Automatic Feature Extraction from Large
Time Series

Ingo Mierswa

Univ. Dortmund, Computer Science VIII, Germany
mierswa@ls8.cs.uni-dortmund.de

Abstract. The classification of high dimensional data like time series requires the
efficient extraction of meaningful features. The systematization of statistical meth-
ods allows automatic approaches to combine these methods and construct a method
tree which delivers suitable features. It can be shown that the combination of ef-
ficient methods also works efficiently, which is especially necessary for the feature
extraction from large value series. The transformation from raw series data to fea-
ture vectors is illustrated by different classification tasks in the domain of audio
data.

1 Introduction

Each instance for a numerical learning algorithm is described by the values
of a given set of features. The learning scheme should find a hypothesis which
allows the classification of unseen data (Mitchell (1996) and Witten and Frank
(2000)). Transforming the given representation may ease learning such that
a simple learning algorithm can solve the problem and provide better results
(Morik (2000) and Pyle (1999)).

Music is a real-valued function of time. Therefore, audio data can be seen
as an univariate value series. The amplitude a; for each time point i (sample
point) is given. A three-minute mono song consists of 44100Hz - 180s =~
8 - 10% values. The classification of these high dimensional series requires
the extraction of features, so that a classification scheme can make use of
the feature vectors instead of the large series data. By extracting the small
feature vectors, both the improvement of results (Liu and Motoda (1998) and
Ritthoff et al. (2002)) and a strong data compression is expected.

We have to face up with two problems: first, the great amount of data
requires efficiently working methods to extract the features and second, it is
not always clear which is the meaning of the extracted features. The auto-
matic selection and combination of the best methods for feature extraction
would be very useful.

The next section introduces a systematization of statistical methods,
which allows automatic feature extraction from value series data. In section 3,
an automatic approach for feature extraction based on genetic programming
is presented and the runtime is analyzed. In section 4 the feature extraction
from audio data is described and the results are discussed.

2 Mierswa

‘Windowing ‘ ‘Basis Transf. ‘ ‘Filters ‘ ‘ Markup Trans.
N . 4 7

<. <7

Methods Series / Features

Fig. 1. All methods for value series analysis can be divided into groups according
to their output. Transformations can be further divided in basis transformations,
filters, mark-up transformations, and windowing.

2 Systematization of statistical methods

A systematization of statistical methods must be powerful enough to cover all
known and future methods and it must be precise enough to allow automatic
approaches to select and combine methods to find the optimal set of extracted
features. A method is defined in an operator based way: it gets a value series
as input and applies an arbitrary operation in order to deliver a result. This
result turns out to be a good criterion to divide the methods into groups. We
distinguish between:

Transformations: All methods which deliver a value series as output, i.e.
a mapping t : ' — F for a function space F' of value series (z;);cq1,...,n}-

Functions: All methods which deliver single values without any order, i.e.
a mapping f : F — IR™ between a function space F' and real numbers.

Transformations, which change the series itself without generating features,
can be divided into several groups like basis transformations (e.g. Fourier
transformation or state space reconstruction), filters (e.g. window functions
or difference filter), and mark-up transformations (e.g. finding intervals in
the series). Chains built from an arbitrary number of transformations and
ending with a function deliver the desired features. Figure 1 shows the sys-
tematization.

2.1 Windowing extends the method space

In order to divide the existing methods for value series analysis (Bradley
(1999) and Schlittgen and Streitberg (1997)) into the specified groups, a
particular transformation requires a special treatment. With the aid of a
Windowing operator a bunch of further transformations can be simulated
and created:

Windowing: Given a value series (z;);c{1,...,n} With length n. A transfor-
mation is called Windowing if a window of size w is moved with step

Automatic Feature Extraction from Large Time Series 3

size s over the series and in each window the value of a function f is
calculated:

Yi = F((@i)ic(st1,0rj-stw})

The values y; form a new series (y;);eqo,....| (n—w)/s]}-

If f is an average function, this definition of a windowing includes the well
known moving average filters. But we take a step forward and allow all func-
tions for windowing and additionally allow any number of transformations
before we calculate the value of the function®. For large value series we must
ensure that a windowing which uses efficient methods to calculate the values
y; also is an efficient method, i.e. has polynomial runtime. The overlap of a
windowing is defined as g = %. Each windowing creates #~* +1 =2 —g+1
windows. A windowing performing transformations and a function with run-
time O(n?) on each window has an overall runtime of

(E—g+1)-w2:gnw—gw2+w2.
s

To estimate the worst case we consider a windowing with step size s = 1.
For a realistic overlap of g = 2 the runtime is 2nw — w? which is smaller than
n? for all window sizes w < n. The maximum amount of multiple used values
is reached for a window size of w = 7 and therefore an overlap of also g = 7.
For this worst case the runtime is

9 9 n\ 2 ny\3 n\2
gnw — gw* +w” =n- 5 —(5) +(—)

nd n?
+‘

8 4

The runtime has a greater power in n but is still efficient. Similar calculations
for the runtimes of other methods show that the usage of windowing with
a realistic overlap like ¢ = 2 always result in a smaller runtime than the
application of the methods on the complete series.

2.2 Method trees for feature extraction

As we have mentioned, the extracted features are the result of a chain of
transformations and a function at its end. A windowing is also a transforma-
tion. But this particular transformation performs other methods on windows
to form a new series. One can see these methods as children of a windowing,
which leads to the model of method trees for feature extraction.

Figure 2 shows an example for a method tree. The tree is traversed with
a depth first search. The windowing is the root of a new tree, whose children

1 Actually we can do a windowing without a function but with transformations
only. This should only be done for windowings with w = s and is called piecewise
filtering.

4 Mierswa

Root

- ’ -

2
7z

‘Eprvg }%‘ Filter }%’Windowing}%‘ Avg ‘H

‘ FFT }—>‘ Maxlndex‘

Fig. 2. A method tree that extracts the feature “average and variance of the max-
imum frequency in the progression of time”. The windowing method is the root of

a new tree.

are invoked once for each window. The dashed lines show the parent-child
connection in the tree and the solid lines stand for the data flow. The last
child in the chain is an average function which delivers the features “average
and variance of the maximum frequency in the progression of time”.

2.3 Dynamic windowing in method trees

Each method tree provides one or several features. The tree structure emerges
from the nesting of windowing methods. It is quite clear that it is impossible
to nest two windowings with the same window size w. Since the children of
the parent windowing work on windows of size w, a nested windowing with
window size w creates a series with length 1 which is actually not a series
anymore. Therefore the overlap of each windowing method should be fixed,
which makes sure that the windowing works efficiently for realistic overlaps.
The size of the windows must be dynamic and is defined as w = % for a
parameter d € {2,...,5}.

Dynamic windowing: Given a series (z;);c{1,...,n} With length n and a pa-
rameter d € {2,...,%}. A windowing with overlap g, window size w = 5

and step size s = g% is called dynamic windowing.

A method tree built of dynamic windowings and other transformations
and functions has a maximum depth of log;n — 1. A dynamic windowing
divides the series in windows with size 7. Therefore, each dynamic windowing
which is a child of another windowing works only on % values and builds

windows with size 7. After log;n — 1 nested windowings each window has

n n n-d d
dlogan—1 - d1°3d" - n -

values. Another windowing would reduce the number of values for the next
child to 1.

Automatic Feature Extraction from Large Time Series 5

Now we are able to analyze the runtime of method trees on a value series
with length n. The worst case runtime of all transformations and functions
is given as L(k) on k values. The runtime of a dynamic windowing is

(2-0e1) 2 ()
= (gd-1)+1)-L(%).

We add another dynamic windowing as a child and replace L(%) by (g(d —
1) +1) - L(Z%) which leads to (g(d — 1) +1)* - L(Z%). We iterate these steps

which delivers) n
(9d-1)+1"-L ()

as runtime of a method tree with depth i. We have shown that each method
tree has a maximum depth of log; n — 1 which results in a runtime of

loggn—1 | n
(9(d— 1)+ 18t L (ot)

= (g(d—1) +1)'°8a"~1. L(q).

A method tree based on methods with a worst case runtime of O(n?) therefore
has an overall runtime of

((d 1) + 1)108d n—1 d2 _ d2 n‘logg(d_ll)+1 d

g gld—1) +1 '
It has been shown that the runtime is never exponential, for realistic dynamic
windowings with overlap g = 2 and d = 2 the runtime is § - n'-%®® which is
always smaller than n2. Hence, method trees built from efficient methods are
efficient too.

3 Automatic feature extraction

We have fulfilled two premises for automatic approaches for feature extrac-
tion: the search space is structured and the elements of this space work effi-
ciently and extract features from high dimensional data in polynomial time.
Now we introduce a simple way for automatic feature extraction based on
genetic programming. The search space in which the algorithm tries to find
the optimum is the space of all method trees which can be created with the
given transformations and functions. Each individual is a method tree and
the tree which provides the best features for the classification task at hand
is delivered as the result.

Figure 3 shows the functioning of a genetic programming algorithm. The
first step is to create a population consisting of a number of individuals.
Here, randomly created method trees are used as individuals. Then the same
steps are performed repeatedly until a termination criterion is satisfied. The

6 Mierswa

Initialize B
population _\'

Evaluate yes
population
Crossover Terminate?.
+
Mutation
A no:
next
y generation!
Selection for Selection for
reproduction |-eg new population

Fig. 3. After the initialization of the start population, the same steps are performed
until a termination criterion is fulfilled. In each generation the best individuals
(method trees) are selected and reproduced.

main steps are mutation and crossover, which will be discussed in the next
section. In each generation the individuals are evaluated with a k-fold cross
validation with respect to the learning task at hand. First, the method tree
which should be evaluated is used to extract the features from the data.
Then the performance of the learning task is estimated with an inner k-fold
cross validation. The transformed data is divided into k parts, on k— 1 parts
a classifier is trained and on the last part it is applied. Individuals with a
greater performance (fitness) will have a higher probability to survive.

Another fact is interesting for working with high-dimensional data: the
building of method trees with genetic programming in order to extract an
optimal feature set is like training the optimal feature extraction. We have
two phases of training. The first phase is the training of a method tree for
feature extraction which can be done on a subset of the data. This is especially
useful for the great amount of data the high dimensionality brings. Then the
best method tree is applied on the complete data and the second training
phase starts: a hypothesis is learned from the feature vectors created by the
method tree.

3.1 Mutation and Crossover

Mutations are operations which derive a new individual from one other indi-
vidual. The probability for small distances between parent and child should
be greater than for great distances. We use

Generating mutation: Create randomly a new method and adds it at an
adequate place in the method tree.

Removing mutation: Remove a randomly chosen method from the method
tree. Windowing with overlap g > 1 must contain a function.

Changing mutation: Change a randomly chosen method and replaces it
with a method from the same group (transformation or function).

Automatic Feature Extraction from Large Time Series 7

Another typical operation for evolutionary algorithms is crossover. Here
the new individual is derived by combining the informations about two indi-
viduals. Crossover is realized by transfering subtrees of the same type between
the selected parents.

4 Experiments

We used the discussed approach to extract features from audio data for three
different classification tasks:

1. genre classification classic and popular music: CLA /POP
2. genre classification techno and popular music: TEC/POP
3. classification of user preference: USER;, USERs, and USER3

The first one is considered an easy task, the other two problems seem to
be much harder. CLA/POP contains 100 instances, TEC/POP contains 80
instances, and the USER data sets 50 instances for each class. The methods
are implemented within a generic framework for value series preprocessing
like the one demanded in Morik and Liedtke (2000). The experiments were
done with the learning environment YALE? (Fischer et al. (2002) and Mier-
swa et al. (2003)). Feature extraction for a 60 second sample of music lasts
approximately 20 seconds using a 1600 MHz CPU.

4.1 Extracted features from audio data
The following features were extracted from the data sets:

average loudness

average distance and variance between extreme values

average distance and variance between zero crossings

tempo and variance of autocorrelation

k highest peaks after a Fourier transformation

gradient of a linear regression function of the frequency spectrum
fraction of geometric and arithmetic average of the spectrum

fraction of maximum and arithmetic average of the spectrum

average and variance of the strongest frequency in the progressing of time
average and variance of the angles after a state space reconstruction
average and variance of the distances after a state space reconstruction

They are described in detail in Mierswa (2003) and were collected during sev-
eral runs of the genetic programming approach for the classification of audio
data. The population size was 10, each mutation probability was 0.2, and
crossover probability was 0.4. The maximum number of generations was 100.

2 http://yale.cs.uni-dortmund.de

8 Mierswa

CLA/POP|TEC/POP|USER,|USER;[USER;
C45| 167% 12.13% | 8.12% | 9.89% | 5.02%
SVM| 1.82% 13.22% | 7.69% | 9.44% | 4.81%

Table 1. The classification error for the different classification tasks. For each task,
an optimal subset of features was selected.

With a genetic algorithm (Ritthoff et al. (2002)), a subset of these features
were selected for each classification task.

The application of a simple 1-R-Learner (Holte (1993)) delivers differ-
ent features for the data sets. For the classification of CLA/POP, the vari-
ance of the distances after a state space reconstruction is the best feature.
The created rule correctly classifies 184 of the 200 instances. In the domain
TEC/POP the variance of the difference between the extreme values of the
series was selected as best feature. The knowledge of this feature alone allows
the correct classification of 121 of the 160 instances. Further results of the
selection among the audio features are discussed in Mierswa (2003).

4.2 Results

The learning schemes used were the decision tree learner C4.5 (Quinlan
(1993)) and a support vector machine (SVM) with a linear kernel function
(Joachims (1999) and Rueping (2000)). The classification error was estimated
with a 10-fold cross validation. The confidence for decision tree inducing was
0.25 with a minimum leaf size of 2. The support vector machine MySVM was
used with default parameters. Table 1 shows the results for the classification
tasks.

The genre classification CLA/POP can be done with an error of 1.67%.
The more difficult classification of user preferences can be handled with clas-
sification errors between 4% and 10%. The genre classification TEC/POP is
the hardest discipline among these classification tasks. But the predictions
were done with an error of 12.13%.

5 Conclusion

The methods of value series analysis can be divided into groups and sys-
tematized. Together with an extended concept of windowing operators these
methods can build method trees for feature extraction. It has been shown
that the windowing of efficient methods also is efficient, the same applies
for method trees. Therefore, these method trees can be used for fast feature
extraction from large value series.

The systematization and the efficiency of the methods allow automatic ap-
proaches to extract an optimal set of features from value series. The discussed
approach is based on genetic programming. The individuals are method trees

Automatic Feature Extraction from Large Time Series 9

which work on a subset of the data and are mutated and recombined. The
result is a method tree which can be used on the complete data set for feature
extraction.

Audio data can be seen as time series with an extraordinary length. We
have seen a set of features which was automatically extracted from audio
data. With this set of features the reduction of the classification error to
nearly 1% for the genre classification classic/popular music was achieved.
The prediction of user preferences can be done with an error below 10%.

6 Acknowledgments

This article describes results from my master thesis written at the artificial
intelligence chair of the department of computer science of the university of
Dortmund. I would like to thank Prof. Dr. Katharina Morik and Dipl.-Inform.
Michael Wurst for the outstanding supervision.

References

BRADLEY, E. (1999): Intelligent Data Analysis: An Introduction. In M. Berthold
and D. Hand (eds.): Intelligent Data Analysis: An Introduction. Springer,
Berlin.

FISCHER, S. and KLINKENBERG, R. and MIERSWA, I. and RITTHOFF,
0. (2002): YALE: Yet Another Learning Environment. Technical report CI-
136/02, University of Dortmund

HOLTE, R. C. (1993): Very simple classification rules perform well on most com-
monly used datasets. Journal of Machine Learning, 11, 63-90.

JOACHIMS, T. (1999): Making large-Scale SVM Learning Practical. In: Advances
in Kernel Methods - Support Vector Learning. MIT Press.

LIU, H. and MOTODA, H. (1998): Feature Ezxtraction, Construction, and Selection:
A Data Mining Perspective. Kluwer.

MIERSWA, 1. (2003): Beatles vs. Bach: Merkmalsextraktion im Phasenraum von
Audiodaten. In: LLWA 03 - Tagungsband der GI-Workshop-Woche Lernen -
Lehren - Wissen - Adaptivitdt.

MIERSWA, I. and KLINKENBERG, R. and FISCHER, S. and RITTHOFF, O.
(2003): A Flexible Platform for Knowledge Discovery Experiments: YALE
— Yet Another Learning Environment. In: LLWA 03 - Tagungsband der GI-
Workshop- Woche Lernen - Lehren - Wissen - Adaptivitdt.

MITCHELL, M. T. (1996): Machine Learning. McGraw Hill, New York.

MORIK, K. (2000): The Representation Race — Preprocessing for Handling Time
Phenomena. In: Proc. of the 11th European Conference on Machine Learning.
Springer, Berlin, 4-19.

MORIK, K. and LIEDTKE, H. (2000): Learning about time. MiningMart Deliver-
able No. 8, University of Dortmund.

PYLE, D. (1999): Data Preparation for Data Mining. Morgan Kaufmann.

QUINLAN;, R. (1993): C4.5: Programs for Machine Learning. Morgan Kaufmann,
San Diego.

10 Mierswa

RITTHOFF, O. and KLINKENBERG, R. and FISCHER, S. and MIERSWA, I
(2002): A Hybrid Approach to Feature Selection and Generation Using an
Evolutionary Algorithm. Technical report CI-127/02, University of Dortmund.

RUPING, S. (2000): mySVM - Manual. University of Dortmund.

SCHLITTGEN, R. and STREITBERG, B. H. J. (1997): Zeitreihenanalyse. Olden-
bourg Verlag Miinchen.

WITTEN, I. H. and FRANK, E. (2000): Data Mining. Morgan Kaufmann, San
Diego.

