On-line Inference of Off-line Learned Oper-

ational Concepts

Volker Klingspor

Unwversity of Dortmund, Computer Science Dept. VIII, D-44221 Dortmund, Germany

volker@ls8.informatik.uni-dortmund.de

Abstract.

Learning in robotics has received more and more attention in recent years. It eases

bridging the gap between low-level sensor data and high-level concepts. A high-level representa-
tion language is necessary in order to support the communication between robot and user in both
directions when the robot navigates in unknown environments. Controlling robots in terms of a
high-level representation formalism like first-order logic is often said to be too slow. In this paper,
we present a performance system capable of inferring previously learned high-level concepts from the
sensory input of a mobile robot on-line in real-time. Furthermore, we describe an inference engine
tailor-made to the requirements of our representation.

1 Learning in robotics

In recent years, machine learning becomes more
and more an important topic in robotics. Learn-
ing eases adaptation of robots to different tasks,
to different environments, and different robot set-
tings. Learning can be applied in very different
ways. Biologically inspired work in robotics has
developed artificial beings which adapt to their
environment (Brooks, 1991; Steels, 1993). This
type of learning is restricted to reflex-like behavior.
Learning skills by human demonstrations (Dillmann
et al., 1995) eases programming of the robot’s basic
behavior, but does not enable the robot to report
on its actions. In order to enhance a robot’s high-
level processing, planning can be tailored to par-
ticular robot tasks by learning techniques (Segre,
1988; Bennett, 1989). Learning can also be used to
link the environment model with perceptions when
executing a plan (DeJong and Bennett, 1993).
These approaches have in common, that learning
takes place at one horizontal level of control. Our
approach, in contrast, concerns vertical learning to
close the gap between numerical data and high-level
concepts. The concepts, learned at higher levels of
the hierarchy will be used as items for communica-
tion between user and robot in both directions, from
the user to the robot to control the system, and
from the robot to the user to report the performed
actions. The report will explain whether the task
was performed correctly, or which circumstances,

e.g. a wrong representation of some concept, have
forced an error. The learning tasks and the sym-
bol grounding aspects are described in more de-
tail in (Klingspor and Morik, 1995). In contrast
to many robot learning approaches, learning phase
and performance phase are two separate steps. Dur-
ing the learning phase, we show the robot in a
known environment, how objects look like. From
this information, examples are generated, which are
then used for supervised learning.

This paper will be a bit different from most pa-
pers describing robot learning. In most approaches,
the representation formalism is tailored to the ro-
botic domain. Then, a new learning method must
be found and described by the author. We are go-
ing the other way around by taking a well-known
representation formalism, restricted first order logic
(FOL). We have defined a representation language,
l.e. a signature, suited to this formalism and ap-
propriate for the specific domain. Then, we applied
existing logic based learning algorithms' to learn
concept descriptions. Tests have shown, that most
of these methods are more or less able to handle
the learning problem (Klingspor et al., 1996). Now,
we have to present the applicability of the learning
result. In this paper, we will show how concepts
represented in a restricted FOL can be used on-line
with data of a real robot working in a real environ-
ment.

1A couple of methods for learning in logic are described
in (Muggleton, 1992).

2 Scenario

Before describing the representation hierarchy and
the performance system, we present the scenario
and the robot we used for getting data and per-
forming the experiments. PRIAMOS, developed at
the University of Karlsruhe (Dillmann et al., 1993),
is a mobile robot of size 90cm x 6becm x Them.
It can move in three degrees of freedom, i.e., 1t
can move into every direction and rotate simul-
taneously. It has 24 sonar sensors measuring the
distance to the nearest object within the emission
cone. At every side of the robot three sensors are in-
stalled, oriented parallelly. Three sensors are moun-
ted at every corner oriented with a difference of 15°.
While moving, PRIAMOS delivers for each sensor
about three readings per second, consisting of the
position of the sensor and the sensed distance. Er-
rors can occur, if the sonar beam is multiply reflec-
ted or the angle between the beam and the object
is inconvenient. Figure 1 shows PRIAMOS?.

Figure 1: The mobile robot PRIAMOS.

Our goal is to enable a non-expert user to commu-
nicate with a mobile robot operating in an unknown
environment. Communication has to occur in both
directions, i.e. from the user to the robot to give
commands and vice versa to receive protocols of ac-
tions performed by the robot. This communication

2As visible in the figure, in the meantime, additional
sensors like a stereo vision system has been mounted on

PRIAMOS.

has to be done in a human-adequate way. Instead of
communicating in terms of real world coordinates,
high-level terms should be used. An example for
such a command is: ”leave the room through the
doorway and turn to the left”. These commands
require the robot to be able to find instances of the
concepts used in the command; in the example, the
robot must be able to detect the doorway. Since
the robot has no map from which this information
can be extracted, the sensor readings must be used
to determine what kind of an object the robot cur-
rently perceives. This is a typical classification task.
Since it is time consuming, boring, and sometimes
difficult to program the classification rules by hand,
we are interested in applying machine learning al-
gorithms for this task.

In contrast to many other robot learning ar-
chitectures, e.g., reinforcement learning architec-
tures (Kaelbling, 1991; Millan and Torras, 1992),
learning rules and applying these rules are two dif-
ferent phases. During the learning phase, rules are
learned that describe (via a multi-level hierarchy of
intermediate concepts) the concepts that are needed
for the communication and for controlling the robot.
From an abstract point of view, during the learning
phase, we show the robot in a known environment,
how some specific classes of objects look like when
performing specific actions.

For supervised learning, examples must be
provided to the learning algorithm. To calculate
the examples used for learning, we need additional
information about the sensor readings, e.g., which
spot in the environment has been sensed by a
sensor. Since this information cannot be provided
by a robot operating in the real world, the data
for learning is gathered by a simulator. PRIAMOS
moves in the simulation through a simple structured
office environment and gathers its sensor readings
and the edge that is sensed by a measurement.
From this information, we calculate examples at
all levels of the representation hierarchy. At some
level, e.g., we calculate the time intervals during
which a particular constellation of edges is sensed
in sequence. These examples together with the
basic symbolic items calculated from the measure-
ments are input to a standard logic-based learning
algorithm. In this way, learning is a separate phase,
completely performed off-line and independent from
the application of the learned rules by the real ro-
bot.

During the performance phase, the learned rules
are applied to classify the perceptions and actions
of the robot by forward inferences. In addition the
robot is controlled by triggering elementary actions

via backward inferences. Before we describe the

[~ ——————— —|operation/?l concepts <— — — =

perception—integrating action features I

I

| =\
| action—oriented perceptual features

I

appliied to
|
|
|

sensor group features
A
sensor features

basic features

<\

|
learned from
|

I
action features |
7 I
I
I

| sensing

and actibn— —

Figure 2: Representation Hierarchy

forward inference system (Sect. 4), we explain the
developed representation in more detail (Sect. 3).

3 Representation

Figure 2 shows the representation hierarchy. On
the left hand side, perceptions are placed, on the
right hand side actions. At higher levels, both are
integrated. At each level of the hierarchy, the con-
cepts are defined in terms of the immediate lower
level, using Horn clauses. Several levels of abstrac-
tion link the level of raw sensor and motion data
with the level of operational concepts. While climb-
ing the hierarchy and getting more abstract, the
features describe more and more conceptual items.
Whereas at lower levels task independent situations
like the perception of a continuous surface (e.g. a
wall) are represented, at higher levels these simpler
features are combined to describe more complex,
task dependent features like the perception when
moving through a doorway. The representation as
well as the motivation for operational concepts is
described in more detail in (Klingspor et al., 1996)
and (Sklorz, 1995).

Action features describe the primitives of the ro-
bot’s actions, representing intervals of uniform mo-
tions. The basic action features used are move, ro-
tate, and stand, with the arguments trace (a unique
identifier for an experiment), time interval, speed,
and direction (i.e., one of forward, backward, right
and left).

The perceptual features at the lowest level are
basic features BF(Trace, Or, Sensor, Time;, Times,
Grad) with the predicate symbol BF is one of stable,
incr_peak, decr_peak, increasing, decreasing, straight_to,
straight_away, no_measurement. These predicates rep-
resent, that during the time interval [Time;, Time;]
the distance sensed by sensor Sensor, oriented in dir-

ection Or, has changed in a particular way (Wessel,
1995; Klingspor and Morik, 1995)3. These intervals
are calculated incrementally, so that they can be
easily incorporated into a performance system.

At the next higher level, situations are described
where, during a time interval [Time;, Timez], a single
sensor Sensor sensed a specific structure of the en-
vironment like a concave corner, or a jump, e.g., a
situation of two parallelly shifted walls, sensed in
sequence. These sensor features are represented by
predicates SF(Trace, Or, Sensor, Time;, Timez, Move),
where SF is one of s_jump, s_line, s_convex, s_concave.
Move defines whether the sensor has been moved
parallelly or diagonally along the sensed structure,
or straight towards or straight away from it. The
definitions of sensor features, i.e., the rules de-
scribing sensor features in terms of basic features,
are learned by the inductive logic based learner
GRDT (Klingspor et al., 1996). The following rule

is an example of the structure of the learned rules:

stable(Trace, Or, Sensor, Time;, Timez, Grad;) &
incr_peak(Trace, Or, Sensor, Timez, Times, Gradz) &
stable(Trace, Or, Sensor, Times, Time,, Grads)

— s_jump(Trace, Sensor, Time;, Timey, parallel).

It is important to note, that the time intervals are
linked via the arguments Time;. The jump is sensed
during the whole interval [Time;, Times].

At the next level of the hierarchy, patterns sensed
by different sensors of the same group of sensors
are represented. A sensor group consists of sensors
oriented to the same direction and, hence, sensing
similar patterns. In this way, single sensor features
are grouped together in order to increase the evid-
ence for an edge constellation. This helps to cope
with the noise of single sensor measurements by per-
forming a kind of majority decision. E.g., it can be

3The last argument, Grad, denotes the gradient of the
readings during the time interval. It is currently not used.

sufficient for deriving a sensor group feature, that
only two of three sensors of a sensor group sense the
same constellation. In addition, we abstract from
the actual sensor numbers in this step. Instead, the
orientation of the perception relative to the orient-
ation of the motion is used.

At the next level of abstraction, the level of
action-oriented perceptual features, perceptions at
different sides of the robot will be combined, to rep-
resent the most abstract perceptual features. These
features describe the perceptions of a robot in a
particular situation, e.g., while moving through a
doorway.

Action and perception will be integrated at the
next level, the level of perception-integrating action
features. Such a feature allows to verify the correct
execution of a single action by testing its percep-
tual part (e.g. to perceive a doorway). In addition,
the backward inference system can trigger the ele-
mentary operation defined by the feature (e.g. to
start the robot moving in a particular direction), if
a planner selects this feature to be the next opera-
tion to be performed.

At the highest level, the level of operational
concepts, perception-integrating action features are
used to describe complex operators with pre- and
postconditions, such as: “before moving through a
doorway, the robot must stand in front of a door-
way, and afterwards, it must perceive the door
opening at its rear”.

We have chosen a hierarchical architecture for
different reasons. First, the single learning tasks
Less knowledge 1s needed for a single
learning step. The hypotheses space for each single
learning task is smaller, because the structure of
the expected rules is simpler. Since learning in logic
is subject to exponential explosion, this reduction
is very helpful. On the one hand side, the sim-
pler learning tasks permits to develop very efficient
learning algorithms tailored to the individual prob-
lems. On the other hand, in contrast to the complex
learning task, the simpler tasks can be handled by
general learning algorithms. Because efficiency is,
due to off-line learning, not most important, exist-
ing learner can be applied, avoiding effort for devel-
oping new algorithms.

A second result of a hierarchical representation is
a smaller and hence better inspectable rule base.
Clearly, a flat rule base defining the same goal
concepts without intermediate concepts, could be
found. However, then the resulting rule base con-
sists of very many rules, because the cross product
between the rules of each two levels must be
build. In addition, the single rules are very large,
because they contain all preconditions, otherwise

are easler.

gathered by climbing the hierarchy. In (Sommer,
1996)[Chapt. 4] different aspects about flattening
and deepening inferential structures are discussed.

4 The Parallel Performance

System

First order logic provides an expressive representa-
tion formalism, allowing to gather rules of different
levels of abstraction and different tasks in a single
inference engine, without becoming confused about
the different kinds of data. Via forward chaining,
such an inference engine may derive all intermediate
concepts and the goal concepts from ground facts
of basic features and basic actions as input.

However, using such a monolithic inference sys-
tem has some disadvantages: it becomes slow, is
difficult to maintain, and hard to implement. A set
of restricted inference engines, each tailor-made for
a specific task is much more efficient. We use several
instances of a forward chaining inference engine.
Each instance infers concepts of the next higher
level in the abstraction hierarchy from given facts of
the current level. Because of the acyclic hierarchical
structure of the rule base, inference can be restric-
ted to the depth of one.
of another level is ever tried, but only the relevant
data are known to the specific instance of the infer-
ence engine. This speeds up inference. Moreover,
the instances of the inference engine can be run in
parallel.

No inference from facts

There 1s a second problem with using a mono-
lithic inference engine: The complete performance
system not only consists of a forward chaining part
to derive concepts from sensory data, but also of a
backward chaining part to control the robot, by aid
of the operational concepts. Therefore, a general,
monolithic inference engine has to support differ-
ent control structures, namely forward and back-
ward chaining. The backward chaining (action)
part must know exactly, how far forward chaining
(perception) has proceeded, in order to react to the
perceptions as soon as possible. The interaction
between goals that are derived by forward chaining
and goals that are derived by backward chaining —
which inference triggers which other inference — is
a rather complex issue. Again, the overhead of con-
trolling inference slows down the inference process.
Hence, we developed three inference engines: one
for inference with ordered rules by marker passing
(Sect. 4.1), one for forward chaining of depth one
for general Horn clauses (Sect. 4.2), and one for
backward chaining (in work). These engines are

ssad0ud

|9pow douewopad
Buiureyo premyoeg

A

18ZIU0IYIUAS

AMAAAA

mcoo ._maw

1 Tp-wi _ m

29} UOND
RUTRGIED]

)

1d-Tp-wi _mﬁ& .Emn_v _ 1d-Tp-wi _ Qov .ﬁ&lmw

1d"Tp-wi

4

xdwap/xdw _

m_o:uw.mmgv _! 2eq

moadon Ev

mm\mmm_ow v_ |d'[o10sU8S

m_o:om.wgv _ 2eq

monwuon o_v

1d-dw-wn

m:m& _owzw

mzﬁm& o_wmmw _ 1dyq

sjusw
-ainseaw

mzmwtowcw 1d-dw-wi mzummho_mcw_’ 1dig _m.m._:mm“mwﬁ
oo |(C

mzw& _omzw _’ 1d-dw-wn

\/

xdwap/xdw e

Figure 3: The forward chaining performance model

(im-mp.pl denotes a marker passing inference engine, im-di.pl the more general inference engine for

inference of depth 1)

specialized in the representation format that they
use and the chaining direction. The control is now
up to multiplexer and synchronizer processes. That
18, control matters are not handled at the level of a
knowledge base and its inference engine, but at the
level of UNIX processes. This results in a speed-up
that allows the overall system to be used on-line in
real-time.

The different processes are organized as follows,
to be integrated into a robot control system. The
control system of the robot writes its data via UNIX
pipes to our performance system, shown in Figure 3.
A multiplexer distributes the data to 26 process
chains, one for each of the 24 sensors to increment-
ally derive sensor features and two to generate ba-
sic actions and background knowledge about sensor
classes.

After having inferred the sensor features and cal-
culated basic actions and sensor classes, a demulti-
plexer gathers all the data and sends them to the
next inference engine, deriving sensor group fea-
tures. The inference engine used at this and all
further levels is the one described in Sect. 4.2.

The different processes used by this performance
system are linked by UNIX pipes. FEach process
reads from stdin and writes to stdout. This reduces
the effort to integrate the inference chain into other
systems like PRTIAMOS’ control system. In addi-
tion, every element of every chain can be inspected
by their own, to find reasons for missing or addi-
tional derivations of features. To ease the inspec-
tion, a small program can be inserted everywhere
in the chain to write transmitted data to a further
shell, or to a UNIX device. This enables, e.g., the
display of intermediate results.

4.1 Inference by Marker Passing

In this section we describe an inference technique
tailored to the specific task of inferring sensor fea-
tures from basic features. Therefore, we compile in
a preprocessing step the learned Horn clauses into
a structure facilitating incremental inference during
the performance phase. This compilation is pos-
sible, because the data is ordered by time, i.e., the
premises of each learned clause can be ordered by
the time points and the basic features are ordered
by time, too. They are calculated one after the
other, without any interrupt. In (Rieger, 1995;
Rieger, 1996a; Rieger, 1996¢c), Rieger describes a
method to structure Horn clauses in a prefix (tree)
acceptor to which a marker passing method for effi-
cient forward inferences is applied. This acceptor
is defined to be a finite state automata. Finite
state automata, however, erroneously suggest that

the acceptor is only able to handle propositional
rules, because usual automata are not able to pass
information from one state to the other. In first or-
der logic, this is necessary to pass the bindings of
terms to variables. In this paper, we pick up the
ideas of Rieger, but we use another way to define
marker passing trees, similar to those of Rieger, to
overcome this deficiency of using finite state auto-
mata for definition.

Compiling Horn clauses to marker passing
trees

Let G = (V,E, Ly, Lg) be a tree with V' as ver-
tices of the tree and F the edges of the tree. Each
node is labeled by a possibly empty set of literals,
the conclusions: Ly : V — gliterals —pac edge is
labeled by exactly one literal, a premise of a clause:
Lg : E — Literals. We call a path in the tree to be
complete, iff 1t starts at the root node r and ends
in a node v labeled by a nonempty set Ly (v), i.e.,
the end node is labeled with at least one conclusion.
Then, we can define the clauses, represented by a
complete path B = (Fy, ..., Bp):

Clauses(E) :=

{{Lp(EL, .., Lp(Ey), Concl) |

FEn = (vn- 1,vn) and Conel € Ly (vy,) }.
Note, that each complete path defines exactly one
clause for each conclusion attached to the end node
of the path.

Let K be a set of Horn clauses, where the
premises of each clause are ordered. The marker
passing tree GG representing the clauses K is defined
by the following properties:

1. Vcomplete paths F € ¢ YCgq € Clauses(E) :
Ak e K: Ckg < Cg

2. VO € K .
dcomplete path £ € G IC¢ € Clauses(E) :
Co<— Ck

3. the tree has a minimal number of edges.

As a result of the third property, for two clauses
C7 and (5, with equivalent first ¢ premises; i.e.,
{Cy,,...,C1,} <= {C4,,...Cy,} the first ¢ edges
of the paths of '} and C; are the same.

Figure 4 shows an example of a set of clauses and
the resulting marker passing tree?.

4We removed some arguments and simplified the predic-
ate names to concentrate on the main aspects.

o

p(T3, T4, 02)

{c1(T1, T4, oz)

p(T1, T2,
p(T1, To,
q(T1, T2,
q(T1, Ta,
q(T1, Ta,

01) & q(T2, Ta,
01) & q(T2, T3,
01) & p(T2, T3,
01) & p(T2, Ta,
01) & p(T2, Ta,

01)

01)

p(T1, T2, 01 q(T1, 72, 01)
0@ '@
q(T2, T3, 02) q(T2, T3, 01) p(T2, T3, 01

)

p(T3, T4, O1)

{c2(T1, T4, 01@

02) & p(Ta, Tq, 02) — c1(T1, Ty,
01) & p(Ta, Tq, O1) — c2(T1, Ty,

01) & (T3, Ty, O2) — co(T1, Ty,

0 @

{c3(T1, T3, O1), c5(T1, T3, Ol@

1(T3, T4, O1

{c4(T1, T4, 01)}

03)
03)
01)
03)
01)

— ¢c3(Tq, Ta,

— ¢5(T1, T3,

Figure 4: Some rules with the corresponding marker passing tree.

Passing markers

The marker passing method is based on the
method of Rieger (Rieger, 1996b; Rieger, 1996¢)
and differs from her approach only in the way,
variables are handled. The basic idea of marker
passing is, that each marker marks for the first ¢
premises that are defined by the path from the root
node to the marked node that these premises have
been proven. The marker passing process reads in
one basic feature after the other and incrementally
Whenever the marker
passing process receives a new literal, it tests for all

infers the sensor features.

markers whether the marker can be passed to the
next node.

Let a marker be a pair (v € V, substitution @).
For each incoming literal L we test for each marker
m = (v,0) and for all edges (v,w) € E leav-
ing v, whether a substitution § O @ exists, with
L6 = Lg ((v,w)). If so, we add a new marker
(w,0"). Tf the new marker is placed on a node
labeled by a nonempty set of conclusions, these con-
clusions will be written to stdout. In each case,
the old marker will be removed, because the lit-
erals must be received exactly in the order of the
premises, without any further literals in between.
In addition, in each iteration a new marker with an

empty substitution list will be placed on the root
node to start inference from the beginning.

Figure 5 shows an example of the marker passing
process. It starts with the initial state, where one
marker is placed on the root node. The first read
item, p(1, 5, 17), can be unified with the literal at
the left branch of the root node, resulting in moving
the marker placed on the root node to node vl and a
corresponding substitution list. The marker at the
root node will be renewed. When reading the next
fact, q(5, 12, 4), both current marker can be moved,
the one on node v1 to node v3, and the marker on the
root node to node v2. Again, the root node marker
will be renewed. After reading the third input fact,
p(12, 17, 4), two markers reache nodes labeled by
conclusions, namely v6 and v5. The inference by
marker processing can be seen as a special kind of
resolution, namely linear input ordered unit-clause

resolution (Chang and Lee, 1973).

As stated above, the marker passing algorithm
of Rieger and the one described here differ in the
handling of variables. In this approach, the binding
of constants to variables are handled by the sub-
stitution lists, consisting of all variables that occur
in the path to the current node. Rieger, in con-
trast, handles the variables by adding constraints

Input literal ~ Marker after corresponding input
Initial state m(root, {})
p(]., 5, 17) m(v1, {T1/1, T2/5, 01/17})
m(root, {})
q(5, 12, 4) m(Vg, {T1/1, T2/5, T3/12, 01/17, 02/4})
m(V2, {T1/5, T2/12, 01/4})
m(root, {})
p(12, 17, 4) m(Ve, {T1/1, T2/5, T3/12, T4/17, 01/17, 02/4})
m(V5, {T1/5, T2/12, T3/17, 01/4})
m(v1, {T1/12, T2/17, 01/4})
m(root, {})
r(17, 22, 4) m(Vg, {T1/5, T2/12, T3/17, T4/22, 01/4, 02/01})
m(root, {})

Generated output

cl(1, 17, 4)
c3(5, 12, 17), ¢5(5, 17, 4)

c4(5, 22, 4)

Figure 5: Input literals and correspondingly generated markers.

to the marker, describing the variable bindings,
too. These constraints are generated and tested by
domain-dependent functions. In contrast to substi-
tution lists, where each variable can only be instan-
tiated once, the constraints can be overwritten in
further steps. In this way, the approach can be ap-
plied to more general graphs, also containing cycles.
On the other hand, Rieger’s approach loses the gen-
erality to be applied to different domains without
adaptation.

4.2 Further Inferences

In contrast to the derivations of sensor features,
the incoming data on all remaining levels are not
ordered. Hence, we cannot remove the data just
after processing it, but we have to add it to the
knowledge base. This slows down inference because
of the increasing size of the knowledge base, so it is
important to find situations, in which some of the
data can be deleted. In the case of sensor group fea-
tures, e.g., all gathered data can be removed when
the direction changes in which the robot moves, be-
cause the assignment of sensors to sensor groups
changes.

The inference engines on all further levels are the
same: Whenever a new fact is entered, all rules
containing a unifyable literal are gathered and the
premises of these rules will be tested against the
knowledge base. If all premises of a rule can be
instantiated, the conclusion will be printed out.

If the input fact is a specific synchronizing sig-
nal, all data in the knowledge base with earlier
time points than the submitted time will be re-
moved to avoid infinite growing of the knowledge
base. The inference engine performs inferences of

depth one, and 1t is able to deal with unrestric-
ted Horn clauses. In contrast to the previously de-
scribed inference system, this inference engine is not
yvet completely tailor-made to the task. Possibly, a
RETE-like (Forgy, 1982) matcher will be more effi-
cient.

4.3 Real World Test

We tested the performance system on two differ-
ent SUN-clusters. The first one consists of 9 SUN-
Sparc-ELC. The second one consists of a single two-
processor SUN-Sparc-20. PRIAMOS performed
some tasks like passing an open doorway or crossing
a doorway, controlled by PRIAMOS’ control system
or by joy stick. It sends its measurements via radio
link to its control system which writes the data to
our performance system. The performance system
infers concepts at all levels. To visualize the out-
come, at each level some of the facts inferred are
written to different windows at one of the hosts.

The concepts learned during the off-line learning
phase are inferred by the performance system with
only a short delay, less than half a second. The
ELC-Cluster performed a bit faster than the Sparc-
20. The processing will be much faster, if, instead
of using a relatively slow inter-processor-connection
(ethernet) and a primitive inter-computer commu-
nication (just rsh-commands), more efficient con-
nections will be used. Due to the few links that are
needed for each process (except for the multiplexer
and the demultiplexer) and the size of each process,
using a real transputer net seems to be adequate,
resulting in a considerable speed up of the inference.

5 Conclusion

In this paper, we presented a distributed perform-
ance system for real-time inference of high level con-
cepts, using multiple small and efficient inference
engines instead of a single large one. Therefore, we
presented an approach based on the work of Rieger
to generate marker passing trees which corresponds
to ordered Horn clauses. We sketched real world
tests, to verify the efficiency of the approach.

Because of the very simple sensors used for object
identification, the classification is limited to simple
structured environments and concepts that are eas-
ily to discriminate. A closed door, e.g., will never be
found by concepts we can learn. This, however, is
not a restriction of our approach, but a consequence
of the capabilities of the sensors we used. The rela-
tional representation allows the integration of fur-
ther sensor systems by simply adding premises cor-
responding, e.g., to the results of a vision system.
To verify, that the result of this further sensor sys-
tem 1s provided just in time, the premises can be
linked by the time points. This correlates to the
fusion of different sensor features to sensor group
features. Since the organization of the different pro-
cesses in the forward inference system is open, spe-
cial processes needed for specialized sensors can be
problem-free added. Furthermore, time-consuming
sensors like vision systems can be activated depend-
ent on the current situation by backward chaining
in the same way, as elementary actions can be ac-
tivated.

As usual, a lot of further work 1s to be done. The
backward inference system, the planning compon-
ent, and the synchronization between these three
systems, 1s still under development. In addition to
object identification dependent on the actions and
perceptions of the robot, the whole system should
be able to control the robot aided by operational
concepts. This control includes the robot’s motion
and the activation of time-consuming sensors, by
aid of operational concepts.

Furthermore, we are interested in distributing not
only the first part, up to sensor features, of the in-
ference chain to a cluster of processes. The infer-
ences on the levels above sensor features should be
distributed, too. Since the assignment of sensors to
sensor groups depends on the direction into which
the robot moves, the assignment of data to pro-
cesses must be dynamic. Again, we don’t want to
build a very general parallel inference system, but
we want to find the characteristics of our represent-
ation, to build a dynamically distributed inference
system specialized to the characteristics.

Acknowledgements

This work is partially funded by the European Com-
munity under the project B-Learn IT (P7274) and
the Ministry for Sciences and Research of the Ger-
man federal state Nordrhein-Westfalen. I want to
thank my advisor Katharina Morik for her ideas,
suggestions, and critics and Peter Brockhausen for
discussing certain topics and reading drafts. The
representation and the system is a result of the
whole team, namely Katharina Morik, Anke Rieger,
Michael Goebel, Stefan Sklorz, Stephanie Wessel,
and Eckart Zitzler. Furthermore, I want to thank
Michael Kaiser and Frank Wallner from Karlsruhe
for their cooperation for the real world test pur-
poses.

References

Bennett, S. W. (1989). Learning uncertainty tol-
erant plans through approximation in com-
plex domains. Technical Report UILU-ENG-
89-2204, The Beckman Institute for Advanced
Science and Technology, University of Illinois
at Urbana-Champaign.

Brooks, R. A. (1991). The role of learning in
autonomous robots. In Valiant, L. G. and War-
muth, M. K., editors, COLT’91. Proceedings
of the fourth Annual Workshop on Computa-
tional Learning Theory., pages 5-10. Morgan
Kaufmann, San Mateo, CA.

Chang, C.-L. and Lee, R. (1973). Symbolic Logic
and Mechanical Theorem Proving. Academic
Press.

DeJong, G. and Bennett, S. (1993).
planning — a machine learning approach to link-
ing internal and external worlds. In AAAI-93
pages 508-513.

Permissive

Dillmann, R., Kaiser, M., and Ude, A. (1995). Ac-
quisition of elementary robot skills from human
demonstration. In International Symposium on
Intelligent Robotics Systems, pages 185-192,
Pisa, Italy.

Dillmann, R., Kreuziger, J., and Wallner, F. (1993).
PRIAMOS - an experimental platform for re-
flexive navigation. In Groen, Hirose, and
Thorpe, editors, TAS-3: Intelligent Autonom-
ous Systems, chapter 18, pages 174-183. 10S
Press.

Forgy, C. L. (1982). Rete: A fast algorithm for
the many pattern/many object pattern match
problem. Artificial Intelligence, 19:17-37.

Kaelbling, L. P. (1991). Foundations of learning in
autonomous agents. Robotics and Autonomous
Systems, 8:131-144.

Klingspor, V. and Morik, K. (1995).
concept formation grounded on perception and
action of a mobile robot. In Rembold, U., Dill-
mann, R., Hertzberger, L., and Kanade, T.,
editors, TAS-4, Proc. of the 4th Intern. Confer-
ence on Intelligent Autonomous Systems, pages

271-278. IOS Press.

Towards

Klingspor, V., Morik, K., and Rieger, A. (1996).
Learning concepts from sensor data of a mobile
robot. Machine Learning Journal. to appear.
Available at: ftp://ftp-ai.informatik.uni-
dortmund.de/pub/publications/klingspor-etal-
96.ps.Z.

Milldn, J. and Torras, C. (1992). A reinforcement
connectionist approach to robot path finding in
non-maze-like environments. Machine Learn-

ing, 8:363-395.

Muggleton, S. (1992). Inductive Logic Program-
ming. Number 38 in APIC series. Academic
Press, London.

Rieger, A. (1995). Inferring probabilistic auto-
mata from sensor data for robot naviga-
tion. In Kaiser, M., editor, Procs. of the
3rd Furopean Workshop on Learning Ro-
bots. Available at: ftp://ftp-ai.informatik.uni-
dortmund.de/pub/Reports/report18.ps.Z.

Rieger, A. (1996a). Learning to guide a robot via
perceptions. In Ghallab, M., editor, Procs. of
the 3rd European Workshop on Planning. 105
Press.

Rieger, A. (1996b). MP: An efficent method for
calculating the minimum Herbrand model of
chain Datalog programs. In Wahlster, W., ed-
itor, Procs. of the 12th Furopean Conference
on Artificial Intelligence. to appear.

Rieger, A. (1996¢). Optimizing chain datalog pro-
grams and their inference procedures. LS-8
Report No. 20, University of Dortmund, Lehr-
stuhl Informatik VIIT, D-44221 Dortmund.

Segre, A. (1988). Machine Learning of Robot As-

sembly Plans. Kluwer, Boston.

Sklorz, S. (1995). Reprasentation operationaler Be-
griffe zum Lernen aus Roboter-Sensordaten.
Master’s thesis, Universitat Dortmund. in Ger-
man.

Sommer, E. (1996). Theory Restructuring. PhD
thesis, Universitat Dortmund.

Steels, L. (1993). Building agents out of autonom-
ous behavior systems. In Steels, L. and Brooks,
R., editors, The ’artificial life’ route to ’artifi-
cial intelligence’ — Building situated embodied
agents. Lawrence Erlbaum, New Haven.

Wessel, S. (1995). Lernen qualitativer Merkmale
aus numerischen Robotersensordaten. Master’s
thesis, Universitat Dortmund. in German.

