ), the map remains unchanged. This is because themincompetition on the
maxblock will still produce the same result. Additionally, since we are only reducing the
values of other paths, the values of winners of other min competitions can only be reduced
and thereforepb∗ will still win the max competition.

2. If the value of the leaf reached by any path in any blockb other than themaxblocks is
reduced to 0, leaf(pb∗ ) will still win the maxcompetition and the map will be preserved.

The above observations suggest that we can reduce a GFODD in the following way,

1. Preserve the targets of all edges in all paths winning the final max competition under any
interpretation. We call theseinstrumentaledges.

2. Identify edges on paths inB that appear in themaxblocks under any possible interpretation
I . We call theseblockedges. For each block edgee, replace target(e) by a value that is (1)
at least as large as leaf(pb∗ ) underI and (2) no larger than the smallest leaf reachable by
traversinge. Notice that (1) means thatpb∗ wins themin competition of max blocks and
(2) makes sure we never add value to any path.

3. Replace the targets of all other edges by 0.

In the remainder of this section, we develop these ideas moreformally, describe theR120

reduction procedure and prove its correctness. The input tothe procedure is a GFODDB =
〈V,D〉 and a DPO forB. The output is a reduced GFODDB′. We first redefine the generalized
aggregation functionsmin3 andmax3 to capture the bookkeeping needed for block edges.

min3:. as before the inputVal to min3 is a set of sets of 3-tuples〈value,path,interpretation〉,
where each set of 3-tuples is associated with a valuation. The output is a set of all possible
4-tuples〈vo,po,Eo,Io〉 generated as follows:

1. LetX = {〈v1,p1,I1〉, · · · , 〈v|Val|,p|Val|,I |Val|〉} be a set constructed by picking one 3-tuple from
the set corresponding to each valuationζ ∈ Val.

2. vo =min{v1, · · · , v|Val|}.
3. po is the path of highest index under DPOPL that appears in a 3-tuple inX and such that

leaf(po) = vo.
4. Eo is the set of all the edges appearing in all the paths in all of the 3-tuples inX except the

edges inpo.
5. Io =

⋃

i I i where〈vi ,pi ,I i〉 ∈ X.
6. Io is consistent.
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Thusmin3 is exactly as before except that we also collect the setEo. Notice that ifp0 happens
to be instrumental thenE0 identifies the edges that act as block edges in this case. Ifp0 is not
instrumental thenE0 is not of interest. Next,max3 is adapted to take as input the set of outputs
of min3 (each run for a differentζl) and identify in its output the instrumental path and winning
blocks and blocks edges for eachI0 generated.

max3:. the inputVal to max3 is a set of sets of 4-tuples〈value,path,EdgeList,interpretation〉
where each set of 4-tuples is associated with a valuation. The output is a set of all possible
4-tuples〈vo,po,Eo,Io〉 generated as follows.

1. Let X = {〈v1,p1,E1,I1〉, · · · , 〈v|Val|,p|Val|,E|Val|,I |Val|〉} be a set constructed by picking one
4-tuple from the set corresponding to each valuationζ ∈ Val.

2. vo =max{v1, · · · , v|Val|}.
3. po is the path of least index under DPOPL that appears in a 4-tuple inX such that leaf(po)
= vo.

4. Eo is a setEi such thatpo = pi andvo = vi ; here if there is more than onei satisfying the
condition then each suchEi is given in a separate output tuple.

5. Io =
⋃

i I i where〈vi ,pi ,Ei ,I i〉 ∈ X.
6. Io is consistent.

Thusmax3 is exactly as before except that we also process the setsEi and produce the setEo.
max3 picks theEi that corresponds to the winning pathpi from its input. If there is more than
one block with the same winning path then each of them produces an output tuple. Therefore,
in the output ofmax3, I0 is a consistent interpretation whose instrumental path isp0 and where
some of its block edges are listed inE0.

TheR120 procedure is as follows.

1. Recall that the variables are split intoVl with max aggregation followed byVr using min
aggregation. The setU of valuations is built in the following way. LetOl be a set of|Vl |

objects andOr a set of (|Vl ||V
l | + 1)|Vr | objects whereOl andOr are disjoint. LetU l be the

sets of all possible valuations of the variables inVl over the objects inOl and letUr be the
set of all possible valuations of the variables inVr over the objects in the union ofOl and
Or . The setU is then defined asU = {ζ lζr | ζ l ∈ U l andζr ∈ Ur }.
As in the previous reduction the setU is constructed to allow for a sufficiently rich set of
valuations. Here we allow for an arbitrary valuation toVl using objects inOl . Next we
consider every fixed valuation toVl and the block of valuations toVr that extends it. We
allow each of the|Vl ||V

l | blocks to use a fresh set of|Vr | objects (or any of the other objects).
In this way the winner of themincompetition in each block is not constrained by valuations
in other blocks. Finally, we must allow a path of block edges to be unconstrained by other
bindings in the block. We therefore add another set of|Vr | objects. As the proof below
shows this allows us to expose all instrumental paths and allblock edges in the diagram.

2. For every edge we maintain 3 variables. low(e) and high(e) are bounds on its value and
InstrEdge(e) is a flag. These are initialized as follows. For all edgese in B, set low(e) =
−1, high(e) = le, wherele is the value of the smallest leaf reachable throughe in B, and
InstrEdge(e) = 0.

3. Run themaxmin3 procedure as follows.
(a) Divide Val into |U l | blocks of valuations each block corresponding to a valuation
ζ l ∈ U l . Let X be the set of these blocks.
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(b) Let Y = {〈ζ l ,Reduction-Aggregation(B,b,PL)〉 | ζ l ∈ U l and b ∈ X is the block
corresponding toζ l}, where Reduction-Aggregation uses the newly definedmin3.

(c) LetS = max3(Y).
(d) For every 4-tuple〈vo, po,Eo, Io〉 ∈ S, do

i. For every edgee ∈ po, set InstrEdge(e) = 1.
ii. For every edgee ∈ Eo, set low(e) to max{low(e), vo}.

4. Finally the target of every edgee is replaced as follows:
(a) If InstrEdge(e) = 1, do not replace.
(b) If InstrEdge(e) = 0 and low(e) , −1 (that is,e is a block edge) and high(e) ≥ low(e),

then replace target(e) by any suitable valuev, such that low(e) ≤ v ≤ high(e).
(c) If InstrEdge(e) = 0 and low(e) = −1 (that is,e is not a block edge) then replace

target(e) by 0.

Figure 8 shows an example of theR120 reduction where several of the steps in the algorithm
are illustrated.

In the remainder of this section we provide a proof of soundness forR120. To that end we
first define idealized properties of a reduction procedure inthe style ofR120. We then show that
if a reduction has these properties then it is sound, and thatR120 indeed has these properties.
This allows us to break the argument into two independent portions and in this way simplifies
the proof.

Definition 11. An edge e in a GFODD B is instrumental iff e ∈ pb∗ under some interpretation.

Definition 12. An edge e in a GFODD B is a block edge if it is not instrumental and e∈ path∈
Pb∗ for some max block b∗ under some interpretation.

Definition 13. For any block edge e, CannotExceed(e) is the value of the smallest leaf reach-
able through e and CannotLag(e) is the value of the largest value of leaf(pb∗ ) over all possible
interpretations, when a path containing e appears in a max block.

Definition 14. A reduction procedure R that reduces a given GFODD B to produce GFODD B′

is block-safe if it conforms to the following rules.

1. R identifies all instrumental edges in B and for each such identified edge e, R maintains
target(e).

2. R identifies all block edges in B and for each such identified edge e, R replaces target(e)
by any leaf value v such that CannotLag(e)≤ v ≤ CannotExceed(e).

3. For each edge e that is not identified by R as an instrumental orblock edge, R replaces
target(e) by0.

Thus our idealized reduction isblock-safe; the next theorem shows that any such procedure
is sound.

Theorem 8. If reduction procedure R is block-safe and B′ = R(B), then for every interpretation
I, MapB(I ) = MapB′ (I ).
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0-{1f}-{-p(a)}, 5-{1t2t}-{p(a),q(a)}, 0-{1t2f3f}-{p(a),-q(a),-q(c)}, 0-{1t2f3t4f}-{p(a),-q(a),q(c), 

-r(c)}, 10-{1t2f3t4t}-{p(a),-q(a),q(c),r(c)} 
a c 

0-{1t2f3f}-{3t4t}-{p(a),-q(a),-q(b),q(c),r(c)} 

0-{1t2f3f}-{3t4f}-{p(a),-q(a),q(b),q(c),-r(b),-r(c)} 

0-{1t2f3f}-{3t4t}-{p(a),-q(a),q(b),q(c),-r(b),r(c)} 

0-{1t2f3f}-{3t4t}-{p(a),-q(a),q(b),-q(c),r(b)} 

0-{1t2f3f}-{3t4t4f}-{p(a),-q(a),q(b),q(c),r(b),-r(c)} 

0-{1t2f3f}-{3t4t}-{p(a),-q(a),q(b),q(c),r(b),r(c)} 

Figure 8: An example of the reductionR120. The initial diagram is the same as in Example 12 and Figure 7. Wehave

|Vl | = |Vr | = 1 and hence|Ol | = 1 and|Or | = (|Vl ||V
l | + 1)|Vr | = 2 and thereforey is allowed to bind to the 3 objects in

Ol ∪Or . Each entry of the form value-{path}-{interpretation} in the table (enclosing angle brackets removed in figure to
improve readability) expresses the value obtained by running the valuation of the corresponding row through the diagram
under an equivalence class of interpretations. Themaxmin3 aggregation function then calculates the possible aggregates
that could be generated under different equivalence classes of interpretations. Since we have only one block, we only
need to run the extendedmin3 aggregation on this example. The result is shown below the table. For example the entries
0-{1t2 f 3 f }-{p(a),¬q(a)}, 10-{1t2 f 3t4t}-{p(a),¬q(a),q(b), r(b)} and 10-{1t2 f 3t4t}-{p(a),¬q(a),q(c), r(c)}, give the last
row in the result. Overall, the edges3t,4t and4f are identified as a block edges. For edge3t, InstrEdge(3t) = 0 because
no winner of the max block contains edge3t. high(3t) = 0 because the smallest leaf reachable by traversing3t is 0. The
maxmin3 procedure sets low(3t) to 0 because the highest leaf reached by any path defeating the paths containing3t in the
max block is 0. Thus target(3t) can be set to 0 without violating the constraint low(3t) ≤ target(3t) ≤ high(3t). Setting
the target of3t to 0 reduces the diagram. Note that in this example all edges shown are block edges because there is only
one block - the max block. All the edges appearing in the resultof maxmin3 are instrumental edges and their targets are
preserved by the reduction procedure.

Proof: Fix any interpretationI over any setOI of objects. LetU be the set of all valuations of
the variables inB overOI . Let ζ = ζ lζr ∈ U be a valuation traversingpb∗ in B. MapB(I ) can then
be expressed as

MapB(I ) = maxηl∈U l [minηr∈Ur [MapB(I , ηlηr )]

= max[minζr∈Ur [MapB(I , ζ lζr )],maxηl,ζ l∈U l [minηr∈Ur [MapB(I , ηlηr )]]] .
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Since the definition ofblock-safeguarantees that the target of every edgee is not replaced by
a value greater than CannotExceed(e), target(e) only decreases in value. Therefore, for any
valuationη ∈ U, leaf(PathB(I , η)) ≥ leaf(PathB′ (I , η)). Therefore we have,

maxηl,ζ l∈U l [minηr∈Ur [MapB′ (I , η
lηr )]] ≤ maxηl,ζ l∈U l [minηr∈Ur [MapB(I , ηlηr )]] .

Additionally, the definition ofblock-safeguarantees that all instrumental edges are preserved and
that the value reached by the block edges is never reduced below leaf(pb∗ ). Therefore,ζ reaches
leaf(pb∗ ) in both B and B′. No other valuation in anymaxblock b∗ reaches a value less than
leaf(pb∗ ) when evaluated onB′. Thus,

minζr∈Ur [MapB′ (I , ζ
lζr )] = minζr∈Ur [MapB(I , ζ lζr )]

= lea f(pb∗ ).

Finally,

MapB′ (I ) = max[minζr∈Ur [MapB′ (I , ζ
lζr )],maxηl,ζ l∈U l [minηr∈Ur [MapB′ (I , η

lηr )]]]

= minζr∈Ur [MapB′ (I , ζ
lζr )]

= lea f(pb∗ )

= MapB(I ).

Therefore, to prove soundness ofR120, we can focus on showing that it is block-safe as we
do in the next theorem.

It is clear from the construction thatR120 identifies some instrumental edges and some block
edges. The difficulty is in showing that it identifiesall such edges over an infinite set of interpre-
tations some of which have infinite domains. The following proof shows that each such edge is
discovered by one of the finite combinations in our procedure. Note that even if two edges are the
block edges of the samepb∗ , they do not need to be discovered at the same time or using thesame
Io in our procedure. Instead it is sufficient that each is discovered and marked as a block edge
at some point in the algorithm. This is the approach taken in the next proof showing that every
instrumental edge (onpb∗ below) and block edge (onp j below) are appropriately accounted for
by R120.

Theorem 9. R120 is block-safe.

Proof: Line 4 in theR120 procedure enumerates the treatment of different edges inB. Accord-
ingly to prove the theorem we need to show that:

1. If an edgee in B is instrumental under some interpretationI , thenR120 sets InstrEdge(e)
= 1.

2. If an edgee is a block edge under some interpretationI , thenR120 sets the value low(e) ≥
CannotLag(e).

3. If an edgee is a block edge under some interpretationI , thenR120 sets the value high(e)
≤ CannotExceed(e).

Of the above, 3 is true by the definition ofR120 because high(e) is initialized to the correct value
and is never changed. We next show that the procedure correctly identifies every instrumental
edge and every block edge, and sets the correct bound for block edges.
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Consider any interpretationI . Let ζ = ζ lζr be a valuation traversingpb∗ = pi in B underI .
Thereforeζ l identifies amaxblock and we refer to this block asb∗ below. Letη = ζ lηr be any
other valuation in themaxblock b∗ that does not win the min competition and letPathB(I , η)
= p j . Therefore,pi is instrumental, and the edges inp j are potentially block edges (this holds
unless they are instrumental for some otherI ) and the lower bound for these edges must be
≥ lea f(pi).

Let O′l be the set of objects that participate inζ l and define the setO′r = { o < O′l | o
participates inηr or in ιr , where ιl contains only the objects fromO′l and ιl ιr wins themin
competition in the block ofιl}. By construction|O′l | ≤ |Vl | and |O′r | ≤ (|Vl ||V

l | + 1)|Vr |. Let
o′l1 ∈ O′l ando′r1 ∈ O′r . Add |Vl | − |O′l | new objects toO′l and (|Vl ||V

l | + 1)|Vr | − |O′r | new objects
to O′r .

Construct interpretationI ′ by first projectingI to include only the objects inO′l andO′r and
then defining truth values and predicates over the new objects added toO′l andO′r to behave
identically too′l1 ando′r1 respectively. LetO′l andO′r be the setsOl andOr used in theR120

procedure to generate the set of valuationsU.
SinceI ′ contains the relevant portion ofI , PathB(I ′, ζ) = pi andPathB(I ′, η) = p j . In addition,

pi is the winner of the min competition in the blockb∗ underI ′. To see this, note that if there
exists valuationζ l ιr ∈ U such thatPathB(I ′, ζ l ιr ) = pk and k > i underPL, then we could
construct another valuationζ l ι̂r by replacing the new objects inιr by o′r1 so thatPathB(I , ζ l ι̂r ) =
pk. However, we know that there is no suchζ l ι̂r . An identical argument proves that ifb is a block
in U corresponding toιl , thenpb defined relative toI is the winner of themin competition inb
underI ′.

So far we have shown that the winners of all min competitions in I for blocks in U are
maintained inI ′ without direct reference to our algorithm. We next focus onR120 showing that
the appropriate paths are discovered.

Let Iιl ιr = PF(PathB(I ′, ιl ιr ))ιl ιr be the set of atoms on the pathpιl ιr in B traversed by some
valuationιl ιr underI ′. By construction, a 3-tuple〈leaf(pιl ιr ),pιl ιr ,Iιl ιr 〉 appears in the output of the
getBehaviors procedure, when run onιl ιr . Therefore, by the definition of Reduction-Aggregation
andmin3, the setY generated in Step 3b ofR120 must contain an entry〈leaf(pb),pb,Eb,Ib〉, where
Ib =
⋃

ιr∈Ur PF(PathB(I ′, ιl ιr ))ιl ιr . Similarly the set produced by applyingmin3 to themaxblock
b∗ must contain an entry〈leaf(pb∗ ),pb∗ ,Eb∗ ,Ib∗〉, where Ib∗ =

⋃

ιr∈Ur PF(PathB(I ′, ζ l ιr ))ζ l ιr . In
addition by the same argument,Eb∗ must contain all the edges inp j .

Now, by the definition ofmax3, the setS built in Step 3c ofR120 must contain an entry
〈leaf(pb∗ ),pb∗ ,Eb∗ ,Io〉 whereIo =

⋃

ι∈U PF(PathB(I ′, ι))ι is consistent because it is a subset ofI ′.
Thereforee ∈ pb∗ is marked instrumental byR120. Every edgee ∈ p j is marked with low(e)

≥ leaf(pb∗ ). Since the choice ofI , pb∗ andp j was arbitrary in the above argument, this holds for
all block edges, implying that low(e) ≥ CannotLag(e). ThusR120 is block-safe.

Corollary 1 (soundness).For any GFODD B with max∗min∗ aggregation, if GFODD B′ is the
output of R120(B) then for all interpretations I, MapB(I ) = MapB′ (I ).

6. An Application of GFODDs for Value Iteration in Relationa l MDPs

So far we have described a general theory of GFODDs. This included the syntax and seman-
tics of GFODDs, combination procedures and reduction procedures for GFODDs. In this section
we show how GFODDs can be used to solve Relational MDPs.
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6.1. Relational Markov Decision Processes

A Markov decision process (MDP) is a mathematical model of decision making in a dynamic
environment [1, 2]. Formally a MDP is a 4-tuple〈S,A,T,R〉 defining a set of statesS, set
of actionsA, a transition functionT defining the probabilityP(sj | si ,a) of getting to state
sj from statesi on taking actiona, and an immediate reward functionR(s). The objective of
solving a MDP is to generate a policy that maximizes the agent’s total, expected, discounted,
reward. Intuitively, the expected utility or value of a state is equal to the reward obtained in
the state plus the discounted value of the state reached by the best action in the state. This is
captured by the Bellman equation asV(s) =Maxa[R(s) + γΣs′P(s′|s,a)V(s′)]. The value iteration
algorithm is a dynamic programming algorithm that treats the Bellman equation as an update rule
and iteratively updates the value of every state until convergence. The value iteration update is
Vn+1(s)←Maxa[R(s) + γΣs′P(s′|s,a)Vn(s′)]. Once the optimal value function is known, a policy
can be generated by assigning to each state the action that maximizes expected value.

Several approaches have been introduced to take advantage of factored state spaces where a
state is described by specifying values of a set of propositions [26, 27, 28]. In particular Hoey
et al. [29] showed that ifR(s), P(s′ | s,a) andV(s) can be represented using algebraic decision
diagrams (ADD) [24, 25], then value iteration can be performed entirely using the ADD represen-
tation avoiding the need to enumerate the state space. This improved the scalability of classical
solutions to MDPs by replacing the enumeration of states implicit in the equation above with
ADDs, a compact feature based representation, thereby taking advantage of the structure in the
problem. However, further structure in the domain can be exploited and more general solutions
can be found by viewing the world as consisting of objects with relations among them. MDPs
represented in this way are known as Relational MDPs. Addressing Relational MDPs, Boutilier
et al. [6] developed the Symbolic Dynamic Programming (SDP)algorithm in the context of sit-
uation calculus. This algorithm provided a framework for dynamic programming solutions to
Relational MDPs that was later employed in several formalisms and systems [7, 8, 10, 9]. One
of the important ideas in SDP was to represent stochastic actions as deterministic alternatives
under nature’s control. This helps simplify the probabilistic reasoning required because goal
regression over deterministic action alternatives can be decoupled from the probabilities of ac-
tion effects. This separation is necessary when transition functions are represented as relational
schema. Using these ideas, a RMDP is specified by

1. A set of world predicates. Each literal, formed by instantiating a predicate using objects
from the domain, can be eithertrue or false in a given state. For example in the box-
world domain, world literals are of the form box-in-city(box, city), box-on-truck(box, truck),
truck-in-city(truck, city) etc.

2. A set of action predicates. Each action literal, formed byinstantiating an action predi-
cate using objects from the domain, defines a concrete action. For example in the box-
world domain, action literals are of the form load-box-on-to-truck-in-city(box, truck, city),
unload-box-from-truck-in-city(box, truck, city), drive-truck(truck, source-city, dest-city),
etc.

3. A state transition function that provides an abstract description of the probabilistic move
from one state to another. For example, using a STRIPS-like notation, the transition de-
fined by the action load-box-on-to-truck-in-city can be described as
Action: load-box-on-to-truck-in-city(box, truck, city):
Preconditions: box-in-city(box, city), truck-in-city(truck, city)
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outcome1: probability0.8, box-on-truck(box, truck),¬box-in-city(box, city)
outcome2: probability0.2, nothing changes.
If the preconditions of the action, box-in-city(box, city) and truck-in-city(truck, city), are
satisfied then with probability 0.8, the action will generate the effect box-on-truck(box,
truck) and¬box-in-city(box, city). The state remains unchanged with probability 0.2. As
this example illustrates, the effects of actions in RMDPs are often correlated and cannot be
considered to occur independently of one another. Therefore, a scheme that captures such
correlations compactly is useful in this context.

4. An abstract reward function describing conditions underwhich rewards are obtained. For
example in the boxworld domain, the reward function is [∀box∀city, destination(box, city)
→ box-in-city(box, city)] constructed so as to capture the goal of transporting all boxes
from their source cities to their respective destination cities.

An interesting fact to notice about RMDPs is that the state space in the underlying MDP is
not fully specified because the set of objects in the domain isleft out. When fixing the domain of
objects the specification induces a concrete MDP. Thus a RMDPrepresents a family of concrete
MDPs.

The above RMDP can be described using various schema languages. Wang et al. [9] de-
scribe the RMDP by representing the reward function and the domain dynamics using FODDs.
Domain dynamics are described by Truth Value Diagrams (TVD), and diagrams capturing prob-
abilistic action choice. A TVD is a FODD describing, for eachdeterministic alternative of each
probabilistic action and for each world predicate, the conditions under which the corresponding
world literal is true when the action is executed and that action alternative occurs. Figure 9
shows an example of a TVD for the parameterized world predicate p(U,V) under the determinis-
tic actionA(x∗, y∗) in a hypothetical planning domain. In addition, for each deterministic action
variantA j(~x), the diagramprob(A j(~x)) provides the probability thatA j(~x) is chosen whenA(~x)
is executed.

6.2. The VI-GFODD Algorithm

In this section we show that the FODD based value iteration (VI) algorithm can be gen-
eralized to handle cases where the reward function is described by a GFODD withmax∗min∗

aggregation. We start by describing theVI-GFODD algorithm. A subsequent discussion shows
why VI-GFODD produces the correct result at each step. The algorithm is asfollows:

1. Regression:Then step-to-go value functionVn is regressed over every deterministic vari-
antA j(~x) of every actionA(~x) to produceRegr(Vn,A j(~x)) by replacing each node inVn−1

by its corresponding Truth Value Diagram (TVD) without changing the aggregation func-
tion.

2. Add Action Variants: The Q-functionQA(~x)
Vn
= R⊕ [γ⊗⊕ j(prob(A j(~x))⊗Regr(Vn,A j(~x)))]

for each actionA(~x) is generated by combining regressed diagrams using Ex-apply.

3. Object Maximization: Maximize over the action parameters ofQA(~x)
Vn

to produceQA
Vn

for
each actionA(~x), thus obtaining the value achievable by the best ground instantiation of
A(~x). This step is implemented by converting action parametersin QA(~x)

Vn
to variables each

associated with themaxaggregation operator, and appending these operators to thehead
of the aggregation function.

4. Maximize over Actions: Then+ 1 step-to-go value functionVn+1 = maxA QA
Vn

, is gener-
ated by combining the diagrams using Ex-apply.
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Figure 9: Example of Regression and Object Maximization in theVI-GFODD algorithm. This domain contains a single
deterministic action. Therefore steps 2 and 4 of the algorithm are not needed. The reward is 1 if [∃x, ∀y, p(x, y)] and it
is 0 otherwise. The reward function is regressed over the deterministic actionA(x∗, y∗). The action is defined such that
p(U,V) is true after the action if it was true before or ifq(U,V) was true before and the action performed wasA(U,V).
Regression replaces every node in the value function with the corresponding TVD and object maximization replaces the
action parameters with quantified variables.

Example 13. Figure 9 shows an example of the VI algorithm using GFODDs fora simple do-
main. This domain contains a single deterministic action. Therefore we do not need to multiply
by prob(A j(~x)) and to sum over the variants Aj in Step 2 of the algorithm and similarly Step 4
is not needed. In this example we completely skip Step 2 and focus on the other two steps in the
algorithm. The reward is1 if [∃x, ∀y, p(x, y)] holds and is0 otherwise. The reward function is
regressed over the deterministic action A(x∗, y∗), which is defined such that p(x, y) is true after
the action if it was true before or if q(x, y) was true before and the action performed was A(x, y).
Since the action can make at most one p(x, y) true at a time, intuitively, the regressed diagram
should capture the union of the following conditions for returning a value of1.

1. there exists x, such that for all y, p(x, y) holds.
2. there exists x, such that for all but one y, p(x, y) is true and for that y, q(x, y) is true.

Figure 9 shows the diagram after being regressed and object maximized. The final diagram is
correct because it returns a1 iff one of above situations occur. If[∃x, ∀y, p(x, y)] is true, then
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all valuations in the blocks with that value of x and fixed values for w and z will reach the1 leaf
directly from the root. Evaluating Min(y) will collapse these blocks to partial valuations with a
1 value. Now since the rest of the aggregation is maximization, the1 value will be returned as
the map. If there exists x, such that for all but one y, p(x, y) is true and for that y, q(x, y) is true,
then all valuations in the blocks with that value of x, the other values of y and fixed values for w
and z reach a1 leaf directly through the root. The valuation in the block with the one value of
y would traverse right from the root but would still reach the1 leaf depending on the condition
w = x and z= y. Note that there will be exactly one block where this valuation will reach the1
leaf. Evaluating Min(y) would collapse that block into a valuation with value1. Since the rest
of the aggregation is maximization, the1 value will be returned as the map. When neither of the
conditions is true, there will be at least one valuation in every block that reaches a0 leaf. Hence
evaluating Min(y) would collapse every block to a valuation with a0 value.

For Value Iteration to work correctly with GFODDs, all the steps of the algorithm listed
above must be correct. Regression by block replacement is correct regardless of the aggregation
function. Recall that a TVD for a predicate under deterministic actionA j(~x) describes conditions
under which the predicate istrue afterA j(~x) is executed. Wang et al. [9] impose the constraint
that TVDs cannot include free variables. Using this constraint the diagrams before and after
regression have exactly the same variables. Wang et al. [9] show that regression is correct for
any valuation.

Lemma 9. [9] Fix any concrete instantiation of the state space. Let s denote a state resulting
from executing an action A(~x) in stateŝ.

If Vn is the n step to go value function, BR-regress(Vn,A(~x)) is the result of regressing Vn
over the deterministic action A(~x), andζ is any valuation to the variables of Vn (and thus also
the variables of BR-regress(Vn,A(~x))), then MAPVn(s, ζ) = MAPBR-regress(Vn,A(~x))(ŝ, ζ).

The lemma shows that the corresponding map values are the same for any valuationζ. Therefore,
the aggregation of the values is the same for any aggregationfunction, and anyVn.

The third step, Object Maximization, is correct because converting action parameters inQA(~x)
Vn

to variables each associated with themaxaggregation operator, and appending these operators to
the head of the aggregation function ofQA

Vn
, implies that the map ofQA

Vn
under any interpretation

will now be the map ofQA(~x)
Vn

maximized over all possible values of the action parameters, as
required. Steps 2 and 4 are correct by Theorem 4 showing the correctness of Ex-apply. Since
value iteration requires combining diagrams under the⊕,⊗ and themaxoperators, only GFODDs
with aggregation operators that are safe with the combination operators⊕, ⊗ andmaxmay be
used. Thus aggregation operatorsmaxandmin can be used. To extend the algorithm to use
other aggregation operators (likesumandmean) one needs to develop appropriate combination
algorithms but the rest of the algorithm remains the same.

Thus we have a correct value iteration algorithm for GFODDs with maxandmin aggrega-
tions. In addition, Theorem 4 guarantees that if we start with a reward function GFODD with an
aggregation of the formmax∗min∗, then throughout value iteration all GFODDs produced can be
made to have an aggregation function of the same form. With the R12 reductions for this case,
we have a sound procedure that can help keep the diagrams compact over the value iteration
process. We have therefore shown:

Theorem 10. For any Relational MDP where the aggregation function of thereward function
diagram contains only operators that are safe with the combination operators+, × and max, the
algorithm VI-GFODD produces the correct value function at every iteration.
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Figure 10: Reward and value function for the goalcl(a) in the blocksworld domain.

Corollary 2. For any Relational MDP where the reward function has a max∗min∗ aggregation,
VI-GFODD produces the correct value function at every iteration, all intermediate results and
the final result use max∗min∗ aggregation, and the R12 procedure can be used to reduce the
diagrams throughout the algorithm.

7. Conclusions and Future Work

This paper significantly extends the representation power of first-order decision diagrams
and our algorithmic understanding of their reductions. We show how Generalized FODDs al-
low for arbitrary aggregation functions, thereby facilitating representation of complex functions,
and how basic operations on them can be performed. In particular we can naturally capture and
manipulate logical formulas with existential and universal quantifiers using max and min aggre-
gation. In addition we show that first-order value iterationcan be supported in a more expressive
setting when the MDP is represented by GFODDs. This new formulation can naturally handle
universal goals that were handled heuristically by previous implementations of first-order value
iteration [10, 11].

Additionally, GFODDs might prove useful in addressing issues related to problems where
the lifted value function is infinite in size. For instance, Kersting et al. [7] showed an example
in the blocksworld domain where the goal is to make a particular block,a, clear (denotedcl(a))
and the value function is infinite in size because there couldbe any number of blocks on top ofa.
However, the value function can be represented compactly using GFODDs in conjunction with
a more descriptive predicate,above, as shown in Figure 10. In the figure,above(X,a) is true for
any blockX that is part of a tower stacked on top of blocka, aggregation overX is performed
by the multiplication operator and the discount factor is 0.9. Thus the multiplicative aggregation
implicitly captures the number of steps to the goal. Although the existence of a compact value
function does not imply an efficient algorithm to produce it, at least in this particular case we
know that the problem is not inherently that of representation.

The other main contribution in the paper is the idea and analysis of model checking reduc-
tions. The same basic idea provides model checking reduction operators for both FODDs and a
useful subset of GFODDs. In the former case, we prove the reduction to be, in some technical
sense, maximal. The maximum reduction guarantee for FODDs falls short of providing a normal
form because it relies on a DPO to define which parts of a diagram may be reduced when there
are mutual implication relations. Therefore the same semantic function may have different mini-
mal representations. However, the guarantee is much stronger than those of previous reductions.
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Wang et al. [9] discuss normal form for FODDs. Examples of FODDs given there, using a sim-
ple decidable fragment, show that for normal form we may needsome syntactic manipulation of
diagrams. Therefore going beyond the guarantee given in this paper may be hard or expensive
to compute. Nevertheless, there is a potential for exploring this and the possibility of efficient
reductions for other interesting subsets of GFODDs in future work.

This work also suggests a new approach for practical implementations of FODDs. The model
checking reductions of this paper require enumeration of substitutions which has high complex-
ity. A promising idea is to use a sample of interpretations, judicially chosen, and reduce the
diagrams relative to these interpretations. We refer the reader to [12] for recent work providing
a validation of this idea in the context of RMDPs where the implementation shows a significant
speedup over theorem proving reductions while maintainingperformance in terms of solving
planning problems using FODDs. It would be interesting to develop extensions of these heuris-
tics that support efficient reductions for GFODDs. Such an approach will allow forthe very
expressive setting of GFODDs to be handled efficiently through the heuristic approximation em-
bedded in the model checking reductions.

Finally it would be interesting to investigate the utility of GFODDs in other applications,
like lifted inference and Statistical Relational Learning, that can benefit from expressive function
representations.
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