
Handling Tree-Structured Values in

RapidMiner

Felix Jungermann
Technical University of Dortmund

Artificial Intelligence Group
felix.jungermann@cs.tu-dortmund.de

Abstract

Attribute value types play an important role in mostly every datamin-
ing task. Most learners, for instance, are restricted to particular value
types. The usage of such learners is just possible after special forms of
preprocessing. RapidMiner most commonly distinguishes between nom-
inal and numerical values which are well-known to every RapidMiner-
user. Although, covering a great fraction of attribute types being present
in nowadays datamining tasks, nominal and numerical attribute values
are not sufficient for every type of feature. In this work we are focusing
on attribute values containing a tree-structure. We are presenting the
handling and especially the possibilities to use tree-structured data for
modelling. Additionally, we are introducing particular tasks which are
offering tree-structured data and might benefit from using those struc-
tures for modelling. All methods presented in this paper are contained
in the Information Extraction Plugin1 for RapidMiner.

1 Introduction

Tree-structured data is very popular in natural language processing (NLP).
Constituent or dependency parse trees of sentences can be used as attributes
for the sentence or for parts of the sentence. Figure 1 and Figure 2 show a
constituent and a dependency parse tree of the sentence “Felix went to New
York to visit the statue of liberty.”. Although, tree-structures are not restricted
to NLP tasks. Machine-readable languages like SQL can be parsed and con-
verted into a tree-structure, too. In addition, many other tasks are offering
tree-structured data. The classification of html-documents for instance can be
supported by the examination of the tree-structure given by the html-tags. Of

1available at http://www-ai.cs.tu-dortmund.de/SOFTWARE/IEPLUGIN



course, it is possible to break down tree-structures to flat features [1]. Scien-
tific research in the field of relation extraction by [2] has shown that using the
structure itself delivers more promising results. The rest of this paper is struc-
tured as follows. In Section 2 we analyze trees and shows how this structures
are handled using tree kernels. In Section 3 we present the most important op-
erators needed to process tree-structures in RapidMiner. Section 4 motivates
the usage of these operators by presenting exemplary datamining tasks which
offer tree-structured values. Finally, Section 5 concludes this paper.

Figure 1: Constituent parse tree Figure 2: Dependency parse
tree

2 Tree-Structures

Tree-structures are special graphs G = (V,E) where V is the set of vertices
or nodes and E is the set of edges connecting these nodes. Additionally, trees
are recursive in the sense that each node ni of a tree t represents the root of
a subtree ti of t. It is possible to flatten a tree. Figure 3, for instance, shows
the string representation of the tree shown in Figure 1. This representation
could be converted into a bag of words (BOW) representation. In addition, the
nodes could be stored as singular attributes. Documents containing a sequen-
tial word-structure can be flattened, too, by creating the BOW representation.
Unfortunately, flattening will destroy inherently contained information given
by the structure. For document flattening just a sequential structure is de-
stroyed. Trees contain much more information like the depth of a node, the
particular direct children, the children of those children, and so on. Flattening



a tree-structure will get very complex or/and it will cast away many informa-
tion which cannot be handled well by a flat exposition. Tree kernels take this
fact in account and can be used to compare two trees recursively. In addition
these kernels can be used in kernel methods for data mining.

2.1 Tree-Kernels

In contrast to just using flat features, [3] were the first to use parse tree informa-
tion for the classification of relations. Their work is based on the convolution
kernel presented by [4] for discrete structures. To make the structural infor-
mation of a tree applicable by a machine learning technique a kernel for the
comparison of two trees is used. This kernel compares two trees and delivers
a real-valued number which can be used by machine learning techniques.

[3] define a tree kernel as written in eq. (2), where T1 and T2 are trees and
Isubtreei

(n) is an indicator-function that returns 1 if the root of subtree i is at
node n.

K(T1, T2) =
∑

n1∈N1

∑
n2∈N2

∑
i

Isubtreei
(n1)Isubtreei

(n2) (1)

=
∑

n1∈N1

∑
n2∈N2

C(n1, n2) (2)

C(n1, n2) represents the number of common subtrees at node n1 and n2. The
number of common subtrees finally represents a syntactic similarity measure
and can be calculated recursively starting at the leaf nodes in O(|N1| ∗ |N2|).
In the following we will call this kernel Quadratic Tree Kernel (QTK).

During this recursive calculation three cases are being respected:

1. If the productions at n1 and n2 are different, C(n1, n2) = 0

2. If the productions at n1 and n2 are the same and if n1 and n2 are
preterminals, C(n1, n2) = 1

3. Else if the productions at n1 and n2 are the same and if n1 and n2 are
not preterminals, C(n1, n2) =

∏
j(σ+C(n1j

, n2j
)), where σ ∈ {1, 0} and

n1j
is the j-th children of n1 (in a uniform manner for n2).

Especially trees containing many nodes will result in large kernel-outputs
which makes further processing by machine learning techniques complicated.
To overcome that problem, [3] present two possibilities: Normalization and
Scaling



Every kernel output can be normalized by using the following equation:

K ′(T1, T2) =
K(T1, T2)

2
√
K(T1, T1) ∗K(T2, T2)

(3)

Unfortunately, calculating the kernel-outcome is computationally expensive.
Calculating this outcome multiple times like this is done during the normal-
ization should be avoided. [3] established a scaling factor 0 < λ <= 1 which
is used in the second and third case for the recursive kernel calculation:

2. If the productions at n1 and n2 are the same and if n1 and n2 are
preterminals, C(n1, n2) = λ

3. Else if the productions at n1 and n2 are the same and if n1 and n2 are
not preterminals, C(n1, n2) = λ ∗

∏
j(σ + C(n1j

, n2j
)).

Moschitti [5, 6] is presenting an efficient calculation of eq. (2). Instead of
visiting every node of both trees T1 and T2 he is building the pairs of nodes
n1 and n2 for which the result of C(n1, n2) is not 0. This node pair set Np is
defined as:

Np = < n1, n2 >∈ NT1 ×NT2 : p(n1) = p(n2), (4)

where p(ni) delivers the production at node ni. A production for node ni is
a representation of the node ni itself and of its children. The order of the
children has to be respected. If the productions of two nodes are not equal,
C(n1, n2) = 0. The node pair set Np contains all node pairs which are relevant
for the kernel calculation. See [5, 6] for a detailed view on the mechanism
collecting the relevant pairs needed to calculate the tree kernel outcome.

Although this approach may require only O(|N1|+ |N2|) it needs |N1|∗|N2|
cycles in the worst case, which occurs if each of both trees just exists of one
particular production (this might occur several times in each tree). The sorting
of the production-lists of each tree requires O(|N1| ∗ log(|N1|)). This sorting
can be done once during preprocessing. In the following we will call this kernel
Fast Tree Kernel (FTK).

The greater the amount of nodes in a tree the more complex the calculation
of the kernel function. We are offering methods for pruning huge trees – refer
Section 4.1 for these methods.

A recent extension is the combination of tree kernels on the one hand with
linear kernels on the other hand, resulting in a so called composite kernel.
The composite kernels have shown to achieve better results than with just one
of these kernels [7, 8]. These techniques are not purely based on structural
information (parse trees). The composite kernel combines a tree kernel and a
linear kernel. [7] present a linear combination for instance:

K1(R1, R2) = αK̂L(R1, R2) + (1− α)K̂(T1, T2) (5)



where R1 and R2 are examples containing structural information and ’flat’
features. Tuning the α-value changes the influence of the specific kernels.

3 Tree-Structures in RapidMiner

RapidMiner [9] most commonly is restricted to nominal and numerical at-
tribute types. The attribute type date is not appropriate for our purpose
and will not be mentioned in this work any further. Tree-structures can be
represented as nominal value like it is shown in Figure 3. It would be a com-
putational overhead to parse these nominal values into tree objects for every
time they are needed. We developed a generic form of attribute which allows
the storage of every type of Java-object. This generic object-attribute can
be used to work with tree-structures in RapidMiner. Like for nominal val-
ues, the object-attribute is storing a mapping which maps numerical values to
particular objects.

(ROOT (S (NP (NNP Felix)) (VP (VBD went) (PP (TO to) (NP (NNP
New) (NNP York))) (S (VP (TO to) (VP (VB visit) (NP (NP (DT the) (NN
statue)) (PP (IN of) (NP (NN liberty)))))))) (. .)))

Figure 3: String representation of the constituent parse tree shown in Fig. 1

3.1 Loading Trees

The operator TreeCreatorAndProcessor is the first operator to be used. It
creates the object-attributes and its tree-structured values. Its parameters are
presented in Table 1. If a tree is already given by its string representation like
in Figure 3 this string simply will be converted into a tree object which finally
will be stored in an object-attribute. If a sentence is contained in the attribute
selected by the parameter valueAttribute it has to be parsed in order to create
a tree. We embedded the open-source library of the Stanford Parser2 into the
Information Extraction Plugin. A various number of precompiled models are
published for this parser which can be used to parse sentences for the creation
of tree-structured attributes.

This operator is not very modular combining the parsing and the followed
pruning of sentences. We will deskew this behavior in upcoming versions of
our plugin to allow more modular setups.

2available at nlp.stanford.edu/software/lex-parser.shtml



Parameter Description
valueAttribute The attribute which contains the tree or the sentence

to be parsed.
needParsing Does the attribute value need to be parsed?
modelfile The file containing a parser model
parseTreeType The trees have to be pruned for special tasks (see

Section 4.1). Select pruning type here.
FTK Selecting this will activate the list-creation needed

for the FTK.

Table 1: Parameters for TreeCreatorAndProcessor

3.2 Tree-Kernel SVM

We enhanced the already available JMySVM [10] implementation in Rapid-
Miner by abilities to process tree-structures. We implemented the Kernel
presented by [3], the Fast Tree Kernel by [5, 6] and the Composite Kernel by
[7]. The operator TreeSVM has some additional parameters in contrast to the
Support Vector Machine operator. These parameters are shown in Table 2.

Parameter Description
kernel type The kernel type to be used (Collins and Duffy (triv-

ial), Moschitti (FTK), Composite Kernel)
CollinsDuffy Ker-
nel Lambda

The λ-value to be used (see Section 2.1) for QTK or
FTK

Composite Kernel
Alpha

If the Composite Kernel is used the α value (see eq.
(5)) can be adjusted here.

kernel type 1 The first kernel to be used for the Composite Kernel
(just Entity is possible)

attribute list The list of attributes to be used by the Entity Kernel
kernel type 2 The second kernel to be used for the Composite Ker-

nel (QTK and FTK possible)
Collins Duffy Ker-
nel Lambda (com-
posite)

The λ-value to be used for QTK or FTK by the Com-
posite Kernel

Table 2: Additional parameters for TreeSVM

3.3 Tree-Kernel Perceptron

For the task of online-learning we implemented a kernel perceptron, which
offers the use of the two already presented kernels QTK and FTK. Algorithm



1 shows how the perceptron is trained.

Algorithm 1 Kernel Perceptron Algorithm
1: procedure TrainPerceptron( T ⊂ X × Y )
2: Initialize w := 0, M := ∅
3: for all (x, y) ∈ T do
4: if

P
y′∈Y y′K(x, My′) 6= y then

5: My := My ∪ {x}
6: end if
7: end for
8: end procedure

For every example (x, y) from the training-set the decision function in line
4 is performed. The possible classes Y are {1,−1}. This means that for each
example x two kernel calculations are performed – one for the positive and
one for the negative class. Each calculation is multiplied by the class y′. The
calculation is performed on sets My′ . These sets contain the already misclas-
sified examples for the particular class y′. In contrast to perform multiple
kernel calculations on all examples already been misclassified this is a more
efficient type of kernel which collects all misclassified tree-structured values
in one datastructure. This method saves a significant number of calculations
for each prediction for practical use. We called this kernel approach treecep-
tron, and offer this approach to be used here as a kernel. Because of space
limitations the exact handling of the sets My′ is not described here.

Parameter Description
kernel type The kernel type to be used (CollinsDuffy, FastTree,

Treeceptron, DAGperceptron, OneDAGperceptron)
attribute The attribute containing the tree-structures.
lambda The λ-value to be used (see Section 2.1) for the tree

kernel.
sigma The σ-value to be used (see Section 2.1) for the tree

kernel.
bootstrap If this is selected the at each step a randomly chosen

example will be selected.
stopping After this number of iteration training will stop. Se-

lecting −1 will make the perceptron do one run on
the complete exampleset.

Table 3: Parameters for Kernel Perceptron



4 Particular Tasks

In this Section we are presenting two particular data mining tasks which benefit
from tree-structured attribute values. We will show in an exemplary processes
how these tasks can be handled in RapidMiner. Figure 4 shows the exem-
plary process structure for an experiment containing tree-structured attribute
values. At first, the data is retrieved. The tree-structured data is converted
into tree-objects. Finally, the performance is evaluated using a Validation
chain. Internally, a model is trained by using the TreeSVM or Kernel Per-
ceptron operator. If multiple classes are available, the well-known Polynomial
by Binomial Classification operator will have to be used to encapsulate the
binary machine learning methods. We make our experiments by using the
Information Extraction Plugin for RapidMiner [11, 12].

4.1 Relation Extraction

Relation Extraction is well-known since the Automatic Content Extraction
(ACE) conferences. The ACE conference of 2004 provided a joint task which
included a task for Relation Extraction [13]. If all entities in a sentence have
been found, every possible pair of two entities is combined to a relation can-
didate in order to find out whether there is a relation and to predict the
corresponding relation type.

Every relation candidate is stored as an example in RapidMiner, and each
example contains the parse tree of the (part of the) sentence which contains
the relation candidates.

It is important that the relation candidate, the parse tree is used for, just
covers a small part of the complete sentence, mostly. This allows to prune
the used parse tree without loosing information about the embedded relation
candidate but having the advantage of smaller complexity.

[7] inspected five types of pruning methods: The Minimum Complete Tree
is the the smallest complete subtree containing both entities. Cutting off
every node and production except the path between the entities and the nodes
in between will lead to the Path-enclosed Tree. The Context-Sensitive Path
Tree contains one word beside each entity, additionally. Non-terminal-nodes
which just have one in- and out-arc are removed to create the Flattened Path-
enclosed Tree out of the Path-enclosed Tree and the Flattened CPT Tree out
of the Context-Sensitive Path Tree.

Using a composite-kernel on this task achieved the best performance com-
pared to using just the parse tree or just the entity information [7].



Figure 4: Tree-structures handling process

4.2 Website Classification

Classifying websites is one of the most important tasks in document classifi-
cation. A typical approach for document classification is the transformation
of the documents into its bags of words (BOW) [14]. Html-documents are
offering an additional tree-structure given by its html-tags. In this Section we
will show how to use such tree-structural information in Rapidminer.

We used the Syskill and Webert Web Page Ratings dataset which is avail-
able at the UCI machine learning repository [15]. The dataset originally was
used to learn user preferences. It contains websites of four domains and user
ratings on the particular websites are given. We will just focus on the classifi-
cation of the four categories. We parsed the websites for the construction of a
tree-structured attribute value for each website. Unfortunately, the leafs of the
html-tree contain huge text fragments in some extent. We converted every leaf
which contains text into the token ’leaf ’ to solve this problem. The dataset
contains 341 examples of four classes. 136 examples belong to class BioMed-
ical, 61 to class Bands, 64 to class Goats and finally, 70 examples belong to
class Sheep.



Method Accuracy Recall Precision Time
(in s)

Using a perceptron on one-
and two-gram features

66.4± 1.5% 64.1± 1.7% 66.0± 2.1% 118.7

Using a perceptron on one-
gram features

62.7± 1.6% 61.3± 1.8% 62.1± 2.3% 18.9

Using one DAG handling
both classes

67.9± 1.5% 64.0± 1.6% 68.4± 2.5% 1.78

Using two DAGs 67.9± 1.4% 64.1± 1.6% 68.6± 2.4% 2.38
Using the treeceptron ap-
proach

68.3± 1.6% 64.5± 1.7% 69.1± 2.4% 55.0

Using the FTK approach 68.3± 1.5% 64.6± 1.7% 69.2± 2.4% 78.9

Table 4: Results of the Perceptron approaches on SW

Table 4 contains the results of experiments on the SW dataset using a
perceptron with different settings. The first two lines are experiments using
the Perceptron operator in RapidMiner on flat features. We created the flat
features by splitting the string representation of the trees into one- and two-
grams. This preprocessing destroys the structure of the trees but allows to
evaluate the gain of methods using tree-structured values. The other lines
of the Table show experiments made by using the Tree-Kernel Perceptron
operator. It becomes obvious that using tree-structured values is significantly
better than just to use one-grams of the string representation of the tree-
structure. By applying an ANOVA test we evaluated that using tree-structured
values still is significantly better than just to use two- and one-grams for the
experiments in cases of accuracy and precision. The time noted in Table 4 is
the execution time for one ten-fold cross-validation. The more faster execution
time for some of the experiments using tree-structured values is rooted in the
fact that the internal data structure for storing tree-structures is more efficient
(a DAG is a directed acyclic graph used for the storage of tree forests as
presented by [16]). Another point which is responsible for the faster execution
time might be the greater number of attributes which have to be processed
in the case of flat features. The tree-structured value internally is just one
attribute for each example.

5 Conclusion

We presented the possibilities to handle tree-structured values in RapidMiner
by using the Information Extraction Plugin. We showed that tree-structured
attribute values can be created directly out of a string representation of a tree
or by using a parsing operator. Some tasks like relation extraction for instance
need the original trees to be pruned which can be done by the presented
operators, too. Finally, the already available operators to be used with tree-



structured values for modelling are presented and two particular tasks motivate
the usage of trees in datamining tasks.

Our future work will focus on other machine learning techniques in order
to allow a more flexible handling of tree-structured values.
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