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Abstract. The recognition of objects and, hence, their descriptions must be grounded in the

environment in terms of sensor data. We argue, why the concepts, used to classify perceived objects

and used to perform actions on these objects, should integrate action-oriented perceptual features

and perception-oriented action features. We present a grounded symbolic representation for these

concepts. Moreover, the concepts should be learned. We show a logic-oriented approach to learning

grounded concepts.
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1. INTRODUCTION

Up to now, application programming of a robot is
a time consuming task. The programming is car-
ried out at a very low level. The goal position of
the individual commands must be given by exact
real world coordinates. This has three undesired
consequences. First, even if the new application is
very similar to the one before, the control program
must be rewritten completely. Second, these com-
mands require a �xed environment and complete
knowledge of the environment. If either an un-
foreseen event occurs or the environment is (par-
tially) unknown, this approach to preparing an
application fails. Third, communication between
a knowledgeable user and a robot is hindered by
the low-level representation of the application pro-
gram. The user cannot change the robot's behav-
ior directly according to small changes in the envi-
ronment, nor can he help the robot out of a failure
situation.

One way to overcome the problems described
above is to develop robots that learn. From its ex-
perience in an environment the robot could adapt
its behavior to the environment. Moreover, the
robot could transfer what it has learned in one
environment to other, similar environments. A
second way is to use less speci�c commands. If,
for example, the user wants a mobile robot to leave
the room, turn to the right until it reaches a desk,
and then stop, it should be possible for the user to
state just this. This requires the robot to be ca-
pable of recognizing doors and { in the absence of
speci�c goal coordinates { be capable of searching
for them. The robot must assign its perceptions
to classes of objects, i.e., to concepts (e.g., doors).
Our aim is to combine both of the described ap-
proaches to build up more applicable and more

exible robots in future.
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Machine learning can be applied to robot tech-
nology in several ways. Consider a hierarchical
control structure with di�erent levels of behaviors
as it is proposed by (Brooks, 1986) (Fig. 1). At
all levels, perception-oriented and action-oriented
processing is related. Machine learning can en-
hance the performance at each level.

Biologically inspired work in robotics has devel-
oped arti�cial beings that adapt to their environ-
ment (Brooks, 1991; Steels, 1993). This type of
learning is restricted to re
ex-like behavior. Simi-
larly, the system described by (Mill�an and Torras,
1992) operates on the re
exes level. It learns how
to avoid obstacles and reacts very fast to sensory
input, but higher levels of cognition such as rea-
soning and concept formation are excluded. The
system is unable to �nd a path in a maze-like en-
vironment in an appropriate time. Nevertheless,
learning at this lower level enables the system to
react immediately to unexpected situations and
thus decreases e�ort at higher levels.

In order to enhance a robot's high-level pro-
cessing, planning can be tailored to particular
robot tasks by learning techniques (Segre, 1988).



Learning from failures of robot actions can be
used to enhance the planning capabilities of a
robot (Zercher, 1992; Bennett, 1989). Learning
can also be used to link the environment model
with the perceptions when executing a plan (Jong
and Bennett, 1993; Gil, 1994), thus adapting a
general plan to the speci�c environment.

Our approach to learning robots links low-level
features that integrate sensing and action with
high-level concepts. These concepts, which we
call operational concepts combine sensing and ac-
tion and are grounded on basic features. The use
of these concepts sets up the following learning
tasks:

� learning to recognize perceived objects as in-
stances of a concept,

� learning to enhance a map of the environment
by adding instances of perceived concepts,

� and learning which sensing and moving ac-
tions are appropriate for easing an object's
recognition.

The learned concepts can then be used to formu-
late high-level commands and to control their ex-
ecution (Wallner et al., 1994).

In this paper, we focus on two main properties of
operational concepts: how they can be grounded
in the environment (Sect. 2.1) and how to inte-
grate perception and action (Sect. 2.2). In Sec-
tion 3, we describe the data used for the experi-
ments. Section 4 focuses on the representation of
the data and the applied learning techniques. Fi-
nally, we discuss open problems and restrictions
of our approach (Sect. 5).

2. REQUIREMENTS OF OPERATIONAL
CONCEPTS

Two requirements were to be regarded during the
development of representing operational concepts.
First, the concepts should be usable by real robots
in a real world. Therefore, the features used to de-
scribe the concepts must be grounded in the en-
vironment (Harnad, 1990; Wrobel, 1991; Cottrell
et al., 1990). Second, inspired by psychological
results, we argue why the representation should
integrate perception and action.

2.1 Symbol Grounding

From the AI point of view, concept characteriza-
tion means the de�nition of a concept based on
features, so that examples for this concept will
be covered by the characterization. If a formula
representing this characterization, is true for an

object, this object is an instance of the concept,
otherwise it is not an instance.

Our topic is to learn concept descriptions for mo-
bile robots. The input data used for learning are
sensor measurements. In contrast to most prob-
lems examined in symbolic learning, no explicitly
given features exist, only real values are given.
But this data is too speci�c to be applied to more
than a single object. Thus, more abstract features
must be constructed from the sensory data. The
choice of these features and their calculation is
a very important task, because it in
uences the
expressiveness of the symbol system. Concepts
that cannot be described by these features can
neither be described by newly built intermediate
concepts, since intermediate concepts only sim-
plify the representation, but do not enlarge the
\closure of existing symbols" (Wrobel, 1991).

Until now, feature construction was programmed
by an application developer. After this program-
ming step, he had to test the quality of the
constructed features with the used system which
might be a machine learning system, and then he
had to change the way features are constructed
if the performance of the system were not su�-
cient. This process is very time consuming, and
if the environment or the robot changes, feature
construction must be adapted to this change.

Feature construction cannot be seen as an isolated
task. If the concept learning step is not taken into
account while developing the feature construction,
the feature construction step cannot get any ex-
ternal evaluation about the quality of the con-
structed features. So learning how to construct
features must be combined with concept learning.

Additionally, the features must be delivered on-
line, because the robot must be able to react im-
mediately to its perceptions. Thus, the algorithm
that calculates these features must be incremen-
tal, analyzing each new input as soon as it is given.

For learning the basic features, a set of functions
and their possible parameters are given. The func-
tions calculate basic features on the basis of sensor
measurements. The system learns the appropriate
degree of granularity by searching for an appropri-
ate function and a useful set of parameters. The
search space is partially ordered by the granularity
of the functions and parameters. The granularity
is measured in terms of how many feature state-
ments are delivered for a series of measurements.
If the measurements are described by few feature
statements, it is a rough, highly compressing ab-
straction. If many feature statements are deliv-
ered for the same series of measurements, it is a
�nely grained, less compressing abstraction. The



appropriateness of the granularity is measured in
terms of the quality of learning results using the
features. If no good concept learning was possi-
ble using a rough abstraction, a �ner granularity
is tried, and so forth, until a good learning re-
sult has been achieved or no further function and
parameter set is available.

2.2 Integration of Perception and Action

The second main issue of operational concepts is
the integration of perception and action, where
perceptual features must be action-oriented and
action features must be perception-oriented. Hu-
mans represent events by relating the objects in-
volved and the action, that is performed at these
objects. Abelson called predicates what comprises
an action and its corresponding object (Abelson,
1963), e.g., drinking from a cup, throwing a ball,
moving through a doorway. Nelson states, that
\: : : , young children must represent their own
roles and the roles of other and be able to recip-
rocate actions of the other with actions of their
own, : : :" (Nelson, 1983, p. 135). Objects should
be represented as relations between actions and
reactions, where an object implies a speci�c ac-
tion, like a \ball implies throwing". Nelson re-
gards three kinds of relations between objects and
actors, where the two higher levels are the most
appropriate ones in our scenario. In the medium
level, \di�erent objects may occur in the same po-
sition of an event", like a speci�c tennis ball or a
red rubber ball in the event \ball implies throw-
ing". In our representation, the di�erent objects
that can occur in an event are represented by their
perceptual features, and the action these objects
imply are integrated in the de�nition of opera-
tional concepts as action features. Additionally,
\an object or category of objects may recur in a
number of di�erent events, in similar or di�erent
relationships". The category of doors may occur
in di�erent events like moving along them or mov-
ing through them, so we have to relate di�erent
actions with the perceptions of the concept door.

This integration of perceptual features and action
features also supports the classi�cation of an ob-
ject as an instance of a concept. In a conventional
representation, a cup, for example, is de�ned by
having a 
at bottom and a handle and being con-
cave. But it is easy to �nd arbitrarily many ob-
jects with these properties that are not cups be-
cause it is impossible to drink from them, e.g., if
the handle bridges over the opening (De Jong and
Mooney, 1986). Finding a complete description
of a cup excluding all exceptions is impossible be-
cause of the in�nite number of these exceptions.
This is the quali�cation problem (McCarthy and
Hayes, 1969). So, how to de�ne a cup suitably?

The main issue of a cup is that you can drink from
it. If a cup is de�ned as a receptacle from which
drinking must be possible, the object classi�ca-
tion can be veri�ed by performing this action. If
it is possible to drink from the perceived object,
it can be classi�ed as a cup. In this way, actions
are integrated into concept descriptions and their
recognition functions.

Kedar-Cabelli has gone a �rst step in this direc-
tion (Kedar-Cabelli, 1988), using properties that
describe action applicability, e.g., that a cup must
be liftable. But the applicability is described by
perceptual features such as material, weight, han-
dle, etc., { not by action features proper. Gior-
dana and Saitta have proposed to use executable

features in concepts descriptions (Giordana and
Saitta, 1990). These features are true for an ob-
ject, if a particular handling of this object is suc-
cessful. For instance, the feature \movable" for a
concept can be veri�ed by moving that object. We
want to develop their approach further and pro-
pose that features at all levels should integrate ac-
tion and perception. Perceptual features require
the integration of the action that is performed
while perceiving an object. Suppose that you are
looking at a cup from above. This position does
not allow to determine whether the bottom is 
at
or not. The perception is restricted by the action
during which an object is perceived. Action fea-
tures, in turn, require the integration of percep-
tion. Particular sensor patterns express the appli-
cability conditions, the conditions for successful
performance of the action, and the conditions for
ending the action. In this way, an action is ex-
pressed by perceptions.

3. DATA FROM THE NAVIGATION
SCENARIO

Before describing the representation hierarchy and
the learning algorithms, we present the scenario
and the robot we used for getting data. PRI-
AMOS, developed by the University of Karl-
sruhe (Dillmann et al., 1993), is a mobile robot
with three degrees of freedom for motion, i.e., it
can move into every direction and rotate simul-
taneously. It has 24 sonar sensors measuring the
distance to the nearest object within the emission
cone. Errors can occur, if the sonar beam is mul-
tiply re
ected or the angle between the beam and
the object is inconvenient. At every side of the
robot three sensor are installed, emitting in par-
allel. Three sensors are mounted at every corner
emitting with a di�erence of 15�.

The aim of our �rst learning trials was to learn
descriptions for the concepts move along door and
move through door. We used data from 28 traces
in a simple room, most of them being paths



1

2
3

4

5

6

7

8
9

0

10

11

0
1

2
3

Fig. 2 Room with traces and edge numbers

along or through a doorway in di�erent directions
(Fig. 2). The cupboard, displayed as the hatched
object, appeared only in some of the traces. For
every trace, we got between 25 and 35 measure-
ments of the 24 sensors, summing up to 17472 in
total. Each measurement consists of the following
data:

� trace number and point of time; for identi�-
cation of the measurement,

� robot position in world coordinates,

� sensor number, its position and orientation;
for identi�cation of the sensor,

� measured distance,

� position of the sensed point in world coordi-
nates,

� object and edge number of what is sensed.

4. THE REPRESENTATION AND
LEARNING APPROACHES

Learning can take place at several levels within
a concept hierarchy representing concepts at dif-
ferent degrees of abstraction. In this section, we
�rst present our approach to overcome the sym-
bol grounding problem, namely the learning of
basic features (Section 4.1). Then, we give an
overview of the representation hierarchy, based on
the basic features. Finally, we show how learn-
ing can be applied to higher levels of the hier-
archy. The used learning algorithm will not be
described in detail (but see (Klingspor, 1994)).
The reader may think of any learning algorithm
for (restricted) �rst-order logic because, in prin-
ciple, any �rst-order learning algorithm can solve
our learning tasks. Note, that �rst-order learn-
ing is necessary in order to handle time intervals

and their relations. The classical learning algo-
rithms for attribute-value representations cannot
solve our learning tasks.

4.1 Learning Basic Features

In Section 2.1 we have argued that the appropriate
construction of basic features is crucial for further
concept learning. Moreover, we have explained
the necessary interaction of feature construction
and concept learning. Now we present the learn-
ing algorithm for feature construction, starting
with the speci�cation of the learning task:

Learning basic features:

Given a set of functions and parameter
values of these functions and an ordering
on these di�erent ways to calculate basic
features {
Try to �nd the function and parame-
ters that lead to good results of concept
learning.

Our learning task is to select appropriate values
from a given set. This is simpler than the con-
struction of di�erent functions for calculating ba-
sic features. The goal of learning is to �nd the pa-
rameter setting, whose application results in ba-
sic features with the appropriate level of detail.
In this context \appropriate" means, that, on the
one hand, the basic features contain only those
details, which are necessary to recognize and dis-
tinguish operational concepts. On the other hand
it means, that they do not contain super
uous,
redundant details, which would impair the recog-
nition process by overloading it. The set of pa-
rameter settings can be considered as a version

space (Mitchell, 1982) for learning basic features.
The learning algorithm can be described by the
following steps:

1. Start with a prede�ned set of parameters.

2. Calculate the basic features based on the
function determined by the actual parame-
ters.

3. Learn concept descriptions.

4. If the evaluation of concept learning is not
acceptable and other parameter values are
available, take the next, less abstract param-
eter setting and iterate at step 2.
Otherwise: stop.

The learned (i.e. selected) functions and parame-
ters are used to calculate basic features from sen-
sory input. The calculation is incremental so that
it can be performed while the robot is moving.
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increasing(trace1, sensor1,  t1,  t4, 0.7).
incr_peak (trace1, sensor1,  t4,  t5, 3.2).
decreasing(trace1, sensor1,  t5,  t7,−0.3).
no_measurement(trace1, sensor1, t7, t10, _).
stable    (trace1, sensor1, t10, t13, 0.01).

Basic perceptual features:

Fig. 3 Measurements and basic features.

Basic features are calculated for each sensor using
the following algorithm:

1. Start with the �rst measurement.

2. Get the next measurement and calculate the
gradient between the previous and the cur-
rent one, i.e., the quotient of the di�erence of
the measurements and the moved distance.
T1 and T2 becomes an interval.

3. If the gradient is close enough to the average
gradient of the interval:

then enlarge the interval by the new time
point and adapt the average gradient de-
pending on the way de�ned by a param-
eter.

else close the previous interval at the previ-
ous time point and start a new one at
that time point with the new gradient
as average gradient.

\Close enough" is de�ned by a parameter,
too.

4. A closed interval will be named by a symbol,
depending on the average gradient attached
to that interval. The set of symbols and the
gradients they belong to are determined by a
further parameter.

5. Go to step 2.

In Figure 3, an example for a short sequence of
measurements is displayed together with the cor-
responding basic features. First, the gradient be-
tween two measurements is more or less 0:7. The
measurements are increasing linearly. That is
represented by the basic feature increasing(trace1,
sensor1, t1, t4, 0:7). Then, from time point t4
to t5, the gradient is greater than 1. Since the
di�erence between two measurements cannot be
greater than the moved distance, if the sensor
sensed the same edge, two di�erent edges must
have been sensed. This situation is expressed by
the basic feature incr peak. Sometimes a sensor
gets no echo, e.g., if there is no object within the
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maximal sensing distance. This situation, in the
example the interval from t7 to t10, is labeled
no measurement. Other basic features are stable
(describing more or less equal measurements), de-
creasing, decreasing peak, no movement (we can-
not compute the gradient, if the robot does not
move), and straight to and straight away (if the
gradient is about 1 or �1, respectively).

Note, that the basic features compress a sequence
of measurements to a statement about a time in-
terval. The �nely grained basic features summa-
rize only a short sequence of measurements where
the rough features summarize a long sequence of
measurements. In that way, the basic features de-
termine the time intervals used by concept learn-
ing. The time intervals, in turn, determine what
can be achieved by concept learning. It is, for in-
stance, impossible to learn good concepts descrip-
tions, if the time intervals determined by the basic
features do not match the time intervals used in
the examples to be classi�ed.

4.2 The Representation Hierarchy

Several levels of abstraction link the level of raw
sensor and motion data with the level of opera-
tional concepts. The hierarchy of more and more
abstract representations comprises perceptual fea-
tures at several levels which are all related with
actions as well as action feature which become in-
tegrated with perceptual features at a higher level.
Figure 4 shows the representation hierarchy.

In the �rst step, basic features are constructed
based on the measurements and the robot's po-
sition. At the next higher level, the perceptions
while moving are represented by single sensor fea-

tures.

s line: a single edge.

s jump: two parallel edges, sensed in sequence.

s convex: two orthogonal edges, sensed from the
convex side of this corner.

s concave: two orthogonal edges, sensed from the
concave side.



Each sensor feature is characterized by sequences
of basic features. The sequences are represented
by rules. An example rule for s jump is:

stable(Trace, Or, Sensor, Time1, Time2, Grad1) &
incr peak(Trace, Or, Sensor, Time2, Time3, Grad2) &
stable(Trace, Or, Sensor, Time3, Time4, Grad3)
! s jump(Trace, Sensor, Time1, Time4, parallel).

At the next level, situations are represented where
di�erent sensors of a class sensed the same con-
stellation of edges while moving. Single sensor fea-
tures are grouped together in order to increase the
evidence for an edge constellation. This helps to
cope with the noise of single sensor measurements.
It can be su�cient for a sensor group feature to be
derived, that two of three sensors of a sensor class
sensed the same constellation. Additionally, we
abstract from the actual sensor numbers in this
step. Instead, the orientation of the perception
relative to the orientation of the motion is used.

s jump(Trace, Sensor1, Start1, End1, parallel) &
sclass(Trace, Sensor1, right side) &
s jump(Trace, Sensor2, Start2, End2, parallel) &
sclass(Trace, Sensor2, right side) &
succ(Start1, Start2) & succ(End1, End2)
! sg jump(Trace, right side, Start1, End2, parallel).

At the next level of abstraction, the level of action-
oriented perceptual features, perceptions at di�er-
ent sides of the robot will be combined.

sg jump(Trace, right side, T1, T2, parallel) &
sg jump(Trace, left side, T1, T2, parallel)
! through door(Trace, T1, T2, both sides, parallel).

At the action side of the representation hierarchy,
only basic actions occur. They represent intervals
of uniformmotions. From the absolute orientation
and speed of the motion features are calculated
that relate the orientation to the previous direc-
tion of motion. The basic action features used are
move, rotate, and stand, with the arguments trace,
time interval, speed, and direction.

Action features and perceptual features are then
combined to perception integrating features repre-
senting single actions and the corresponding per-
ceptions. An example of such an action is a steady
movement while measuring through door in a spe-
ci�c direction PDirect.

through door(Trace, PDirect, T1, T2, parallel) &
move(Trace, T1, T2, Speed, Dir)
! move parallel(Trace, T1, T2, Speed, Dir,

through door, PDirect).

Finally, operational concepts use perception inte-
grating features for characterizing preconditions,

veri�cation conditions, and end-of-action condi-
tions for an abstract action and its corresponding
object.

standing(Trace, T1, T2, in front of door,
PDirect, small side, PrevP) &

parallel moving(Trace, T2, T3, MSpeed,
PDirect,through door,right and left) &

standing(Trace, T3, T4, in front of door, rear,
small side, through door)

! move through door(Trace, T1, T4).

The rule describes the operational concept of mov-
ing through a doorway. It combines the recogni-
tion of the doorway with the action of moving
through it on a parallel track. Moving diagonally
through a doorway is a di�erent operational con-
cept. Action and perception are linked by the
perceptual features occurring as arguments in the
action predicates. In our example rule, the per-
ceptual features are written in italics.

The �rst premise of the rule states that the robot
is standing in a time interval from T1 to T2 of a
particular (Trace) and senses the perceptual fea-
ture in front of door from the sensors of a small
side after having perceived the perceptual feature
PrevP prior to T1. This premise denotes the pre-
condition for moving through a doorway on a par-
allel track. The precondition can also be viewed
as a trigger for planning: whenever recognizing
that it stands in front of a door, the robot may
execute the action of parallel moving through the
doorway.

The second premise states that in a following time
interval the action parallel move is executed, mea-
suring by the sensors at the right and the left side
of the robot the perceptual feature through door.
Note, that the particular values for the time in-
tervals do not matter for the operational concept
but are instantiated by the speci�cs of a particular
path. Only the time relation is important. This
makes the operational concept independent of the
particular depth of a doorway and the robot's par-
ticular rate of advance.

The third premise describes the end of the move-
ment through the doorway: the robot is stand-
ing in front of the door, now sensing with its
rear sensors mounted at its small side the feature
in front of door after having perceived the feature
through door. PDirect, the orientation of percep-
tion (e.g., left, right, front, rear) is not �xed by
the rule. It is only relevant that the orientation
should not change during the parallel move and
that with respect to this orientation the doorway
is sensed in the rear after the movement. That
means, whatever the orientation was at the be-
ginning of the action, it is de�ned as being front



so that after completing the action the doorway is
sensed by the opposite, the rear sensors.

4.3 Learning Perceptual Features

Learning of higher-level features and, �nally,
of operational concepts is performed in the
paradigm of inductive logic programming (ILP,
see, e.g., (Muggleton, 1992)). The learning task is
the following:

Learning higher-level features:

Given the target feature for various sit-
uations and background knowledge {
learn rules that characterize the tar-
get feature in terms of the background
knowledge.

The background knowledge is a set of facts from
the level below the target feature and general in-
formation about the robot (e.g., sensor classes).
This learning task is performed several times:
learning sensor features from basic features, learn-
ing sensor group features from sensor features,
learning action-oriented perceptual features from
sensor group features, and learning operational
concepts from perception-integrating action fea-
tures.

We applied learning algorithms that search a re-
stricted hypothesis space completely. The hy-
pothesis space is restricted syntactically by rule
schemata that express the form of learnable rules.
Rules that are not instantiations of a rule schema
cannot be learned. This prohibits learning rules
that cannot be put to use by the robot. The rule
schemata are ordered according to their general-
ity. Starting with the most general rule schema,
all its instantiations (i.e. rules) are tested whether
they cover positive but not negative examples of
the target feature. Until no negative (or only few)
negative examples are covered, the next special
rule schema is instantiated and tested. The most
applicable learning algorithms were RDT (Ki-
etz and Wrobel, 1992) and a modi�cation of it,
GRDT (Klingspor, 1994).

In a nutshell, the results are as follows. Given
1004 examples for the four sensor features, we
learned 129 rules, covering 87% of the given exam-
ples. For learning sensor group features, we had
given 956 examples, from which GRDT learned
136 rules. Using the learned rules for sensor fea-
tures and sensor group features, we got a coverage
of 64%. For the operational concept through door,
we had given ten examples. We learned three
rules, two of them covering exactly the ten ex-
amples. The third rule was a poor one that could
be dropped. The quality of the learned rules in-

creases as the representation hierarchy is climbed.
This shows that the hierarchy makes learning ro-
bust against the noise which is produced by the
weak ultrasonic sensors. The levels can be re-
garded as a �lter { they only pass the more reliable
information to the next higher level.

5. CONCLUSION

In this paper, we introduced operational concepts
that integrate action-oriented perceptual features
and perceptual-oriented action features. Both
psychological and practical arguments indicate
the necessity of this integration. We sketched
a representation for operational concepts that is
grounded in the perception and action of a mo-
bile robot. We proposed two learning tasks: one
that �nds appropriate basic features in order to
summarize sequences of sensor data, and one that
characterizes higher-level features (or operational
concepts) in terms of features from the level below.
Experiments have shown that learning becomes
more accurate and the coverage of learned rules
increases when progressing to higher levels of the
representation hierarchy. This means that even
noisy input to learning leads to results that sum-
marize the data such that at the next higher level
the noise is reduced. These results are promising,
but further learning experiments in other environ-
ments need be conducted.

In order to achieve �rst results, we restricted sens-
ing and action of the mobile robot. For rep-
resenting the sensory data, we reduced the de-
grees of freedom of the robot allowing only one-
dimensional motions at once. That will lead to
problems, if we incorporate a reactive module ex-
ecuting the elementary operations, if this module
generates traces where the robot deviates from
straight courses. Then, the calculation of basic
features is probably not able to counterbalance
the divergence of the sensor measurements, be-
cause in the moment, we only use linear functions
to calculate the features.

Another restriction concerns the sensors used.
Sonar sensors are not able to get precise mea-
surements, they cannot be used to discriminate
�ne structured objects. E.g., it is not possible
to detect closed doors, so we used only simple
structured objects in the moment. An interest-
ing future investigation might be the integration
of another sensor system like a vision system to
get further information in speci�c situations.

The next challenge will be to validate the con-
tribution of learning to easing robot applications.
Until now we have a small planning component
that computes basic actions of a robot from an
operational concept. This component uses learned



rules in a backward-chaining manner. The basic
perceptual features are incrementally calculated
from sensor measurements as shown in this pa-
per (Section 4.1). Using the learned rules in a
forward-chainingmanner, higher-level features are
derived. Using these techniques, learned rules are
made available for the robot's processing. First,
experiments with the robot are to be made where
the robot uses learned rules in the environment in
which learning took place. Then, the same rules
should be used by the robot in similar but di�er-
ent environments from the one in which learning
took place. Finally, the e�orts of preparing these
robot applications need be compared.
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