
Evolutionary Learning with Kernels:
A Generic Solution for Large Margin Problems

Ingo Mierswa
Artificial Intelligence Unit

Department of Computer Science
University of Dortmund

ingo.mierswa@uni-dortmund.de

ABSTRACT
In this paper we embed evolutionary computation into sta-
tistical learning theory. First, we outline the connection be-
tween large margin optimization and statistical learning and
see why this paradigm is successful for many pattern recog-
nition problems. We then embed evolutionary computation
into the most prominent representative of this class of learn-
ing methods, namely into Support Vector Machines (SVM).
In contrast to former applications of evolutionary algorithms
to SVMs we do not only optimize the method or kernel pa-
rameters. We rather use both evolution strategies and par-
ticle swarm optimization in order to directly solve the posed
constrained optimization problem. Transforming the prob-
lem into the Wolfe dual reduces the total runtime and al-
lows the usage of kernel functions. Exploiting the knowledge
about this optimization problem leads to a hybrid mutation
which further decreases convergence time while classifica-
tion accuracy is preserved. We will show that evolutionary
SVMs are at least as accurate as their quadratic program-
ming counterparts on six real-world benchmark data sets.
The evolutionary SVM variants frequently outperform their
quadratic programming competitors. Additionally, the pro-
posed algorithm is more generic than existing traditional
solutions since it will also work for non-positive semidefinite
kernel functions and for several, possibly competing, perfor-
mance criteria.

Track: Learning Classifier Systems and other Genetics-
Based Machine Learning

Categories and Subject Descriptors: I.2.6 [Computing
Methodologies]: Learning

General Terms: Algorithms, Theory, Experimentation

Keywords: Support vector machines, machine learning,
kernel methods, evolution strategies, particle swarms

1. INTRODUCTION
In this paper we will discuss how evolutionary algorithms

can be used to solve large margin optimization problems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06,July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

We explore the intersection of three highly active research
areas, namely machine learning, statistical learning theory,
and evolutionary algorithms. While the connection between
statistical learning and machine learning was analyzed be-
fore, embedding evolutionary algorithms into this connec-
tion will lead to a more generic algorithm which can deal
with problems today’s learning schemes cannot cope with.

Supervised machine learning is often about classification
problems. A set of data points is divided into several classes
and the machine learning method should learn a decision
function in order to decide into which class an unseen data
point should be classified.

The maximization of a margin between data points of dif-
ferent classes, i. e. the distance between a decision hyper-
plane and the nearest data points, interferes with the ideas
of statistical learning theory. This allows the definition of an
error bound for the generalization error. Furthermore, the
usage of kernel functions allows the learning of non-linear
decision functions. We focus on Support Vector Machines
(SVM) as they are the most prominent representatives for
large margin problems. Since SVMs guarantee an optimal
solution for the given data set they are currently one of the
mostly used learning methods. Furthermore, many other
optimization problems can also be formulated as large mar-
gin problem [26]. The relevance of large margin methods
can be measured by the number of submissions to the main
machine learning conferences over the past years1.

Usually, the optimization problem posed by SVMs is solved
with quadratic programming. However, there are some draw-
backs. First, for kernel functions which are not positive
semidefinite no unique global optimum exists. In these cases
quadratic programming is not able to find satisfying solu-
tions at all. Moreover, most implementations do not even
terminate [8]. There exist several useful non-positive ker-
nels [15], among them the sigmoid kernel which simulates a
neural network [3, 23]. A more generic optimization scheme
should allow such non-positive kernels without the need for
omitting the more efficient dual optimization problem [17].

Second, SVMs should be able to optimize several perfor-
mance measures at the same time. Traditional SVMs try
to maximize the prediction accuracy alone. However, de-
pending on the application area other specific performance
criteria should be optimized instead of or additionally to
prediction accuracy. Although first attempts were made to
incorporate multivariate performance measures into SVMs
[13], the problem is not generally solved and no solution exist

1More than 30% of all accepted papers for ICML 2005 dealt
with SVMs and other large margin methods.

for competing criteria. This problem as well as the general
trade-off between training error and capacity could be eas-
ily solved by an (multi-objective) evolutionary optimization
approach.

Former applications of evolutionary algorithms to SVMs
include the optimization of method and kernel parameters
[6, 19], the selection of optimal feature subsets [7], and the
creation of new kernel functions by means of genetic pro-
gramming [10]. The latter is particularly interesting since
it cannot be guaranteed that the resulting kernel functions
are again positive semi-definite.

Replacing the traditional optimization techniques by evo-
lution strategies or particle swarm optimization can tackle
both problems mentioned above. We will extract as much
information as possible from the optimization problem at
hand and develop and compare different search point op-
erations. We will show that the proposed implementation
leads to as good results as traditional SVMs on all real-
world benchmark data sets. Additionally, the optimization
is more generic since it also allows non-positive semi-definite
kernel functions and the simultaneous optimization of differ-
ent, maybe competing, criteria.

1.1 Outline
In Section 2 we give a short introduction into the concept

of structural risk minimization and the ideas of statistical
learning theory. We will also discuss an upper bound for
the generalization error. This allows us to formalize the op-
timization problem of large margin methods in Section 3.
We will introduce SVMs for the classification of given data
points in Section 3.1 and extend the separation problem to
non-separable datasets (see Section 3.2) with non-linear hy-
perplanes (see Section 3.3). This leads to a constrained op-
timization problem for which we utilize evolution strategies
and particle swarm optimization in Section 4. We discuss
several enhancements and a new type of mutation before
we evaluate the proposed methods on real-world benchmark
datasets in Section 5.

2. STRUCTURAL RISK MINIMIZATION
In this section we discuss the idea of structural risk mini-

mization. Machine learning methods following this paradigm
have a solid theoretical foundation and it is possible to define
bounds for prediction errors.

Let X ∈ IRm be a real-valued vector of random variables.
Let Y ∈ IR be another random variable. X and Y obey a
fixed but unknown probability distribution P (X, Y). Ma-
chine Learning tries to find a function f(x, γ) which predict
the value of Y for a given input x ∈ X. The function class
f depends on a vector of parameters γ, e. g. if f is the
class of all polynomials, γ might be the degree. We de-
fine a loss function L(Y, f(X, γ)) in order to penalize errors
during prediction [9]. Every convex function with arity 2,
positive range, and L(x, x) = 0 can be used as loss function
[22]. This leads to a possible criterion for the selection of a
function f , the expected risk :

R(γ) =

Z

L(y, f(x, γ))dP (x, y). (1)

Since the underlying distribution is not known we are not
able to calculate the expected risk. However, instead of
estimating the probability distribution in order to allow this
calculation, we directly estimate the expected risk by using

a set of known data points T = {(x1, y1) , . . . , (xn, yn)} ⊆
X × Y . T is usually called training data. Using this set of
data points we can calculate the empirical risk :

Remp(γ) =
1

n

n
X

i=1

L (yi, f (xi, γ)) . (2)

If training data is sampled according to P (X, Y), the em-
pirical risk approximates the expected risk if the number of
samples grows:

lim
n→∞

Remp(γ) = R(γ). (3)

It is, however, a well known problem that for a finite num-
ber of samples the minimization of Remp(γ) alone does not
lead to a good prediction model [27]. For each loss func-
tion L, each candidate γ, and each set of tuples T ′ ⊆ X ×
Y with T ∩ T ′ = ∅ exists another parameter vector γ′

so that L(y, f(x, γ)) = L(y, f(x, γ′)) for all x ∈ T and
L(y, f(x, γ)) > L(y, f(x, γ′)) for all x ∈ T ′. Therefore, the
minimization of Remp(γ) alone does not guarantee the op-
timal selection of a parameter vector γ for other samples
according to the distribution P (X,Y). This problem is of-
ten referred to as overfitting.

At this point we use one of the main ideas of statistical
learning theory. Think of two different functions perfectly
approximating a given set of training points. The first func-
tion is a linear function, i. e. a simple hyperplane in the con-
sidered space IRm. The second function also hits all training
points but is strongly wriggling in between. Naturally, if we
had to choose between these two approximation functions,
we tend to select the more simple one, i. e. the linear hy-
perplane in this example. This derives from the observation
that more simple functions behave better on unseen exam-
ples than very complicated functions. Since the mere mini-
mization of the empirical risk according to the training data
is not appropriate to find a good generalization, we incorpo-
rate the capacity2 of the used function into the optimization
problem (see Figure 1). This leads to the minimization of
the structural risk

Rstruct(γ) = Remp(γ) + λΩ(γ). (4)

Ω is a function which measures the capacity of the function
class f depending on the parameter vector γ. Since the
empirical risk is usually a monotonically decreasing function
of Ω, we use λ to manage the trade-off between training error
and capacity. Methods minimizing this type of risk function
are known as shrinkage estimators [11].

2.1 Bound on the generalization performance
For certain functions Ω the structural risk is an upper

bound for the empirical risk. The capacity of the func-
tion f for a given γ can for example be measured with help
of the Vapnik-Chervonenkis dimension (VC dimension) [27,
28]. The VC dimension is defined as the cardinality of the
biggest set of tuples which can separated with help of f in all
possible ways. For example, the VC dimension of linear hy-
perplanes in an m-dimensional space is m+1. Using the VC
dimension as a measure for capacity leads to a probabilistic
bound for the structural risk [27]. Let f be a function class
with finite VC dimension h and f(γ) the best solution for the

2Although not the same, the capacity of a function resembles
a measurement of the function complexity. In our example
we measure the ability to “wriggle”. More details in [27].

X

Y

Figure 1: The simultaneous minimization of empir-
ical risk and model complexity gives a hint which
function should be used in order to generalize the
given data points.

empirical risk minimization for T with |T | = n. Now choose
some η such that 0 ≤ η ≤ 1. Then for losses smaller than
some number B, the following bound holds with probability
1 − η:

R(γ) ≤ Remp(γ) + B

s

h
`

log 2l
h

+ 1
´

− log η

4

l
. (5)

Surprisingly, this bound is independent of P (X, Y). It only
assumes that both the seen and the unseen data points are
independently sampled according to some P (X, Y). Please
note that this bound also no longer contains a weighting
factor λ or any other trade-off at all. The existence of a
guaranteed error bound is the reason for the great success of
structural risk minimization in a wide range of applications.

3. LARGE MARGIN METHODS
As discussed in the previous section we need to use a class

of functions whose capacity can be controlled. In this sec-
tion we will discuss a special form of structural risk mini-
mization, namely large margin approaches. All large margin
methods have one thing in common: they embed structural
risk minimization by maximizing a margin between a linear
function and the nearest data points. The most prominent
large margin method for classification tasks is the Support
Vector Machine (SVM).

3.1 Support Vector Machines
We constrain the number of possible values of Y to 2,

without loss of generality these values should be −1 and
+1. In this case, finding a function f in order to decide
which of both predictions is correct for an unseen data point
is referred to as classification learning for the classes −1
and +1. We start with the simplest case: learning a linear
function from perfectly separable data. As we shall see in
Section 3.2 and 3.3, the general case - non-linear functions
derived from non-separable data - leads to a very similar
problem.

If the data points are linearly separable, a linear hyper-
plane must exist in the input space IRm which separates
both classes. This hyperplane is defined as

H = {x|〈w, x〉 + b = 0} , (6)

H

w

Margin

Origin

−b
|w|

+1

−1

Figure 2: A simple binary classification problem for
two classes −1 (empty bullets) and +1 (filled bullets).
The separating hyperplane is defined by the vector
w and the offset b. The distance between the nearest
data point(s) and the hyperplane is called margin.

where w is normal to the hyperplane, |b|/||w|| is the per-
pendicular distance of the hyperplane to the origin (offset
or bias), and ||w|| is the Euclidean norm of w. The vector w
and the offset b define the position and orientation of the hy-
perplane in the input space. These parameters correspond
to the function parameters γ. After the optimal parameters
w and b were found, the prediction of new data points can
be calculated as

f(x, w, b) = sgn (〈w, x〉 + b) , (7)

which is one of the reasons why we constrained the classes
to −1 and +1.

Figure 2 shows some data points and a separating hyper-
plane. If all given data points are correctly classified by the
hyperplane at hand the following must hold:

∀i : yi (〈w, xi〉 + b) ≥ 0. (8)

Of course, an infinite number of different hyperplanes exist
which perfectly separate the given data points. However,
one would intuitively choose the hyperplane which has the
biggest amount of safety margin to both sides of the data
points. Normalizing w and b in a way that the point(s)
closest to the hyperplane satisfy |〈w, xi〉 + b| = 1 we can
transform equation 8 into

∀i : yi (〈w, xi〉 + b) ≥ 1. (9)

We can now define the margin as the perpendicular distance
of the nearest point(s) to the hyperplane. Consider two
points x1 and x2 on opposite sides of the margin. That is
〈w, x1〉+b = +1 and 〈w, x2〉+b = −1 and 〈w, (x1−x2)〉 = 2.
The margin is then given by 1/||w||.

It can be shown, that the capacity of the class of sep-
arating hyperplanes decreases with increasing margin [21].
Maximizing the margin of a hyperplane therefore formalizes
the structural risk minimization discussed in the previous
section. Instead of maximizing 1/||w|| we could also min-
imize 1

2
||w||2 which will result into more simple equations

later. This leads to the optimization problem

minimize 1
2
||w||2 (10)

subject to ∀i : yi (〈w, xi〉 + b) ≥ 1. (11)

Function 10 is the objective function and the constraints
from equation 11 are called inequality constraints. They
form a constrained optimization problem. We will use a La-
grangian formulation of the problem. This allows us to re-
place the inequality constraints by constraints on the La-
grange multipliers which are easier to handle. The second
reason is that after the transformation of the optimization
problem, the training data will only appear in dot products.
This will allow us to generalize the optimization to the non-
linear case (see Section 3.3). We will now introduce positive
Lagrange multipliers αi, i = 1, . . . , n, one for each of the
inequality constraints. The Lagrangian has the form

LP (w, b, α) =
1

2
||w||2 −

n
X

i=1

αiyi (〈w, xi〉 + b) . (12)

Finding a minimum of this function requires that the deriva-
tives

∂LP (w,b,α)
∂w

= w −
n

P

i=1

αiyixi (13)

∂LP (w,b,α)
∂b

=
n

P

i=1

αiyi (14)

are zero, i. e.

w =
n

P

i=1

αiyixi (15)

0 =
n

P

i=1

αiyi. (16)

The Wolfe dual, which has to be maximized, results from
the Lagrangian by substituting 15 and 16 into 12, thus

LD(w, b, α) =
n

X

i=1

αi −
1

2

n
X

i=1

n
X

j=1

yiyjαiαj 〈xi, xj〉 . (17)

This leads to the dual optimization problem which must
be solved in order to find a separating maximum margin
hyperplane for given set of data points:

maximize
n

P

i=1

αi −
1
2

n
P

i=1

n
P

j=1

yiyjαiαj 〈xi, xj〉 (18)

subject to αi ≥ 0 for all i = 1, . . . , n (19)

and
n

P

i=1

αiyi = 0. (20)

From an optimal vector α∗ we can calculate the optimal
normal vector w∗ using equation 15. The optimal offset can
be calculated with help of equation 11. Please note, that w
is a linear combination of those data points xi with αi 6= 0.
These data points are called support vectors, hence the name
support vector machine. Only support vectors determine the
position and orientation of the separating hyperplane, other
data points might as well be omitted during learning. In
Figure 2 the support vectors are marked with circles. The
number of support vectors is usually much smaller than the
total number of data points.

3.2 Non-separable data
We now consider the case that the given set of data points

is not linearly separable. The optimization problem dis-
cussed in the previous section would not have a solution
since in this case constraint 11 could not be fulfilled for all

i. We relax this constraint by introducing positive slack
variables ξi, i = 1, . . . , n. Constraint 11 becomes

∀i : yi (〈w, xi〉 + b) ≥ 1 − ξi. (21)

In order to minimize the number of wrong classifications
we introduce a correction term C

Pn

i=1 ξi into the objective
function. The optimization problems then becomes

minimize 1
2
||w||2 + C

n
P

i=1

ξi (22)

subject to ∀i : yi (〈w, xi〉 + b) ≥ 1 − ξi. (23)

The factor C determines the weight of wrong predictions as
part of the objective function. As in the previous section
we create the dual form of the Lagrangian. The slacking
variables ξi vanish and we get the optimization problem

maximize
n

P

i=1

αi −
1
2

n
P

i=1

n
P

j=1

yiyjαiαj 〈xi, xj〉 (24)

subject to 0 ≤ αi ≤ C for all i = 1, . . . , n (25)

and
n

P

i=1

αiyi = 0. (26)

It can easily be seen that the only difference to the separable
case is the additional upper bound C for all αi.

3.3 Non-linear learning with kernels
The optimization problem described with equations 24,

25, and 26 will deliver a linear separating hyperplane for
arbitrary datasets. The result is optimal in a sense that no
other linear function is expected to provide a better classifi-
cation function on unseen data according to P (X, Y). How-
ever, if the data is not linearly separable at all the question
arises how the described optimization problem can be gener-
alized to non-linear decision functions. Please note that the
data points only appear in the form of dot products 〈xi, xj〉.
A possible interpretation of this dot product is the similarity
of these data points in the input space IRm. Now consider a
mapping Φ : IRm → H into some other Euclidean space H
(called feature space) which might be performed before the
dot product is calculated. The optimization would depend
on dot products in this new space H , i. e. on functions of
the form 〈Φ (xi) , Φ(xj)〉. A function k : IRm × IRm → IR
with the characteristic

k (xi, xj) = 〈Φ(xi) , Φ (xj)〉 (27)

is called kernel function or kernel. Figure 3 gives a rough
idea how transforming the data points can help to solve
non-linear problems with the optimization in a (higher di-
mensional) space where the points can be linearly separated.

A fascinating property of kernels is that for some map-
pings Φ a kernel k exists which can be calculated without
actually performing Φ. Since often the dimension of H is
greater than the dimension m of the input space and H
sometimes is even infinite dimensional, the usage of such
kernels is a very efficient way to introduce non-linear deci-
sion functions into large margin approaches. Prominent ex-
amples for such efficient non-linear kernels are polynomial
kernels with degree d

k (xi, xj) = (κ〈xi, xj〉 + δ)d , (28)

radial basis function kernels (RBF kernels)

k (xi, xj) = e
−

||xi−xj ||2

2σ2 (29)

HR
m

Figure 3: After the transformation of all data points
into the feature space H the non-linear separation
problem can be solved with a linear separation al-
gorithm. In this case a transformation in the space
of polynomials with degree 2 was chosen.

for a σ > 0, and the sigmoid kernel

k (xi, xj) = tanh (κ 〈xi, xj〉 − δ) (30)

which can be used to simulate a neural network. κ and δ
are scaling and shifting parameters. Since the RBF kernel
is easy interpretable and often yields good prediction per-
formance, it is used in a wide range of applications. We will
also use the RBF kernel for our experiments described in
section 5 in order to demonstrate the learning ability of the
proposed SVM.

We replace the dot product in the objective function by
kernel functions and achieve the final optimization problem
for finding a non-linear separation for non-separable data
points

maximize
n

P

i=1

αi −
1
2

n
P

i=1

n
P

j=1

yiyjαiαjk (xi, xj) (31)

subject to 0 ≤ αi ≤ C for all i = 1, . . . , n (32)

and
n

P

i=1

αiyi = 0. (33)

It can be shown that if the kernel k, i. e. it’s kernel ma-
trix, is positive definite, the objective function is concave
[2]. The optimization problem therefore has a global unique
maximum. However, in some cases a specialized kernel func-
tion must be used to measure the similarity between data
points which is not positive definite, sometimes not even
positive semidefinite [21]. In these cases the usual quadratic
programming approaches might not be able to find a global
maximum in feasible time.

4. EVOLUTIONARY COMPUTATION FOR
LARGE MARGIN OPTIMIZATION

Since traditional SVMs are not able to optimize for non-
positive semidefinite kernel function, it is a very appealing
idea to replace the usual quadratic programming approaches
by an evolution strategies (ES) approach [1] or by particle
swarm optimization (PSO) [14]. In this section we will de-
scribe both a straightforward application of these techniques
and how we can exploit some information about our opti-
mization problem and incorporate that information into our
search operators.

4.1 Solving the dual problem and other sim-
plifications

The used optimization problem is the dual problem for
non-linear separation of non-separable data developed in the
last sections (equations 31, 32, and 33). Of course it would
also be possible to directly optimize the original form of
our optimization problem depicted in equations 22 and 23.
That is, we could directly optimize the weight vectors and
the offset. As mentioned before, there are two drawbacks:
first, the costs of calculating the fitness function would be
much higher for the original optimization problem since the
fulfillment of all n constraints must be recalculated for each
new hyperplane. It is a lot easier to check if all 0 ≤ αi ≤
C apply. Second, it would not be possible to allow non-
linear learning with efficient kernel functions in the original
formulation of the problem. Furthermore, the kernel matrix
K with Kij = k (xi, xj) can be calculated beforehand and
the training data is never used during optimization again.
This further reduces the needed runtime for optimization
since the kernel matrix calculation is done only once.

This is a nice example for a case, where transforming the
objective function beforehand is both more efficient and al-
lows enhancements which would not have been possible be-
fore. Transformations of the fitness functions became a very
interesting topic recently [25].

Another efficiency improvement can be achieved by for-
mulating the problem with b = 0. All solution hyperplanes
must then contain the origin and the constraint 33 will van-
ish. This is a mild restriction for high-dimensional spaces
since the number of degrees of freedom is only decreased by
one. However, during optimization we do not have to cope
with this equality constraint which would take an additional
runtime of O(n).

4.2 EvoSVM and PsoSVM
We developed a support vector machine based on evolu-

tion strategies optimization (EvoSVM). We utilized three
different types of mutation which will be described in this
section. Furthermore, we developed another SVM based
on particle swarm optimization (PsoSVM) which is also de-
scribed.

The first approach (EvoSVM-G, G for Gaussian muta-
tion) merely utilizes a standard ES optimization. Individu-
als are the real-valued vectors α and mutation is performed
by adding a Gaussian distributed random variable with stan-
dard deviation C/10. In addition, a variance adaptation is
conducted during optimization (1/5 rule [18]). Crossover
probability is high (0.9). We use tournament selection with
a tournament size of 0.25 multiplied by the population size.
The initial individuals are random vectors with 0 ≤ αi ≤ C.
The maximum number of generations is 1000 and the opti-
mization is terminated if no improvement occurred during
the last 5 generations. The population size is 10.

The second version is called EvoSVM-S (S for switching
mutation). Here we utilize the fact that only a small amount
of input data points will become support vectors (sparsity).
On the other hand, one can often observe that non-zero
alpha values are equal to the upper bound C and only a very
small amount of support vectors exists with 0 < αi < C.
Therefore, we just use the well known mutation of genetic
algorithms and switch between 0 and C with probability
1/n for each αi. The other parameters are equal to those
described for the EvoSVM-G.

for i = 1 to n do {

if (random(0, 1) < 1/n) do {

if (alpha_i > 0) do {

alpha_i = 0;

} else do {

alpha_i = random(0, C);

}

}

}

Figure 4: A simple hybrid mutation which should
speed-up the search for sparser solutions. It con-
tains elements from standard mutations from both
genetic algorithms and evolution strategies.

Using this switching mutation inspired by genetic algo-
rithms only allow αi = 0 or αi = C. Instead of a complete
switch between 0 and C or a smooth change of all values
αi like the Gaussian mutation does, we developed a hybrid
mutation combining both elements. That means that we
check for each αi with probability 1/n if the value should be
mutated at all. If the current value αi is greater than 0, αi is
set to 0. If αi is equal to 0, αi is set to a random value with
0 ≤ αi ≤ C. Figure 4 gives an overview over this hybrid
mutation. The function random(a, b) returns an uniformly
distributed random number between a and b. The other pa-
rameters are the same as described for the EvoSVM-G. We
call this version EvoSVM-H (H for hybrid).

As was mentioned before, the optimization problem usu-
ally is concave and the risk for local extrema is small. There-
fore, we also applied a PSO technique. It should be inves-
tigated if PSO, which is similar to the usual quadratic pro-
gramming approaches for SVMs in a sense that the gradient
information is exploited, is able to find a global optimum in
shorter time. We call this last version PsoSVM and use a
standard PSO with inertia weight 0.1, local best weight 1.0,
and global best weight 1.0. The inertia weight is dynami-
cally adapted during optimization [14].

5. EXPERIMENTS AND RESULTS
In this section we try to evaluate the proposed evolution-

ary optimization SVMs. We compare our implementation to
the quadratic programming approaches usually applied to
large margin problems. The experiments demonstrate the
competitiveness in terms of classification error minimization,
runtime, and robustness.

We apply the discussed EvoSVM variants as well as the
PsoSVM on six real-world benchmark datasets. We selected
these datasets from the UCI machine learning repository
[16] and the StatLib dataset library [24], because they al-
ready define a binary classification task, consist of real-
valued numbers only and do not contain missing values.
Therefore, we did not need to perform additional prepro-
cessing steps which might introduce some bias. The proper-
ties of all datasets are summarized in Table 1. The default
error corresponds to the error a lazy default classifier would
make by always predicting the major class. Classifiers must
produce lower error rates in order to learn at all instead of
just guessing.

In order to compare the evolutionary SVMs described
in this paper with standard implementations we also ap-
plied two other SVMs on all datasets. Both SVMs use a

Dataset n m Source σ Default

Liver 346 6 UCI 0.010 42.03

Ionosphere 351 34 UCI 1.000 35.90

Sonar 208 60 UCI 1.000 46.62

Lawsuit 264 4 StatLib 0.010 7.17

Lupus 87 3 StatLib 0.001 40.00

Crabs 200 7 StatLib 0.100 50.00

Table 1: The evaluation datasets. n is the num-
ber of data points, m is the dimension of the input
space. The kernel parameter σ was optimized for
the comparison SVM learner mySVM. The last col-
umn contains the default error, i. e. the error for
always predicting the major class.

slightly different optimization technique based on quadratic
programming. The used implementations were mySVM [20]
and LibSVM [4]. The latter is an adaptation of the widely
used SV M light [12].

We use a RBF kernel for all SVMs and determine the
best parameter value for σ with a grid search parameter op-
timization for mySVM. This ensures a fair comparison since
the parameter is not optimized for one of the evolutionary
SVMs. Possible parameters were 0.001, 0.01, 0.1, 1 and 10.
The optimal value for each dataset is also given in Table 1.

In order to determine the performance of all methods we
perform a k-fold cross validation. That means that the
dataset T is divided into k disjoint subsets Ti. For each
i ∈ {1, . . . , k} we use T\Ti as training set and the remaining
subset Ti as test set. If Fi is the number of wrong predic-
tions on test set Ti we calculate the average classification
error

E =
1

k

k
X

i=1

Fi

|Ti|
(34)

over all test sets in order to measure the classification per-
formance. In our experiments we choose k = 20, i. e. for
each evolutionary method the average and standard devia-
tion of 20 runs is reported. All experiments were performed
with the machine learning environment Yale [5].

Table 2 summarizes the results for different values of C.
It can be seen that the EvoSVM variants frequently yield
smaller classification errors than the quadratic programming
counterparts (mySVM and LibSVM). For C = 1, a statisti-
cal significant better result was achieved by using LibSVM
only for the Liver data set. For all other datasets the evo-
lutionary optimization outperforms the quadratic program-
ming approaches. The same applies for C = 0.1. For rather
small values of C most learning schemes were not able to
produce better predictions than the default classifier. For
C = 0.01, however, PsoSVM at least provides a similar
accuracy to LibSVM. The reason for higher errors of the
quadratic programming approaches is probably a too ag-
gressive termination criterion. Although this termination
behavior further reduces runtime for mySVM and LibSVM,
the classification error is often increased.

It turns out that the standard ES approach EvoSVM-
G using a mutation adding a Gaussian distributed random
variable often outperforms the other SVMs. However, the

C = 1

Liver Ionosphere Sonar Lawsuit Lupus Crabs

Error T Error T Error T Error T Error T Error T

EvoSVM-G 34.71±8.60 68 10.81±5.71 80 14.03±4.52 26 2.05±1.87 52 25.20±11.77 8 2.25±3.72 25

EvoSVM-S 35.37±6.39 4 8.49±3.80 9 17.45±6.64 6 2.40±1.91 10 30.92±12.42 <1 4.05±4.63 2

EvoSVM-H 34.97±7.32 7 6.83±3.87 22 15.41±6.39 10 2.01±1.87 14 24.03±13.68 1 3.95±4.31 7

PsoSVM 34.78±4.95 8 9.90±4.38 9 16.94±5.61 7 3.02±2.83 3 25.22± 7.67 <1 3.40±3.70 2

mySVM 33.62±4.31 2 8.56±4.25 4 15.81±5.59 2 1.89±2.51 1 25.28± 8.58 1 3.00±3.32 1

LibSVM 32.72±5.41 2 7.70±3.63 3 14.60±4.96 3 2.41±2.64 1 24.14±12.33 1 3.00±4.58 1

F Test 3.20 (0.01) 9.78 (0.00) 6.19 (0.00) 1.51 (0.19) 11.94 (0.00) 2.25 (0.05)

C = 0.1

Liver Ionosphere Sonar Lawsuit Lupus Crabs

Error T Error T Error T Error T Error T Error T

EvoSVM-G 33.90±4.19 74 9.40±6.14 89 21.72±6.63 35 2.35±1.92 50 24.90±10.51 7 7.20±4.36 27

EvoSVM-S 35.57±3.55 4 7.12±3.54 18 24.90±6.62 4 4.47±2.31 13 25.98±12.56 <1 7.95±5.68 2

EvoSVM-H 34.76±4.70 5 6.55±4.61 23 24.40±6.09 11 4.16±3.14 19 26.51±13.03 1 6.50±5.02 2

PsoSVM 36.81±5.04 3 13.96±7.56 10 24.18±6.11 3 3.03±2.83 3 29.86±12.84 1 8.15±6.02 1

mySVM 42.03±1.46 2 35.90±1.35 2 46.62±1.62 2 7.17±2.55 1 41.25±6.92 1 6.50±4.50 1

LibSVM 33.08±10.63 2 11.40±6.52 3 22.40±6.45 3 4.55±3.25 1 25.29±16.95 1 21.00±12.41 1

F Test 34.46 (0.00) 492.88 (0.00) 323.83 (0.00) 20.64 (0.00) 64.83 (0.00) 100.92 (0.00)

C = 0.01

Liver Ionosphere Sonar Lawsuit Lupus Crabs

Error T Error T Error T Error T Error T Error T

EvoSVM-G 42.03±1.46 75 35.90±1.35 86 45.33±2.20 39 7.17±2.55 55 40.00±6.33 7 26.20±12.66 27

EvoSVM-S 42.03±1.46 3 35.90±1.35 9 46.62±1.62 4 7.17±2.55 3 40.00±6.33 <1 8.58±4.35 1

EvoSVM-H 42.03±1.46 3 35.90±1.35 20 46.27±1.42 12 7.17±2.55 3 40.00±6.33 1 7.00±4.00 2

PsoSVM 41.39±8.59 3 35.90±1.35 4 27.90±6.28 3 7.17±2.55 2 31.94±12.70 1 10.05±7.26 1

mySVM 42.03±1.46 2 35.90±1.35 2 46.62±1.62 2 7.17±2.55 1 40.00±6.33 1 6.50±4.50 1

LibSVM 42.03±1.46 2 35.90±1.35 3 28.46±10.44 2 7.17±2.55 1 26.11±16.44 1 50.00±0.00 1

F Test 0.52 (0.77) 0.00 (1.00) 442.46 (0.00) 0.00 (1.00) 78.27 (0.00) 1095.94 (0.00)

Table 2: Classification error, standard deviation, and runtime of all SVMs on the evaluation datasets for
parameters C = 1, C = 0.1, and C = 0.01. The runtime T is given in seconds. The last line for each table
depicts the F test value and the probability that the results are not statistical significant.

runtime for this approach is far to big to be feasible in
practical situations. The mere GA based selection muta-
tion switching between 0 and C converges much faster but
is often less accurate. The remaining runtime differences
between EvoSVM-S and the quadratic programming coun-
terparts can surely be reduced by code optimization. The
used SVM implementations are matured and have been op-
timized over the years whereas the implementations of the
evolutionary approaches follow standard recipes without any
code optimization.

The hybrid version EvoSVM-H combines the best ele-
ments of both worlds. It converges nearly as fast as the
EvoSVM-S and is often nearly as accurate as the EvoSVM-
G. In some cases (Ionosphere, Lupus) it even outperforms
all other SVMs.

PsoSVM on the other hand does not provide the best
performance in terms of classification error. Compared to
the other evolutionary approaches, however, it converged
much earlier than the other competitors.

Please note that the standard deviations of the errors
achieved with the evolutionary SVMs are similar to the stan-
dard deviations achieved with mySVM or LibSVM. We can
therefore conclude that the evolutionary optimization is as
robust as the quadratic programming approaches and differ-
ences mainly derives from different subsets for training and
testing due to cross validation instead of the used random-
ized heuristics.

Therefore, evolutionary SVMs provide an interesting al-
ternative to more traditional SVM implementations. Beside
the similar results EvoSVM is also able to cope with non-

positive definite kernel functions and multivariate optimiza-
tion.

6. CONCLUSION
In this paper we connected evolutionary computation with

statistical learning theory. The idea of large margin meth-
ods was very successful in many applications from machine
learning and data mining. We used the most prominent
representative of this paradigm, namely Support Vector Ma-
chines, and employed evolution strategies and particle swarm
optimization in order to solve the constrained optimization
problem at hand. We developed a hybrid mutation which
decreases convergence time while the classification accuracy
is preserved.

An interesting property of large margin methods is that
the runtime for fitness evaluation is reduced by transforming
the problem into the dual problem. In our case, the algo-
rithm is both faster and provides space for other improve-
ments like incorporating a kernel function for non-linear
classification tasks. This is a nice example how a transfor-
mation into the dual optimization problem can be exploited
by evolutionary algorithms.

We have seen that evolutionary SVMs are at least as ac-
curate as their quadratic programming counterparts. For
practical values of C the evolutionary SVM variants fre-
quently outperformed their competitors. We can conclude
that evolutionary algorithms proved as reliable as other op-
timization schemes for this type of problems. In addition,
beside the inherent advantages of evolutionary algorithms
(e. g. parallelization, multi-objective optimization of train-

ing error and capacity) it is now also possible to employ
non positive semidefinite kernel functions which would lead
to unsolvable problems for other optimization techniques.
In our future work we plan to make experiments with such
non positive semidefinite kernel functions. This also applies
for multi-objective optimization of both the margin and the
training error.

It turns out that the hybrid mutation delivers results
nearly as accurate as the Gaussian mutation and has a sim-
ilar convergence behavior compared to the switching mu-
tation known from GAs. Future improvements could start
with a switching mutation and can post-optimize with a
Gaussian mutation after a first convergence. Values always
remaining 0 or C during the first run could be omitted in
the post-optimization step. It is possible that this mutation
is even faster and more accurate then EvoSVM-H.

7. ACKNOWLEDGMENTS
This work was supported by the Deutsche Forschungsge-

meinschaft (DFG) within the Collaborative Research Center
“Reduction of Complexity for Multivariate Data Structures”.

8. REFERENCES
[1] H.-G. Beyer and H.-P. Schwefel. Evolution strategies:

A comprehensive introduction. Journal Natural
Computing, 1(1):2–52, 2002.

[2] C. Burges. A tutorial on support vector machines for
pattern recognition. Data Mining and Knowledge
Discovery, 2(2):121–167, 1998.

[3] G. Camps-Valls, J. Martin-Guerrero, J. Rojo-Alvarez,
and E. Soria-Olivas. Fuzzy sigmoid kernel for support
vector classifiers. Neurocomputing, 62:501–506, 2004.

[4] C.-C. Chang and C.-J. Lin. LIBSVM: a library for
support vector machines, 2001.

[5] S. Fischer, R. Klinkenberg, I. Mierswa, and
O. Ritthoff. Yale: Yet Another Learning Environment
– Tutorial. Technical Report CI-136/02, Collaborative
Research Center 531, University of Dortmund,
Dortmund, Germany, 2002.

[6] F. Friedrichs and C. Igel. Evolutionary tuning of
multiple svm parameters. In Proc. of the 12th
European Symposium on Artificial Neural Networks
(ESANN 2004), pages 519–524, 2004.

[7] H. Frp̈hlich, O. Chapelle, and B. Schölkopf. Feature
selection for support vector machines using genetic
algorithms. International Journal on Artificial
Intelligence Tools, 13(4):791–800, 2004.

[8] B. Haasdonk. Feature space interpretation of svms
with indefinite kernels. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 27(4):482–492,
2005.

[9] T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer Series in Statistics.
Springer, 2001.

[10] T. Howley and M. Madden. The genetic kernel
support vector machine: Description and evaluation.
Artificial Intelligence Review, 2005.

[11] W. James and C. Stein. Estimation with quadratic
loss. In Proceedings of the Fourth Berkeley Symposium
on Mathematics, Statistics and Probability,

pages 361–380, 1960.

[12] T. Joachims. Making large-scale SVM learning
practical. In B. Schölkopf, C. Burges, and A. Smola,
editors, Advances in Kernel Methods - Support Vector
Learning, chapter 11. MIT Press, Cambridge, MA,
1999.

[13] T. Joachims. A support vector method for
multivariate performance measures. In Proc. of the
International Conference on Machine Learning
(ICML), pages 377–384, 2005.

[14] J. Kennedy and R. C. Eberhart. Particle swarm
optimization. In Proc. of the International Conference
on Neural Networks, pages 1942–1948, 1995.

[15] H.-T. Lin and C.-J. Lin. A study on sigmoid kernels
for svm and the training of non-psd kernels by
smo-type methods, March 2003.

[16] D. Newman, S. Hettich, C. Blake, and C. Merz. UCI
repository of machine learning databases, 1998.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[17] C. Ong, X. Mary, S. Canu, and A. J. Smola. Learning
with non-positive kernels. In Proc. of the 21st
International Conference on Machine Learning
(ICML), pages 639–646, 2004.

[18] I. Rechenberg. Evolutionsstrategie: Optimierung
technischer Systeme nach Prinzipien der biologischen
Evolution. Frommann-Holzboog, 1973.

[19] T. Runarsson and S. Sigurdsson. Asynchronous
parallel evolutionary model selection for support
vector machines. Neural Information Processing,
3(3):59–67, 2004.

[20] S. Rüping. mySVM Manual. Universität Dortmund,
Lehrstuhl Informatik VIII, 2000. http://www-
ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/.

[21] B. Schölkopf and A. J. Smola. Learning with Kernels –
Support Vector Machines, Regularization,
Optimization, and Beyond. MIT Press, 2002.

[22] A. Smola, B. Schölkopf, and K.-R. Müller. General
cost functions for support vector regression. In
Proceedings of the 8th International Conference on
Artificial Neural Networks, pages 79–83, 1998.

[23] A. J. Smola, Z. L. Ovari, and R. C. Williamson.
Regularization with dot-product kernels. In Proc. of
the Neural Information Processing Systems (NIPS),
pages 308–314, 2000.

[24] Statlib – datasets archive.
http://lib.stat.cmu.edu/datasets/.

[25] T. Storch. On the impact of objective function
transformations on evolutionary and black-box
algorithms. In Proc. of the Genetic and Evolutionary
Computation Conference (GECCO), pages 833–840,
2005.

[26] B. Taskar, V. Chatalbashev, D. Koller, and
C. Guestrin. Learning structured prediction models: A
large margin approach. In Proc. of the International
Conference on Machine Learning (ICML), 2005.

[27] V. Vapnik. Statistical Learning Theory. Wiley, New
York, 1998.

[28] V. Vapnik and A. Chervonenkis. The necessary and
sufficient conditions for consistency in the empirical
risk minimization method. Pattern Recognition and
Image Analysis, 1(3):283–305, 1991.

