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Abstract

Stochastic gradient descent methods have been quite successful for solving large-
scale and online learning problems. We provide a simple parallel framework to
obtain solutions of high confidence, where the confidence can be easily controlled
by the number of processes, independently of the length of learning processes.
Our framework is implemented as a scalable open-source software which can be
configured for a single multicore machine or for a cluster of computers, where the
training outcomes from independent parallel processes are combined to produce
the final output.

1 Introduction

Stochastic online learning algorithms have been quite successful for large-scale and online learning
problems [1, 9, 11]. They typically consist of inexpensive iterations, each involving a single input
point or a tiny subset of training examples. Although a very large number of iterations might be
required to obtain a solution with high accuracy, their solutions of moderate accuracy are often
enough for learning purposes.

Due to the stochastic nature of the algorithms, we typically have to repeat learning processes until
we observe a solution of satisfactory quality. Although algorithm runs can be carried out in parallel,
the effort for the runs without acceptable outcome is nearly wasted. The chance of failure typically
decreases as we use more iterations, but doing so is often undesirable in large-scale settings.

We provide a scalable online learning framework to utilize all independent repetitions of learning
endeavor to obtain a solution with enhanced confidence, based on the stochastic gradient descent
(SGD) algorithm. Our approach is implemented as an open-source Java software for training the
support vector machines (SVMs), which can be configured for a single computer or multiple ma-
chines.

To simplify our notation, we use ‖ · ‖ to denote the Euclidean norm.

1.1 Confidence of a Single Stochastic Gradient Descent Run

In stochastic online learning, we assume that a continuous convex function F (·; ξt) is revealed
at time t, which is determined by a random index ξt ∈ Ξ = {1, 2, . . . }. For random variables
ξ1, ξ2, . . . , ξT sampled from a probability distribution P , we define the regret RT as a function of
decisions w1, w2, . . . , wT with respect to a single decision w∗:

RT :=

T∑
t=1

F (wt; ξt)−
T∑
t=1

F (w∗; ξt). (1)

1



We define the optimal decision w∗ as a minimizer of the following risk minimization problem,

min
w∈W

f(w) := E [F (w; ξ)] =

∫
Ξ

F (w; ξ) dP (ξ) (2)

where W is a compact convex set in Rp and the expectation is assumed to be well-defined and
finite for every w ∈ W . The goal of stochastic online learning is to find a sequence of decisions
w1, w2, . . . in Rp so that we have limt→∞ E[f(wt)]− f(w∗) = 0.

In the SGD algorithm, we obtain the next iterate wt+1 using the following update rule:

wt+1 := ΠW (wt − ηtG(wt; ξt)) , G(wt; ξt) ∈ ∂F (wt; ξt), t ≥ 1, (3)

where ΠW(·) is an Euclidean project on W . As in [6], we assume that G(w; ξ) is an unbiased
estimate of a subgradient of f(w) for each w ∈ W , that is, E[G(w; ξ)] ∈ ∂f(w). Note that wt+1

depends on ξ1, ξ2, . . . , ξt but not on ξt+1, ξt+2, . . . , ξT .

For our analysis we define two constants D and V as follows,

D := sup
w∈W

‖w − w1‖ and V := sup
w∈W,ξ∈Ξ

‖G(w; ξ)‖.

Then we obtain a bound on the regret for the SGD algorithm [2, Appendix C].
Theorem 1. A single run of the stochastic gradient descent algorithm using (3), with a variable
steplength ηt = D/(V

√
t) for each t = 1, 2, . . . , T , generates a realization of the sequence

w1, w2, . . . , wT satisfying
RT ≤ 2

√
2DV

√
T , T = 1, 2, . . . .

The bound on the expected regret E[RT ] of the sequence w1, w2, . . . , wT is closely aligned with
the convergence rate of an averaged iterate w̄T = 1

T

∑T
t=1 wt in terms of the expected objective

function value. We use this property to show the following result (see Appendix A for details):

Corollary 1 (Confidence of a Single Average). For w̄T = 1
T

∑T
t=1 wt, we have E[f(w̄T ) −

f(w∗)] ≤ 2
√

2DV√
T

for T ≥ 1. This implies that for a given error ε > 0 and a confidence level
β ∈ (0, 1),

P(f(w̄T )− f(w∗) ≥ ε) ≤ 1− β when T =

⌈
8(DV )2

ε2(1− β)2

⌉
. (4)

That is, both accuracy and confidence of w̄T from a single SGD run depend on the length T of the
training process. Moreover, we would have to use quadratically larger value for T to increase the
chance to obtain an ε-error solution.

1.2 Confidence of an Aggregate Stochastic Gradient Descent Run

Suppose that we have performed multiple independent SGD algorithm runs, each for a fixed time
duration T (which is the number of examples used for each run in our case), producingM sequences
of iterates {wi1, wi2, . . . , wiT } and their averages w̄iT for i = 1, 2, . . . ,M . We combine the averaged
iterates to acquire an aggregate average w̄◦M :

w̄◦M =
1

M

M∑
i=1

w̄iT .

We show that w̄◦M can provide a high confidence solution. The proof is in Appendix B.
Theorem 2 (Confidence of an Aggregate Average). Suppose that we haveM independent SGD runs
with decreasing steplengths ηt = D/(V

√
t) for t = 1, 2, . . . , T , to obtain wi1, w

i
2, . . . , w

i
T and their

averages w̄iT = 1
T

∑T
t=1 w

i
t for i = 1, 2, . . . ,M . For given ε > 0 and β ∈ (0, 1), the aggregate

average w̄◦M = 1
M

∑M
i=1 w̄

i
T over the M runs satisfies

P (f(w̄◦M )− f(w∗) ≥ ε) ≤ 1− β

when T =
⌈

32(DV )2

ε2

⌉
and M =

⌈
8(DV )2

ε2 ln
(

1
1−β

)⌉
.
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Note that T depends only on ε, and M depends on ε and β. Therefore the confidence of w̄◦M can be
controlled solely by the number of SGD runs M , for a fixed value of ε determined by T .

The resulting framework is essentially the same as the parallel SGD [12] and the worker/aggregator
algorithm in [10], except for the fact that we allow diminishing stepsizes in addition to small constant
ones demanded by the other two algorithms. Our confidence analysis in Theorem 2 provides an
alternative quality measure of outcomes to the existing expected error bounds [12, Theorem 12].

2 Software

We implemented the SGD algorithm for the support vector machines as a part of our open-source
streams package for online learning1. The streams package provides an abstraction layer for imple-
menting various online learning algorithms.

2.1 A Thin Layer for Parallelization

We designed a thin layer implementing the map-and-reduce paradigm in our software to leverage
modern multi-processor architectures. The map-and-reduce paradigm fits well for training with large
volumes of data, using parallel processors on independent random partitions X1, X2, . . . , XM of an
input data X . This concept mainly derives from functional programming and has been adopted by
Google and others such as the Apache Hadoop 2 system.

Figure 1 depicts the general concept of the map-and-reduce. It requires a map functionm that can be
computed on each partition of data, and a reduction function r combining the m outcomes from the
map function evaluations. The map function for the SGD algorithm typically has a small memory
footprint, and thus fits well even for a single multicore machine with limited memory.

X =
M⋃
i=1

Xi

Data Source

X1

XM

...

m(X1) = w̄1
T

m(XM ) = w̄MT

... r(w̄1
T , . . . , w̄

M
T )

Map Reduce

= w̄◦M

Output

Figure 1: The map-and-reduce paradigm.

Our parallelization software layer allows for running online algorithms on a single multicore ma-
chine, or on a cluster of computers using the Hadoop Streaming APIs.

2.2 The Support Vector Machines

Consider a data source X = {(xi, yi) : xi ∈ Rp−1, yi ∈ R, i = 1, 2, . . . , N} of i.i.d. samples and
its independent partitions X1, X2 . . . , XM . The support vector machines can be described using
wt = (vt, bt) with vt ∈ Rp−1 and bt ∈ R, and

F ((vt, bt); ξt) =
λ

2
‖vt‖2 + max{0, 1− yξt(〈vt, φ(xξt)〉+ bt)}, ξt ∈ {1, 2, . . . , N}.

Here we focus on linear kernels so that φ(x) = x, but our framework can be easily extended for
nonlinear kernels using random features [8]. Each SVM training via the SGD algorithm for a parti-
tion Xi serves as a map function m, producing w̄iT , for i = 1, 2, . . . ,M . The reduction function r
computes a simple average of w̄1

T , w̄
2
T , . . . , w̄

M
T , producing an aggregate average w̄◦M .

1The streams package is available at http://github.com/cbockermann/streams.
2Available at http://hadoop.apache.org.
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3 Experiments

For experiments we use three large data sets: (1) CCAT from the RCV1-v2 collection [3] (804414
examples, 47236 features), (2) URL from the malicious URL detection project [5] (2.4 million
examples, 3.2 million features), and (3) MNIST, a binary task classifying digits 0 ∼ 4 against the
rest, from an extended version of the original set [4] (8.1 million examples, 784 features).

We denote by SGD-M and SGD-1 the aggregate SGD approach producing w̄◦M and the single SGD
approach, respectively. SGD-M consists of M independent and parallel SGD runs, each with a fixed
number of examples (iterations) T . Therefore the total number of training examples used by SGD-M
becomesN = TM . For CCAT we also compared its performance to SGD-1 using the same amount
of training data. All experiments are repeated 30 times with random permutations.

We illustrate the results in Figure 2. The performance is measured by prediction accuracy on test
sets (about 20% of total), since it is of more practical interest than objective function values. The red
curves with error bars show the variability of prediction accuracy of SGD-M for different M values.
The training time of SGD-1 increases linearly with N , but it remains almost constant for SGD-M
when its M processes run concurrently.

The plot on the left shows that the variation of SGD-M tends to be smaller than that of SGD-1 for
each training size tried, and the former decays faster than the latter as M (or the corresponding N )
increases. We see similar behavior for URL and MNIST on the right. Training time of SGD-M was
less than 50 seconds on a 32-core machine (when M ≤ 32) for both URL and MNIST with 1.28
million and 6.4 million examples, respectively. Our software managed with the high dimensionality
of the URL set (3.2 million features) as well by utilizing the sparsity of input vectors.

An interesting observation for SGD-M is that not only the confidence but also the test accuracy of
solutions tends to improve up to certain points with larger M . This phenomenon can be understood
by the expected error bound of [12, Theorem 12], but improvement seems to be only marginal in
our experiments.
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Figure 2: Prediction accuracy (mean and standard deviation) on separate test data sets of CCAT,
URL, and MNIST. SGD-M utilizes M parallel SGD runs, each with T examples: N = TM exam-
ples in total for each value of M . The value of T is chosen regarding the amount of available data:
T = 10000 (CCAT), T = 20000 (URL), and T = 25000 (MNIST). For CCAT (the plot on the
left), the performance of SGD-1 (a single SGD) is measured as well (the blue curve) using the same
number of examples N for each corresponding value of M . SGD-1 failed to produce solutions for
URL and MNIST in reasonable time.
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A Confidence Bound for a Single Average

This provides a proof for Corollary 1.

Proof. From the convexity of f we have

E[f(w̄T )]− f(w∗) ≤ 1

T
E

[
T∑
t=1

f(wt)−
T∑
t=1

f(w∗)

]

=
1

T
E

[
T∑
t=1

E[F (wt; ξt) | ξ1, ξ2, . . . , ξt−1]−
T∑
t=1

E[F (w∗; ξt) | ξ1, ξ2, . . . , ξt−1]

]

=
1

T
E[RT ]

Combining the inequality with the regret bound in Theorem 1 leads to the first part of the claim.
Applying Markov’s inequality gives the second claim.

B Confidence Bound for an Aggregate Average

This is the proof of Theorem 2, which utilizes a standard concentration bound and happens to be
much simpler than the analysis for the expected error bounds in [12]. We borrow several ideas from
[7] but refines the analysis therein.
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Proof. First we define random variables ζi := f(w̄iT ) − f(w∗) for w̄iT = 1
T

∑T
t=1 w

i
t, i =

1, 2, . . . ,M . Then 0 ≤ ζi ≤ 2DV with probability one, since w∗ is a minimizer of f(·) and
the convexity of f(·) implies that for g(wit) ∈ ∂f(wit),

ζi ≤
1

T

T∑
t=1

f(wit)− f(w∗) ≤ 1

T

T∑
t=1

g(wit)
T (wit − w∗) ≤

1

T

T∑
t=1

‖g(wit)‖‖wit − w∗‖ ≤ 2DV.

Using the convexity of f(·) again, we have

f(w̄◦M )− f(w∗) ≤ 1

M

M∑
i=1

f(w̄iT )− f(w∗) =
1

M

M∑
i=1

ζi =: ζ̄.

This implies that

P

(
f(w̄◦M )− f(w∗) ≥ 2

√
2
DV√
T

+ δ

)
≤ P

(
ζ̄ ≥ 2

√
2
DV√
T

+ δ

)
≤ P(ζ̄−E[ζ̄] ≥ δ) ≤ exp

(
− δ2M

2(DV )2

)
,

where the second inequality is from the fact that E[ζ̄] ≤ maxi=1,2,...,M E[ζi] ≤ 2
√

2DV√
T

by Corol-
lary 1, and the last one is due to the Hoeffding’s inequality applied for the bounded independent
random variables ζ1, ζ2, . . . , ζM . Replacing δ = ε/2 = 2

√
2DV√

T
gives the following, leading to the

claim.

P (f(w̄◦M )− f(w∗) ≥ ε) ≤ exp

(
− ε2M

8(DV )2

)
=: 1− β. (5)
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