
Non-Convex and Multi-Objective

Optimization in Data Mining

Non-Convex and Multi-Objective Optimization for

Statistical Learning and Numerical Feature Engineering

Dissertation

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

der Technischen Universität Dortmund

an der Fakultät für Informatik

von

Ingo Mierswa

Dortmund

2009

2

Tag der mündlichen Prüfung: 27.04.2009

Dekan: Prof. Dr. Peter Buchholz

Gutachter: Prof. Dr. Katharina Morik
Prof. Dr. Claus Weihs

3

4

Acknowledgments

I would like to express my gratitude to my supervisor, Prof. Dr. Katharina Morik,
whose expertise, understanding, patience, and personality added considerably to this
thesis and the last years of my life. I appreciate her vast knowledge and skill and that
she always gave me the freedom to work on topics of my preference and – maybe even
more important – to develop my own style of work. During the last years, she became
more of a mentor and friend than a professor to me.

I would like to thank Prof. Dr. Claus Weihs for the assistance he provided and his
valuable hints how I could improve my thesis. It was really helpful to get those comments
on all levels of detail and especially to get these comments from a statistician’s point of
view.

I would like to thank the members of the Artificial Intelligence Group, past and present.
I find it quite interesting that the time we played soccer almost every day on a parking
lot was also the time everyone of us published most of his work. But as we all know:
correlation does not necessarily means causality.

I recognize that this research would not have been possible without the financial as-
sistance of the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG)
who supported this work within two collaborative research centers (Sonderforschungs-
bereiche, SFB), namely the SFB 531 “Design and Management of Complex Technical
Processes and Systems by Means of Computational Intelligence Methods” and the SFB
475 “Reduction of Complexity in Multivariate Data Structures”.

Last but not least I would like to thank my family for the support they provided me
through my entire life and in particular, I must acknowledge my wife and best friend,
Nadja.

5

6

According to the latest official figures,
43% of all statistics are totally worthless.

7

Contents

List of Tables 15

List of Figures 19

List of Notations 25

1. Introduction 31

1.1. Three Theses about Data Mining . 31

1.2. Related Work . 36

1.3. Outline . 39

2. Basics 41

2.1. Machine Learning . 41

2.1.1. Supervised Learning . 42

2.1.1.1. Classification Learning 43

2.1.1.2. Regression Learning . 43

2.1.2. Unsupervised Learning . 43

2.2. Statistical Learning . 44

2.2.1. Regularized Risk Minimization . 44

2.2.1.1. Bound on the Generalization Performance 46

2.2.2. Large Margin Methods . 47

2.2.2.1. Support Vector Machines 47

2.2.2.2. Non-Separable Data . 50

2.2.2.3. Non-Linear Learning with Kernels 51

2.3. Optimization . 53

2.3.1. Linear Programming . 54

2.3.2. Quadratic and Non-Linear Programming 55

2.3.2.1. Nelder-Mead Optimization 55

2.3.2.2. Newton Optimization . 55

2.3.3. Non-Convex Programming . 57

9

Contents

2.3.3.1. Evolutionary Algorithms 57

2.4. Multi-Objective Optimization . 59

2.4.1. Multi-Objective Evolutionary Optimization 60

2.4.1.1. Guided Multi-Objective Optimization 61

I. Learning 63

3. Multi-Objective Learning 65

3.1. Single-Objective Evolutionary Support Vector Machines 65

3.1.1. Motivation for Evolutionary Support Vector Machines 66

3.1.2. Evolutionary Computation for Large Margin Optimization 68

3.1.2.1. Solving the Dual Problem and Other Simplifications . . . 68

3.1.2.2. EvoSVM and PsoSVM 69

3.1.3. Experiments and Results . 71

3.1.3.1. Data Sets . 71

3.1.3.2. Comparison for the Objective Function 71

3.1.3.3. Comparison for Positive Kernels 72

3.2. Multi-Objective Statistical Learning . 77

3.2.1. The Regularized Risk Consists of Multiple Objectives 77

3.2.2. Explicit Trade-off between Error and Complexity 79

3.2.3. First Objective: Maximizing the Margin 80

3.2.4. Second Objective: Minimizing the Number of Training Errors . . . 82

3.2.5. Multi-Objective Evolutionary Algorithms for Large Margin Learning 83

3.2.5.1. Definition of the Objectives 83

3.2.5.2. The Multi-Objective EvoSVM 84

3.2.6. Selecting a Solution from the Pareto Set 84

3.2.7. Experiments and Results . 86

3.2.7.1. Interpretation of the Pareto Fronts 86

3.2.7.2. Multi-Objective Optimization vs. Multiple Single-Objective
Runs . 91

4. Non-Convex Optimization for Statistical Learning 93

4.1. Non-Positive Semidefinite Kernel Functions 93

4.1.1. The Relevance Vector Machine: A Kernel Method for Indefinite
Kernel Functions . 95

4.2. Experiments and Results . 99

4.2.1. Evolutionary Computation for Non-Convex Optimization 99

4.2.2. Data Sets . 99

4.2.3. Comparison for Non-positive Kernels 100

10

Contents

5. Transductive Learning: Non-Convex and Multi-Objective 103

5.1. Motivation of Transductive Learning . 103

5.1.1. Problem Definition . 105

5.2. Dual Optimization Problems for Transductive SVM 106

5.2.1. First Objective: Maximizing the Margin 107

5.2.2. Second Objective: Minimizing the Training Error 112

5.2.3. Third Objective: Minimizing the Test Error 113

5.3. Single-Objective but Non-Convex: The Evolutionary TSVM 115

5.3.1. Experiments and Results . 116

5.4. Multi-Objective TSVM . 118

5.4.1. Experiments and Results . 122

5.4.1.1. Interpretation of the Pareto Fronts 122

5.4.2. From Classification to Clustering in One Single Run 123

II. Feature Space Transformations 127

6. Multi-Objective Supervised Feature Construction 129

6.1. Feature Space Transformations . 130

6.1.1. Feature Construction and Genetic Programming 131

6.1.2. Feature Construction and Kernels 132

6.1.3. Multi-Objective Feature Space Transformations 132

6.2. Multi-Objective Evolutionary Feature Selection 133

6.2.1. Interpretation of the Pareto Fronts 134

6.3. Regularized Feature Selection and Construction 135

6.3.1. Regularized Risk for Feature Space Transformations 136

6.3.2. Definition of Ω(X) for Feature Selection and Feature Construction 136

6.4. Multi-Objective Evolutionary Feature Construction 138

6.4.1. Problem-Specific Search Operations 138

6.4.1.1. Mutations . 138

6.4.1.2. Crossover . 139

6.4.1.3. Selection . 139

6.4.2. Code Bloat and Intron Prevention 140

6.4.2.1. Intron Prevention by Sampling Equivalence Checks . . . 141

6.4.3. A New Generating Mutation for Intron Prevention 141

6.5. Experiments and Results . 142

6.5.1. Interpretation of the Pareto Front 145

7. Multi-Objective Supervised Feature Extraction 149

7.1. Feature Extraction from Audio Data . 150

7.2. Methods for Feature Extraction . 152

7.2.1. Basis Transformations . 153

11

Contents

7.2.1.1. Frequency Space . 154

7.2.1.2. Correlation Space . 154

7.2.1.3. Reconstruction of the State Space 155

7.2.1.4. Reversibility . 156

7.2.2. Filters . 157

7.2.3. Mark-up of Intervals . 157

7.2.4. Generalized Windowing . 158

7.2.5. Functions . 159

7.2.6. Some Properties of the Methods 161

7.3. Adaptive Construction of Method Trees 164

7.3.1. Representation . 166

7.3.2. Mutation, Crossover, and Selection 166

7.3.2.1. Fitness Evaluation . 167

7.3.3. Some Properties of the Search Space 168

7.3.3.1. Size of the Search Space 168

7.3.3.2. Processing a Method Tree 169

7.4. Classification Using Learned Method Trees 171

7.4.1. Classifying Genres . 172

7.4.2. User Preferences . 174

7.5. Multi-Objective Feature Extraction . 175

7.5.1. Experiments and Results . 175

7.5.2. Interpretation of the Pareto Front 176

8. Multi-Objective Unsupervised Feature Selection 181

8.1. Unsupervised Feature Selection . 182

8.2. Data Clustering . 183

8.2.1. Combinatorial Clustering Algorithms 184

8.2.2. Gaussian Mixtures . 185

8.2.3. Graph-Based Clustering . 186

8.3. Multi-Objective Feature Selection for Clustering 188

8.4. Information Preserving Feature Selection 189

8.4.1. Finding Interesting Points in the Pareto Front 190

8.5. Experiments and Results . 191

8.5.1. The Data Sets . 191

8.5.2. Interpretation of the Pareto Fronts 192

8.5.3. Pareto Front Segmentation . 197

9. Multi-Objective Feature Space Transformation for Clustering 201

9.1. Motivation for Feature Space Transformations 202

9.2. Information Preserving Feature Aggregation 203

9.2.1. Definition of Feature Aggregation 203

9.2.2. Information Preserving Feature Aggregation 204

12

Contents

9.2.3. Domain Preserving Feature Aggregation 205
9.3. Criteria for Multi-Objective Unsupervised Feature Space Transformations 206
9.4. Experiments and Results . 207

9.4.1. Interpretation of the Pareto Fronts 209

10.Feature Set Transfers 211
10.1. Motivation for Feature Set Transfers . 211
10.2. Basic Concepts . 213
10.3. Comparing Learning Tasks Efficiently . 214
10.4. Negative Results . 216
10.5. Positive Results . 217
10.6. Experiments and Results . 220

10.6.1. Synthetical Data . 220
10.6.2. Real World Data . 223

10.7. Exploiting the Similarity of Constructed Features 223
10.7.1. Similarity of Constructed Features 225
10.7.2. Decreasing Runtime using a 2-Phase Distance Calculation 227

10.8. Experiments and Results . 227

11.Conclusion 233
11.1. Multi-Objective and Non-Convex Learning 233
11.2. Multi-Objective Feature Space Transformations 235

Bibliography 243

13

List of Tables

3.1. The evaluation data sets. n is the number of data points, m is the dimen-
sion of the input space. The kernel parameter σ was optimized for the
comparison SVM learner mySVM. The last column contains the default
error, i. e. the error for always predicting the major class in percent. . . . 72

3.2. Comparison of the different implementations with regard to the objective
function (the higher the better). The results are obtained by a 20-fold
cross validation, the time is the cumulated time for all runs. It can easily
be seen that the evolutionary version of the SVM always provides better
results for the objective function than the quadratic programming solu-
tions. Bold fonts mark significantly better results on a 1% confidence
level. 73

3.3. Comparison of the different implementations with regard to the classifi-
cation error (the lower the better). The results are obtained by a 20-fold
cross validation, the time is the cumulated time for all runs. There is
no significant difference between the results on a 1% significance level
according to an ANOVA test. 74

3.4. Classification error (the lower the better), standard deviation, and run-
time of all SVMs on the evaluation datasets for parameters C = 1,
C = 0.1, and C = 0.01. The runtime T is given in seconds. The last
line for each table depicts the F test value and the probability that the
results are not statistical significant. 75

3.5. The evaluation data sets. n is the number of data points, m is the di-
mension of the input space. The kernel parameter σ was optimized with
a grid parameter search. The last column contains the default error, i. e.
the error for always predicting the major class. 85

4.1. The evaluation data sets. n is the number of data points, m is the dimen-
sion of the input space. The kernel parameters σ and d were optimized
for the comparison SVM learner mySVM. The last column contains the
default error, i. e. the error for always predicting the major class. 100

15

List of Tables

4.2. Comparison of the different implementations with regard to the classifi-
cation error (the lower the better) for a non-positive semidefinite kernel
function (Epanechnikov). The results are obtained by a 20-fold cross val-
idation, the time is the cumulated time for all runs. Bold fonts mark
significantly better results on a 1% confidence level. 102

5.1. The data sets used for transductive learning. Please note that most of
the examples are not labeled. 116

6.1. The different tasks for multi-objective evolutionary feature space trans-
formations. X denotes tasks solved by the author of this work, O denotes
tasks solved by other authors, ? denotes tasks which are currently not yet
solved. 133

6.2. The feature sets of the Pareto front presented in Figure 6.8. The inher-
ent structure can again be seen, adding more features than three hardly
improves the prediction performance. 148

7.1. Classification of genres with a linear SVM using the task specific feature
sets. 172

7.2. Classification performance using the same non-tailored standard feature
set for all classification tasks (linear SVM). 173

7.3. Classification errors with respect to different learning schemes. 173

7.4. Classification according to user preferences. 174

7.5. Comparison of the genetic programming based method tree learning ap-
proach and a simple windowed linear regression approach for time series
predictions. The results are obtained by a 10-fold back-testing validation.
The bold font marks a significantly better result on a 1% confidence level
for the feature extraction approach. 179

8.1. The used data sets. The first column summarizes the abbreviations used
in the text, the second summarizes some properties of the data set. n
is the total number of examples, m the total number of features. The
column noise defines how many features of m where explicitly added
noise features. The next columns define the mean standard deviation
of the original features (σo) and the noise features (σn). The column k
indicates the number of clusters if it is known. The last column indicates
which Pareto sets were found for the data set with both approaches. . . . 193

9.1. The used data sets for unsupervised feature space transformation. 207

10.1. The achieved accuracy using base features only and feature recommen-
dations (based on Random, Manhattan, and Euclidian distances of base
feature weights). 223

16

List of Tables

10.2. The averaged relative errors for the different approaches. The symbol ∞
indicates that no result was produced in a reasonable amount of time. . . 228

17

List of Figures

1.1. A set of data points. The target is to predict the value on the y-axis from
the location on the x-axis. 32

1.2. A complex model which minimizes the training error: this model just
connects all points. 32

1.3. The most simple model for this set of data points: a simple linear equation
which produces errors even on the given data points. 33

1.4. A probably perfect trade-off between model complexity and error on the
given data points: no errors are made and the model seems to be suffi-
ciently simple. 34

2.1. The simultaneous minimization of empirical risk and model complexity
gives a hint which function should be used in order to generalize the
given data points. 46

2.2. A simple binary classification problem for two classes −1 (empty bullets)
and +1 (filled bullets). The separating hyperplane is defined by the vector
w and the offset b. The distance between the nearest data point(s) and
the hyperplane is called margin. 48

2.3. After the transformation of all data points into the feature space H the
non-linear separation problem can be solved with a linear separation al-
gorithm. In this case, a transformation in the space of polynomials with
degree 2 was chosen. 52

3.1. A simple hybrid mutation which should speed-up the search for sparser
solutions. It contains elements from standard mutations from both genetic
algorithms and evolution strategies. 70

3.2. The left plot for each dataset shows the Pareto front delivered by the
multi-objective EvoSVM proposed in this work (x: training error, y: mar-
gin size). The right plot shows the training (+) and testing (×) errors (on
a hold-out set of 20%) for all individuals of the resulting Pareto fronts (x:
Pareto solution counter, y: errors). Part 1 of the results. 87

19

List of Figures

3.3. The left plot for each dataset shows the Pareto front delivered by the
multi-objective EvoSVM proposed in this work (x: training error, y: mar-
gin size). The right plot shows the training (+) and testing (×) errors (on
a hold-out set of 20%) for all individuals of the resulting Pareto fronts (x:
Pareto solution counter, y: errors). Part 2 of the results. 88

3.4. The first plot shows a simple 2-dimensional data set consisting of a global
model (the hyperplane in the middle) together with some local models (the
circular regions on the wrong side of the plane) and noise. The following
pictures show the predictions of the different types of models of a resulting
Pareto front. Model 1 provides the largest margin, it is actually so large
that it is located beside the complete training data. Model 2 is a model
corresponding to a point further on the right side where the global model
is already found but the local models are not yet found. Model 3 shows
a model further to the right where the first local models are found and
Model 4 demonstrates the best model identifying both the global model
and the most important local models. Finally, Model 5 already shows the
clear overfitting to the noise data. 90

4.1. 2D-plots of some known non-positive semidefinite kernel functions to-
gether with their 20 main Eigenvalues. These Eigenvalues are partly
negative. The variables s and t represent data points x and p, c and
σ are parameters used for fine-tuning the kernel functions. Source: [140]. . 96

5.1. The data sets used for transductive learning. Grey dots mark unlabeled
data points. Please note for the 4-clusters data set that the distance along
the y-axis is much bigger (about factor 8) than the distance between the
clusters along the x-axis. 117

5.2. Predictions of both SVM approaches for the 4-Clusters data set. The tra-
ditional induction SVM calculated a diagonal hyperplane which decided
to group the upper left and the lower right point with the lower left point.
The transductive SVM made a better job by taking the distance between
the unlabeled points also into account: the hyperplane is parallel to the
x-axis and distinguishes between the upper and the lower points. 119

5.3. Confidences of both SVM approaches for the 4-Clusters data set. The
inductive SVM calculates a diagonal hyperplane (indicated by the con-
fidence values around 0.5 for the upper left and the lower right points).
The transductive SVM, on the other hand, calculates a hyperplane clearly
distinguishing between the upper and the lower points. 119

5.4. Predictions of both SVM approaches for the 3-Clusters data set. Both
SVMs perform equally well in terms of the prediction on the given data
set. However, the transductive SVM would perform better on completely
unknown data since it takes the position of the middle cluster into account.120

20

List of Figures

5.5. Confidences of both SVM approaches for the 3-Clusters data set. It can
clearly be seen that the transductive SVM would make less errors on
additional points from the middle cluster since the hyperplane is located
between the middle and the lower cluster. 120

5.6. Predictions of both SVM approaches for the 2-Moons data set. It can
clearly be seen that the non-transductive SVM was not able to capture
the structure of the underlying data set. Major parts of the lower moons
were wrongly predicted by the non-transductive learner. 121

5.7. Confidences of both SVM approaches. The semi-transparent colors indi-
cate the values of the prediction function of both SVMs. It can clearly be
seen that the transductive SVM was able to take the spacial structure of
the unlabeled data points into account. 121

5.8. The resulting Pareto front in 2D and in 3D plots for the data set 4-
Clusters. The color and the z-axis corresponds to criterion (I). 124

5.9. The resulting Pareto front in 2D and in 3D plots for the data set 3-
Clusters. The color and the z-axis corresponds to criterion (I). 124

5.10. The resulting Pareto front in 2D and in 3D plots for the data set 2-Moons.
The color and the z-axis corresponds to criterion (I). 125

6.1. The figure shows the resulting Pareto front for a simple learning problem
containing only 15 equally important features. The analyst can derive a
feature ranking from such a Pareto front and gets also a hint where such
a ranking does not apply (e.g. between subset size 4 and 5). 135

6.2. Modified one-point crossover for individuals with variable lengths. All
crossover variants ensure than single features are not added more than
once to an individual. 139

6.3. A simple non-linear function which can hardly be completely learned by
state of the art learning schemes without feature construction. 143

6.4. A regression SVM (RBF kernel) model built on the discussed data set.
The influence of the noise attribute can clearly be seen, also the missing
support vectors at the data space edges affect the model quality. 144

6.5. A regression SVM (RBF kernel) model built on the discussed data set
after the noise attribute was removed. The missing support vectors at
the data space edges still affect the model quality. 144

6.6. A regression SVM (RBF kernel) model built on the discussed data set
after the noise attribute was removed and the value for the parameter C
was drastically increased. Although the error at the edges vanished, the
learning takes too long time now and overfitting to the label noise begins. 145

6.7. A linear regression model based on the newly constructed features. The
overall structure is found and overfitting does not occur. In contrast to
the optimized SVM learning run of Figure 6.6, the learning procedure
needs less than one second and the new attributes give additional insights. 146

21

List of Figures

6.8. The feature ranking induced by the multi-objective feature construction
approach discussed in this chapter. It can clearly be seen that the first
three features are most important for this data set. 147

7.1. The overall process of automatic feature construction for classification. . . 152

7.2. Overlay of two curves, ν1 = 2Hz, a1 = 3 and ν2 = 8Hz, a2 = 1, shown
left in time space, right in frequency space after a Fourier transformation. 154

7.3. Autocorrelation differences for a phase shift depending on speeds ranging
from 90 to 170 beats per minute. 155

7.4. Phase space representation of a popular song (left) and a classical piece
(right) created with the discussed state space reconstruction with d = 1
and m = 2. 156

7.5. Intervals found in the index dimension are summarized. 157

7.6. The process of finding intervals in a series (a), first in the value dimension
(b), then projected on the index dimension (c), delivering (d). 159

7.7. Constructing the cepstral method from elementary extraction operators. . 161

7.8. A method tree for feature extraction built of elementary methods. Solid
arrows show the data flow, dashed lines define the tree structure. 165

7.9. Automatic feature extraction using genetic programming. 166

7.10. XML method tree representation for RapidMiner. 167

7.11. Classifier learning step using the best method tree found by the genetic
programming approach. 171

7.12. The daily S&P 500 index between January 1st, 1980 and October 8th,
1992. The task is to predict the value for the next day from the values
which were encountered in the past. 176

7.13. The Pareto front after generation 11. Although not all dominated points
are removed yet, the Pareto front can already be seen. 177

7.14. A medium-sized feature extraction method tree from the Pareto front
shown in Figure 7.13. 178

8.1. The SPIRAL data set created for single link clustering. 187

8.2. The Pareto fronts for all data sets. The left result for each dataset is
achieved by the approach discussed in section 8.3 for a normalized value
ωDB,norm (DBnorm). It can clearly be seen that these results are not as
complete and that kinks are covered by the artificial inversely propor-
tional structure. The results on the right are achieved by our information
preserving maximization approach. Part 1 of the results. 194

22

List of Figures

8.3. The Pareto fronts for all data sets. The left result for each dataset is
achieved by the approach discussed in section 8.3 for a normalized value
ωDB,norm (DBnorm). It can clearly be seen that these results are not as
complete and that kinks are covered by the artificial inversely propor-
tional structure. The results on the right are achieved by our information
preserving maximization approach. Part 2 of the results. 195

8.4. The Pareto fronts for all data sets. The left result for each dataset is
achieved by the approach discussed in section 8.3 for a normalized value
ωDB,norm (DBnorm). It can clearly be seen that these results are not as
complete and that kinks are covered by the artificial inversely propor-
tional structure. The results on the right are achieved by our information
preserving maximization approach. Part 3 of the results. 196

8.5. We applied information preserving feature selection on the real-world data
set WPBC. The number of features nf (F in the plot), the Davies Bouldin
clustering criterion ωDB (DB in the plot), and the number of clusters k
(K in the plot) should be simultaneously optimized. The result is a three
dimensional Pareto set containing all necessary information allowing a
decision about the best clustering. The kinks could be used to segment
the Pareto set and ease the analysis of the front. 198

8.6. The five points with the highest absolute deviation of ∆ηp to 1 are marked
with perpendicular lines. This leads to an interpretable segmentation of
the Pareto front which eases the process of selecting a final solution from
the Pareto set. 199

9.1. The Pareto fronts delivered by the unsupervised multi-objective feature
aggregation experiments on the IRIS-M data set. The Pareto sets still
cover the complete range of possible solutions from 1 until 8 features for
the IRIS-M data set. Additionally, features were only aggregated if this
combination was necessary. 208

9.2. The Pareto fronts delivered by the unsupervised multi-objective feature
aggregation experiments on the KDDCUP-2004 data set. 208

9.3. The Pareto fronts delivered by the unsupervised multi-objective feature
aggregation experiments on the NEWSGROUPS data set. 209

10.1. Overview of the case-based feature construction process. Source: [138]. . . 214

10.2. The base feature weights of the synthetical test cases and for the real
world cases after a dimensionality reduction on two dimensions. 221

10.3. The results of case based feature construction. The averaged relative error
of all 200 test cases is plotted against the number of cases used as case
base. The combination SVM weights plus Manhattan distance clearly
outperforms the combination Relief plus Euclidian distance. This applies
especially for data sets containing alternative features. 222

23

List of Figures

10.4. We improve the usual evolutionary based feature construction algorithms
like those described in Chapter 6 and 7 by adding the discussed case base
feature retrieval as additional mutation. Source: [138]. 224

10.5. The main routine to calculate the distance between two different feature
sets including constructed attributes. 225

10.6. The routine calc distance which calculates the distance between two
constructed features using a range sensitive sampling and the squared
correlation on a small artificially generated data set with size m. 226

10.7. The results of case based feature construction. The averaged relative error
of all 241 test cases is plotted against the number of cases used as case
base. The 2-phase approach clearly outperforms the SVM plus Manhattan
distance. 229

10.8. The performance of Yagga2 and Yagga3 with respect to the number of
generations. Yagga3 performs a case base lookup in the 5th, the 15th,
and the 25th generations which results in a clear performance gain and
faster convergence times. Source: [138]. 230

10.9. Average performance of 10 runs for 10 different data sets after a runtime
of 100 seconds. Both algorithms are performed 10 times on each data set.
The bars denote the average performance (root mean squared error) and,
hence, lower bars are better. It can clearly be seen that Yagga3 leads
to much smaller errors for most of the data sets. Although the standard
deviations are not shown in this plot, Yagga3 delivers significantly better
results in 7 out of the 10 cases. Source: [138]. 230

10.10.Another comparison on the same 10 data sets between Yagga2 and
Yagga3. The generation number was limited to 100. The best 2 (5) cases
delivered for each retrieval process formed the base for feature construc-
tion. Although not shown, Yagga3 based on 5 cases delivers significantly
better results in 9 out of the 10 cases. Source: [138]. 231

24

List of Notations

Sets

B : set of boolean numbers

N : set of natural numbers

R : set of real numbers

R
m : the m-dimensional real-valued space R× . . .× R

C : set of complex numbers, i.e. the ordered pairs of real numbers (a, b) with a + b · j
and the imaginary unit j with the property j2 = −1

Basic Operations and Definitions

i : index variable

j : index variable, also the imaginary unit with j2 = −1 (see Sets)

k : index variable, also the number of clusters (see Clustering)

l, p, q, r, s : other index variables

e : Euler’s number, e ≈ 2.71828

f : a generic function, often the one which should be fitted to the training data (see
Risk Minimization)

g, h : other generic functions

r : a generic objective function which should be minimized or maximized, also used
with index ri in the case of multi-objective optimization

γ1 ≻ γ2 : a solution γ1 dominates a solution γ2 if γ1 is at least as good as γ2 with respect
to all criteria and is actually better with respect to at least one criterion

25

List of Notations

× : Cartesian (set) product, for example X×Y refers to the set of all tuples (x, y) with
x ∈ X and y ∈ Y

〈x, x′〉 : the dot product (scalar product) of the vectors x and x′, resembles a similarity
function

||x|| : the norm of x, defined as
√

〈x, x〉 in a vector space with dot product

Φ : a mapping into a new space with dot product (often this new space is called feature
space)

k(x, x′) : a kernel function, corresponds to the dot product in a new space after a
mapping Φ, i.e. k(x, x′) = 〈Φ(x),Φ(x′)〉, resembles a similarity function in this
new space

K : kernel matrix consisting of the values for the pairwise kernel function results for a
given set of vectors, the entries are denoted by Kij

d(x, x′) : distance function, e.g. the Euclidean distance d(x, x′) =
√∑m

i=1(xi − x′
i)

2

Examples (Data)

X : instance space, composed of attributes (random variables) X = X1× . . .×Xm, also
denotes the set of all possible unlabeled observations

Xk : the k-th attribute or feature of the instance space, each attribute can be considered
as a random variable following a certain probability distribution

x : a single observation x ∈ X in attribute-value representation, i.e. x is a vector where
the component xk refers to the attribute Xk

xi : the i-th observation in an instance set X

Y : label / target space, a single random variable, also denotes the set of all possible
labels for observations, often assumed to be boolean Y = {0, 1} or Y = {−1,+1}

y : specific label y ∈ Y

X × Y : the space of the training data, i.e. the set of all possible labeled observations,
often X × Y is defined as R

m × R (regression learning) or as R
m × {−1,+1}

(binominal classification learning)

yi : the label of the i-th observation in a (training) data set

(xi, yi) : the i-th observation and its label

T : training data set T ⊂ X × Y

26

List of Notations

n : number of examples in the training data set, i.e. n = |T |, also the length of a series
(see Series)

m : number of features in the training data set, i.e. the number of random variables of
an instance space X = X1 × . . .×Xm

Probabilities and Distributions

P (X) : probability distribution for the random variable X, for example the distribution
for a single feature Xi, i.e. P (Xi)

P (x) : probability for the event x, here: the probability for the observation x

P (y|x) : the conditional probability for the event y given event x, here: the conditional
probability for the label y if the observation x is given

P (x, y) : the joint probability for the event x together with the event y, here: the joint
probability for the label y together with the observation x

Risk Minimization

L(y, y′) : loss function calculating the error between the actual label y and the prediction
y′

f : a function f , usually the one which should be fitted to the training data

fγ : a function class depending on a parameter (vector) γ

Γ : the space of all possible function parameters γ

Ω(γ) : capacity function, measures the structural complexity of a function given the
functional parameter(s) γ

R(γ) : the expected risk, i.e. the loss which would be expected on the data follow-
ing a probability distribution P (x, y) given a certain loss function and a function
definition γ

Remp(γ) : the empirical risk (training error) which sum up the loss functions on the
training data points

Rreg(γ) : the regularized risk which takes into account both the empirical risk and the
structural complexity Ω

λ : used to define the general trade-off between the empirical risk and the structural
complexity

27

List of Notations

Hyperplane Models

w : the normal vector of a linear separating hyperplane, corresponds to feature weights
or feature weight functions

b : the offset of a linear separating hyperplane

α : a vector of Lagrange multipliers indicating the importance of a condition in a con-
strained optimization problem, the components αi greater than 0 indicate support
vectors (examples contributing to the orientation and position of the hyperplane)

β : a vector of Lagrange multipliers indicating the importance of a condition in a con-
strained optimization problem, similar to the vector α

ξi : the error made for the i-th example, often depends on a concrete loss function L

C : used to define the trade-off between the empirical risk (training error) and the
structural complexity (margin width), corresponds to λ in the general setting

Lp : the primal form of large margin optimization problems

Ld : the dual form of large margin optimization problems

L
(i)
p : the primal form of the i-th objective of large margin optimization problems

L
(i)
d : the dual form of the i-th objective of large margin optimization problems

Transduction

T ∗ : training data set T ∗ ⊂ X, i.e. a set of unlabeled observations x∗
k ∈ X

x∗
k : unlabeled observation x∗

k ∈ X from a test set T ∗

y∗k : the label variable corresponding to an observation x∗
k, part of the optimization

process

n∗ : number of examples in the test data set, i.e. n∗ = |T ∗|

α∗ : a vector of Lagrange multipliers (see above) for the examples from the test set

β∗ : a vector of Lagrange multipliers (see above) for the examples from the test set

ξ∗k : the error which would be made for the k-th test observation x∗
k, depends on the

currently selected label y∗k

C∗ : used to define the trade-off between the empirical risk (training error), the struc-
tural complexity (margin width), and the test error for the current label selection

28

List of Notations

Feature Space Transformations

X ′ : a transformed feature space, derived from a feature space X by some transforma-
tional mapping (e.g. feature selection or construction)

nf : the number of features currently used in the training data, i.e. 1 ≤ nf ≤ m, can
be used as an optimization criterion

Ω(X) : feature space capacity function, measures the structural complexity of a feature
space X, for supervised feature selection, construction, and extraction the function
nf can be used for Ω(X)

RFST
reg (X) : the regularized risk for feature space transformations

Series

v : a value series, i.e. a mapping v : N→ R× C
m

vi : short form of v(i)

(vi)i∈{1,...,n} : a series of length n

n : the length of a series, also the number of examples (see Examples)

ν : frequency, used for example in eiνa with i as the imaginary unit

Pd,m : phase space representation of a series, the set of phase space vectors with delay
d and dimension m

g : the overlap of a windowing, defined as g = w/s for window width w and step size s

d : parameter of dynamic windowing specifying the amount the window width changes
for nested windowings

Clustering

k : the (maximum) number of clusters, also used as a general index variable

Cq : the q-th cluster, i.e. a set of data points xi ∈ X

cq : the centroid of the q-th cluster

ωd : a cluster quality measure, the inner cluster distance sum, i.e. the sum of all pairwise
distances of all data points of all clusters, based on a distance measure d

ω : a cluster quality measure, the optimization function of the k-Means clustering
scheme, a shortcut for ωd is d (the Euclidean distance)

29

List of Notations

ωDB : a cluster quality measure, the Davies-Bouldin index which takes into account the
relative separation of the two worst separated clusters

ωGM : a cluster quality measure, the log-likelihood for Gaussian mixture clustering

ωd−max : a cluster quality measure, the maximum distance in graph-based clustering,
based on the distance threshold dmax denoting the strength of the weakest link in
the clustered graph

lp : loss in cluster quality caused by a single feature p

ηp : slope in point p of the Pareto set

∆ηp : change of slope in point p of the Pareto set

Feature Transfer

Ti : a learning task, specified by an instance space Xi with features Xik, also denotes
the corresponding training data

τ : set of all learning tasks Ti

XB : set of base features, common for all learning tasks Xi

Ii : the set of irrelevant features for learning task Ti

Xik ∼ Xil : features Xik and Xil are alternative

A : set of features which are either irrelevant or alternative to at least one base feature

w : weighting function, also the normal vector of a separating hyperplane where the
coefficients correspond to feature weights

30

CHAPTER 1

Introduction

The main topics of this work are optimization and data mining (DM). We can probably
assume that readers are familiar with both terms at least to a certain degree. Later in
this work, we will discuss some formal definitions for both ideas. Right now, we want
to start with a set of alternative definitions for data mining which might lead to some
new insights for some readers. These alternative definitions are rather informal and are
highly justified by examples or visualizations. They should be seen as a set of theses
about some aspects of the nature of data mining. Finally, these theses should also state
the connection from data mining to related fields like optimization. It is this connection
which will serve as a motivation for this work.

1.1. Three Theses about Data Mining

Before we start with the first thesis, we familiarize ourself with the used terms. The
objective of data mining is to generalize from a given set of data points to a more generic
model which either describes these points or can be used to predict properties of new
and unseen points – which are similar to the known set at least to a certain degree.
Let’s assume we have a set of data points like those given in Figure 1.1. If we want
to predict the value on the y-axis for any of the locations on the x-axis, we should try
to find a functional relation between the y- and the x-axis. For now, we refer to the
process of searching the best functional relation as data mining. This informal definition
concentrates on models for conditional probability density functions and does of course
not cover all relevant and existing aspects of data mining. It is, however, sufficient for
the introduction into this work.

It is a well known fact that the search for the optimal function is usually a hard task
and a large amount of methods have been proposed for guiding this search. In many

31

1. Introduction

Figure 1.1.: A set of data points. The target is to predict the value on the y-axis from
the location on the x-axis.

cases, however, a unique optimal solution cannot be found which directly brings us to
our first thesis about data mining:

DM Thesis 1: Data Mining is about Trade-offs. If we search for a function which
predicts the data points in Figure 1.1, we should take the prediction error into account.
Hence, we first would like to have a function which does not make any error on the given
set of data points. We probably could come up with the following function:

Figure 1.2.: A complex model which minimizes the training error: this model just
connects all points.

The function (or: prediction model) used in Figure 1.2 can be easily found: we have just
connected each data point with the next one. The result, however, is not as simple as

32

1.1. Three Theses about Data Mining

this construction description might sound: it is a piecewise linear function which uses
one linear equation for each line section. Therefore, we regard this model as rather com-
plicated or complex since we need huge efforts to describe this model with mathematical
equations.

This model of course has one big advantage: it predicts the given data points perfectly.
On the other hand, the complexity of the model reduces the probability that it would
perform well on any data point which was not part of the given set of points. Hence,
the generalization capacity of this model is probably very low.

If complex models are not desired in data mining, why should we not try and come up
with the simplest model we could think of? This leads to the class of linear models like
the one in this figure:

Figure 1.3.: The most simple model for this set of data points: a simple linear equation
which produces errors even on the given data points.

As you can see, the linear function is as simple as it could be in terms of model complexity.
However, we have to pay a price for this simplicity since the model is no longer error-free
on the given set of data points. This does not need to be a problem at all: it is not too
important that we reduce the error on the given data points but we should reduce the
error on the set of all data points we possibly could expect. We will discuss this idea
later in this work again.

One could argue that now everything is fine: we would probably decide for the simple
linear function because we get a feeling that it produces less errors on unseen data points.
The other alternative, the complex model stated above, probably does perform worse
with respect to the prediction error. So, there might be a trade-off between complexity
and error here but it does not seem to be too hard to decide which model is the best
one, right?

33

1. Introduction

Unfortunately not. We have only regarded two different models – but of course there
are a lot more possible functions which might count as a solution for the given data
mining problem. The piecewise linear model marks one extreme in the space of possible
solutions, the simple linear model marks another one. But how can we be sure that there
is not another solution which is almost as simple as the linear function but produces far
less errors? We could, for example, consider the following function:

Figure 1.4.: A probably perfect trade-off between model complexity and error on the
given data points: no errors are made and the model seems to be suffi-
ciently simple.

The function in Figure 1.4 does not make any error for the given set of training points.
And it is sufficiently simple. It only consists of a linear function and an additional
harmonical component with a fixed frequency. This simplicity gives us a good feeling
about the predictive power of the model considering unseen data points.

The fact that we should take two different criteria into account, namely the error and the
model complexity, is a well known result from statistical learning theory. Both criteria
define a trade-off and it has to be decided which model between the extreme solutions
is most appropriate for the given set of data points.

In general, this problem is referred to as the problem of model selection and remains the
main task of data mining which still is not solved in general. We will see in this work
that today’s data mining methods actually do not make the trade-off decision and it is
still the decision of the analyst which model type or parameters he or she prefers. One
of the major goals of this work is to make this trade-off explicit and give the analyst
more information about this trade-off so that it can be better decided which model is
optimal. The search for an optimal solution directly leads to the second thesis:

34

1.1. Three Theses about Data Mining

DM Thesis 2: Data Mining is about Optimization. Basically all data mining methods
either use optimization or are instances of optimization algorithms. The core of model
parameter estimations often is a dynamic programming or expectation maximization
algorithm. Probability density functions are modeled through generative models includ-
ing Bayesian Networks and Markov Random Fields which directly employs optimization
techniques. And this is especially true for the model building process for conditional
probability density functions which will be mainly discussed here, including methods
like Artificial Neural Networks, Decision Trees, Gaussian Processes, Linear Discriminant
Analysis, Perceptrons, Support Vector Machines, or Boosting and other meta learning
schemes.

We will see later in this work that the most successful learning methods known today
try to optimize an objective function like

∫

L(y, f(x, γ))dP (x, y).

based on a loss function L and a probability distribution P (x, y) for the data points
(x, y) ∈ X×Y . The loss function directly corresponds to the errors made by the learned
function f with the function parameters γ. The probability distribution is usually not
known and we will not be able to calculate this objective function directly. We therefore
concentrate on the errors made on the data points like we did before and minimize the
function

1

n

n∑

i=1

L (yi, f (xi, γ)) .

We have now seen that data mining is about optimization with respect to the error
made on a given set of points. But our first thesis states that we should also take
the structural complexity into account like it is suggested by the ideas underlying the
statistical learning theory. And here is the point where classical statistical learning and
this work start to differ:

DM Thesis 3: Data Mining is about Multi-Objective Optimization. Let’s assume
that we manage to measure the structural complexity of a model and let’s say we measure
the complexity by Ω(γ). We then have two different criteria which both should be
optimized:

minimize
1

n

n∑

i=1

L (yi, f (xi, γ)) and

minimize Ω(γ).

Since the error (first equation) is usually a monotonically decreasing function of Ω (sec-
ond equation), both criteria usually compete. This is the trade-off we discussed in the

35

1. Introduction

first thesis. Classical statistical learning now introduces a weighting factor λ to manage
the trade-off between training error and capacity:

1

n

n∑

i=1

L (yi, f (xi, γ)) + λΩ(γ) (classical statistical learning).

The analyst now has to define a weighting factor λ defining the trade-off for the given
analysis task before the analysis has even started. This causes a lot of problems because
usually the analyst has no idea which weighting factor λ is optimal for a new learning
task.

Hence, it would be great if the analyst would no longer has to define the trade-off factor
beforehand but could get all solutions at once, i.e. with an algorithm having the same
running time in Landau notation, and choose the best solution afterwards. All solutions
would be ordered according to their performance with respect to both criteria and no
useless solutions would be presented (those solutions which are worse with respect to one
criterion without being better with respect to the other compared to all other solutions).
For readers who are familiar with the concept: we would like the complete Pareto front
of solutions with respect to both criteria, namely error and model complexity.

The result would no longer be a single solution but a set of solutions (called Pareto set),
each one is optimal with respect to a specific trade-off between both criteria. Since the
analyst should now have more information and insights into the data, he or she can
easily select a final solution from this Pareto set if necessary. Although it does not seem
to be likely to get so much more information about the data mining problem at hand in
the same computation time, this actually is possible and will be one of the main topics
of this work.

It is interesting to notice that a unique optimal trade-off like the one discussed for the
example in the first thesis does not need to exist1. If only a unique optimum exists, the
solutions of the resulting Pareto set would collapse into one single solution. We will see
that this never happens in practice and therefore the complete Pareto set should always
be the desired solution on which the analyst can base decisions.

1.2. Related Work

The publications discussed in this section are related to this work on a very high level
of abstraction. Each chapter also contains citations which are in particular interesting
for the chapter itself.

1Please be aware that unique here does not refer to the uniqueness introduced by statistical learning,
for example by using the large margin heuristic for model selection.

36

1.2. Related Work

This thesis discusses options to overcome the basic problem of data mining, namely the
problem of model selection. Model selection is considered as a hard task [63] which
probably cannot be solved in general. However, statistical learning theory has defined
several criteria which could be taken into account for guiding the search for appropri-
ate models. Introductions into statistical learning theory can be found in [184, 185]
although the idea of shrinkage estimators is much older and was already discussed in
[70]. The used loss functions can be found in [5, 63, 167, 199]. The consequences of
using these shrinkage estimators optimizing a regularized risk taking into account the
error and the model complexity are discussed in [31, 59, 83]. One of the most interesting
consequences is the representer theorem stating the fact that all functions minimizing
the regularized risk can be expressed in terms of a basis function applied on the given
training data points. Finally, a generic discussion of data mining methods including the
most important shrinkage estimators is given in [190].

The second major field of this work is that of optimization. A lot of publications exist
in this field introducing the basic notation and the most important algorithms [51, 137].
However, most problems in this work lead to either non-convex optimization problems
or multi-objective optimization problems (or both) [142, 202].

Today, evolutionary algorithms are the standard solution for these types of problems [6].
They work simultaneously on a set of solution candidates and can hence find the complete
Pareto set in a single run [36, 66, 127]. Traditional approaches known from mathematical
programming must be restarted several times with different trade-off factors to get the
same result [46, 198]. Furthermore, evolutionary algorithms do not depend on the form
or the continuity of the Pareto front [27, 99].

For the combination of data mining and optimization, we first focus on Support Vector
Machines (SVM) as they are the most prominent representatives for conditional prob-
ability density estimators. In some sense, SVMs guarantee an optimal solution for the
given data set, i.e. they define which hyperplane has to be chosen. But the important
drawback here is that the “model selection” is performed after the user has defined the
trade-off factor between error and model complexity (width of the hyperplane margin).
An advantage of SVMs is, however, that many other optimization problems can also be
formulated as large margin problems [177]. We will discuss cases in this work where
the quadratic programming approaches usually employed by large margin methods is
not able to find satisfying solutions at all. In addition to the multi-objective setting
described above, this is always the case if the underlying optimization problem is no
longer convex. In these cases, most SVM implementations do not even terminate [61].
There exist, for example, several useful kernel function for SVMs [96], among them
the sigmoid kernel which simulates a neural network [24, 168], which will lead to such
non-convex optimization problems. We will discuss more appropriate optimization tech-
niques which will be able to solve both problems, the non-convex optimization problem
and the multi-objective problem setting.

37

1. Introduction

Later in this work we will discuss the transfer from multi-objective learning to multi-
objective preprocessing and will mainly concentrate on feature space transformations like
feature selection, feature construction, and feature extraction. We will see that this will
always lead to non-convex optimization problems and we will also discuss possibilities
to improve feature space transformations by multi-objective optimization.

Although many of the known data mining methods try to detect or construct relevant
features, both theory and experiments have shown that data mining methods usually
scale worse with an increasing number of irrelevant or redundant features [50, 94]. De-
cision tree learners like C4.5 [146] or CART [21] as well as instance-based learners [2]
deliver bad results if the data set contains superfluous features. Other algorithms like
Naive Bayes [41] or Support Vector Machines [72, 169, 185] respond with a decreasing
prediction performance on correlated features, even if those are not irrelevant.

Hence, additional methods for the automatic selection of relevant features or the con-
struction of new ones are necessary. There actually is no clear border between pre-
processing and learning. An improved feature space and hence changed representation
of the input data might ease the learning of hypotheses [193, 194]. Finally, the form
of the input representation could not only influence the predictive power but also the
understandability of models and the computation time [47].

It is quite interesting to notice that the success story of kernel methods [164] is also
connected to feature space transformations. For certain transformations into a feature
space, we could use an efficient kernel function instead (kernel trick) [163]. Kernel
functions are the base for several analysis methods including Support Vector Machines
or Kernel Principal Component Analysis (Kernel PCA) [126]. It is also interesting to
note that the idea of kernel functions is quite old [3, 19, 102, 153] but achieved eminence
just recently. The development of new kernel functions still is a contemporary issue
[23, 52, 129, 165].

The construction of new features is in some sense similar to the calculation of kernel
functions: both approaches lead to a new feature space, usually with a higher number
of dimensions. Alternatives to kernel functions are the construction of new features
from already known ones [139, 172, 191] and the extraction of features on a series of
others [20, 162]. Furthermore, large amounts of domain specific features exist, e.g.
the feature extraction from image or video data [7, 42, 57, 156] or from audio data
[9, 53, 60, 151, 181, 189].

In contrast to feature construction, the mere selection of features does not produce
additional features. The goal is to select a subset containing less irrelevant features.
This reduced subset should support the learning method by not hiding the underlying
patterns by noise introduced by irrelevant features [17, 33, 76, 89]. Alternatively, one
could search for an optimal feature weighting. Feature selection actually is just a special
form of feature weighting with binary weights.

38

1.3. Outline

Two basic approaches exist for the problem of feature selection: filtering the features
according to a weighting calculation based on the data alone [4, 84, 95, 188] or taking
the performance of the data mining method into account. The latter solution is called
wrapper approach [76, 88] and will usually be employed in this work.

Feature selection and feature generation in some sense compete with each other: the
selection tries to reduce the number of features in order to improve the predictive power
of a learning scheme and the generation tries to construct new features – and hence
enlarge the feature space – with the same goal of error minimization. Hybrid solutions try
to weigh both effects [15, 16, 155, 183]. In this work, we will see that the definition of an
appropriate feature space complexity measure together with multi-objective optimization
will naturally lead to a solution for this problem. This solution turns out to work for
supervised – and for a first time – also for unsupervised learning problems.

Further related work will be cited in each chapter and discussed with respect to the
possibilities and problems connected to those publications.

1.3. Outline

After discussing some basic definitions in Chapter 2, this work is divided into two parts.
The first part deals with machine learning methods and how they can be extended in a
way that the results are no longer a single solution for a predefined trade-off factor but
the complete set of solutions for all possible trade-offs (Chapter 3). As a by-product,
we could use these new learning schemes and solve non-convex optimization problems
which could hardly be solved before. This will be discussed in Chapter 4. Chapter 5
concludes the first part about learning methods and shows how non-convex optimization
can be combined with multi-objective optimization in order to solve a practically very
important problem, namely transductive learning.

In the second part, we transfer the idea of structural risk minimization into the prepro-
cessing for learning methods and concentrate on multi-objective optimization for feature
space transformation. In Chapter 6, we introduce the notion of feature space complex-
ities and discuss a simple measure leading to a Pareto set as the result for supervised
feature construction tasks. We extend these ideas to multi-objective feature extraction
from series data in Chapter 7. One of the main results of this work is the possibility to
apply feature selection and feature construction also for unsupervised learning methods.
This is possible due to multi-objective optimization and a paradigm change with respect
to the optimization direction of one of the criteria and will be discussed in detail in
Chapters 8 (unsupervised feature selection) and 9 (unsupervised feature aggregation).
Since optimizations of the feature space are usually very demanding tasks with respect
to the computation time, the final Chapter 10 introduces an approach for re-using the
insights from former optimization runs by means of a case-based reasoning approach.

39

CHAPTER 2

Basics

This chapter discusses some basic definitions and notations which are useful in the
following chapters. The first section defines the learning tasks mainly considered in
this work, namely supervised and unsupervised learning. Section 2.2 introduces one
of the currently most popular and successful ways of transforming supervised learning
into optimization problems: statistical learning theory. We will discuss the optimization
problem of statistical learning, namely the minimization of the structural risk. We
will then discuss the most prominent learning method for structural risk minimization
called Support Vector Machines. After a short overview over traditional optimization
techniques in Section 2.3, we will introduce the idea of multi-objective optimization in
Section 2.4.

2.1. Machine Learning

The goal of machine learning is to find models for given data sets. These models should
describe the data sets, i.e. in the best case they lead to deeper insights into the data
generating processes, and they should be operational in a sense that the models can be
applied to new and possibly unseen data points. The latter is especially important if the
models are used in predictive settings, i.e. if the models should describe the dependency
of a certain property of the data points on other properties.

In this thesis, we will concentrate on data given in propositional form. This means that
the data is given in rows of one table (attribute-value format). In the case of relational
data sets, we assume that the data is transformed into one single table by appropriate
preprocessing operations. We will now formalize the space of those data rows:

41

2. Basics

Definition 2.1 (Instance Space) The instance space is composed of a set of ran-
dom variables X = X1 × . . .×Xm.

Definition 2.2 (Attributes) The random variables Xk building the instance space
are called attributes or features.

The attributes correspond to the column headers of our data table. We can now define
a single row of the table:

Definition 2.3 (Instance / Observation) An element x ∈ X is called instance or
observation.

Hence, we can also denote the set of all possible observations x ∈ X with the set variable
X. We say that x is represented by a vector of attribute-value pairs (attribute-value
representation), since x is a vector where the component xk refers to the attribute Xk.
We denote the i-th observation in an instance set X by xi and the k-th value of the i-th
instance by xik.

In the following, we will state some of the most prominent learning tasks for data given
in attribute-value representations. All learning tasks discussed here are relevant for
this thesis. Several more very interesting learning tasks exist, for example subgroup
discovery or association rule mining, which are not covered by this thesis and are hence
not mentioned here.

2.1.1. Supervised Learning

In supervised learning, we define a special attribute in our instance space and use this
attribute in order to describe the complete row. We denote the set of all possible values
of this specific attribute with Y and we use y ∈ Y in order to specify a specific label
value.

The Cartesian product X × Y then denotes the set of all possible labeled observations.
We can now formalize the goal of supervised learning:

Definition 2.4 (Supervised Learning) Supervised Learning aims at finding a
function f : X → Y deriving the label value y ∈ Y from a given observation x ∈ X.

In supervised learning settings, the data often is presented as training data T ⊂ X × Y ,
hence as a set of pairs (xi, yi). Here, xi denotes the i-th observation in the training
data set T and yi the corresponding label. We also refer to these training instances as
examples or as example set. The number of examples in the training data set is n = |T |.
The number of features in the corresponding instance space, i.e. the number of the
underlying random variables of the space X = X1 × . . .×Xm, is denoted by m.

42

2.1. Machine Learning

2.1.1.1. Classification Learning

We can distinguish two basic learning tasks for supervised learning depending on the fact
if Y is continuous or discrete. The latter case means that Y is composed of a finite set
of discrete label values which are possible for each yi. Since each row in the data set can
only have one value out of Y , the data set is partitioned by the values Y and is divided
in distinct groups or classes. Hence, the name classification learning is the most widely
used term for supervised learning with a discrete label space Y . If Y is constrained to
{−1,+1}, the classification task is called binary classification or binominal classification
learning. A classification problem with |Y | > 2 can be transformed into a set of bi-
nominal classification problems by techniques like 1-vs-1, 1-vs-all, or by error correcting
output codes. Hence, we will usually concentrate on binominal classification problems
in this thesis instead of polynominal ones. A positive side effect of this restriction is
that the definition of statistical learning problems is usually much easier for binominal
classifications.

2.1.1.2. Regression Learning

We now consider the case that the label space Y is not discrete but continuous, for
example Y = R. In contrast to supervised classification learning, no predefined classes
exist but the task now is to assign a numerical value to new and unseen rows instead
of classifying unseen data points into the predefined classes. This learning task is called
regression learning and it is actually a more general case of the classification setting. In
both cases, the goal is to find a function f which predicts the correct value for a given
observation. In order to achieve this, we define a loss function which penalizes errors in
predictions and which must be minimized during the learning process. We will discuss
this idea of minimizing the prediction errors or loss later in Section 2.2.

2.1.2. Unsupervised Learning

In some cases, there is no specific label attribute Y and hence it is not possible to learn
a function f which can be used to predict the value of Y for unseen data points x ∈ X.
But still one can try to identify patterns in the data in order to describe underlying
processes. If these patterns correspond to subsets of the data sharing similar properties,
for example which are located close together in the instance space, the learning task is
called clustering. The aim of cluster analysis is to group data points into sets of similar
data points. Let X be a set of individual unlabeled data points xi (observations). A
cluster is a subset of data points Cq ⊆ X. In principle, clusters may overlap. However,
most clustering algorithms are designed to produce partitions of data points, i. e. a set

43

2. Basics

of clusters C1 . . . Ck such that Ci ∩ Cj 6= ∅ ⇒ Ci = Cj (clusters do not overlap) and
⋃k

q=1 Cq = X (each data point is covered by a cluster).

In contrast to classification, the calculation of a quality measure for a function f assigning
a cluster membership to each (new) data point is much harder. Since there is no ground
truth, it is not possible to define a loss function like in the classification setting which
could simply be minimized. We will discuss some of the proposals for cluster quality
measurements in later chapters of this thesis.

2.2. Statistical Learning

In this section, we first concentrate on the problem of supervised learning, namely binom-
inal classifications. We will discuss the idea of regularized risk minimization. Machine
learning methods following this paradigm have a solid theoretical foundation and it is
possible to define bounds for prediction errors.

2.2.1. Regularized Risk Minimization

Let X ∈ R
m be a real-valued vector of random variables. Let Y ∈ R be another random

variable. X and Y obey a fixed but unknown probability distribution P (X,Y). As
we have seen before, supervised machine learning tries to find a function f(x, γ) which
predicts the value of Y for a given input x ∈ X. The function class f depends on a
vector of parameters γ. We define a loss function L(Y, f(X, γ)) in order to penalize
errors during prediction [63]:

Definition 2.5 (Loss Function) A convex function L with arity 2, positive range,
and L(x, x) = 0 is called loss function.

The arity of a function is defined as the number of arguments.

The definition of a loss function leads to a possible criterion for the selection of a function
f , the expected risk :

Definition 2.6 (Expected Risk) Let X ∈ R
m be a real-valued vector of random

variables, Y ∈ R be another random variable, and let X and Y obey a fixed but unknown
probability distribution P (X,Y). Let L be a loss function. The expected risk is
defined as

R(γ) =

∫

L(y, f(x, γ))dP (x, y).

44

2.2. Statistical Learning

Since the underlying distribution is not known we are not able to calculate the expected
risk. However, instead of estimating the probability distribution in order to allow this
calculation, we directly estimate the expected risk by using a set of data points T =
{(x1, y1) , . . . , (xn, yn)} ⊆ X × Y . This set T of known data points is usually called
training data. Using this set of data points we can calculate the empirical risk :

Definition 2.7 (Empirical Risk) Let T = {(x1, y1) , . . . , (xn, yn)} ⊆ X × Y be a set
of data points and L be a loss function. The empirical risk is defined as

Remp(γ) =
1

n

n∑

i=1

L (yi, f (xi, γ)) .

If training data is sampled according to P (X,Y), the empirical risk approximates the
expected risk if the number of samples grows:

lim
n→∞

Remp(γ) = R(γ).

It is, however, a well known problem that for a finite number of samples the minimization
of Remp(γ) alone does not lead to a good prediction model [185]. For each loss function
L, each candidate γ, and each set of tuples T ′ ⊆ X × Y with T ∩ T ′ = ∅ exists another
parameter vector γ′ so that L(y, f(x, γ)) = L(y, f(x, γ′)) for all x ∈ T and L(y, f(x, γ)) >
L(y, f(x, γ′)) for all x ∈ T ′. Therefore, the minimization of Remp(γ) alone does not
guarantee the optimal selection of a parameter vector γ for other samples according to
the distribution P (X,Y). This problem is often referred to as overfitting.

At this point we use one of the main ideas of statistical learning theory. Think of
two different functions perfectly approximating a given set of training points. The first
function is a linear function, i. e. a simple hyperplane in the considered space R

m.
The second function also hits all training points but is strongly wriggling in between.
Naturally, if we had to choose between these two approximation functions, we tend to
select the more simple one, i. e. the linear hyperplane in this example. This derives from
the observation that more simple functions behave better on unseen examples than very
complicated functions. Since the mere minimization of the empirical risk according to
the training data is not appropriate to find a good generalization, we incorporate the
capacity1 of the used function into the optimization problem (see Figure 2.1). This leads
to the minimization of the regularized risk :

Definition 2.8 (Regularized Risk) Let Remp be the empirical risk and let Ω be a
strictly monotonic increasing function. The regularized risk is defined as

Rreg(γ) = Remp(γ) + λΩ(γ).

1Although not the same, the capacity of a function resembles a measurement of the function complexity.
In our example we measure the ability to “wriggle”. More details can be found in [185].

45

2. Basics

X

Y

Figure 2.1.: The simultaneous minimization of empirical risk and model complexity
gives a hint which function should be used in order to generalize the given
data points.

This risk functional is also known as structural risk since it takes the structural com-
plexity into account. Ω is a function which measures the capacity of the function class
f depending on the parameter vector γ. Since the empirical risk is usually a monotoni-
cally decreasing function of Ω, we use λ to manage the trade-off between training error
and capacity. Methods minimizing this type of risk function are known as shrinkage
estimators [70].

2.2.1.1. Bound on the Generalization Performance

For certain functions Ω, the regularized risk is an upper bound for the empirical risk.
The capacity of the function f for a given γ can for example be measured with help of
the Vapnik-Chervonenkis dimension (VC dimension) [185, 186]. The VC dimension is
defined as the cardinality of the biggest set of tuples which can be separated with help
of f in all possible ways. For example, the VC dimension of linear hyperplanes in an
m-dimensional space is m + 1. Using the VC dimension as a measure for capacity leads
to a probabilistic bound for the regularized risk [185]. Let f be a function class with
finite VC dimension h and f(γ) the best solution for the empirical risk minimization for
T with |T | = n. Now choose some η such that 0 ≤ η ≤ 1. Then for losses smaller than
some number B, the following bound holds with probability 1− η:

R(γ) ≤ Remp(γ) + B

√

h
(
log 2l

h + 1
)
− log η

4

n
.

Surprisingly, this bound is independent of P (X,Y). It only assumes that both the seen
and the unseen data points are independently sampled according to some P (X,Y). The

46

2.2. Statistical Learning

existence of a guaranteed error bound is the reason for the great success of regularized
risk minimization in a wide range of applications. For the function classes used in this
work, the VC dimension is always known. However, in general the calculation of the VC
dimension was possible for few different function classes only [141].

2.2.2. Large Margin Methods

As discussed in the previous section, we need to use a class of functions whose capacity
can be controlled. In this section, we will discuss a special form of regularized risk
minimization, namely large margin approaches. All large margin methods have one
thing in common: they embed regularized risk minimization by maximizing a margin
between a linear function and the nearest data points. The most prominent large margin
method for classification tasks is the Support Vector Machine (SVM).

2.2.2.1. Support Vector Machines

We constrain the number of possible values of Y to 2, without loss of generality these
values should be −1 and +1. In this case, finding a function f in order to decide which
of both predictions is correct for an unseen data point is referred to as classification
learning for the classes −1 and +1. We start with the simplest case: learning a linear
function from perfectly separable data. As we shall see in the next paragraphs, the
general case - non-linear functions derived from non-separable data - leads to a very
similar problem.

If the data points are linearly separable, a linear hyperplane must exist in the input
space R

m which separates both classes. This hyperplane is defined as

H = {h|〈w, h〉 + b = 0} ,

where w is normal to the hyperplane, |b|/||w|| is the perpendicular distance of the hy-
perplane to the origin (offset or bias), and ||w|| is the Euclidean norm of w. The vector
w and the offset b define the position and orientation of the hyperplane in the input
space. These parameters correspond to the function parameters γ. After the optimal
parameters w and b were found, the prediction for new data points x can be calculated
as

f(x,w, b) = sgn (〈w, x〉 + b) ,

which is one of the reasons why we constrained the classes to −1 and +1.

Figure 2.2 shows some data points and a separating hyperplane. If all given data points
are correctly classified by the hyperplane at hand the following must hold:

∀n
i=1 : yi (〈w, xi〉+ b) ≥ 0. (2.1)

47

2. Basics

H

w

Margin

Origin

−b
|w|

+1

−1

Figure 2.2.: A simple binary classification problem for two classes −1 (empty bullets)
and +1 (filled bullets). The separating hyperplane is defined by the vector
w and the offset b. The distance between the nearest data point(s) and
the hyperplane is called margin.

Of course, an infinite number of different hyperplanes exist which perfectly separate the
given data points. However, one would intuitively choose the hyperplane which has the
biggest amount of safety margin to both sides of the data points. Normalizing w and
b in a way that the point(s) closest to the hyperplane satisfy |〈w, xi〉 + b| = 1 we can
transform equation 2.1 into

∀n
i=1 : yi (〈w, xi〉+ b) ≥ 1.

We can now define the margin as the perpendicular distance of the nearest point(s) to
the hyperplane. Consider two points x1 and x2 on opposite sides of the margin. That is
〈w, x1〉+ b = +1 and 〈w, x2〉+ b = −1 and 〈w, (x1 − x2)〉 = 2. The margin is then given
by 1/||w||.

It can be shown, that the capacity of the class of separating hyperplanes decreases with
increasing margin [164]. The reason for this behavior is rather simple: with a large
margin, there is only a small number of possibilities to separate the data, i.e. the VC
dimension of the hyperplane is small. On the contrary, if we allow smaller margins there
are more separating hyperplanes for the given data set, i.e. the VC dimension is large
in comparison.

Maximizing the margin of a hyperplane therefore formalizes the regularized risk mini-
mization discussed in the previous section. Instead of maximizing 1/||w|| we could also
minimize 1

2 ||w||2 which will result into more simple equations later. This leads to the
following optimization problem:

48

2.2. Statistical Learning

Problem 2.1 (Primal SVM Problem (separable)) The primal SVM optimization
problem for separable data is defined as

minimize
1

2
||w||2 (2.2)

subject to ∀n
i=1 : yi (〈w, xi〉+ b) ≥ 1. (2.3)

Function 2.2 is the objective function and the constraints from equation 2.3 are called
inequality constraints. They form a constrained optimization problem. We will use a
Lagrangian formulation of the problem. This allows us to replace the inequality con-
straints by constraints on the Lagrange multipliers which are easier to handle. The
second reason is that after the transformation of the optimization problem, the training
data will only appear in dot products. This will allow us to generalize the optimization
to the non-linear case (see Section 2.2.2.3). We will now introduce positive Lagrange
multipliers αi, i = 1, . . . , n, one for each of the inequality constraints. The Lagrangian
has the form

LP (w, b, α) =
1

2
||w||2 −

n∑

i=1

αi (yi (〈w, xi〉+ b)− 1) . (2.4)

Finding a minimum of this function requires that the derivatives

∂LP (w, b, α)

∂w
= w −

n∑

i=1

αiyixi and

∂LP (w, b, α)

∂b
=

n∑

i=1

αiyi

are zero, i. e.

w =
n∑

i=1

αiyixi and (2.5)

0 =
n∑

i=1

αiyi. (2.6)

The Wolfe dual, which has to be maximized, results from the Lagrangian by substituting
2.5 and 2.6 into 2.4, thus

LD(w, b, α) =
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyj 〈xi, xj〉 .

This leads to the dual optimization problem which must be solved in order to find a
separating maximum margin hyperplane for given set of data points:

49

2. Basics

Problem 2.2 (Dual SVM Problem (separable)) The dual optimization problem
for Support Vector Machines on linearly separable data is

maximize
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyj 〈xi, xj〉

subject to ∀n
i=1 : αi ≥ 0

and

n∑

i=1

αiyi = 0.

From an optimal vector α we can calculate the optimal normal vector w using equation
2.5. The optimal offset can be calculated with help of equation 2.3. Please note, that
w is a linear combination of those data points xi with αi 6= 0. These data points are
called support vectors, hence the name support vector machine. Only support vectors
determine the position and orientation of the separating hyperplane, other data points
might as well be omitted during learning. In Figure 2.2, the support vectors are marked
with circles. The number of support vectors is usually much smaller than the total
number of data points.

2.2.2.2. Non-Separable Data

We now consider the case that the given set of data points is not linearly separable. The
optimization problem discussed in the previous section would not have a solution since
in this case constraint 2.3 could not be fulfilled for all i. We relax this constraint by
introducing positive slack variables ξi, i = 1, . . . , n. Constraint 2.3 becomes

∀n
i=1 : yi (〈w, xi〉+ b) ≥ 1− ξi.

In order to minimize the number of wrong classifications we introduce a correction term
C
∑n

i=1 ξi into the objective function. The optimization problems then becomes

Problem 2.3 (Primal SVM Problem (non-separable)) The primal SVM opti-
mization problem for non-separable data is defined as

minimize
1

2
||w||2 + C

n∑

i=1

ξi (2.7)

subject to ∀n
i=1 : yi (〈w, xi〉+ b) ≥ 1− ξi. (2.8)

Now we can for a first time see the correspondence between the regularized risk defined
above and the optimization problem of SVM. The term 1

2 ||w||2 corresponds to the term
Ω(γ) in the definition of the regularized risk with the hyperplane orientation as function

50

2.2. Statistical Learning

definition γ. The sum
∑n

i=1 ξi reflects the empirical risk, i.e. the sum of training errors
in terms of a certain loss function (the so-called Hinge loss, see Section 3.2.1).

The factor C determines the weight of wrong predictions as part of the objective function.
It corresponds to the weighting factor λ in the general definition of the regularized risk.
As in the previous section, we create the dual form of the Lagrangian. The slacking
variables ξi vanish and we get the optimization problem:

Problem 2.4 (Dual SVM Problem (non-separable)) The dual optimization prob-
lem for Support Vector Machines on linearly non-separable data is

maximize

n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyj 〈xi, xj〉

subject to ∀n
i=1 : 0 ≤ αi ≤ C

and
n∑

i=1

αiyi = 0.

It can easily be seen that the only difference to the separable case is the additional upper
bound C for all αi.

2.2.2.3. Non-Linear Learning with Kernels

The optimization problem 2.4 will deliver a linearly separating hyperplane for arbitrary
datasets. The result is optimal in a sense that no other linear function is expected to
provide a better classification function on unseen data according to P (X,Y). However,
if the data is not linearly separable at all, the question arises how the described optimiza-
tion problem can be generalized to non-linear decision functions. Please note that the
data points only appear in the form of dot products 〈xi, xj〉. A possible interpretation
of this dot product is the similarity of these data points in the input space R

m. Now
consider a mapping Φ : R

m → H into some other Euclidean space H (called feature
space) which might be performed before the dot product is calculated. The optimiza-
tion would depend on dot products in this new space H, i. e. on functions of the form
〈Φ (xi) ,Φ (xj)〉. We can formalize this type of function:

Definition 2.9 (Kernel Function) A function k : R
m × R

m → R with the charac-
teristic

k (xi, xj) = 〈Φ (xi) ,Φ (xj)〉

is called kernel function or kernel.

51

2. Basics

HR
m

Figure 2.3.: After the transformation of all data points into the feature space H the
non-linear separation problem can be solved with a linear separation al-
gorithm. In this case, a transformation in the space of polynomials with
degree 2 was chosen.

Figure 2.3 gives a rough idea how transforming the data points can help to solve non-
linear problems with the optimization in a (higher dimensional) space where the points
can be linearly separated.

A fascinating property of kernels is that for some mappings Φ a kernel k exists which can
be calculated without actually performing Φ. Since often the dimension of H is greater
than the dimension m of the input space and H sometimes is even infinite dimensional,
the usage of such kernels is a very efficient way to introduce non-linear decision functions
into large margin approaches. The following definitions show some prominent examples
for such efficient non-linear kernels.

Definition 2.10 (Polynomial Kernel) A polynomial kernel with degree d is
defined as

k (xi, xj) = (κ〈xi, xj〉+ δ)d .

Definition 2.11 (RBF Kernel) A radial basis function kernel (RBF kernel)
is defined as

k (xi, xj) = e−
||xi−xj ||

2

2σ2

for a σ > 0.

Definition 2.12 (Sigmoid Kernel) A sigmoid kernel is defined as

k (xi, xj) = tanh (κ 〈xi, xj〉 − δ) .

The sigmoid kernel can be used to simulate a neural network. κ and δ are scaling and
shifting parameters.

52

2.3. Optimization

Since the RBF kernel is easy interpretable and often yields good prediction performance,
it is used in a wide range of applications. We will also use the RBF kernel for our
experiments described in section 3.1.3 in order to demonstrate the learning ability of the
proposed SVM.

We replace the dot product in the objective function by kernel functions and achieve
the final optimization problem for finding a separation for non-linearly separable data
points:

Problem 2.5 (Dual SVM Problem (final)) The dual optimization problem for
non-linear Support Vector Machines on non-linearly separable data is

maximize

n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjk (xi, xj)

subject to ∀n
i=1 : 0 ≤ αi ≤ C

and

n∑

i=1

αiyi = 0.

In general, the primal optimization problem without kernel function is a convex quadratic
programming problem, since the objective function is itself convex, and those points
which satisfy the constraints also form a convex set. It holds that any linear constraint
defines a convex set, and a set of p simultaneous linear constraints defines the intersection
of p convex sets. This again is a convex set. The dual problem, which has to be
maximized, hence can be considered to be a concave optimization problem.

It can be shown that if the kernel k, i. e. it’s kernel matrix, is positive definite, this still
holds and that the objective function is still concave [22]. The optimization problem
therefore has a global unique maximum. However, in some cases a specialized kernel
function must be used to measure the similarity between data points which is not pos-
itive definite, sometimes not even positive semidefinite [164]. In these cases the usual
quadratic programming approaches might not be able to find a global maximum in
feasible time. We will discuss possibilities to overcome this issue in Chapter 4.

2.3. Optimization

In the last section, we have discussed the optimization problem which must be solved
in order to find the optimal hyperplane. In general, we can define optimization as the
search for an optimal valid solution with respect to a given objective function. Optimal
means that the objective function should be minimized or maximized. Valid means
that the function arguments must not be located in forbidden ranges of the parameter
space.

53

2. Basics

The core of almost every learning problem or automatic preprocessing problem for ma-
chine learning is actually an optimization problem. Therefore, we now formalize the
informal definition stated above:

Definition 2.13 (Optimization Problem) Let Γ be a non-empty set and let r be a
function r : Γ → R called objective function. We search an element γ̂ ∈ Γ so that
either

∀γ ∈ Γ : r(γ̂) ≤ r(γ) (Minimization)

or so that
∀γ ∈ Γ : r(γ̂) ≥ r(γ) (Maximization).

Example 2.1 (Optimization for Statistical Learning) The objective function r
could be defined as the structural risk (see Section 2.2.1) and the parameter space Γ could
then be defined as the set of all possible prediction function parameters γ.

Typically, Γ is a subset of R
p. This subset is defined by a set of constraints, i.e. equal-

ity and inequality constraints on the elements γ. The elements γ ∈ Γ are called valid
solutions. A valid solution which maximizes (minimizes) the objective function is called
optimal solution. We differ between different types of optimization problems by distin-
guishing different types of objective functions and constraints2:

Linear Programming (LP): r is linear and Γ is only constrained by linear equalities
and inequalities,

(Mixed) Integer Programming: as LP, but Γ is constrained on integer numbers,

Quadratic Programming (QP): as LP, but r may contain quadratic terms,

Non-Linear Programming (NLP): general case, both r and the constraints may
contain non-linear terms,

Convex Programming (CP): non-linear programming with a convex objective func-
tion r.

2.3.1. Linear Programming

Many practical optimization problems are linear programming (LP) problems, for exam-
ple many of the problems discussed in operations research or logistics. LP can be solved
with the Simplex algorithm [32] which exactly solves the problem after a finite number
of steps. Although the Simplex algorithm is very efficient on a large variety of practical
problems, it was possible to construct a problem which uses an exponential number of
steps for every variant of the Simplex algorithm.

2The term programming was introduced for resource planning processes and is used as a synonym for
the term optimization in literature.

54

2.3. Optimization

Since most optimization problems in statistical learning are at least quadratic and many
of the problems are non-convex, we will not discuss any details here.

2.3.2. Quadratic and Non-Linear Programming

LP has a property which now no longer needs to hold: any local optimum was also a
global optimum in linear programming. This in general applies if the objective function
is convex. In these cases, it suffices to define an optimization procedure which finds a
local optimum also for non-linear programming. This local optimum will then also be
the global one for convex objective functions.

The general problem of finding global solutions for general non-linear functions is an
unsolved problem of mathematics. Solutions always use heuristics and we will discuss
the probably most successful solution for this type of problems in Section 2.3.3.

2.3.2.1. Nelder-Mead Optimization

The Nelder-Mead algorithm finds an approximatively correct local optimal solution if the
non-linear objective function is more or less continuous [135]. The method uses a simplex,
i.e. a polyeder with p+1 vertices in a p-dimensional space. With help of this simplex the
behavior of the objective function is extrapolated and a new search point is determined.
The most simple approach is to replace the worst point of the current simplex by the
one mirrored over the centroid of the simplex. Although this algorithm is quite simple,
it often does not deliver the expected optimal results. Therefore, we will discuss a better
optimization scheme which is more suitable for the quadratic programming problem
posed by structural risk minimization.

2.3.2.2. Newton Optimization

The Newton algorithm is a standard method for numerically solving non-linear equations
and systems of equations [39]. The goal is to find the roots of an arbitrary function h
(not the objective function), i.e. those γ for which h(γ) = 0 holds. A root γ of the
function h′ corresponds to a local extremum of h in γ.

The basis Newton algorithm is quite simple:

1. Estimate a start value γ0 so that |h(γ0)| is small,

2. Calculate the tangent of h at γi and calculate the root of the tangent,

3. Use this root as an approximation of γi+1, i.e. of the searched root of h,

4. Repeat steps 2 and 3 with the new approximation until the changes converge.

55

2. Basics

Selection of a Start Value A widely used approach for selecting the start value is
the bisection method. A large interval [a, b] is chosen. If h(a) · h(b) is negative, then
h changes the sign in this interval. This means that h has a root in the interval [a, b].
We now perform a binary search until the interval [a, b] is small enough. We choose an
arbitrary point of the resulting interval as start value γ0.

Calculation of the Next Root The derivative approximates the tangent by a secant:

h′(γ) = lim
∆γ→0

h(γ + ∆γ)− h(γ)

∆γ
.

Without loss of generality, let the tangent be defined by the function t(γn +d) = h(γn)+
h′(γn) · d. For d = γ − γn we get t(γ) = h(γn) + h′(γn)(γ − γn). Let γn+1 be the only
root of this linear function then we get the recursive calculation

0 = h(γn) + h′(γn)(γn+1 − γn)⇒ γn+1 = γn −
h(γn)

h′(γn)
.

Optimization with the Newton Method Since we are searching for an extremum of
the objective function r we search a root of r′, hence we need the second derivative r′′.
Since most objective functions r do not depend on one single parameter only, we also
have to extend the Newton method for multiple dimensions.

For more than one dimension we replace the first derivative by the gradient ∇. The
second derivative is subsumed in the Hesse Matrix :

H(h) =

(
∂2h

∂γi∂γj

)

=

∂2h
∂γ1∂γ1

∂2h
∂γ1∂γ2

· · · ∂2h
∂γ1∂γn

∂2h
∂γ2∂γ1

∂2h
∂γ2∂γ2

· · · ∂2h
∂γ2∂γn

...
...

...
∂2h

∂γn∂γ1

∂2h
∂γn∂γ2

· · · ∂2h
∂γn∂γn

.

This changes our recursive calculation procedure for multiple dimensions to

γn+1 = γn − [H(h(γn))]−1∇h(γn).

Quasi-Newton Method The Newton method has several problems for practical opti-
mization problems:

• the Hesse matrix is not always invertible,

• the optimization is not robust and stops due to small numerical instabilities, and

56

2.3. Optimization

• the calculation of H causes large runtimes for the whole optimization procedure.

The solution for these problems it to omit the exact calculation of the Hesse matrix
H and to approximate this matrix. Although this decreases runtime and makes the
method more robust against numerical instabilities, it is no longer guaranteed to find
the local optimum any longer. This approximative variant of the Newton method is
called Quasi-Newton [137] and is the most widely used optimization procedure for the
Support Vector Machine optimization problem stated above.

2.3.3. Non-Convex Programming

Besides the fact that the Quasi-Newton method does no longer guarantee that a local
optimum is found, we will discuss in this work several problems with non-convex objective
functions. In these cases the (Quasi-)Newton methods will fail since they will get stucked
in the first local optimum they find and will not be able to identify the global optimum.
This is in general true for all non-convex optimization problems and currently there is
no exact solution known which is able to guarantee that the global optimal solution is
found.

Therefore, other heuristics must be used instead of the ones discussed before which
should be also usable for non-convex optimization problems. It is quite interesting that
a very simple heuristic approach for solving non-convex optimization problems, namely
Evolutionary Algorithms [6] proved to be the most successful solution for many real-world
optimization tasks.

2.3.3.1. Evolutionary Algorithms

We subsume several generic population-based heuristic optimization procedure under
the term evolutionary algorithms (EA). The basic idea is to maintain a set of solution
candidates, called population. Each of these search points or individuals can be evaluated
for the value of the objective function. Hence, if we have several individuals γi it must
be possible to calculate r(γi) for all the individuals in each population. Since nothing
more than the evaluation method is necessary, EA are also called black-box optimization
schemes since they can even be applied on problems where nothing is known about the
problem itself.

The basis of each evolutionary algorithm is a loop in which several operations on the
population are performed:

Selection: those individuals with higher values r(γi) (for a maximization problem)
should be selected with higher probability into the next population,

57

2. Basics

Recombination: several individuals γi are selected and their parameters are partly
exchanged which results in new search points (crossover),

Mutation: individuals γi are selected from the current population and offsprings are
created by slightly changing some of the parameters of those γi. Small changes
should have higher probabilities than larger changes.

It can easily be seen that the idea of EA was inspired by biological evolution. Today,
however, a lot of variants of EA exist and most of them do not rely on any biological
idea any longer.

Genetic Algorithms Evolutionary algorithms like they were described above are the
most general term for this class of optimization techniques. Depending on the structure
of the individuals, i.e. the search space defining the search points or individuals, one can
further distinguish different types of evolutionary algorithms.

The first class of evolutionary algorithms is called Genetic Algorithms (GA). Those
optimization techniques work on the d-dimensional search space B

d where each individual
γi ∈ B

n is described as a boolean vector of length n. While this does not affect the used
selection and recombination schemes, the mutation is usually restricted to a random bit
flip for each position of the vector with probability 1/n. This ensures that in expectation
only one bit is flipped in each generation and individual and therefore small changes have
a higher probability than larger changes.

Evolution Strategies Another important subclass of evolutionary algorithms is called
Evolution Strategies (ES) [14]. Here, the individuals γi no longer consist of boolean but
of real numbers, hence γi ∈ R

n. Again, the selection and recombination do not have to
be changed but we have to use a specific mutation operator. A commonly used variant
adds to each of the coefficients of an individual γi a small Gaussian with mean 0 and
standard deviation σ. Small values for σ infers only small steps to the optimum, but
large values of σ could lead to missing the actual optimum if you are close to it. For that
reason, simple adaptation rules for σ are used like the 1/5-rule [150]. The 1/5 rule will
adapt the variance of the mutation depending on the measured success probability. The
mutation strength σ is increased after k generations, if the measured success probability
is larger than 1/5 and decreased if the probability is smaller 1/5. The parameters k and
the levels of increase and decrease are additional parameters of an evolution strategies
optimization scheme.

Genetic Programming The last subclass of evolutionary algorithms discussed here
and also used in this thesis are the Genetic Programming (GP) algorithms. Here, the
individuals γi do not have a fixed length but the length and structure of the individuals

58

2.4. Multi-Objective Optimization

may vary during the optimization. Most often, the individuals are not even vectors
but consist of more complicated structures like trees or graphs. We will discuss the
application of genetic programming together with the structure of individuals and the
search point operations in detail in Chapter 7.

Particle Swarm Optimization Although Particle Swarm Optimization (PSO) [78] are
not a direct subclass of evolutionary algorithms they are also inspired by phenomena
which can be observed in nature and will hence also be discussed here. The basic idea
of the particle swarm optimization approach is to keep track of a swarm of particles
in a multidimensional space where each particle has a position γi and a velocity vi.
The particles fly through hyperspace and have two essential reasoning capabilities: their
memory of their own best position and knowledge of the global best. Members of a
swarm communicate good positions to each other and adjust their own position and
velocity based on these good positions.

The particle position and velocity update equations are quite simple:

vnew
i ← winertiav

old
i + wglobalrglobal(γ

globalbest − γold
i) + wlocalrlocal(γ

localbest − γold
i)

γnew
i ← γold

i + vnew
i

The parameters w are weight parameters for the different aspects of the update equation.
The parameters r are random numbers between 0 and 1 introducing some randomness
into the search.

Particle swarm optimization is very similar to evolution strategies since it also works on
the space R

n. In contrast to evolution strategies, however, the gradient information in
form of the velocity vectors is much more used instead of only randomly changing the
current individuals’ parameters and PSO hence is expected to reach the optimum faster
in unimodal cases.

2.4. Multi-Objective Optimization

We already have stated that evolutionary algorithms are very successful in solving real-
world optimization problems, even if the underlying problem is non-convex and nothing
is known about the problem’s nature at all. In this work, we also use evolutionary algo-
rithms for another reason: they are the only efficiently working optimization procedures
which are able to simultaneously optimize not only one but several objective functions
which might even compete which each other.

Until now, we only have defined a single objective function r. Let us now consider a
set r1, . . . , rv of objectives which should all be optimized. Simultaneously optimizing

59

2. Basics

conflicting criteria can be achieved by transforming the problem into a single-objective
optimization problem. Therefore, user defined parameters have to be used in order to
weigh the criteria. However, very often the user has no idea of criteria weights and,
furthermore, there exist no simple decision about correct or wrong solutions. We try
to maintain as much information as possible and aim at finding all solutions which are
optimal for arbitrary criteria weight vectors. These solutions are called Pareto-optimal.

The multi-objective search space of a maximization problem is subject to a partial
order:

Definition 2.14 (Domination) A solution γ1 dominates a solution γ2 (written as
γ1 ≻ γ2) if for the v criteria ri the following is true:

∀i ∈ {1, . . . , v} : ri(γ1) ≥ ri(γ2) ∧ ∃i ∈ {1, . . . , v} : ri(γ1) > ri(γ2).

Our selection scheme needs to decide if a solution is dominated by a set ΓD of solutions.
We define:

Definition 2.15 (Non-Domination) A solution γ is non-dominated by a set of so-
lutions ΓD if 6 ∃γD ∈ ΓD : γD ≻ γ.

Now we are able to define what we mean with Pareto-optimal solutions:

Definition 2.16 (Pareto-Optimal) A solution γ is Pareto-optimal if γ is non-
dominated by the complete solution space Γ.

2.4.1. Multi-Objective Evolutionary Optimization

The usual approach for multi-objective problems are evolutionary algorithms which can
optimize more than one target function by introducing special selection operators [202].
Traditional approaches in the field of mathematical programming must be applied more
than once for multi-objective optimization [198]. Due to the population based approach
of evolutionary algorithms a broad selection of Pareto-optimal solutions can be found
during one run. The user can select one of these solutions after optimization. Addi-
tionally, multi-objective evolutionary algorithms do not strongly depend on form and
continuity of the Pareto-optimal set [27].

Many multi-objective selection techniques were proposed for EAs during the last years.
It turned out that NSGA-II is currently one of the best solutions for this task in a wide
range of practical relevant optimization problems [36]. NSGA-II employs a selection
technique which first sorts all individuals into levels of non-domination. Individuals
from the first levels are added to the next generation until the desired population size is
reached. Before adding individuals from the last possible level, this level is sorted with

60

2.4. Multi-Objective Optimization

respect to the crowding distance in order to preserve diversity in the population. Since
NSGA-II proved to be superior compared to other selection techniques for the problems
discussed in this work, we choose NSGA-II as standard selection for all optimizations.

A basic condition to pose an multi-objective optimization problem properly is that the
described criteria are actually in conflict to each other. By improving on one criterion,
we cannot simultaneously improve on the other criteria. Only problems for which this
condition holds are sound and can be properly solved by multi-objective optimization.

2.4.1.1. Guided Multi-Objective Optimization

We will see that evolutionary multi-objective optimization techniques will be able to
deliver a representative set of Pareto-optimal solutions in all discussed problems of this
thesis. Since this set sometimes becomes rather large and the analyst has to choose a
final solution from such a set which is applied to his practical problem, it might be a
good idea to incorporate techniques for selecting a final solution from Pareto sets or
guiding the search for such a solution if any information is available beforehand.

Several preference based strategies have been proposed in combination with evolutionary
multi-objective optimization. The first class of guided optimization techniques include
those which prefer a set of solutions around one or several reference points [37]. During
the NSGA-II selection process of the evolutionary algorithm those points from the ranks
are preferred with smaller distances to the reference point(s). The result will hence
be a partial Pareto front. It is interesting to note that these reference points do not
need to actually exist in order to define a preferred direction of the Pareto front. Other
proposed techniques combine a light beam search with the NSGA-II procedure which
will also result in partial Pareto sets and ease the final decision process for a final solution
[35].

A related approach for guiding the search for a final solution from a found Pareto set
is based on the concept of desirability indices [174, 180]. These one- or two-sided index
functions can be used to weigh the objective functions in a way that certain regions of
the Pareto front are preferred. Both approaches, the reference point approach and the
desirability index approach lead to partial Pareto sets which might ease the selection of
a final solution and even work for noisy domains [101].

On the one hand, these methods work well when the analyst has at least a slight idea be-
forehand which parts of the Pareto front might interest him more. Another advantage of
these guidance methods is that they can easily be incorporated into the multi-objective
optimization method sketched above. On the other hand, these guidance methods com-
pletely rely on the definition of a reference point or of desirability function which is a
hard task in cases where no optimal criteria weighing is known at all beforehand. Unfor-
tunately, the weighting is most often not known for the problems in this thesis (compare

61

2. Basics

to the results of the next chapter) and so we will rely on the original NSGA-II which of
course can easily be extended in cases where the analyst has a preference for a region
before the optimization starts.

62

Part I.

Learning

63

CHAPTER 3

Multi-Objective Learning

In this chapter, we embed evolutionary computation into statistical learning theory. We
have discussed the connection between large margin optimization and statistical learning
in Chapter 2 and have seen why this paradigm is successful for many pattern recognition
problems. We now embed evolutionary computation into the most prominent represen-
tative of this class of learning methods, namely into Support Vector Machines (SVM).
In contrast to former applications of evolutionary algorithms to SVMs, we do not only
optimize the method or kernel parameters. We rather use both, evolution strategies and
particle swarm optimization, in order to directly solve the posed constrained optimiza-
tion problem. Transforming the problem into the Wolfe dual reduces the total runtime
and allows the usage of kernel functions. Exploiting the knowledge about this optimiza-
tion problem leads to a hybrid mutation which further decreases convergence time while
classification accuracy is preserved. We will show that evolutionary SVMs are at least
as accurate as their quadratic programming counterparts on six real-world benchmark
data sets. The evolutionary SVM variants frequently outperform their quadratic pro-
gramming competitors in terms of the objective function. Additionally, the proposed
algorithm is more generic than existing traditional solutions since it will also work for
non-positive semidefinite kernel functions and for several, possibly competing, perfor-
mance criteria. This chapter will concentrate on the latter aspect while the following
chapters will also concentrate on the optimization for non-convex optimization problems
in statistical learning.

3.1. Single-Objective Evolutionary Support Vector Machines

We first show how evolutionary algorithms can be used to optimize the dual form of the
optimization problem of SVMs. We will see that the resulting SVM performs similar to

65

3. Multi-Objective Learning

the traditional SVMs based on quadratic programming. After the evaluation of the new
SVM, called EvoSVM, we will discuss how this learning scheme can be extended

• to solve non-convex optimization problems (next chapters), and

• to perform the complete trade-off between training error and model complexity
(this chapter).

3.1.1. Motivation for Evolutionary Support Vector Machines

Usually, the optimization problem posed by large margin methods is solved by methods
known from quadratic programming problems, e.g. the (Quasi-)Newton method. How-
ever, there are some drawbacks with these approaches. First, no unique global optimum
exists for kernel functions which are not positive semidefinite. Such an indefinite func-
tion f with arity 2 might deliver a positive or a negative result for f(x, x) depending
on the value of x. Kernels based on non-positive semidefinite functions resemble a (par-
tial) distance instead of a similarity measure. The optimization problem of large margin
methods is then no longer guaranteed to be concave since the sign of the calculations
might switch depending on the location in the search space. As a result, the objective
function would no longer consist of a unique maximum only but of several maxima. This
is also called a multi-modal problem.

In these cases, quadratic programming is not able to find satisfying solutions at all.
Moreover, most implementations do not even terminate [61]. There exist several use-
ful non-positive kernels [96], among them the sigmoid kernel which simulates a neural
network [24, 168]. Therefore, a more generic optimization scheme based on evolution-
ary strategies was recently proposed by the author of this thesis which allows such
non-positive kernels without the need for omitting the more efficient dual optimization
problem [108, 109] which was proposed by other work [140]. This will be the topic of
Chapter 4.

Another drawback of traditional SVMs is that they are not able to optimize several per-
formance measures at the same time. Traditional SVMs try to maximize the prediction
accuracy alone. However, depending on the application area other specific performance
criteria should be optimized instead of or additionally to prediction accuracy. Although
first attempts were made to incorporate multivariate performance measures into SVMs
[75], the problem is not generally solved and no solution exist for competing criteria.
This problem as well as the general trade-off between training error and capacity could
be easily solved by an (multi-objective) evolutionary optimization approach.

Several former applications of evolutionary algorithms to SVMs exist. The first group
include the optimization of method and kernel parameters [55, 159]. Evolutionary ap-
proaches can easily be used to optimize parameters like the weighting factor C or kernel

66

3.1. Single-Objective Evolutionary Support Vector Machines

parameters like γ from the RBF kernel function. The result of a cross validation run
is used as fitness measurement. This outer optimization scheme of course aims at the
model selection process discussed in the introduction. But unlike the approach which
will be discussed in this chapter, the outer parameter optimization needs several com-
plete learning runs for different parameter settings and a complete validation run, e.g.
a 10-fold cross validation, for performance estimation.

Other applications of evolutionary algorithms include the selection of optimal feature
subsets [56] by means of genetic algorithms and the creation of new kernel functions
by means of genetic programming [68]. Here a set of rules is employed to create new
kernel functions in a tree based structure optimized by genetic programming. This latter
approach is particularly interesting for the SVM discussed in this and the next chapters
since it cannot be guaranteed that the resulting kernel functions are again positive semi-
definite. This can not be solved by traditional SVM but by the evolutionary variant
proposed here.

In contrast to all of the approaches discussed above, we embed evolutionary algorithms
into the learning machine itself and solve the optimization problem of large margin
methods like SVMs in its dual form. By doing this, we can avoid the major drawback
connected to traditional SVM learning. Although the statistical learning theory takes
into account both the training error and the model complexity, the user still has to define
a weighting factor for both conflicting criteria. The search for this parameter is usually
a non-trivial and very time consuming task as it has been described above.

In this chapter, we first show that the models built by an SVM by means of evolutionary
algorithms perform very similar to those of traditional SVM implementations. For this
comparison, we will just replace the inner optimization scheme of SVM by an evolution-
ary algorithm and let this algorithm solve the traditional single-objective optimization
problem. We then propose to embed multi-objective evolutionary algorithms into SVM.
This allows, for a first time, to explicitely optimize the inherent model selection trade-off
which is the basic idea of statistical learning theory without applying time-consuming
outer wrapper and validation approaches for optimizing the trade-off like it was de-
scribed above. The result of the proposed approach is a Pareto front in the space of
training error vs. model complexity and gives interesting insights into the nature of the
problem at hand. Traditional SVM would only deliver a single point of this Pareto front
for each different selection of the parameter C while the approach proposed here delivers
the complete sensible front in one single optimization run. By using a hold-out data set
as a test set for the resulting models, we derive a second front showing the generaliza-
tion error. Both, the Pareto front and the generalization error plot allows for a quick
selection of the final solution f(x, γ) from the Pareto front without the time-consuming
optimization of a weighting factor. We refer to this as overfitting control since for a first
time the data mining algorithm itself derives all necessary information and can hence

67

3. Multi-Objective Learning

control the overfitting itself instead of having the user make this decision by selecting a
parameter.

3.1.2. Evolutionary Computation for Large Margin Optimization

Before we will discuss the multi-objective optimization of both error and complexity, we
will first analyze the effect by replacing the usual quadratic programming optimization
by an evolution strategies (ES) approach [14] or by particle swarm optimization (PSO)
[78]. In this section, we will describe both a straightforward application of these tech-
niques and how we can exploit some information about our optimization problem and
incorporate that information into our search operators.

3.1.2.1. Solving the Dual Problem and Other Simplifications

The used optimization problem is the dual problem for non-linearly separable data de-
veloped in Section 2.2.2.3 (Problem 2.5):

Problem 3.1 (Dual SVM Problem (final)) The dual optimization problem for
non-linear Support Vector Machines on non-linearly separable data is

maximize
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjk (xi, xj)

subject to ∀n
i=1 : 0 ≤ αi ≤ C

and
n∑

i=1

αiyi = 0.

Of course it would also be possible to directly optimize the original form of our optimiza-
tion problem depicted in equations 2.7 and 2.8. That is, we could directly optimize the
weight vectors and the offset. But there are two drawbacks: first, the costs of calculating
the fitness function would be much higher for the original optimization problem since
the fulfillment of all n constraints must be recalculated for each new hyperplane. It is
far easier to check if all 0 ≤ αi ≤ C apply. Second, it would not be possible to allow
non-linear learning with efficient kernel functions in the original formulation of the prob-
lem. This can easily be seen in case of the radial base function kernel where the explicit
transformation Φ would lead to infinite spaces where the calculation of the dot product
would no longer be possible. Furthermore, the kernel matrix K with Kij = k (xi, xj)
can be calculated beforehand in case of the dual optimization problem and the training
data is never used during optimization again. This further reduces the needed runtime
for optimization since the kernel matrix calculation is done only once. In cases where
the kernel matrix is too large and does not fit into the main memory, a simple caching

68

3.1. Single-Objective Evolutionary Support Vector Machines

strategy can be applied in order to prevent unnecessary recalculations. This is of course
also true for traditional SVM.

This is a nice example for a case, where transforming the objective function beforehand
is both more efficient and allows enhancements which would not have been possible
before. Transformations of the fitness functions became also a very important topic in
evolutionary algorithms research recently [175].

Another efficiency improvement can be achieved by formulating the problem with b = 0.
All solution hyperplanes must then contain the origin and the constraint

∑n
i=1 αiyi = 0

will vanish. This is a mild restriction for high-dimensional spaces since the number of
degrees of freedom is only decreased by one [22]. This means that in the calculation of
w and b only one element is fixed during the optimization and hence we do not have to
cope with this equality constraint which would take an additional runtime of O(n) for
each generation. After optimization has been finished, we can use the constraint in order
to calculate a value for b. This also is a technique frequently employed by traditional
SVM implementations, too.

3.1.2.2. EvoSVM and PsoSVM

We will first analyze the effect of using evolutionary algorithms on the traditional single-
objective optimization problem. Later, we will omit the parameter C and switch to
multi-objective optimization problems instead.

The first approach (EvoSVM-G, G for Gaussian mutation) merely utilizes a standard
ES optimization. Individuals are the real-valued vectors α and mutation is performed
by adding a Gaussian distributed random variable with standard deviation C/10. In
addition, a variance adaptation is conducted during optimization (1/5 rule [150]). The
1/5 rule will adapt the variance of the mutation depending on the measured success
probability. The mutation strength is increased by factor 2 after 100 generations, if the
measure success probability is larger than 1/5 and decreased by factor 2 if the probability
is smaller than 1/5.

Crossover probability is high (0.9). We use tournament selection with a tournament size
of 0.25 multiplied by the population size. This means that for each place in the next
generation 25% of the current population are randomly selected with replacement and
the best individual will be added to the next generation.

The initial individuals are random vectors with 0 ≤ αi ≤ C. The maximum number
of generations is 1000 and the optimization is terminated if no improvement occurred
during the last 5 generations. The population size is 10.

The second version is called EvoSVM-S (S for switching mutation). Here we utilize
the fact that only a small amount of input data points will become support vectors

69

3. Multi-Objective Learning

for i = 1 to n do {

if (random(0, 1) < 1/n) do {

if (alpha_i > 0) do {

alpha_i = 0;

} else do {

alpha_i = random(0, C);

}

}

}

Figure 3.1.: A simple hybrid mutation which should speed-up the search for sparser
solutions. It contains elements from standard mutations from both genetic
algorithms and evolution strategies.

(sparsity). On the other hand, one can often observe that non-zero alpha values are
equal to the upper bound C and only a very small amount of support vectors exists with
0 < αi < C. Therefore, we just use the well known mutation of genetic algorithms and
switch between 0 and C with probability 1/n for each αi. The other parameters are
equal to those described for the EvoSVM-G.

Using this switching mutation is inspired by genetic algorithms and only allows the
optimization parameter values αi = 0 or αi = C. Instead of a complete switch between 0
and C or a smooth change of all values αi like the Gaussian mutation does, we developed
a hybrid mutation combining both elements. That means that we check for each αi

with probability 1/n if the value should be mutated at all. If the current value αi is
greater than 0, αi is set to 0. If αi is equal to 0, αi is set to a random value with
0 ≤ αi ≤ C. Figure 3.1 gives an overview over this hybrid mutation. The function
random(a, b) returns an uniformly distributed random number between a and b. The
other parameters are the same as described for the EvoSVM-G. We call this version
EvoSVM-H (H for hybrid).

As was mentioned before, the optimization problem usually is concave and the risk for
local extrema is small. Hence, we also applied a PSO technique which is more directed
to (local) optima than evolutionary algorithms. It should be investigated if PSO, which
is similar to the usual quadratic programming approaches for SVMs in a sense that
the gradient information is exploited, is able to find a global optimum in shorter times.
Please see Section 2.3.3.1 for further details on particle swarm optimization.

We call this last version of an evolutionary SVM PsoSVM and use a standard PSO with
inertia weight 0.1, local best weight 1.0, and global best weight 1.0. The inertia weight
is dynamically adapted during optimization [78].

70

3.1. Single-Objective Evolutionary Support Vector Machines

3.1.3. Experiments and Results

We now evaluate the proposed evolutionary optimization SVM and compare our imple-
mentation to the quadratic programming approaches usually applied to large margin
problems. The experiments demonstrate the competitiveness in terms of the original
optimization problem, the classification error minimization, the runtime, and the ro-
bustness.

In order to compare the evolutionary SVM described in this paper with standard SVM
implementations, we also applied two other SVMs on all data sets. Both SVMs use
a slightly different optimization technique based on quadratic programming. The used
implementations were mySVM [160] and LibSVM [25]. The latter is an adaptation of the
widely used SV M light [72]. All experiments were performed with the machine learning
environment RapidMiner [125]1.

3.1.3.1. Data Sets

We apply the discussed EvoSVM and PsoSVM as well as the other SVM implementations
on two synthetical and six real-world benchmark data sets. The data set Spiral consists
of two intertwingling spirals of different classes. For checkerboard, the data set consists
of two classes layed out in a 8× 8 checkerboard. In addition, we use six benchmark data
sets from the UCI machine learning repository [136] and the StatLib data set library
[173]. We choose these data sets because they already define a binary classification
task, consist of real-valued numbers only and do not contain missing values. Therefore,
we did not need to perform additional preprocessing steps which might introduce some
bias. The properties of all data sets are summarized in Table 3.1. The default error
corresponds to the error a lazy default classifier would make by always predicting the
major class. Classifiers must produce lower error rates in order to learn at all instead of
just guessing.

We use an RBF kernel for all SVM and determine the best parameter value for σ with a
grid search parameter optimization for mySVM. This ensures a fair comparison since the
parameter is not optimized for the evolutionary SVM. Possible parameters were 0.001,
0.01, 0.1, 1 and 10. The optimal value for each data set is also given in Table 3.1.

3.1.3.2. Comparison for the Objective Function

The first question is if the evolutionary optimization approach is capable of delivering
comparable results with respect to the objective function, i.e. the dual optimization

1http://www.rapidminer.com/

71

3. Multi-Objective Learning

Data Set n m Source σ Default

Spiral 500 2 Synthetical 1.000 50.00
Checkerboard 300 2 Synthetical 1.000 50.00
Liver 346 6 UCI 0.010 42.03
Sonar 208 60 UCI 1.000 46.62
Diabetes 768 8 UCI 0.001 34.89
Lawsuit 264 4 StatLib 0.010 7.17
Lupus 87 3 StatLib 0.001 40.00
Crabs 200 7 StatLib 0.100 50.00

Table 3.1.: The evaluation data sets. n is the number of data points, m is the dimension
of the input space. The kernel parameter σ was optimized for the compar-
ison SVM learner mySVM. The last column contains the default error, i. e.
the error for always predicting the major class in percent.

problem 2.5. We applied all SVM implementations on all data sets and calculated the
value for the objective function.

We perform a k-fold cross validation in order to determine the objective function values of
all methods. The data set T is divided into k disjoint subsets Ti. For each i ∈ {1, . . . , k}
we use T\Ti as training set and the remaining subset Ti as test set. If Fi is the value for
the objective function on the training set T\Ti, we calculate the average value

F =
1

k

k∑

i=1

Fi

|T \ Ti|

over all training sets in order to measure the performance and a standard deviation.
In our experiments we choose k = 20, i. e. for each method the average and standard
deviation of 20 different runs is reported.

Table 3.2 shows the results. It can clearly be seen that for all data sets the EvoSVM
approach delivers statistically significant higher values than the other SVM approaches
in comparable time.

3.1.3.3. Comparison for Positive Kernels

We now examine the generalization performance of all SVM implementations for a reg-
ular positive semidefinite kernel function (a radial basis function kernel).

72

3.1. Single-Objective Evolutionary Support Vector Machines

Data Set Algorithm Objective Function Time[s]

EvoSVM 99.183 ± 5.867 11
Spiral mySVM −283.699 ± 7.208 6

LibSVM −382.427 ± 12.295 7

EvoSVM 94.036 ± 1.419 4
Checkerboard mySVM −114.928 ± 1.923 2

LibSVM −127.462 ± 1.595 3

EvoSVM 103.744 ± 7.000 5
Liver mySVM −1301.563 ± 84.893 3

LibSVM −1640.546 ± 80.228 3

EvoSVM 8.436 ± 2.937 3
Sonar mySVM −558.333 ± 31.249 2

LibSVM −491.039 ± 26.196 2

EvoSVM 209.491 ± 14.003 10
Diabetes mySVM −90.856 ± 3.566 8

LibSVM −108.242 ± 3.886 7

EvoSVM 80.024 ± 18.623 3
Lawsuit mySVM −8790.429 ± 308.996 1

LibSVM −9061.420 ± 303.227 1

EvoSVM 29.074 ± 2.582 1
Lupus mySVM −603.404 ± 52.356 1

LibSVM −504.564 ± 41.593 1

EvoSVM 32.413 ± 1.231 2
Crabs mySVM −90.856 ± 3.566 1

LibSVM −108.242 ± 3.886 1

Table 3.2.: Comparison of the different implementations with regard to the objective
function (the higher the better). The results are obtained by a 20-fold cross
validation, the time is the cumulated time for all runs. It can easily be seen
that the evolutionary version of the SVM always provides better results
for the objective function than the quadratic programming solutions. Bold
fonts mark significantly better results on a 1% confidence level.

73

3. Multi-Objective Learning

Data Set Algorithm Error Time[s]

EvoSVM 16.40 ± 4.54 11
Spiral mySVM 17.20 ± 4.58 6

LibSVM 17.80 ± 3.94 7

EvoSVM 22.67 ± 4.90 4
Checkerboard mySVM 24.00 ± 6.29 2

LibSVM 23.00 ± 5.04 3

EvoSVM 33.92 ± 6.10 5
Liver mySVM 31.31 ± 5.86 3

LibSVM 33.33 ± 4.51 3

EvoSVM 16.40 ± 9.61 3
Sonar mySVM 14.50 ± 9.61 2

LibSVM 13.98 ± 7.65 2

EvoSVM 25.52 ± 4.30 10
Diabetes mySVM 23.83 ± 4.46 8

LibSVM 24.48 ± 4.81 7

EvoSVM 31.00 ± 11.08 3
Lawsuit mySVM 29.50 ± 5.56 1

LibSVM 36.72 ± 2.01 1

EvoSVM 23.89 ± 14.22 1
Lupus mySVM 24.17 ± 12.87 1

LibSVM 24.17 ± 12.87 1

EvoSVM 3.50 ± 3.91 2
Crabs mySVM 3.00 ± 2.45 1

LibSVM 3.50 ± 3.91 1

Table 3.3.: Comparison of the different implementations with regard to the classifica-
tion error (the lower the better). The results are obtained by a 20-fold cross
validation, the time is the cumulated time for all runs. There is no signifi-
cant difference between the results on a 1% significance level according to
an ANOVA test.

74

3
.1

.
S
in

g
le-O

b
jectiv

e
E

v
o
lu

tio
n
a
ry

S
u
p
p
o
rt

V
ecto

r
M

a
ch

in
es

C = 1

Liver Ionosphere Sonar Lawsuit Lupus Crabs

Error T Error T Error T Error T Error T Error T

EvoSVM-G 34.71±8.60 68 10.81±5.71 80 14.03±4.52 26 2.05±1.87 52 25.20±11.77 8 2.25±3.72 25
EvoSVM-S 35.37±6.39 4 8.49±3.80 9 17.45±6.64 6 2.40±1.91 10 30.92±12.42 <1 4.05±4.63 2
EvoSVM-H 34.97±7.32 7 6.83±3.87 22 15.41±6.39 10 2.01±1.87 14 24.03±13.68 1 3.95±4.31 7
PsoSVM 34.78±4.95 8 9.90±4.38 9 16.94±5.61 7 3.02±2.83 3 25.22± 7.67 <1 3.40±3.70 2
mySVM 33.62±4.31 2 8.56±4.25 4 15.81±5.59 2 1.89±2.51 1 25.28± 8.58 1 3.00±3.32 1
LibSVM 32.72±5.41 2 7.70±3.63 3 14.60±4.96 3 2.41±2.64 1 24.14±12.33 1 3.00±4.58 1

F Test 3.20 (0.01) 9.78 (0.00) 6.19 (0.00) 1.51 (0.19) 11.94 (0.00) 2.25 (0.05)

C = 0.1

Liver Ionosphere Sonar Lawsuit Lupus Crabs

Error T Error T Error T Error T Error T Error T

EvoSVM-G 33.90±4.19 74 9.40±6.14 89 21.72±6.63 35 2.35±1.92 50 24.90±10.51 7 7.20±4.36 27
EvoSVM-S 35.57±3.55 4 7.12±3.54 18 24.90±6.62 4 4.47±2.31 13 25.98±12.56 <1 7.95±5.68 2
EvoSVM-H 34.76±4.70 5 6.55±4.61 23 24.40±6.09 11 4.16±3.14 19 26.51±13.03 1 6.50±5.02 2
PsoSVM 36.81±5.04 3 13.96±7.56 10 24.18±6.11 3 3.03±2.83 3 29.86±12.84 1 8.15±6.02 1
mySVM 42.03±1.46 2 35.90±1.35 2 46.62±1.62 2 7.17±2.55 1 41.25±6.92 1 6.50±4.50 1
LibSVM 33.08±10.63 2 11.40±6.52 3 22.40±6.45 3 4.55±3.25 1 25.29±16.95 1 21.00±12.41 1

F Test 34.46 (0.00) 492.88 (0.00) 323.83 (0.00) 20.64 (0.00) 64.83 (0.00) 100.92 (0.00)

C = 0.01

Liver Ionosphere Sonar Lawsuit Lupus Crabs

Error T Error T Error T Error T Error T Error T

EvoSVM-G 42.03±1.46 75 35.90±1.35 86 45.33±2.20 39 7.17±2.55 55 40.00±6.33 7 26.20±12.66 27
EvoSVM-S 42.03±1.46 3 35.90±1.35 9 46.62±1.62 4 7.17±2.55 3 40.00±6.33 <1 8.58±4.35 1
EvoSVM-H 42.03±1.46 3 35.90±1.35 20 46.27±1.42 12 7.17±2.55 3 40.00±6.33 1 7.00±4.00 2
PsoSVM 41.39±8.59 3 35.90±1.35 4 27.90±6.28 3 7.17±2.55 2 31.94±12.70 1 10.05±7.26 1
mySVM 42.03±1.46 2 35.90±1.35 2 46.62±1.62 2 7.17±2.55 1 40.00±6.33 1 6.50±4.50 1
LibSVM 42.03±1.46 2 35.90±1.35 3 28.46±10.44 2 7.17±2.55 1 26.11±16.44 1 50.00±0.00 1

F Test 0.52 (0.77) 0.00 (1.00) 442.46 (0.00) 0.00 (1.00) 78.27 (0.00) 1095.94 (0.00)

Table 3.4.: Classification error (the lower the better), standard deviation, and runtime of all SVMs on the evaluation
datasets for parameters C = 1, C = 0.1, and C = 0.01. The runtime T is given in seconds. The last line
for each table depicts the F test value and the probability that the results are not statistical significant.

75

3. Multi-Objective Learning

We again use a k-fold cross validation but this time we calculate Ei as the number of
wrong predictions on the test set Ti which leads to the average classification error of

E =
1

k

k∑

i=1

Ei

|Ti|
.

We again use k = 20 in our experiments.

Table 3.3 summarizes the results for C = 1. This value corresponds to 1/ (1−∑Kii)
which is a successful heuristic for determining C proposed by [63]. It can clearly be
seen that the EvoSVM leads to classification errors comparable to those of the quadratic
programming counterparts (mySVM and LibSVM).

The reason for slightly higher errors in some of the predictions of the quadratic pro-
gramming approaches is probably a too aggressive termination criterion. Although this
termination behavior further reduces runtime for mySVM and LibSVM, the classifica-
tion error is often increased. On the other hand, for the cases, where the EvoSVM yields
higher errors, the reason probably is a higher degree of overfitting due to the better
optimization of the dual problem (see above). This can easily be augmented by slightly
reducing the values of C as it can be seen in the example of the Liver data set (compare
C = 1 with C = 0.1 in Table 3.4).

Please note that the standard deviations of the errors achieved with the evolutionary
SVM are similar to the standard deviations achieved with mySVM or LibSVM. We
can therefore conclude that the evolutionary optimization is as robust as the quadratic
programming approaches and differences mainly derive from different subsets for training
and testing due to the used cross validation. The influence of the used randomized
heuristics seems not to be larger.

Table 3.4 summarizes the results for different values of C for both the EvoSVM and the
PsoSVM only on the real-world benchmark datasets for a 10-fold cross validation. It can
be seen that the EvoSVM variants frequently yield smaller classification errors than the
quadratic programming counterparts (mySVM and LibSVM). For C = 1, a statistical
significant better result was achieved by using LibSVM only for the Liver data set. For all
other datasets, the evolutionary optimization outperforms the quadratic programming
approaches. The same applies for C = 0.1. For rather small values of C most learning
schemes were not capable of producing better predictions than the default classifier (see
Table 3.1). For C = 0.01, however, PsoSVM at least provides a similar accuracy to
LibSVM.

It turns out that the standard ES approach EvoSVM-G using a mutation which adds a
Gaussian distributed random variable often outperforms the other SVMs. However, the
runtime for this approach might be too large in some practical situations. The mere GA
based selection mutation switching between 0 and C converges much faster but is often

76

3.2. Multi-Objective Statistical Learning

less accurate. A part of the runtime differences between EvoSVM-S and the quadratic
programming counterparts can probably also be traced back to different levels of code
optimization.

The hybrid version EvoSVM-H combines the best elements of both worlds. It converges
nearly as fast as the EvoSVM-S and is often nearly as accurate as the EvoSVM-G. In
some cases (Ionosphere, Lupus) it even outperforms all other SVMs.

PsoSVM on the other hand does not provide the best performance in terms of classifi-
cation error. However, it converged much earlier than the other competitors based on
evolutionary approaches. This was expected since PSO exploits some gradient informa-
tion similar to the Newton-based optimization methods used by traditional SVMs.

Please note that the standard deviations of the errors achieved with the evolutionary
SVMs are similar to the standard deviations achieved with mySVM or LibSVM. We
can therefore conclude that the evolutionary optimization is as robust as the quadratic
programming approaches and differences mainly derive from the cross validation vari-
ances.

Therefore, evolutionary SVMs provide an interesting alternative to more traditional
SVM implementations. Beside the similar results, EvoSVM is also capable of working
with multi-objective optimization as we will discuss in the next sections.

3.2. Multi-Objective Statistical Learning

In the last sections, we have discussed how the internal optimization scheme traditionally
used by Support Vector Machines can be replaced by evolutionary algorithms. We have
seen that evolutionary SVMs turned out to be at least as accurate as their quadratic
programming counterparts.

Now, we will finally discuss the major advantage of evolutionary SVM compared to
traditional SVM solutions: we can explicitly optimize the inherent trade-off which is the
basic idea of statistical learning theory. We do no longer need to apply time-consuming
outer wrapper approaches for optimizing the weighting factor between both criteria. This
is a clear advantage compared to the model selection process which has to be performed
otherwise.

3.2.1. The Regularized Risk Consists of Multiple Objectives

We shortly discuss the different parts of the regularized risk introduced in Chapter 2
again and we will see that the regularized risk as it was defined in the previous chapter
actually consists of two conflicting parts.

77

3. Multi-Objective Learning

Let us remember that the instance space is defined as the Cartesian product X =
X1×. . .×Xm of attributes Xi ⊆ R. Let Y be another set of possible labels. X and Y obey
a fixed but unknown probability distribution P (X,Y). We try to find a function f(x, γ)
which predicts the value of Y for a given input x ∈ X. The function class f depends
on a vector of parameters γ. Finally, we define a loss function L(Y, f(X, γ)) in order
to penalize errors during prediction. Since the mere minimization of the loss according
to the training data is not appropriate to find a good generalization, we incorporate
the capacity [185] of the used function into the optimization problem leading to the
regularized risk :

Definition 3.1 (Regularized Risk) Let Ω be a strictly monotonic increasing func-
tion. The regularized risk is defined as

Rreg(γ) = Remp(γ) + λΩ(γ).

Ω is a function which measures the capacity of the function class f depending on the
parameter vector γ (see [164] for more details). Since the empirical risk is usually a
monotonically decreasing function of Ω, both criteria are conflicting and we use λ to
manage the trade-off between training error and capacity.

We have seen that we need to use a class of approximation functions whose capacity can
be controlled. We discussed that large margin methods define such a class. They embed
regularized risk minimization by maximizing a margin between a linear function and the
nearest data points. In general, we can define the underlying optimization problem as
the maximization of the margin together with the minimization of a loss function:

Definition 3.2 (Large Margin Problems) Large Margin Problems are defined
as

minimize
1

2
||w||2 + C

n∑

i=1

L (yi, f(xi)) .

The vector w is the normal vector of the separating hyperplane. Minimizing ||w||2
corresponds to maximizing the margin. The second term calculates the training error
and C corresponds to the trade-off parameter λ known from the regularized risk.

Without loss of generality, we constrain the classes to Y = {−1,+1}. Furthermore, we
use the so called Hinge loss as a loss function:

Definition 3.3 (Hinge Loss) The following loss function is called Hinge Loss:

L(Y, f(X)) = (1− Y f(X))+

with (a)+ = max(a, 0).

78

3.2. Multi-Objective Statistical Learning

The definition of the Hinge loss leads to a very simple error count since it is possible
to just measure the loss for each training data point – called slack variable ξi – and to
simply summarize all values. The primal definition 3.2 of the large margin problem can
be combined with the Hinge loss. The slack variables ξi vanish and the optimization
problem can be transformed into its dual form (please refer to Chapter 2 for details):

Problem 3.2 (Dual Form of the SVM Problem) The dual form of the SVM
problem can be stated as

maximize
n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjk (xi, xj)

subject to ∀n
i=1 : 0 ≤ αi ≤ C

and

n∑

i=1

αiyi = 0.

The parameter C is a user defined weight for both conflicting parts of the optimiza-
tion criterion. In the following, we will discuss how multi-objective optimization can
be exploited to omit this parameter and deliver the full Pareto front for all possible
trade-offs between complexity and training error. Please note that the variables αi are
constrained by the upper bound C, i.e. by the user defined trade-off factor and that
the examples xi only occur in scalar products which was replaced by a kernel function
k = 〈Φ (xi) ,Φ (xj)〉 for a (non-linear) mapping Φ in an arbitrary dot product space.
This allows the search for a linearly separating hyperplane in high-dimensional spaces
after a non-linear transformation and, hence, the separating of non-linearly separable
data.

3.2.2. Explicit Trade-off between Error and Complexity

We have seen that we can use evolutionary algorithms as an optimization scheme for large
margin methods as the SVM and can achieve similar classification accuracies in similar
times. However, embedding evolutionary computation into large margin methods has
the big advantage of a straightforward application of multi-objective selection schemes
in order to simultaneously optimize several conflicting criteria. In this section, we divide
the criteria of the objective function stated above into two optimization targets while
the weighting factor C can be omitted. This leads to the following two optimization
problems:

79

3. Multi-Objective Learning

minimize
1

2
||w||2 (3.1)

subject to ∀n
i=1 : yi (〈w, xi〉+ b) ≥ 1− ξi

and ∀n
i=1 : ξi ≥ 0

and

minimize

n∑

i=1

ξi (3.2)

subject to ∀n
i=1 : yi (〈w, xi〉+ b) ≥ 1− ξi

and ∀n
i=1 : ξi ≥ 0.

We will transform both objectives into their dual form in order to allow the efficient
optimization of the problems including the usage of kernel functions.

3.2.3. First Objective: Maximizing the Margin

It is quite interesting that the first primal objective, i.e. maximizing the margin, can
be transformed into the dual form in exactly the same way for all different large margin
methods. The discriminating loss function is then omitted and the transformation is
equivalent for all large margin learning methods including, for example SVMs as well as
kernel logistic regression [112].

Theorem 3.1 (Dual Form of Margin Maximization) The dual form of the first
objective (maximize margin) for multi-objective SVMs is

maximize

n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjk (xi, xj)

subject to ∀n
i=1 : αi ≥ 0

and
n∑

i=1

αiyi = 0.

80

3.2. Multi-Objective Statistical Learning

Proof. We introduce positive Lagrange multipliers into equation 3.1. We need multipli-
ers α for the first set of inequality constraints and multipliers β for the second set of
inequality constraints:

L(1)
p (w, b, ξ, α, β) =

1

2
||w||2 −

n∑

i=1

αi (yi (〈w, xi〉+ b) + ξi − 1) −
n∑

i=1

βiξi

In order to find a solution we have to find the minimum by setting the derivatives to 0;

∂L
(1)
p

∂w
(w, b, ξ, α, β) = w −

n∑

i=1

αiyixi = 0,

∂L
(1)
p

∂b
(w, b, ξ, α, β) =

n∑

i=1

αiyi = 0,

∂L
(1)
p

∂ξi
(w, b, ξ, α, β) = −αi − βi = 0.

Plugging the derivatives into the primal objective function L
(1)
p delivers

L(1)
p (w, b, ξ, α, β) =

1

2
||w||2 −

n∑

i=1

−αiyi

〈
n∑

j=1

αjyjxj , xi

〉

+
n∑

i=1

αi

=

n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyj 〈xi, xj〉

The Wolfe dual must be maximized which leads to the formalization of the first objective
of the multi-objective large margin method setting. The resulting problem is very similar
to the usual dual SVM problem but without the upper bound C for the αi (again, the
dot product is replaced by a kernel function k):

maximize

n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

αiαjyiyjk (xi, xj)

subject to ∀n
i=1 : αi ≥ 0

and
n∑

i=1

αiyi = 0.

81

3. Multi-Objective Learning

3.2.4. Second Objective: Minimizing the Number of Training Errors

The second problem states that the sum of errors, i.e. the sum of the slack variables ξi,
should be minimized. This optimization must be performed under the same inequality
constraints as for the first objective.

Theorem 3.2 (Dual Form of SVM Training Error Minimization) The dual
form of the second objective (minimize training error) for multi-objective SVMs is

maximize

n∑

i=1

αi

subject to ∀n
i=1 : αi ≥ 0

and

n∑

i=1

αiyi = 0.

Proof. We start with equation 3.2 and add positive Lagrange multipliers α and β:

L(2)
p (w, b, ξ, α, β) =

n∑

i=1

ξi −
n∑

i=1

αi (yi (〈w, xi〉+ b) + ξi − 1)−
n∑

i=1

βiξi

The derivatives must again be set to 0 which leads to slightly different conditions on the

derivatives of L
(2)
p :

∂L
(2)
p

∂w
(w, b, ξ, α, β) = −

n∑

i=1

αiyixi = 0,

∂L
(2)
p

∂b
(w, b, ξ, α, β) =

n∑

i=1

αiyi = 0,

∂L
(2)
p

∂ξi
(w, b, ξ, α, β) = 1− αi − βi = 0.

Plugging the derivatives into L
(2)
p cancels out most terms because of the first two deriva-

tives:

82

3.2. Multi-Objective Statistical Learning

L(2)
p (w, b, ξ, α, β) =

n∑

i=1

ξi −
n∑

i=1

αiyi 〈w, xi〉 −
n∑

i=1

αiyib−
n∑

i=1

αiξi +
n∑

i=1

αi −
n∑

i=1

βiξi

=

n∑

i=1

ξi −
n∑

i=1

〈w,αiyixi〉 −
n∑

i=1

αiξi +

n∑

i=1

αi −
n∑

i=1

βiξi

=

n∑

i=1

ξi −
n∑

i=1

αiξi +

n∑

i=1

αi −
n∑

i=1

βiξi

Together with the third derivative we can replace the βi by 1− αi leading to

L(2)
p (w, b, ξ, α, β) =

n∑

i=1

αiξi −
n∑

i=1

αiξi +

n∑

i=1

αi =

n∑

i=1

αi

The Wolfe dual must again be maximized which leads to the second objective of the
multi-objective SVM setting. Maximizing the sum of αi corresponds to transforming
each example into a support vector. In the limit, this means that the training set is
merely memorized instead of generalized which is an indication of overfitting or train-
ing error minimization respectively. The second objective (minimize error) for multi-
objective SVMs is hence given as

maximize
n∑

i=1

αi

subject to ∀n
i=1 : αi ≥ 0

and
n∑

i=1

αiyi = 0.

3.2.5. Multi-Objective Evolutionary Algorithms for Large Margin Learning

We have defined all objectives and constraints for the multi-objective setting of large
margin learning and will now discuss some details of the optimization in this section.

3.2.5.1. Definition of the Objectives

The problems stated in Theorem 3.1 and 3.2 can be used as objectives for a multi-
objective evolutionary algorithm (MOEA). Both objectives share a common term, the
sum

∑n
i=1 αi. Since this sum as part of the first objective is not conflicting with the

83

3. Multi-Objective Learning

second objective as a whole, we can simply omit the calculation of the sum of αi for the
first objective.

Other efficiency improvements like those discussed in Section 3.1.2.1 can of course also
be exploited including that of not recalculating the sum

∑n
i=1 αiyi = 0 each generation

anew. If the equality constraint should be fulfilled (e.g. for small numbers of dimensions
where omitting the constraint would make a difference), it can simply be defined as a
third objective by maximizing − |∑n

i=1 αiyi|. The whole set of objectives is then given
as a maximization of the terms (in the SVM setting):

Corollary 3.1 (Objectives for the Multi-Objective SVM) For the multi-objective
SVM, the set of maximization objectives consists of

(I) −
n∑

i=1

n∑

j=1

yiyjαiαjk (xi, xj) ,

(II)
n∑

i=1

αi,

and (III) −
∣
∣
∣
∣
∣

n∑

i=1

αiyi

∣
∣
∣
∣
∣

(optional)

subject to ∀n
i=1 : αi ≥ 0.

3.2.5.2. The Multi-Objective EvoSVM

Individuals are again the real-valued vectors α = (αi, . . . , αn). For mutation, we used
the hybrid mutation discussed in the last section in order to get sparser solutions, i.e.
solutions where many αi are zero. Crossover probability is high (0.9). The individuals
are initialized with 0 to further support sparsity. The maximum number of generations
is 1000. The population size is 100. We use NSGA-II as the multi-objective selection
scheme [36]. NSGA-II employs a selection technique which first sorts all individuals
into levels of non-domination. Individuals from the first levels are added to the next
generation until the desired population size is reached. Before adding individuals from
the last possible level, this level is sorted with respect to the crowding distance in order
to preserve diversity in the population.

3.2.6. Selecting a Solution from the Pareto Set

The first idea of supporting the user in selecting a final solution from the Pareto front
might be to just calculate the first objective in its original form and check which indi-

84

3.2. Multi-Objective Statistical Learning

Data Set n m Source σ Default

Spiral 1000 2 Synthetical 1.000 50.00
Checkerboard 1000 2 Synthetical 1.000 50.00
Sonar 208 60 UCI 1.000 46.62
Diabetes 768 8 UCI 0.001 34.89
Lupus 87 3 StatLib 0.001 40.00
Crabs 200 7 StatLib 0.100 50.00

Table 3.5.: The evaluation data sets. n is the number of data points, m is the dimension
of the input space. The kernel parameter σ was optimized with a grid
parameter search. The last column contains the default error, i. e. the
error for always predicting the major class.

vidual provides the highest value for

n∑

i=1

αi −
1

2

n∑

i=1

n∑

j=1

yiyjαiαjk (xi, xj) .

The corresponding model is the maximum margin model for the given data set without
respecting the training errors since the values αi were not bounded during the optimiza-
tion. Although this solution is interesting in its own, this model is often not the desired
one.

Alternatively, one could use another pointer to where in the Pareto front one should
search for the final solution. We suggest to keep a small hold-out set of the data points
of size k [110, 111, 112]. These k data points were not part of the input training set
and are not used by the learner during the multi-objective optimization. After the
optimization has finished and the Pareto front for all objectives has been found, the
learner is applied to all k data points of the hold-out set. The prediction error for each
individual is calculated with the binary loss

l(y, f(x)) =

{

1 if y 6= f(x)

0 otherwise

which leads to the error Errp for the learned decision function fp of the p-th individual
of the Pareto set:

Errp =
k∑

q=1

l (yq, fp(xq)) .

Plotting all errors Errp together with the training set errors results in another front
which can be compared to the original Pareto front. The user should examine places
where the training error and the generalization error are close together and should avoid

85

3. Multi-Objective Learning

areas where the generalization performance is much worse than the achieved objectives.
The plots of both fronts together are a powerful tool to control overfitting: displaying
the effect of overfitting in the generalization performance plot for all possible models ease
the selection of an optimal model without getting in danger of (too much) overfitting.

3.2.7. Experiments and Results

In the last experiment section, we already have seen that the original (single-objective)
SVM problem can efficiently be solved by means of evolutionary algorithms. We now
concentrate on the benefit of the transformation of the original SVM problem into an
efficient multi-objective formalization by showing the Pareto fronts for several benchmark
data sets. We use an RBF kernel for all SVMs and determine the best parameter value
for σ with a grid search parameter optimization. Possible parameters were 0.001, 0.01,
0.1, 1 and 10. A description of all data sets together with the optimal kernel parameter
value σ for each data set is given in Table 3.5. All experiments were performed with
the machine learning environment RapidMiner [125]2, the new SVM implementation is
called EvoSVM within this framework. The selection type must be set to non-dominated
sorting in order to use the proposed solution for this operator.

Figures 3.2 and 3.3 show all results. The left plot for each data set shows the resulting
Pareto front delivered by the multi-objective evolutionary SVM proposed in this paper.
The y-axis denotes the first optimization objective from Section 3.2.5.1 (margin size) and
the x-axis shows the second objective (training error). The third objective is omitted in
the plots for the sake of simplicity. The right plot shows the prediction errors for the
training set and a hold-out test set (cf. Section 3.2.6). The x-Axis simply denotes a
counter over all Pareto-optimal solutions found during the optimization ordered by their
training errors. The y-axis denotes the prediction error for the training (+) and testing
(×) data, i.e. on the hold-out set. The hold-out test set was a randomly sampled subset
with a size of 20% of the given training set.

3.2.7.1. Interpretation of the Pareto Fronts

First of all, it can clearly be seen that all Pareto fronts cover a wide range of solutions.
Each point of a front denotes a vector α containing all Lagrange multipliers from which
a normal vector w and the bias b can be calculated. Hence, each point denotes a specific
SVM model. Some models emphasize a larger margin. Those models are located at
higher regions of the y-axis (the margin size). Other models emphasize the minimization
of the training error and are therefore located at the right parts of the x-axis. All fronts
show a typical structure describing the trade-off between both criteria. It is not possible

2http://www.rapidminer.com

86

3.2. Multi-Objective Statistical Learning

-8e+07

-7e+07

-6e+07

-5e+07

-4e+07

-3e+07

-2e+07

-1e+07

 0

 0 20000 40000 60000 80000 100000 120000

(a) Spiral Pareto

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 20 40 60 80 100 120 140 160

(b) Spiral Generalization

-90

-80

-70

-60

-50

-40

-30

-20

-10

 0

 0 20 40 60 80 100 120

(c) Checkerboard Pareto

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0 20 40 60 80 100 120 140 160

(d) Checkerboard Generalization

-6e+07

-5e+07

-4e+07

-3e+07

-2e+07

-1e+07

 0

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

(e) Sonar Pareto

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100 120 140 160

(f) Sonar Generalization

Figure 3.2.: The left plot for each dataset shows the Pareto front delivered by the multi-
objective EvoSVM proposed in this work (x: training error, y: margin
size). The right plot shows the training (+) and testing (×) errors (on a
hold-out set of 20%) for all individuals of the resulting Pareto fronts (x:
Pareto solution counter, y: errors). Part 1 of the results.

87

3. Multi-Objective Learning

-9e+07

-8e+07

-7e+07

-6e+07

-5e+07

-4e+07

-3e+07

-2e+07

-1e+07

 0

 0 20000 40000 60000 80000 100000 120000

(a) Diabetes Pareto

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 20 40 60 80 100 120 140 160

(b) Diabetes Generalization

-3e+07

-2.5e+07

-2e+07

-1.5e+07

-1e+07

-5e+06

 0

 0 5000 10000 15000 20000 25000 30000 35000 40000

(c) Lupus Pareto

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 20 40 60 80 100 120 140 160

(d) Lupus Generalization

-9e+07

-8e+07

-7e+07

-6e+07

-5e+07

-4e+07

-3e+07

-2e+07

-1e+07

 0

 0 10000 20000 30000 40000 50000 60000 70000

(e) Crabs Pareto

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 20 40 60 80 100 120 140 160

(f) Crabs Generalization

Figure 3.3.: The left plot for each dataset shows the Pareto front delivered by the multi-
objective EvoSVM proposed in this work (x: training error, y: margin
size). The right plot shows the training (+) and testing (×) errors (on a
hold-out set of 20%) for all individuals of the resulting Pareto fronts (x:
Pareto solution counter, y: errors). Part 2 of the results.

88

3.2. Multi-Objective Statistical Learning

to find a model (a point) at the upper right corner of the plot since this point would
dominate all others. It holds for each model / point of the final Pareto fronts that it
cannot be optimized with respect to both, training error and margin size, but only for one
of both criteria leading either to a model further to the right of the corresponding point
or to model to the top compared to the corresponding point. Hence, such a movement
along the Pareto front will never lead to a model moving to both directions at the same
time. This of course follows the concept of Pareto domination.

It can also be seen that additional models located left from the most left point of the
resulting plots or below the lowest point will not deliver better models. This can be easily
observed for the Diabetes data set, where the front contains both a horizontal part on
the left as well as a almost vertical part on the right. For the latter, it would hold that
it does not make any sense to sacrifice more margin size since it is not possible to gain
lower training errors. This can easily be seen in the plot but this is also something which
would not be clear if an outer parameter optimization of C would have to be performed
instead of using this multi-objective approach. In this manual optimization case, one
could not even be sure that sensible regions for this parameter optimization would have
been chosen. The multi-objective learning approach proposed in this thesis, however,
does not suffer from this problem since the interesting trade-off region is automatically
found by the proposed approach.

We can conclude that each Pareto front contains all sensible models in the trade-off region
between the default classifier which classifies all points as the major class (the top left
point) and total overfitting with zero training error (the bottom right point). All points
in between correspond to a specific trade-off emphasizing either more the generalization
capability by choosing larger margins or the adaption to the training data. Models with
the same weight to both criteria are located in the middle region of the Pareto fronts.

We can perform a walk along such a Pareto front starting with the points in the upper left
corner (large margin, high training error) to the lower left corner (overfitting). Figure 3.4
shows such a walk for a simple 2-dimensional data set consisting of a global model,
several local models, and noise. Model 1 provides a margin so large that this model
simply predicts the major class to the training data points. Model 2 is located further to
the right of a resulting Pareto front and it corresponds to a model where the global model
along the diagonal is already found. The local models, however, are still not detected
by a point in this region of the Pareto front. This begins to happen for Model 3 which
shows a model even further to the right in the resulting Pareto front. Here, the first
local models are found. Model 4 finally demonstrates the best model identifying both
the global model and the most important local models. This is a model which would
be located in the region where training error and generalization error start to differ (see
below). Finally, Model 5 already shows the clear overfitting to the noise data.

Until now, we have mainly discussed the left plots of Figure 3.2 and 3.3. The right plot
for each Pareto front shows the prediction errors for the training set and a hold-out

89

3. Multi-Objective Learning

(a) Data (b) Model 1: Largest Margin

(c) Model 2: Global Model (d) Model 3: First Local Models

(e) Model 4: Best (f) Model 5: Overfitting

Figure 3.4.: The first plot shows a simple 2-dimensional data set consisting of a global
model (the hyperplane in the middle) together with some local models (the
circular regions on the wrong side of the plane) and noise. The following
pictures show the predictions of the different types of models of a resulting
Pareto front. Model 1 provides the largest margin, it is actually so large
that it is located beside the complete training data. Model 2 is a model
corresponding to a point further on the right side where the global model
is already found but the local models are not yet found. Model 3 shows
a model further to the right where the first local models are found and
Model 4 demonstrates the best model identifying both the global model
and the most important local models. Finally, Model 5 already shows the
clear overfitting to the noise data.

90

3.2. Multi-Objective Statistical Learning

test set (cf. Section 3.2.6). The x-Axis simply denotes a counter over all Pareto-optimal
solutions from the left plot ordered by their training errors. The y-axis denotes the mean
prediction error for the training (+) and testing (×) data. From these plots, together
with original Pareto fronts, we can conclude two things: first, there is no common region
where the generalization error starts to get larger compared to the training error. In
some cases (like for Spiral) this already happens in the upper left part of the Pareto front,
in other cases (like for Crabs) the generalization error is hardly higher for all regions of
the front. For that reason, guided multi-objective optimization schemes like desirability
indices can hardly be used for this type of problem since it is not clear beforehand which
part of the Pareto front could be more interesting.

The second conclusion from the combination of the Pareto front with the generalization
plot is a hint in which regions of the Pareto front overfitting occurs, i.e. the training
error is still minimized while the test error remains or get worse. You can detect this
area in the right plots at places where the training error (+) and the testing error (×)
diverge. Since the x-axis in the right plots correspond to a counter of solutions in the
Pareto front, ordered by its training errors which corresponds to the x-axis in the left
plot, you can find the interesting solutions in the Pareto front in the same area as on the
right side. Instead of using a guided optimization scheme, we can use the generalization
capability of the models in the resulting Pareto front to guide the analyst’s selection of
a final solution from the Pareto set.

3.2.7.2. Multi-Objective Optimization vs. Multiple Single-Objective Runs

Please note that these types of plots could also be achieved for other learning schemes
(e.g. usual SVM) by iteratively applying the learner for different parameter settings
and produce the set of models in this way. The approach proposed in this paper has
the advantage that all models are calculated in one single run which is by far less time-
consuming.

Although the idea of statistical learning theory, i.e. taking the model complexity into
account, is simple and appealing, current approaches did not make use of the inherent
trade-off but demanded the definition of a weighting factor of the conflicting criteria
from the user. The multi-objective evolutionary SVM proposed in this work is the first
solution explicitely solving the basic problem of statistical learning theory.

The result of the proposed approach is a Pareto front in the space of training error vs.
model complexity and gives interesting insights into the nature of the problem at hand.
By using a hold-out data set as a test set for the resulting models we derive a second
front showing the generalization error. Both, the Pareto front and the generalization
error plot allows for a quick selection of the final solution from the Pareto front without
the time-consuming optimization of a weighting factor. In fact, the selection can also be

91

3. Multi-Objective Learning

automatically performed by selecting the solution generating the smallest generalization
error.

Hence, the multi-objective evolutionary SVM approach leads to three advantages: first,
it is no longer necessary to tune the SVM parameter C which weighs both conflicting
criteria. This is a very time-consuming task for traditional SVM. Second, the shape
and size of the Pareto front and the generalization plot on a hold-out set give interesting
insights about the complexity of the learning task at hand. Finally, the user can actually
see the point where overfitting occurs and can easily select a solution from the Pareto
front best suiting his or her needs or let the method perform this selection.

92

CHAPTER 4

Non-Convex Optimization for Statistical
Learning

In the previous chapter, we have seen that evolutionary large margin methods are very
competitive compared to their quadratic programming counterparts: they are at least
as accurate as their traditional SVM in terms of generalization performance and they
always outperform traditional approaches in terms of the original optimization problem.
Furthermore, we demonstrated how the trade-off between training error and model com-
plexity can be made explicit. We divided the optimization problem of SVM in two parts
and transformed both parts into its dual form of its own. These transformations reduce
the runtime for fitness evaluation and provide space for other well-known improvements
like incorporating arbitrary kernel functions for non-linear classification tasks.

In this chapter, we will see that the proposed algorithms are also more generic than
the existing traditional solutions since they will also work for non-positive semidefinite
or indefinite kernel functions. We will state the problem of learning with indefinite
kernels, discuss alternative approaches and compare the proposed algorithms with other
approaches on several data sets.

4.1. Non-Positive Semidefinite Kernel Functions

In general, the primal optimization problem for large margin learning and SVMs without
using a kernel function is a convex quadratic programming problem. This can directly be
derived from the fact that the objective function itself is convex, and those points which
satisfy the constraints also form a convex set. It holds that any linear constraint defines
a convex set, and a set of p simultaneous linear constraints defines the intersection of p

93

4. Non-Convex Optimization for Statistical Learning

convex sets. This again is a convex set. The dual problem, which has to be maximized,
hence can be considered to be a concave optimization problem.

It can be shown that if the kernel k, i. e. it’s kernel matrix K, is positive definite, the
objective function still is concave [22] after the dot product was replaced by the kernel
function k. This means that we have a maximization problem with only one single global
maximum. The optimization of the dual optimization problem is then very simple since
we just need to search in the direction of higher values until we find the optimum. This
type of problem is referred to as unimodal since only one single extremum exists.

We will now define what we mean by positive semidefinite kernel functions:

Definition 4.1 (Positive Semidefinite) Let X be a set of items. A kernel function
k with kernel matrix entries Kij = k(xi, xj) is called positive semidefinite if the
following applies

c∗Kc ≥ 0 for all c ∈ C
n

where c∗ is the conjugate transpose of c.

A positive semidefinite kernel function will lead to a concave optimization problem, i.e.
to an optimization problem having a global unique maximum which usually can be found
by means of a gradient descent. However, in some cases a specialized kernel function
must be used to measure the similarity between data points which is not positive definite,
sometimes not even positive semidefinite. While positive definite kernels – just as the
regular dot product – resemble a similarity measure, these non-positive semidefinite
kernels (or indefinite kernels) can be considered as a (partial) distance measure.

One may ask why a solution for non-positive semidefinite kernels would be interesting at
all. There are several reasons for studying the effect of non-PSD kernel functions on the
optimization problem1. First, the test for positive semi-definiteness can be a challenging
task for new kernel functions which often cannot be solved by a practitioner. Second,
some kernel functions are interesting in spite that it can be shown that they are not
positive semidefinite, e.g. the sigmoid kernel function k (xi, xj) = tanh (κ 〈xi, xj〉 − δ) of
neural networks or a fractional power polynomial [24, 168]. Third, promising empirical
results were reported for such non-PSD or indefinite kernels [96]. Unfortunately, the
implementations in those approaches either work on the primal problem, which is hardly
feasible for real-word problems, or they are numerically unstable and do not guarantee to
find an optimum in all cases. Finally, several approaches of learning the kernel function
were proposed where the result not necessarily must again be positive semidefinite even
if only definite kernel functions were used as base functions [100].

Traditional SVMs are hardly applicable for indefinite kernel functions since the used
optimization techniques based on quadratic programming can only solve problems with

1For a deeper discussion of the applications of non-PSD kernels see [140].

94

4.1. Non-Positive Semidefinite Kernel Functions

one single global optimum. If the optimization problem is multi-modal, i.e. the objective
function has several extrema, they will not be able to find satisfying solutions at all. This
is the often case for kernel functions which are not positive semidefinite. Most traditional
implementations do not even terminate for these kernel functions [61]. A more generic
optimization scheme should allow such non-positive kernels without the need for omitting
the more efficient dual optimization problem as it was suggested in [140].

Before we discuss former approaches to learn SVM functions for such non-PSD kernels,
we state some of the most important non-positive semidefinite kernel functions for two
instances xi and xj :

Definition 4.2 (Epanechnikov Kernel) The Epanechnikov Kernel is defined as

(

1− ||xi − xj||2
σ

)d

for
||xi − xj||2

σ
≤ 1.

Definition 4.3 (Gaussian Combination Kernel) The Gaussian Combination
Kernel is defined as

exp

(−||xi − xj ||2
σ1

)

+ exp

(−||xi − xj ||2
σ2

)

− exp

(−||xi − xj||2
σ3

)

.

Definition 4.4 (Multiquadric Kernel) The Multiquadric Kernel is defined as

√

||xi − xj||2
σ

+ c2.

Figure 4.1 shows 2D-plots of these kernel function together with their 20 main Eigen-
values. It can clearly be seen that the Eigenvalues are partly negative and that the
corresponding kernel functions resemble a distance function instead of a similarity func-
tion in some regions.

4.1.1. The Relevance Vector Machine: A Kernel Method for Indefinite
Kernel Functions

Traditional SVM based on (Quasi-)Newton optimization techniques are only capable
of solving concave optimization problems which can only be guaranteed for positive
semidefinite kernel functions. If non-PSD or indefinite kernels should be used, those
learning schemes will get stucked in the first local extrema and will not deliver the
global optimum. In order to overcome numerical instabilities which often occur even for
PSD kernels, most modern SVM implementations additionally contain heuristics to skip
small degressions of the objective functions – but this makes things even worse since it

95

4. Non-Convex Optimization for Statistical Learning

Figure 4.1.: 2D-plots of some known non-positive semidefinite kernel functions together
with their 20 main Eigenvalues. These Eigenvalues are partly negative.
The variables s and t represent data points x and p, c and σ are parameters
used for fine-tuning the kernel functions. Source: [140].

96

4.1. Non-Positive Semidefinite Kernel Functions

was reported that the algorithms no longer terminate for non-PSD kernels on several
analysis problems.

Since learning with non-PSD kernels is much harder than learning with PSD kernels
from an optimization point of view, we will discuss an alternative approach derived from
sparse Bayesian learning in this section. The Relevance Vector Machine (RVM) [179]
produces sparse solutions using an improper hierarchical prior and optimizing over hyper
parameters. One might define these hyper parameters as the parameters of a Gaussian
Process’ covariance function. The main purpose of RVM is the direct prediction of prob-
abilistic values instead of crisp classifications. For SVM, complex post processing steps
like Platt’s scaling [144] must be performed in order to derive probabilistic predictions.
Even then, examples could be constructed where such post processing approaches will
fail. In contrast, the RVM is based on a probabilistic framework which directly allows to
predict the correct values. During the last years, additional research was done to further
improve these probabilistic RVM predictions [148]. The main advantage to us, however,
is the fact that Relevance Vector Machines depend on basis functions which do not need
to be positive semidefinite.

The RVM aims at a sparse linear model, i. e. a linear combination of a set of l basis
functions Φi(x):

f(x) =

l∑

i=1

αiΦi(x).

This function is used for calculating regression predictions and can easily be transformed
into classification learning by thresholding. Please note that a set of l different base
extensions Φi is used, each of them weighted by the factor αi. Hence, the output is a
linearly weighted sum of l, generally nonlinear and fixed, basis functions Φi. The task
then become to find a good set of weights αi. One can easily see that the SVM is a
special case of the RVM where a basis function Φi is simply defined for each support
vector xi and the prediction function hence becomes

f(x) =

l∑

i=1

αiyik(x, xi) + b

with l as the number of support vectors and b as the offset or bias which could also be
considered as a constant base function and would then become part of a sum with l + 1
base functions.

We concentrate on discussing the regression model for out training data T ⊂ X×Y . We
follow the standard probabilistic formulation and assume that the examples are samples
from a generating model f with additive noise:

yi = f(xi) + εi.

97

4. Non-Convex Optimization for Statistical Learning

Here, the εi are independent samples from some noise process which is assumed to be a
Gaussian with mean 0 and variance σ2. Thus, we can write P (yi|xi) as N

(
yi|f(xi), σ

2
)

which describes a Gaussian distribution for the true label with the function value f(xi)
as mean and variance σ2. We assume the function f to be defined like in the SVM case as
a sum over the kernel functions of selected training points and due to the independence
of yi we can derive the likelihood of the complete data set as

P (y|α, σ2) = (2πσ2)−n/2 · e
1

2πσ2 ||y−Φα||2

where y is the vector of all n labels, α is the vector of all n weights, and Φ is the so-called
design matrix consisting of the vector of all n basis functions Φ(xi) where each Φ(xi)
again is based on the training data kernel functions. This design matrix is therefore the
same as the well known kernel matrix but also contains a constant column consisting of
the constant 1.

If we allow n parameters, the likelihood maximization would probably lead to overfitting
and hence we have to add some regularization or a similar complexity penalty term. We
again use a Bayesian point of view and constrain the parameters by defining a prior
probability distribution over them.

We encode the preference to smoother (less complex) functions by choosing a zero-mean
Gaussian as the prior distribution for the values αi which leads to

P (αi|ai) = N(αi|0, a−1
i).

with the so-called hyper parameters ai. Importantly, there is an individual hyper pa-
rameter ai associated independently with every weight αi moderating the strength of
the prior thereon.

Relevance vector learning becomes the search for the hyper parameter posterior mode,
i.e. the maximization of the marginal likelihood

P (y|X,a, σ2) =

∫

P (y|X,α, σ2)P (α|a)dα

either by direct optimization (e.g. by conjugate gradients) or faster by means of an
EM-like algorithm. Sparsity is achieved since most of the parameters ai usually become
infinite during the optimization. The corresponding basis functions are then removed.
The remaining basis functions on training vectors are called relevance vectors. Please
refer to [179] for more details, especially for the necessary approximations to calculate
the marginal likelihood given above.

It should be pointed out that it is a common choice to use the same basis function Φ(x)
for all training examples, often a RBF kernel with fixed parameter σ. There is, however,
no need for such a fixed basis function and indeed it is even possible to use basis functions
which would not lead to a positive semidefinite kernel matrix. Therefore, we use an RVM
in our comparison experiments for non-positive semidefinite kernel functions.

98

4.2. Experiments and Results

4.2. Experiments and Results

In this section, we evaluate the proposed evolutionary optimization SVM with respect to
the classification performance when non-positive definite kernel functions are used. We
compare our implementation to the quadratic programming approaches usually applied
to large margin problems. The experiments demonstrate that evolutionary SVMs are
the first feasible solution for indefinite kernel functions.

In order to compare the evolutionary SVM described in this paper with standard SVM
implementations, we also applied two other SVM on all data sets. Both SVM use a
slightly different optimization technique based on quadratic programming. The used
implementations again were mySVM [160] and LibSVM [25]. We also applied an RVM
learner [179] on all data sets which should provide better results for this type of ker-
nel functions. All experiments were performed with the machine learning environment
RapidMiner [125]2.

4.2.1. Evolutionary Computation for Non-Convex Optimization

We used the EvoSVM as it was described before. This solution employs evolution strate-
gies instead of the usual quadratic programming approaches. The used optimization
problem is the dual problem for non-linear separation of non-separable data developed
in the previous chapters (Problem 2.5). Individuals are the real-valued vectors α and
mutation is performed by adding a Gaussian distributed random variable with standard
deviation C/10. In addition, a variance adaptation is conducted during optimization
(1/5 rule [150]). Crossover probability is high (0.9). We use tournament selection with
a tournament size of 0.25 multiplied by the population size. The initial individuals are
random vectors with 0 ≤ αi ≤ C. The population size is 10. The maximum number
of generations is 10000 and the optimization is terminated if no improvement occurred
during the last 10 generations. We increased the number of generations for the stopping
criterion in order to respect the multi-modal type of this optimization problem.

4.2.2. Data Sets

We apply the discussed EvoSVM as well as the other SVM implementations on two
synthetical and six real-world benchmark data sets. The data sets were also used in the
previous chapter and are only shortly described here. The data set Spiral consists of
two intertwingling spirals of different classes. For checkerboard, the data set consists of
two classes layed out in a 8 × 8 checkerboard. In addition, we use six benchmark data
sets from the UCI machine learning repository [136] and the StatLib data set library

2http://www.rapidminer.com/

99

4. Non-Convex Optimization for Statistical Learning

Data Set n m Source σ d Default

Spiral 500 2 Synthetical 11.40 8.80 50.00
Checkerboard 300 2 Synthetical 9.75 3.00 50.00
Liver 346 6 UCI 218.61 4.74 42.03
Sonar 208 60 UCI 5.23 9.00 46.62
Diabetes 768 8 UCI 998.99 2.56 34.89
Lawsuit 264 4 StatLib 195.56 8.30 7.17
Lupus 87 3 StatLib 896.28 6.27 40.00
Crabs 200 7 StatLib 29.37 2.61 50.00

Table 4.1.: The evaluation data sets. n is the number of data points, m is the dimension
of the input space. The kernel parameters σ and d were optimized for the
comparison SVM learner mySVM. The last column contains the default
error, i. e. the error for always predicting the major class.

[173]. Again, we chose those data sets because they already define a binary classification
task, consist of real-valued numbers only and do not contain missing values. Therefore,
we did not need to perform additional preprocessing steps which might introduce some
bias. The properties of all data sets are summarized in Table 4.1. The default error
corresponds to the error a lazy default classifier would make by always predicting the
major class. Classifiers must produce lower error rates in order to learn at all instead of
just guessing.

For the non-PSD experiments, we used an Epanechnikov kernel function with parameters
σ and d. The optimized values are given in Table 4.1.

4.2.3. Comparison for Non-positive Kernels

We compared the different implementations and a relevance vector machine on all data
sets for a non-positive kernel function. The Epanechnikov kernel was used for this
purpose with kernel parameters as given in Table 4.1. These parameters are optimized
for the SVM implementation mySVM in order to ensure fair comparisons. Table 4.2
summarizes the results, again for C = 1 which is the heuristically best value for the
Epanechnikov kernel according to the meta-parameter heuristic discussed in the previous
Chapter.

It should be noticed that the runtime of the Relevance Vector Machine implementation
is not feasible for real-world applications. Even on the comparatively small data sets the
RVM needs more than 60 days in some of the cases for all of the twenty learning runs.
Although it is very competitive compared to the other SVM approaches with respect to

100

4.2. Experiments and Results

the prediction error, the RVM was unfortunately not able to deliver the best result for
any of the data sets.

It can also be noticed that the EvoSVM variant frequently outperforms the competitors
on all data sets. While the LibSVM was hardly able to generate models better than
the default model, the mySVM delivers surprisingly good predictions even for the non-
PSD kernel function. Of course, the kernel parameters were optimized exactly for this
learning scheme like it was mentioned above. Additionally, the mySVM offer much more
heuristics to cope with numerical instabilities often occurring in SVM optimizations and
is hence better capable of optimizing in multi-modal settings at least to a certain degree.
However, especially for the data sets Spiral, Checkerboard, Liver, Sonar, and Crabs the
results of the EvoSVM are significantly better than those of all competitors.

101

4. Non-Convex Optimization for Statistical Learning

Data Set Algorithm Error T[s]

EvoSVM 16.00 ± 4.38 4
Spiral mySVM 46.20 ± 6.56 6

LibSVM 51.00 ± 1.00 2
RVM 19.80 ± 3.16 2942468

EvoSVM 23.00 ± 3.56 1
Checkerboard mySVM 40.33 ± 4.99 1

LibSVM 45.33 ± 1.63 1
RVM 38.00 ± 7.48 336131

EvoSVM 31.29 ± 5.90 3
Liver mySVM 38.32 ± 7.84 1

LibSVM 42.03 ± 1.46 1
RVM 40.58 ± 1.75 203093

EvoSVM 15.40 ± 3.66 3
Sonar mySVM 46.62 ± 1.62 2

LibSVM 46.62 ± 1.62 2
RVM 29.79 ± 7.29 105844

EvoSVM 32.68 ± 4.77 3
Diabetes mySVM 32.54 ± 2.82 4

LibSVM 34.89 ± 0.34 6
RVM 32.76 ± 1.89 5702491

EvoSVM 29.89 ± 10.71 2
Lawsuit mySVM 30.93 ± 10.66 2

LibSVM 36.72 ± 2.01 2
RVM 37.89 ± 3.83 106697

EvoSVM 31.81 ± 11.64 2
Lupus mySVM 34.44 ± 18.51 2

LibSVM 40.00 ± 6.33 1
RVM 33.06 ± 10.07 5805

EvoSVM 4.00 ± 4.90 1
Crabs mySVM 11.00 ± 7.35 1

LibSVM 50.00 ± 0.00 1
RVM 13.50 ± 7.43 150324

Table 4.2.: Comparison of the different implementations with regard to the classifica-
tion error (the lower the better) for a non-positive semidefinite kernel func-
tion (Epanechnikov). The results are obtained by a 20-fold cross validation,
the time is the cumulated time for all runs. Bold fonts mark significantly
better results on a 1% confidence level.

102

CHAPTER 5

Transductive Learning: Non-Convex and
Multi-Objective

Beside the inherent advantages of evolutionary algorithms (e. g. parallelization, multi-
objective optimization of training error and capacity) it is now also possible to use
non-positive semidefinite or indefinite kernel functions which would lead to unsolvable
problems for other optimization techniques. With one exception, those traditional SVM
were not able to deliver significantly better results compared to the default error and
the RVM is not feasible for large real-world problems. As the experiments have shown,
an SVM based on evolutionary computation is the first practical solution for this type
of problem delivering considerable better results in much shorter times.

We will now deal with another practically relevant learning problem, namely transductive
learning, which also leads to a non-convex optimization problem. We will discuss how
transductive learning can be defined as a multi-objective optimization problem and how
we can solve it with help of the EvoSVM.

5.1. Motivation of Transductive Learning

Usually in supervised learning, we try to find a general decision function for a given
learning task. This type of problem is called inductive inference and it is performed on
a limited sample of the input data. After the decision function was found, this general
rule can be applied to new data or be evaluated on available test data not shown during
training. We have already discussed that we assume the same probability distribution
P (X,Y) for the training and test set. This is a basic assumption for inductive learning
in statistical learning theory.

103

5. Transductive Learning: Non-Convex and Multi-Objective

For many learning problems, however, the unlabeled test set can be much larger than
the labeled training set. This may happen for several reasons, such as cost of labeling
or even as a result of some inherent limitations of the problem. For such a problem,
an alternative approach is to obtain specific rules for the given set of examples that we
wish to classify, i.e. the points from the unlabeled test set, instead of finding a general
rule for the whole input space. Vapnik called this – as he said easier – learning problem
transductive inference.

Although transductive learning is a general concept that can be applied to any learning
scheme, it has been applied most successfully to Support Vector Machines [73]. The
implicit margin maximization formulation of SVMs is used as an additional cost function
that does not depend on labeling and can be applied to the unlabeled test set to optimize
the general performance of the learning machine. This turns the labels of each of the
instances of the test set into variables of the optimization problem. The optimal solution
is the one that minimizes the error of the training set and maximizes the margin of both
the training and test sets.

The well known Transductive SVM (TSVM) algorithm proposed by Joachims [73] relies
on a greedy search of labels of the test set by switching the labels with largest errors
from one class to the other. This algorithm

1. learns a model on the training data,

2. applies the model on the test data,

3. chooses two label assignments y∗k and y∗l which must correspond to positive and
negative classes and cause maximal errors and switch their labels,

4. stops if the objective function is no longer optimized.

This procedure will probably not lead to globally optimal solutions since the underlying
optimization problem is non-convex and the TSVM algorithm will converge to local
extrema. Other optimization heuristics were proposed in order to overcome the risk
for local extrema [28] but still the resulting algorithms are not able to find the global
optimum for large training and test sets. Therefore, an evolutionary approach was
proposed for solving the dual optimization problem of transductive SVM [166] but only
the single-objective optimization problem was solved in this work. Finally, another
problem formulation for transductive learning has been recently proposed [43] which is
no longer based on the large margin principle of the Support Vector Machines but on
the concept of large volumes which are only loosely related to SVMs. This paradigm
change actually is very close to that proposed in this chapter since several criteria are
taken into account. But again the proposed optimization problem is not solved with
true multi-objective optimization and users have to define their preference before the
optimization has started.

104

5.1. Motivation of Transductive Learning

In this chapter, we will define the transductive optimization problem as a multi-objective
optimization problem and extend the existing work by transforming each objective into
the dual form on its own. We will also discuss the connection between multi-objective
transductive SVM and supervised learning, semi-supervised learning, and clustering.

5.1.1. Problem Definition

Let X ∈ R
m be a real-valued vector of random variables. Let Y ∈ R be another random

variable. X and Y obey a fixed but unknown probability distribution P (X,Y). We again
try to find a function f(x, γ) which predicts the value of Y for a given input x ∈ X. In
contrast to the inductive supervised learning setting discussed before, we now have two
different data sets. First, a set of training data points

T = {(x1, y1) , . . . , (xn, yn)} ⊆ X × Y

and second, a set of test data points, i.e. a set of observations without label information

T ∗ = {x∗
1, . . . , x

∗
n∗} ⊆ X.

In the following, the ∗ will always mark variables for the unlabeled test data set.

As we have done before, we again constrain the number of possible values of Y to 2,
without loss of generality these values should be −1 and +1. And also again, we are
searching for a separating hyperplane

H = {h|〈w, h〉 + b = 0} ,

where w is normal to the hyperplane, |b|/||w|| is the perpendicular distance of the hyper-
plane to the origin (offset or bias), and ||w|| is the Euclidean norm of w. This hyperplane
might also separate the data points in some high-dimensional non-linearly transformed
feature space.

Additionally to the margin maximization and training error minimization that we have
already defined before, we now also have to maximize the margin for the unlabeled test
data and minimize the number of errors for possible label assignments. This leads to
the optimization problem:

Problem 5.1 (Primal Transductive SVM Problem) The primal transductive
SVM optimization problem is defined as

105

5. Transductive Learning: Non-Convex and Multi-Objective

minimize
1

2
||w||2 + C

n∑

i=1

ξi + C∗
n∗
∑

k=1

ξ∗k

subject to ∀n
i=1 : yi (〈w, xi〉+ b) ≥ 1− ξi,

∀n∗

k=1 : y∗k (〈w, x∗
k〉+ b) ≥ 1− ξ∗k,

∀n
i=1 : ξi ≥ 0,

∀n∗

k=1 : ξ∗k ≥ 0.

Please note that we optimize this function not only over the variables w, b and ξi as
before but also over the new variables ξ∗k and, more important, over all possible test
label assignments y∗k. C defines the influence of the training error and C∗ defines the
influence of the possible test error using the current test label assignments y∗k.

This optimization problem can be transformed into a dual form but this no longer leads
to a convex optimization problem since the different possibilities for the label variables
y∗k must be considered. In addition, the search space grows quickly since in the worst
case all 2n∗

combinations of test label assignments must be tested. In the following, we
will transform the different parts of the optimization function into their dual form in
order to get a multi-objective optimization problem. This non-convex multi-objective
optimization problem is then solved by means of the EvoSVM described in the previous
chapters with an extended individual representation containing not only the Lagrange
multipliers αi for the training data but also those α∗

k for the test data together with the
possible test label assignments y∗k.

5.2. Dual Optimization Problems for Transductive SVM

We will now state the different parts of the primal problem defined above and transform
all three objectives into their dual form in order to allow the efficient optimization of
the problems including the usage of kernel functions. The weighting factors C and C∗

can then be omitted. This leads to the following optimization problems. Problem one
is the maximization of the margin:

minimize
1

2
||w||2

subject to ∀n
i=1 : yi (〈w, xi〉+ b) ≥ 1− ξi,

∀n∗

k=1 : y∗k (〈w, x∗
k〉+ b) ≥ 1− ξ∗k,

∀n
i=1 : ξi ≥ 0,

∀n∗

k=1 : ξ∗k ≥ 0,

106

5.2. Dual Optimization Problems for Transductive SVM

problem two is the minimization of the error on the training data:

minimize
n∑

i=1

ξi

subject to ∀n
i=1 : yi (〈w, xi〉+ b) ≥ 1− ξi,

∀n
i=1 : ξi ≥ 0,

and problem three is the minimization of the error on the test data:

minimize
n∗
∑

k=1

ξ∗k

subject to ∀n∗

k=1 : y∗k (〈w, x∗
k〉+ b) ≥ 1− ξ∗k,

∀n∗

k=1 : ξ∗k ≥ 0.

Please note that we can omit the unnecessary constraints from problem two and three
since they do not constrain the optimization function at all. This is of course not
the case for the first optimization function. In the next paragraphs, we will transform
all objectives on their own which will finally lead to a 3-dimensional multi-objective
optimization problem.

5.2.1. First Objective: Maximizing the Margin

We first concentrate on the optimization of the margin for both the training data and
the test data:

minimize
1

2
||w||2

subject to ∀n
i=1 : yi (〈w, xi〉+ b) ≥ 1− ξi,

∀n∗

k=1 : y∗k (〈w, x∗
k〉+ b) ≥ 1− ξ∗k,

∀n
i=1 : ξi ≥ 0,

∀n∗

k=1 : ξ∗k ≥ 0.

Before we can transform this objective function into the dual form we need to prove the
following lemma. This will allow us the introduction of kernel functions into transductive
SVM as we have seen them before for inductive SVM.

Lemma 5.1 (Squared Sum of Weighted Label Products) The squared sum of
weighted product of labels and examples can be written in terms of dot products since the
following holds:

(
n∑

i=1

αiyixi

)2

=
n∑

i=1

n∑

j=1

αiαjyiyj 〈xi, xj〉 .

107

5. Transductive Learning: Non-Convex and Multi-Objective

Proof. We prove the lemma by dividing the sums into the individual terms and applying
some basic transformations:

(
n∑

i=1

αiyixi

)2

=

(

α1y1x1 +

n∑

i=2

αiyixi

)2

=α2
1y

2
1x

2
1 + 2α1y1x1

n∑

i=2

αiyixi +

(
n∑

i=2

αiyixi

)2

=α2
1y

2
1x

2
1 + 2α1y1x1

n∑

i=2

αiyixi + α2
2y

2
2x

2
2 + 2α2y2x2

n∑

i=3

αiyixi +

(
n∑

i=3

αiyixi

)2

= . . .

We can now build new sums from all terms:

n∑

i=1

α2
i y

2
i x

2
i +

n∑

i=1

2αiyixi

n∑

j=i+1

αjyjxj

=

n∑

i=1

α2
i y

2
i x

2
i + 2

n∑

i=1

n∑

j=i+1

αiαjyiyj 〈xi, xj〉

=
n∑

i=1

n∑

j=1

αiαjyiyj 〈xi, xj〉 .

The last transformation is derived from the fact that the double sum in the second line
describes the upper (and the symmetrical lower) part of the sum matrix over all examples
and the first term describes the diagonal of this matrix.

We are now able to state the dual form of the optimization problem corresponding to the
training and test set margin maximization. The result is one of the parts of an objective
function which will be later used for a multi-objective optimization approach:

Theorem 5.1 (Dual Form of Transductive Margin Maximization) The dual
form of the first objective (maximize margin) for the multi-objective transductive Support
Vector Machine (SVM) is given as the following constrained optimization problem:

108

5.2. Dual Optimization Problems for Transductive SVM

maximize

n∑

i=1

αi +

n∗
∑

k=1

α∗
k −

1

2

n∑

i=1

n∑

j=1

αiαjyiyj 〈xi, xj〉 −

1

2

n∗
∑

k=1

n∗
∑

l=1

α∗
kα

∗
l y

∗
ky

∗
l 〈x∗

k, x
∗
l 〉 −

n∑

i=1

n∗
∑

k=1

αiα
∗
kyiy

∗
k 〈xi, x

∗
k〉

subject to ∀n
i=1 : αi ≥ 0,

∀n∗

k=1 : α∗
k ≥ 0,

n∑

i=1

αiyi +

n∗
∑

k=1

α∗
ky

∗
k = 0.

Proof. We introduce positive Lagrange multipliers into the primal objective function
stated above. We need multipliers α for the first set of training set inequality constraints,
multipliers α∗ for the first set of test set inequality constraints, multipliers β for the
second set of of training set inequality constraints, and multipliers β∗ for the second set
of test set inequality constraints:

L(1)
p (w, b, ξ, ξ∗, α, α∗, β, β∗, y∗) =

1

2
||w||2−
n∑

i=1

αi (yi (〈w, xi〉+ b) + ξi − 1)−

n∗
∑

k=1

α∗
k (y∗k (〈w, x∗

k〉+ b) + ξ∗k − 1)−

n∑

i=1

βiξi −
n∗
∑

k=1

β∗
kξ∗k

The derivatives of L
(1)
p have to be 0 for the minimal point:

∂L
(1)
p

∂w
(w, b, ξ, ξ∗, α, α∗, β, β∗, y∗) = w −

n∑

i=1

αiyixi −
n∗
∑

k=1

α∗
ky

∗
kx

∗
k = 0,

109

5. Transductive Learning: Non-Convex and Multi-Objective

∂L
(1)
p

∂b
(w, b, ξ, ξ∗, α, α∗, β, β∗, y∗) =

n∑

i=1

αiyi +

n∗
∑

k=1

α∗
ky

∗
k = 0,

∂L
(1)
p

∂ξi
(w, b, ξ, ξ∗, α, α∗, β, β∗, y∗) = −αi − βi = 0,

∂L
(1)
p

∂ξ∗k
(w, b, ξ, ξ∗, α, α∗, β, β∗, y∗) = −α∗

k − β∗
k = 0.

Plugging the derivatives into the primal objective function L
(1)
p delivers

L(1)
p (w, b, ξ, ξ∗, α, α∗, β, β∗, y∗) =

1

2

(
n∑

i=1

αiyixi

)2

−
n∑

i=1

n∗
∑

k=1

αiα
∗
kyiy

∗
k 〈xi, x

∗
k〉+

1

2

(
n∗
∑

k=1

α∗
ky

∗
kx

∗
k

)2

−

n∑

i=1

αiyi 〈w, xi〉 −
n∑

i=1

αiyib−
n∑

i=1

αiξi +

n∑

i=1

αi−

n∗
∑

k=1

α∗
ky

∗
k 〈w, x∗

k〉 −
n∗
∑

k=1

α∗
ky

∗
kb−

n∗
∑

k=1

α∗
kξ

∗
k +

n∗
∑

k=1

α∗
k−

n∑

i=1

βiξi −
n∗
∑

k=1

β∗
kξ∗k

⇔ L(1)
p (w, b, ξ, ξ∗, α, α∗, β, β∗, y∗) =

1

2

(
n∑

i=1

αiyixi

)2

+
1

2

(
n∗
∑

k=1

α∗
ky

∗
kx

∗
k

)2

+

n∑

i=1

αi +

n∗
∑

k=1

α∗
k−

n∑

i=1

n∗
∑

k=1

αiα
∗
kyiy

∗
k 〈xi, x

∗
k〉−

n∑

i=1

n∑

j=1

αiαjyiyj 〈xi, xj〉−

n∗
∑

k=1

n∗
∑

l=1

α∗
kα

∗
l y

∗
ky

∗
l 〈x∗

k, x
∗
l 〉 .

110

5.2. Dual Optimization Problems for Transductive SVM

We can now apply Lemma 5.1 and replace the squared sums by double sums including
the inner product between all examples:

L(1)
p (w, b, ξ, ξ∗, α, α∗, β, β∗, y∗) =

1

2

n∑

i=1

n∑

j=1

αiαjyiyj 〈xi, xj〉+

1

2

n∗
∑

k=1

n∗
∑

l=1

α∗
kα

∗
l y

∗
ky

∗
l 〈x∗

k, x
∗
l 〉+

n∑

i=1

αi+

n∗
∑

k=1

α∗
k−

n∑

i=1

n∗
∑

k=1

αiα
∗
kyiy

∗
k 〈xi, x

∗
k〉−

n∑

i=1

n∑

j=1

αiαjyiyj 〈xi, xj〉−

n∗
∑

k=1

n∗
∑

l=1

α∗
kα

∗
l y

∗
ky

∗
l 〈x∗

k, x
∗
l 〉

⇔ L(1)
p (w, b, ξ, ξ∗, α, α∗, β, β∗, y∗) =

n∑

i=1

αi+

n∗
∑

k=1

α∗
k−

n∑

i=1

n∗
∑

k=1

αiα
∗
kyiy

∗
k 〈xi, x

∗
k〉−

1

2

n∑

i=1

n∑

j=1

αiαjyiyj 〈xi, xj〉−

1

2

n∗
∑

k=1

n∗
∑

l=1

α∗
kα

∗
l y

∗
ky

∗
l 〈x∗

k, x
∗
l 〉 .

111

5. Transductive Learning: Non-Convex and Multi-Objective

The Wolfe dual must be maximized which leads to the formalization of the first objective
of the multi-objective transductive SVM:

maximize

n∑

i=1

αi+

n∗
∑

k=1

α∗
k−

1

2

n∑

i=1

n∑

j=1

αiαjyiyj 〈xi, xj〉−

1

2

n∗
∑

k=1

n∗
∑

l=1

α∗
kα

∗
l y

∗
ky

∗
l 〈x∗

k, x
∗
l 〉−

n∑

i=1

n∗
∑

k=1

αiα
∗
kyiy

∗
k 〈xi, x

∗
k〉

subject to ∀n
i=1 : αi ≥ 0,

∀n∗

k=1 : α∗
k ≥ 0,

n∑

i=1

αiyi +
n∗
∑

k=1

α∗
ky

∗
k = 0.

Replacing the dot products by kernel functions k concludes the proof.

5.2.2. Second Objective: Minimizing the Training Error

Our next goal is to transform the second objective of the transductive SVM in its dual
form. The objective is defined as:

minimize

n∑

i=1

ξi

subject to ∀n
i=1 : yi (〈w, xi〉+ b) ≥ 1− ξi,

∀n
i=1 : ξi ≥ 0.

Since the primal problem is equivalent to the primal problem of training errors for non-
transductive SVM we can simply use the dual form we already have transformed. For the
sake of completeness, the following corollary states the dual form of the corresponding
optimization problem without the proof.

112

5.2. Dual Optimization Problems for Transductive SVM

Corollary 5.1 (Dual Form of Transductive Training Error Minimization) The
dual form of the second objective (minimize training errors) for the multi-objective trans-
ductive SVM is

maximize
n∑

i=1

αi

subject to ∀n
i=1 : αi ≥ 0

and
n∑

i=1

αiyi = 0.

Proof. Refer to the proof of Theorem 3.2.

5.2.3. Third Objective: Minimizing the Test Error

The third problem states that the sum of test errors, i.e. the sum of the slack variables
ξ∗k for the test label assignment y∗, should be minimized. The following theorem states
the dual optimization problem.

Theorem 5.2 (Dual Form of Transductive Test Error Minimization) The dual
form of the third objective (minimize test error under the possible test label assignments)
for the multi-objective transductive SVM is

maximize

n∗
∑

k=1

α∗
k

subject to ∀n∗

k=1 : α∗
k ≥ 0

and
n∗
∑

k=1

α∗
ky

∗
k = 0.

Proof. We add positive Lagrange multipliers α∗ and β∗:

L(3)
p (w, b, ξ∗, α∗, β∗, y∗) =

n∗
∑

k=1

ξ∗k −
n∗
∑

k=1

α∗
k (y∗k (〈w, x∗

k〉+ b) + ξ∗k − 1)−
n∗
∑

k=1

β∗
kξ∗k.

113

5. Transductive Learning: Non-Convex and Multi-Objective

The derivatives must be set to 0 which leads to conditions on the derivatives of L
(3)
p :

∂L
(3)
p

∂w
(w, b, ξ∗, α∗, β∗, y∗) = −

n∗
∑

k=1

α∗
ky

∗
kx

∗
k = 0,

∂L
(3)
p

∂b
(w, b, ξ∗, α∗, β∗, y∗) =

n∗
∑

k=1

α∗
ky

∗
k = 0,

∂L
(3)
p

∂ξ∗k
(w, b, ξ∗, α∗, β∗, y∗) = 1− α∗

k − β∗
k = 0.

Plugging the derivatives into L
(3)
p cancels out most terms because of the first two deriva-

tives:

L(3)
p (w, b, ξ∗, α∗, β∗, y∗) =

n∗
∑

k=1

ξ∗k −
n∗
∑

k=1

α∗
ky

∗
k 〈w, x∗

k〉 −
n∗
∑

k=1

α∗
ky

∗
kb−

n∗
∑

k=1

α∗
kξ

∗
k +

n∗
∑

k=1

α∗
k −

n∗
∑

k=1

β∗
kξ∗k

=

n∗
∑

k=1

ξ∗k −
n∗
∑

k=1

〈w,α∗
ky∗kx

∗
k〉 −

n∗
∑

k=1

α∗
kξ

∗
k +

n∗
∑

k=1

α∗
k −

n∗
∑

k=1

β∗
kξ∗k

=
n∗
∑

k=1

ξ∗k −
n∗
∑

k=1

α∗
kξ

∗
k +

n∗
∑

k=1

α∗
k −

n∗
∑

k=1

β∗
kξ∗k.

Together with the third derivative we can replace the β∗
k by 1− α∗

k leading to

L(3)
p (w, b, ξ∗, α∗, β∗, y∗) =

n∗
∑

k=1

α∗
kξ

∗
k −

n∗
∑

k=1

α∗
kξ

∗
k +

n∗
∑

k=1

α∗
k =

n∗
∑

k=1

α∗
k.

The Wolfe dual must again be maximized which leads to the third objective of the
multi-objective transductive SVM setting:

maximize

n∗
∑

k=1

α∗
k

subject to ∀n∗

k=1 : α∗
k ≥ 0

and

n∗
∑

k=1

α∗
ky

∗
k = 0.

114

5.3. Single-Objective but Non-Convex: The Evolutionary TSVM

5.3. Single-Objective but Non-Convex: The Evolutionary
TSVM

Before we discuss the results for the multi-objective transductive SVM (MO-T-SVM),
we will optimize the usual dual form of transductive SVM by means of evolutionary
algorithms. The dual optimization problem for single-objective TSVM is given by The-
orem 5.1 plus the additional upper bounds C and C∗ for the Lagrange multipliers αi

and α∗
k:

Problem 5.2 (Single-Objective Dual TSVM Problem) The dual optimization
problem for single-objective Transductive Support Vector Machines (TSVM) is

maximize
n∑

i=1

αi +

n∗
∑

k=1

α∗
k −

1

2

n∑

i=1

n∑

j=1

αiαjyiyjk (xi, xj)−

1

2

n∗
∑

k=1

n∗
∑

l=1

α∗
kα

∗
l y

∗
ky

∗
l k (x∗

k, x
∗
l)−

n∑

i=1

n∗
∑

k=1

αiα
∗
kyiy

∗
kk (xi, x

∗
k)

subject to ∀n
i=1 : 0 ≤ αi ≤ C,

∀n∗

k=1 : 0 ≤ α∗
k ≤ C∗,

n∑

i=1

αiyi +

n∗
∑

k=1

α∗
ky

∗
k = 0.

The parameters y∗, α, α∗, and b found by optimizing this function also yield a decision
function similar to that known from the inductive case:

f(x,) = sgn

(
n∑

i=1

αiyik(x, xi) +
n∗
∑

k=1

α∗
ky

∗
kk(x, x∗

k) + b

)

.

We used the support vector machine based on evolution strategies optimization discussed
in the chapter 3 (EvoSVM) which results in the algorithm Evo-T-SVM. Individuals are
real-valued vectors consisting of α, α∗ and y∗. Hence, the individual length is n +

115

5. Transductive Learning: Non-Convex and Multi-Objective

Data Set n n∗ m

4-Clusters 2 2 2
3-Clusters 4 146 2
2-Moons 7 393 2

Table 5.1.: The data sets used for transductive learning. Please note that most of the
examples are not labeled.

2n∗. The mutation is performed by adding a Gaussian distributed random variable
with standard deviation C/10. In addition, a variance adaptation is conducted during
optimization (1/5 rule [150]). Crossover probability is high (0.9). We use tournament
selection with a tournament size of 0.25 multiplied by the population size. The initial
individuals are random vectors with 0 ≤ αi ≤ C, 0 ≤ α∗

k ≤ C∗, and y∗k ∈ {−1,+1}
respectively. The maximum number of generations is 10000 and the optimization is
terminated if no improvement occurred during the last 10 generations. The population
size is 10.

5.3.1. Experiments and Results

Exhaustive experiments for transductive learning are given in [28, 73, 166] including
several synthetic and real-world data sets (mainly in the field of text classification).
In this section, we simply show some experiments on simple low-dimensional data sets
in order to give an impression of the results for readers who are less familiar with
transductive learning. We will use the same data sets later in this chapter for multi-
objective transductive learning since this will then allow us to interpret the Pareto
fronts.

We apply the single-objective (and later also the multi-objective) transductive SVM on
three different data sets. Table 5.1 summarizes some of the properties. Please note that
for each data set only few labeled instances are given. Figure 5.1 shows all data sets
where grey dots mark unlabeled points.

On all three data sets, we apply a traditional inductive SVM (JMySVM [160]) and
the new transductive Evo-T-SVM. We start with a discussion on the results for the
4-Clusters data set. This data set has some interesting properties:

• the distance between the upper points and the lower points is larger than the
distance between the left and the right group of points,

• since only the lower left and the upper right points are classified, it is likely for
inductive SVMs to make an error here by ignoring these distances.

116

5.3. Single-Objective but Non-Convex: The Evolutionary TSVM

(a) 4-Clusters

(b) 3-Clusters

(c) 2-Moons

Figure 5.1.: The data sets used for transductive learning. Grey dots mark unlabeled
data points. Please note for the 4-clusters data set that the distance along
the y-axis is much bigger (about factor 8) than the distance between the
clusters along the x-axis.

117

5. Transductive Learning: Non-Convex and Multi-Objective

We expect the inductive SVM to calculate a diagonal hyperplane which tends to classify
both unlabeled points to one class. A transductive SVM should be capable of taking
the different distances into account and divide the upper points from the lower points
by a hyperplane more or less parallel to the x-axis. As it can be seen in Figure 5.2, the
results meet our expectation. The inductive SVM classifies both unlabeled data points as
negative which is probably wrong. The transductive SVM, on the other hand, manages
to take the larger distances between the upper and the lower points into account. The
position of the hyperplanes is also indicated by the confidence values which are shown
in Figure 5.3.

On the second data set, we can again see that the probability for generalization errors
can be reduced by using transductive learning. The 3-Clusters data set consists of
three equally-sized clusters where only the upper and the lower one contain few labeled
examples. The middle cluster is located a bit closer to the upper cluster and would
probably also be classified as positive (please refer to Figure 5.1). As it can be seen in
Figure 5.4, both SVM group the upper clusters together and would perform well on this
given set of training data. The difference, however, can clearly be seen by looking at the
confidences for both models in Figure 5.5: the inductive SVM would probably classify
lower parts of the middle cluster as negative (as soon as the data points are located below
the 0 on the y-axis) while the transductive SVM provides a slightly diagonal hyperplane
between the lower and the middle cluster – leading to lower probabilities for errors for
points sampled according to the middle cluster.

For the last data set, the 2-Moons data set, we use an RBF kernel for both SVM. The
difficulty of this data set is to take the structure into account without actually seeing
it. We applied both SVMs on this data set. Figure 5.6 shows the results. It can easily
be seen that the predictions of the transductive SVM are almost perfect and that the
location of the unlabeled data points is taken into account. In contrast, the inductive
SVM only defines a small spot for the positive points while classifying everything else
as negative. This difference can also be seen in the confidence plots in Figure 5.7. In
order to visualize the non-linear decision border, the background of the plot is colorized
by the function value of the SVM.

5.4. Multi-Objective TSVM

We now state the objectives for the multi-objective transductive SVM (MO-TSVM).
The objectives are given as a maximization of three terms:

Corollary 5.2 (Objectives for a Multi-Objective Transductive SVM) For the
multi-objective transductive SVM (MO-T-SVM), the set of maximization objectives con-
sists of

118

5.4. Multi-Objective TSVM

(a) JMySVM (b) Evo-T-SVM

Figure 5.2.: Predictions of both SVM approaches for the 4-Clusters data set. The
traditional induction SVM calculated a diagonal hyperplane which decided
to group the upper left and the lower right point with the lower left point.
The transductive SVM made a better job by taking the distance between
the unlabeled points also into account: the hyperplane is parallel to the
x-axis and distinguishes between the upper and the lower points.

(a) JMySVM (b) Evo-T-SVM

Figure 5.3.: Confidences of both SVM approaches for the 4-Clusters data set. The
inductive SVM calculates a diagonal hyperplane (indicated by the con-
fidence values around 0.5 for the upper left and the lower right points).
The transductive SVM, on the other hand, calculates a hyperplane clearly
distinguishing between the upper and the lower points.

119

5. Transductive Learning: Non-Convex and Multi-Objective

(a) JMySVM (b) Evo-T-SVM

Figure 5.4.: Predictions of both SVM approaches for the 3-Clusters data set. Both
SVMs perform equally well in terms of the prediction on the given data
set. However, the transductive SVM would perform better on completely
unknown data since it takes the position of the middle cluster into account.

(a) JMySVM (b) Evo-T-SVM

Figure 5.5.: Confidences of both SVM approaches for the 3-Clusters data set. It can
clearly be seen that the transductive SVM would make less errors on ad-
ditional points from the middle cluster since the hyperplane is located
between the middle and the lower cluster.

120

5.4. Multi-Objective TSVM

(a) JMySVM (b) Evo-T-SVM

Figure 5.6.: Predictions of both SVM approaches for the 2-Moons data set. It can
clearly be seen that the non-transductive SVM was not able to capture
the structure of the underlying data set. Major parts of the lower moons
were wrongly predicted by the non-transductive learner.

(a) JMySVM (b) Evo-T-SVM

Figure 5.7.: Confidences of both SVM approaches. The semi-transparent colors indi-
cate the values of the prediction function of both SVMs. It can clearly be
seen that the transductive SVM was able to take the spacial structure of
the unlabeled data points into account.

121

5. Transductive Learning: Non-Convex and Multi-Objective

(I)

n∑

i=1

αi+

n∗
∑

k=1

α∗
k−

1

2

n∑

i=1

n∑

j=1

αiαjyiyjk (xi, xj)−

1

2

n∗
∑

k=1

n∗
∑

l=1

α∗
kα

∗
l y

∗
ky

∗
l k (x∗

k, x
∗
l)−

n∑

i=1

n∗
∑

k=1

αiα
∗
kyiy

∗
kk (xi, x

∗
k)

(II)

n∑

i=1

αi

and (III)

n∗
∑

k=1

α∗
k

subject to ∀n
i=1 : αi ≥ 0 and ∀n∗

k=1 : α∗
k ≥ 0.

5.4.1. Experiments and Results

We use the same implementation of the Evo-T-SVM as before together with the non-
dominated sorting selection from NSGA-II. The number of individuals was increased to
30 for 4-Clusters, to 150 for 3-Clusters, and to 200 for the 2-Moons data set. The results
are shown in Figures 5.8, 5.9, and 5.10.

5.4.1.1. Interpretation of the Pareto Fronts

Each plot shows the criteria (I), (II), and (III) as axes or color respectively. The points
span a curved plane and it can be seen that the resulting Pareto fronts cover a wide range
of the possible solution space. Each point is representing a model defined by the vectors
α and α∗ together with corresponding offsets. Hence, each point in the Pareto front also
corresponds to a segmentation of (the given training) data points. Depending on the
position of a point (model) in the 3-dimensional criteria space, the model emphasizes
either a good clustering, a good classification, or a good generalization. All points in
between correspond to all possible trade-offs between those goals.

122

5.4. Multi-Objective TSVM

The basic interpretation of the Pareto fronts is the same as for the non-transductive case
(see Section 3.2.7.1). As we have seen there, some models emphasize a larger margin.
Those models are located at higher regions of the z-axis (the margin size) and correspond
to the red points in the Pareto set. Other models emphasize the minimization of the
training error (criterion II) and are therefore located at the right parts of the x-axis. And
again other models emphasize the minimization of the “training” error of the unseen data
points. Those models are located at the higher parts of the y-axis. Again, all fronts show
a typical structure describing the trade-off between all three criteria but in contrast to
the 2-dimensional case this structure can not be seen as easily. Anyway, it is not possible
to find a model (a point) above the plane described by the points of the final Pareto set
since this point would dominate all others.

It is also quite interesting that for the simpler data sets the Pareto front shows only the
finite number of discrete solutions for the possible labeling for the test data. For the
more complex 2-Moons data set, on the other hand, the Pareto front is well scattered
across the solution space.

We will now discuss the trade-off between the criteria depicted in the Pareto plots.
Although for three criteria it can no longer be seen in the plots, we can again conclude
that each Pareto front contains all sensible models in the complete trade-off region.
All models between the default classifier classifying all points as the major class (a red
point with smallest values with respect to the x- and y-axis) and total overfitting with
zero training error (the bottom corner points) either for the labeled or the non-labeled
points are possible. Users can inspect different regions of the resulting Pareto sets and
choose a solution which leads to an appropriate classification and / or clustering result
on the training data or an additional test data set. From a selected solution, users
can define a trace in the solution space depending on the fact if solutions should be
preferred which better classify or which better cluster the given data. And just as for
the non-transductive SVM, users do not have to define such preferences in advance but
can traverse the solution space after all feasible solutions were found.

This directly corresponds to the walk along the Pareto front we have discussed in detail in
Section 3.2.7.1. We will perform a similar walk along those 3-dimensional Pareto fronts
in the next section leading to further interpretations of the resulting Pareto sets.

5.4.2. From Classification to Clustering in One Single Run

We started our discussion about transductive SVM with a motivation for using unla-
beled data points in order to reduce the generalization error. A positive side effect is
the reduced effort for labeling data points which often must be done manually. The gen-
eral idea of making use of both the labeled and the (huge amounts of) unlabeled data
is usually called semi-supervised learning. This class of learning methods falls between

123

5. Transductive Learning: Non-Convex and Multi-Objective

(a) 4-Clusters Pareto 2D (b) 4-Clusters Pareto 3D

Figure 5.8.: The resulting Pareto front in 2D and in 3D plots for the data set 4-Clusters.
The color and the z-axis corresponds to criterion (I).

(a) 3-Clusters Pareto 2D (b) 3-Clusters Pareto 3D

Figure 5.9.: The resulting Pareto front in 2D and in 3D plots for the data set 3-Clusters.
The color and the z-axis corresponds to criterion (I).

124

5.4. Multi-Objective TSVM

(a) 2-Moons Pareto 2D (b) 2-Moons Pareto 3D

Figure 5.10.: The resulting Pareto front in 2D and in 3D plots for the data set 2-Moons.
The color and the z-axis corresponds to criterion (I).

supervised learning on completely labeled training data and unsupervised learning with-
out any labeled training data. Transductive support vector machines are a particular
instance of this class of learning methods although the original motivation of Vapnik
was to define an easier class of learning tasks since it is not necessary to cover the whole
input space for transductive learning.

We will now discuss the extreme spots of the resulting Pareto fronts and see how these
spots are related to the concepts of supervised learning, semi-supervised learning, and
unsupervised learning.

If we concentrate on only one criterion of the three criteria introduced above we could
choose to

maximize the margin: the resulting hyperplane will be located beside all data points
(labeled and unlabeled) and there will not be any meaningful interpretation of this
result.

minimize the training error: the model is clearly overfitted to the training data.

minimize the test error: the model is clearly overfitted to an arbitrary test data label
assignment which usually does again not allow any other interpretation.

It does not make any sense to concentrate on one of the criteria alone. We have already
discussed that concentrating on the training error will lead of overfitting while concen-
trating on the margin maximization alone will lead to trivial models not lying in the
data range at all.

125

5. Transductive Learning: Non-Convex and Multi-Objective

Hence, we have to take pairs of criteria into account which allows for three different
combinations. In the three-dimensional Pareto fronts which are the result of the multi-
objective transductive SVM, this corresponds to one of the three axes between two of
the criteria. All three connection lines between the extrema stated above usually form
a triangular shape in the solution space. We are now making a walk along one of these
three connection lines and can again choose along which line we want to move:

maximize the margin, minimize the training error: this will result in the tradi-
tional SVM, in case of the multi-objective SVM this will result in all possible
trade-offs between model complexity and training error.

maximize the margin, minimize the test error: this will result in an optimal clus-
tering with respect to the test data, in case of the multi-objective SVM this will
result in all possible trade-offs between model complexity and test error (cluster
performance). Please note that the results are different from those of the already
known Support Vector Clustering [13].

minimize the training error, minimize the test error: overfitted clustering, the
label assignments are correct for the training data.

The final point is that we can now combine all three of the criteria and get the whole
area of the Pareto front as result:

maximize the margin, minimize training and test error: this will result in the
transductive SVM discussed in this chapter. In case of the multi-objective trans-
ductive SVM this will result in all possible trade-offs between model complexity,
training error and test error (good clusterings).

And this is the major result of the first part of this thesis. Besides the fact that multi-
objective SVMs are able to deliver all these results in one single optimization run there is
a quite more important conclusion from this discussion: the multi-objective transduction
SVM can be seen as a formal connection between supervised and unsupervised learning.
In the optimization function of this SVM there is no difference between classification and
clustering. After dividing the transductive SVM optimization criterion into three single
criteria and transforming each of them into its dual form of its own, this connection
becomes obvious. It is as simple as this: if no training data is given, we automatically
get a clustering scheme. If no test data is given, we end up with the traditional SVM for
supervised learning. If both are given, we have a semi-supervised learning scheme lying
in between.

126

Part II.

Feature Space Transformations

127

CHAPTER 6

Multi-Objective Supervised Feature
Construction

In the first part of this thesis, we have discussed the optimization procedures used
directly inside of the statistical learning methods. By introducing new optimization
methods we are able to solve problems like indefinite kernel learning which are not
feasible for traditional optimization techniques. An additional advantage is that the very
same learning algorithm can directly be applied to non-convex optimization problem
of transductive learning which leads to formal connection between classification and
clustering at least in the multi-objective setting.

This type of multi-objective learning is a guideline for this work since we can now also
concentrate on more than one optimization criterion. These criteria can even compete
with each other. The result is a Pareto set of models containing all models between those
with lowest training error (overfitted models) and those with minimal model complexity
(often too general models). All models are found in one single run without any user
interaction or parameter settings.

We now want to transfer these positive results for statistical learning to another step
in the data mining process, namely to the preprocessing phase. We will concentrate on
the selection of good features in order to optimize the learning results (feature selec-
tion). If the given features are not sufficient to build good models, often new features
must be constructed from the existing ones (feature construction). In the case of se-
ries data (e.g. time series), this process of feature creation is called feature extraction
since discriminating single-valued features are extracted from the multiple-valued value
series.

129

6. Multi-Objective Supervised Feature Construction

6.1. Feature Space Transformations

Although many learning schemes already try to identify relevant features and create
prediction models based on those features’ values, both theoretical analysis and experi-
ments have shown that they usually do not scale well with the number of irrelevant or
redundant features [50, 94]. The information gain criterion in decision trees, for example,
selects features optimizing the class purity in the subsets according to the feature but it
fails in cases of strong feature interactions.

The process of feature selection aims to find good subsets of features. Existing ap-
proaches include filtering methods like FOCUS [4] or Relief [84]. These methods calcu-
late a weight or feature relevance measure for each feature independently - just as in the
case of information gain. A (manual) selection and construction of the optimal feature
set hence can be guided by such a relevance measure of the features. Several other ap-
proaches for feature relevance calculation exist, based for example on the entropy [147]
or the weighting vector derived of the hyperplane of a Support Vector Machine [184].
Statistical algorithms for dimensionality reduction like Principal Component Analysis
[63] also induce a weighting of the features. With exception of the SVM weighting de-
rived from the normal vector of the calculated hyperplane, all those methods suffer from
the same two drawbacks: first, they calculate the feature relevance for each feature in-
dependently from all others and can hence easily be confused by feature interactions as
those known from XOR functions. Second, they calculate the feature relevance without
taking a specific learning scheme into account and might therefore deliver sub-optimal
results for a given learning algorithm.

In order to overcome the second problem, so-called wrapper approaches were proposed
[87, 88]. Here, the performance of a user-defined learning algorithm is estimated by
validation methods like cross validation and the search for the optimal feature sub-
set is guided by those estimated performances. Several wrapper approaches have been
proposed, including wrappers like forward selection, backward elimination [1], or ge-
netic algorithms [196]. The first two methods are greedy search heuristics and will get
stucked in the first local optimum. Genetic algorithms, on the other hand, are global
search methods which will probably deliver the global optimum and can also deal well
with feature interactions. This makes genetic algorithms the most appropriate solution
for feature selection on large real-world feature sets and a good starting point for the
feature space transformation problems discussed in the next chapters. Unfortunately,
they suffer from long runtimes since the number of necessary generations might grow
exponentially with the number of features. Another drawback is that they do not give
any insight into the structure of the feature space, i.e. which (subsets of) features are
more important than others. At least for the second problem we will discuss a solution
in this chapter.

130

6.1. Feature Space Transformations

But what can we do if an inductive learning problem cannot be solved accurately by
using the original feature space? This often happens in practice since standard learning
algorithms cannot represent complex relationships as induced for example by trigono-
metric functions. For example, if only base features X1 and X2 are given but the target
function depends highly on Xc = sin(X1 ·X2), the construction of the feature Xc would
ease learning – or is necessary to enable any reasonable predictions at all [17, 33, 89].
It has been shown that genetic-based feature selection can easily be extended by the
construction or extraction of new features [104, 105, 115, 117, 155, 183].

In general, one is interested in a transformation of the original feature space X into
a feature space X ′ in such a way that the search for a model is simplified for a given
learning scheme [193, 194]. The goal is the increase of the prediction accuracy together
with a higher understandability of the models. So the feature space transformation
problem is defined as the search for small subsets of selected or explicitly constructed
features not only helping the learning scheme but also easing the process of gaining more
insight into the underlying processes.

Unfortunately, feature selection and construction are computationally very demanding
tasks often requiring to search a very large space of possibilities [194]. We have dis-
cussed that heuristics like genetic algorithms have proven to be very efficient for feature
selection. In the following, we will discuss how evolutionary computation, and especially
multi-objective evolutionary algorithms, can help to search the very large space of fea-
ture subsets. Then, we will also extend the presented techniques to feature selection and
feature construction for unsupervised learning problems in the following chapters.

6.1.1. Feature Construction and Genetic Programming

Before we introduce a multi-objective solution for supervised feature selection and con-
struction, we will discuss the connection of feature construction to two closely related
fields, namely genetic programming and kernel-based learning.

The (supervised) feature construction in this work resembles a wrapper approach since
the performance is estimated by, for example, a cross validation of a linear regression
or classification learner. The outer meta optimization selects or constructs new features
which can be used by the inner linear learner and might help to improve the results.

This approach is very similar to genetic programming [64, 91], which also aims at finding
a prediction function by applying mathematical or logical operations on a set of features.
Genetic programming, however, suffers of a big problem with robustness. Small changes
of values often lead to drastic changes in the value of the approximated function and
genetic programming is hence very prone to overfitting. The reason for this missing
robustness is a large amount of so-called introns, i.e. terms without any or only with
small information for the target function. Introns are the main reason for performance

131

6. Multi-Objective Supervised Feature Construction

problems of genetic programming with respect to predictive power as well as to run-
time.

The approach discussed in this work achieves a higher robustness against small changes
of values which leads to a lower degree of overfitting by several techniques for intron pre-
vention. We will discuss the improvements of the proposed approach in section 6.4.2.

6.1.2. Feature Construction and Kernels

Since the search for an appropriate kernel is equivalent to the search for an appropriate
feature space transformation the success of kernel methods is also an indicator for the
importance of feature construction and selection. The mapping Φ used in kernel func-
tions actually is a specific form of feature construction. Since for many real-world data
mining problems the linear dot kernel is not sufficient, the crucial aspect of learning
in these cases seems to be the transformation of the input vectors into a new feature
space.

One could ask why we then do not simply try to construct new kernel functions instead
of constructing or extracting features from existing values. The reason is given by one of
the major motivations of knowledge discovery itself: one is often not only interested in a
predictive model but also in an understandable description of the underlying processes.
Since most people cannot understand kernel models at all, the optimization of a kernel
function would not increase the insight into the problem at hand. By explicitly selecting,
constructing, and extracting features the domain expert often gets more insight into the
most important terms for the learning problems. For example, the information that
the model highly depends on the term sin(X3 · X8) is often more interesting than the
information stated by a collection of support vectors.

6.1.3. Multi-Objective Feature Space Transformations

There was some work in the field of multi-objective evolutionary feature space trans-
formations during the last years. Table 6.1 shows the different tasks in this field and
summarizes the achieved results.

Multi-objective supervised feature selection was already defined in [44]. Here, the predic-
tion error of a classifier was estimated by a cross validation and used as a first criterion.
The number of features was used as a second criterion and should be minimized.

For the supervised learning setting, the problems of feature construction and feature
extraction from series data will be discussed in this and the next chapter. The idea of
minimizing the number of features while the prediction accuracy should be increased
can directly be transfered to feature construction and extraction.

132

6.2. Multi-Objective Evolutionary Feature Selection

supervised unsupervised

selection O [44] X [123]

construction X [155] X [124]

extraction X [105, 115, 117, 116] ?

Table 6.1.: The different tasks for multi-objective evolutionary feature space transfor-
mations. X denotes tasks solved by the author of this work, O denotes
tasks solved by other authors, ? denotes tasks which are currently not yet
solved.

For the first time, multi-objective optimization now also allows for feature space trans-
formations for unsupervised learning. This problem is multi-objective by nature and we
will discuss a quite surprising result in the final chapters of this work.

6.2. Multi-Objective Evolutionary Feature Selection

This section summarizes the results of [44] and describes the basic idea of multi-objective
feature selection. Additionally, we will give an interpretation of the resulting Pareto
fronts.

Feature selection is a well-suited problem setting for multi-objective optimization. In
the simplest case, the task of feature selection involves two objectives: minimization of
the number of features and maximization of the modeling performance. In classification
tasks, performance can be assessed in terms of the misclassification rate or in terms of
the prediction accuracy. For regression tasks, one could use for example the root mean
squared error or other regression performance measures.

A common approach is to combine the objectives in a composite function [196]. This may
yield solutions good enough on average but not in each one of the objectives separately.
Alternatively, multiple runs can be performed to optimize one objective, while keeping
the rest at a desired level. For example, it is possible to optimize performance for a
fixed and given subset size. This can be pursued with EAs in a number of ways but,
in principle, this would include the evolution of a population of solutions increasingly
concentrated around the desired subset size.

In [44] it is argued that beside larger runtimes through multiple optimization runs there
is a danger of eliminating useful population diversity by imposing restrictions on the
subset size. Thus, the chromosomes of diverse subset size may not stand a chance to pass
on well performing schemata to the next generation. Such population diversity can be
maintained by aiming both at subset size minimization and performance maximization,
without specifying which objective is more important. The authors employ a variation
of the Niched Pareto GA (NPGA) [66]. Although this multi-objective optimization

133

6. Multi-Objective Supervised Feature Construction

scheme is today known to be inferior compared to modern schemes like NSGA-II, the
achieved results are already quite impressive. The reason for this might be that the
authors optimized the scheme parameters and algorithms in order to better fit the needs
for multi-objective feature selection. One of these extensions was the introduction of a
new commonality-based crossover operator. The authors evaluated their algorithm on
a probabilistic neural network model which offers faster evaluation times if only subsets
of the features were used.

6.2.1. Interpretation of the Pareto Fronts

Figure 6.1 shows the result of a multi-objective feature selection process. The used data
set consists of 15 attributes which are all equally important to the learner (the label
simply is the sum of all attribute values). We applied the described multi-objective
feature selection approach on this data set which delivers the shown Pareto front. The
x-axis shows the negative root mean squared error which should be maximized. The y-
axis shows the negative number of used features, which also should be maximized. The
negation transforms the original minimization problems into maximization problems.
Hence, the goal is to move the Pareto front as far to the upper right part of the plot as
possible.

Each point in the plot corresponds to feature subset of the original input data set. The
first point, for example, corresponds to a feature subset of the data set consisting of one
feature only, namely the features named att2. It can clearly be seen that the number of
features in the Pareto front almost covers the complete range from 1 to 15. The analyst
can tell from the straight line that all features are more or less equally important and
even features added as 10th or 14th feature lead to a significant decrease of the error.

It can also be seen that starting with the smallest subsets, the larger subsets are often
build on top of the previous ones. For example, the optimal subset with size 4 contains all
three attributes att2, att13, and att4 from the optimal subset of size 3 and one additional
feature att9. This inherent structure in the Pareto front gives insight into the relevance
ranking of the features.

However, if a perfect ranking could always be created, greedy heuristics like hill climbing
would be more successful for feature selection – which they are not! The Pareto front
shows, however, that in some cases the attribute subsets completely change (for example
between subset size 4 and 5) and therefore greedy heuristics will fail. Such changes in
subset relevance are also interesting on its own for analysts.

Although in the specific case shown in Figure 6.1 those changes are probably induced by
small data changes, it should again be noted that these changes in feature set ranks in
general cannot be fully explained by data changes alone. Those changes in feature set
ranks are a structurally inherent part of the analysis problem at hand. Otherwise, as we

134

6.3. Regularized Feature Selection and Construction

Figure 6.1.: The figure shows the resulting Pareto front for a simple learning problem
containing only 15 equally important features. The analyst can derive a
feature ranking from such a Pareto front and gets also a hint where such
a ranking does not apply (e.g. between subset size 4 and 5).

have mentioned before, greedy feature selection algorithms like forward selection would
not fail for most of the data sets. But this is what actually can often be observed: the
greedy feature selection methods fail due to the multi-modal nature of the optimization
problem and the missing structure in the rank of the feature subsets.

It can be concluded that multi-objective feature selection does not suffer from these
multi-modal problems and deliver a complete ranking of all sensible feature subsets
starting from the smallest to those containing all necessary features. If the data set
would have also contained some noise features which should have been deselected, those
features would not have been selected into many of the feature subsets and the Pareto
front would have shown the typical vertical part on the right showing that adding more
features would not lead to a significant increase in prediction performance and could
hence be omitted.

6.3. Regularized Feature Selection and Construction

We will now connect the problem of feature selection and construction to the idea of
statistical learning discussed so far and extend the basic multi-objective feature selection
idea presented above to the case of feature construction.

135

6. Multi-Objective Supervised Feature Construction

6.3.1. Regularized Risk for Feature Space Transformations

The basic definition of machine learning used so far was the minimization of the regu-
larized (or structural) risk

Rreg(γ) = Remp(γ) + λΩ(γ).

The term Remp(γ) measured the training error and the term Ω(γ) measured the struc-
tural complexity of the model defined by γ. The weighting factor λ defines the trade-off
between both terms.

In the first part of this work, we have seen that this basic definition of statistical learning
is actually multi-objective and that analysts can get more insight and better models
by explicitly stating the corresponding optimization problems and solving them with
appropriate optimization schemes. The selection or construction of new features actually
can also be considered to be a part of the learning process. The search for advantageous
input representations often is the key for successful learning and there seem to be a
limit similar to that known from the no free lunch theorems in optimization and search
[193, 194]: either the hard work is done during preprocessing or during learning [130].

Let us consider one of the most simplest learning schemes available, namely linear re-
gression or linear separating hyperplanes respectively. The wrapper approach [87, 88]
ensures that the performance estimation for this learner for a given feature space corre-
sponds to the expected risk (and not only the empirical or regularized risk). The model
description γ therefore only describes the feature space and Ω(γ) should measure its
complexity. We replace γ by the definition of our input space X and the complexity
measure by Ω(X) and can define a new regularized risk, the regularized risk for feature
space transformations:

Definition 6.1 (Regularized Risk for Feature Space Transformations) Let
Rinner be the (expected) risk of the inner learning scheme and let Ω be a strictly mono-
tonic increasing function. The regularized risk for feature space transforma-
tions is defined as

RFST
reg (X) = Rinner + λΩ(X).

6.3.2. Definition of Ω(X) for Feature Selection and Feature Construction

The used wrapper approach already delivers the risk Rinner at least for supervised learn-
ing problems. For unsupervised learning tasks, we will discuss several options for ac-
cessing a quality measure Rinner in Chapter 8 and 9. We mainly concentrate on the
definition and calculation of Ω(X) for supervised and unsupervised learning. This term
measures the feature space complexity. In the case of multi-objective supervised fea-
ture selection, we have already seen above that the number of used features is a simple

136

6.3. Regularized Feature Selection and Construction

and good measurement for the feature space complexity. We will now discuss a formal
connection between this intuitive solution and learning theory.

In computational learning theory, the VC-dimension (for Vapnik-Chervonenkis dimen-
sion [186]) is a measure of the capacity of a statistical classification algorithm, defined
as the cardinality of the largest set of points that the algorithm can shatter.

Definition 6.2 (VC-Dimension) The VC-dimension of a model f is the maximum
n such that some data point set of cardinality n can be shattered by f .

Definition 6.3 (Shattering) A classification model f with some parameter vector γ
is said to shatter a set of n data points if, for all assignments of labels to those points,
there exists a γ such that the model f makes no errors when evaluating that set of data
points.

Informally, the VC-dimension or capacity of a classification model is related to how
complicated it can be. For example, consider thresholding by means of a high-degree
polynomial: if the polynomial evaluates above zero, that point is classified as positive,
otherwise as negative. A high-degree polynomial can be wiggly, so it can fit a given set
of training points well. But one can expect that the classifier will make errors on other
points, because it is too wiggly. Such a polynomial has a high capacity. A much simpler
alternative is to define a threshold by linear function. This polynomial may not fit the
training set well, because it has a low capacity.

The same idea applies to feature selection. The inner learner is determined at the
beginning of the feature subset optimization process and cannot be changed. At least
for feature construction, which is discussed here, one would usually choose a simple
model class like linear separating hyperplanes or linear regression since the hard non-
linear learning work should be performed by feature construction. In this case, it can
easily be shown that the complexity of the model increases with increasing number of
used features.

Lemma 6.1 (Feature Space Complexity) For multi-objective supervised feature
selection (construction), the number of currently used features nf is a feature space
complexity measure, hence Ω(X) = nf .

Proof. Let the model class be fixed and let it be a linear hyperplane classification model.
If only one feature is used, the model is only able to select one single threshold for the
classification in this single dimension. The highest number n of data points which can
shattered is 2. Let nf be the currently used number of features. In general, linear
separating hyperplanes in a space R

nf have a VC-dimension of nf + 1 [186]. Increasing
nf therefore also increases the complexity Ω(X).

137

6. Multi-Objective Supervised Feature Construction

Everything said above can directly be transferred to the case of feature construction.
Constructing new features actually is only a special case of feature selection. One could
add all features to the original input space X which could be constructed by a given
set of methods. This new space X ′ could then be used as a basis for feature selection.
In this case, Lemma 6.1 would still hold and the number of features which should be
selected should also be minimized in order to minimize the regularized risk RFST

reg (X).

6.4. Multi-Objective Evolutionary Feature Construction

We will now present an extension of the multi-objective feature selection technique pre-
sented above. This new algorithm should be able to handle numerical regression and
classification tasks where the label Y depends in some non-linear way from the input fea-
tures X. The algorithm should find a transformation into a new feature space X ′. The
problem of feature construction is that the search scheme must be able to handle feature
interactions [54]. A feature interaction is defined as the influence of one feature on the
class probability depending on another feature, i.e. the features Xi and Xj are interact-
ing if P (Y |Xi) 6= P (Y |Xi,Xj). We will see that evolutionary algorithms are capable of
handling these interactions which often lead to multi-modal objective functions.

6.4.1. Problem-Specific Search Operations

The evolutionary optimization of the input representation regards any possible represen-
tation as a search point in the search space. The individuals of a population are hence
given by feature sets X of variable lengths. For this reason, evolutionary feature space
transformations are actually an instance of the class of genetic programming. In contrast
to the usual genetic programming approaches, however, the goal is not the full mathe-
matical description of the underlying processes. The inner learning scheme still searches
for the connection between the label and the input variables. The outer optimization
aims at easing this inner search process by identifying single terms of this connection.
This separation into inner learning and outer feature space optimization ensures a greater
robustness against random noise compared to mere genetic programming.

6.4.1.1. Mutations

We will now define some problem-specific search point operations which can be applied
on feature sets of variable lengths. We start with two different types of mutations:

Feature Selection: this mutation changes the selection state of a feature with proba-
bility 1/nf if nf is the current number of features of this individual. This makes
the mutation probability dependent of the individual which should be mutated.

138

6.4. Multi-Objective Evolutionary Feature Construction

X X X1 X2 3 4 X 4X2 + X X X/X2 3 5 X1 5

X X/5 X1 5 X 4X2 +X X X1 X2 3 4 XX2 3

Crossover

Figure 6.2.: Modified one-point crossover for individuals with variable lengths. All
crossover variants ensure than single features are not added more than
once to an individual.

Construction: the construction of a new feature regarding the value types of the con-
struction function arguments. Special generators only work on integer features,
other only work on real-valued features. A type-restrictive selection of generators
can decrease the needed runtime [154, 155].

Selection and construction “compete” which each other. The selection aims at pruning
the feature space and ease the model learning process in simpler feature spaces. The
latter extends the hypothesis space for the inner learner and often this might be necessary
for successful learning. By using both mutations at the same time we try to combine both
optimization directions since not all constructed features help to improve the prediction
accuracy [155].

6.4.1.2. Crossover

Since the length of the individuals can change by adding generated features we devel-
oped crossover schemes independent of the individuals’ size. Figure 6.2 shows a crossover
operation based on one-point crossover. This crossover is an instance of the class of ho-
mologous search point operations [145] which are mostly used for genetic programming.
We also developed a variant of uniform crossover. All crossover variants ensure that a
single feature is not added more than once to an individual.

6.4.1.3. Selection

The fitness of the individuals is estimated by

1. applying the feature space transformation on the data set at hand,

2. evaluating the selected learning scheme by a k-fold cross validation.

139

6. Multi-Objective Supervised Feature Construction

Since the learning step is the most time-consuming step in the feature space optimization,
it is recommended to use a fast and simple learning scheme like linear regression or a
perceptron.

The data mining software RapidMiner [48, 113, 125] can be used to ease the optimiza-
tion process. RapidMiner offers a data management based on a central data table and
different views on this table. These views can be used as individuals and the data does
not need to be copied during the optimization. Only the construction of new features
adds new columns once during the optimization which will be re-used if the correspond-
ing feature should be re-constructed. This prevents multiple data storages and ensures
an efficient data access.

6.4.2. Code Bloat and Intron Prevention

All constructive search methods like genetic programming or the approach proposed here
suffer from a problem which is known as code bloat. This means that the size of the input
representation grows faster than the corresponding increase in prediction accuracy [93].
This phenomenon can be explained by the existence of so-called introns [8, 157, 170].
In the case of machine learning, these introns can be defined as features without any
additional information for the inner learning scheme. Examples for such features are

• features which are already part of the feature set,

• features like Xi + Xi which can be seen as a weighted variant, or

• features like Xi/Xi or Xi −Xi which are constant.

At least for statistical learning schemes, a change of the feature weight is not relevant
since learning schemes like linear regression or support vector machines calculate a fea-
ture weighting on their own. Constants can only be used by neural nets which therefore
contain a default constant on their own. Another form of code bloat arises from the
non-observance of the commutativity of the used mathematical operations. Adding a
feature Xi ◦Xj to a feature set which already contains Xj ◦Xi does not provide any new
information for the inner learning scheme if the composition ◦ is commutative. It also
contradicts to the creation of simplified hypothesis.

In contrast to the approach proposed in [155], we try to reduce the number of fea-
ture space transformations which are simply useless in combination with most learning
methods. In order to prevent unnecessary code bloat and the corresponding increase in
runtime, the generation of such useless features should not be allowed. Therefore, we
improved the generating mutation such that it will only generate features in a specific
way which prevents commutative generations or the generations of useless constants.
This improved mutation is the basis for an evolutionary feature construction operator
which is called Yagga2 in the RapidMiner system.

140

6.4. Multi-Objective Evolutionary Feature Construction

6.4.2.1. Intron Prevention by Sampling Equivalence Checks

Skipping commutative generations or the generation of constants significantly reduce
the amount of generated introns. However, there is another desired property for the
construction of new features. If the feature set already contains an equivalent feature,
the one with the higher construction complexity should be removed or not created in a
first place. Unfortunately, the theorem of Richardson [152] states that the detection of
equivalence is NP-hard for general numerical domains and functions. Although efficient
solutions exist for some special cases, we need a equivalence check which works also in
the general case. Another desired property of such a check would be the identification
of very similar features in their feature value ranges. It is for example, well known that
x ≈ sin(x) holds if x is close to 0. The equivalence check should also identify these
similarities and should also remove the more complicated features in these cases.

We propose a rather simple and also very efficient solution for this equivalence check:

1. create an artificial data set for the used base features regarding the actual value
ranges, the number of created examples a should be small,

2. calculate the constructed features (if necessary),

3. perform a correlation calculation or a t-test in order to determine the similarity of
both features,

4. remove the more complicated feature if the correlation exceeds a threshold σ.

Another advantage of this algorithm is the fact that the number of necessary artificial
examples a can be determined depending on the desired confidence for equivalence.
Lower thresholds σ lead to simpler constructed features since more features are regarded
equivalent. This sampling-based equivalence check is one of the essential ingredients for
the intron prevention of the RapidMiner operator Yagga2. The final optimization of
this evolutionary feature construction in discussed in the next section.

6.4.3. A New Generating Mutation for Intron Prevention

The previously discussed improvements for code bloat prevention decreased the number
of introns but still a lot of unnecessary large features are constructed which are an
indicator for overfitting. The main reason for this was that the probability for deselected
features being re-selected and used for further constructions is relatively high. This leads
to complex semi-successful features which are deselected and selected over and over again.
The suggestions above already reduced this problem compared to the original work in
[155] but still the number of too complex features is too high.

141

6. Multi-Objective Supervised Feature Construction

A solution for this problem could be to completely remove a feature from a feature set
instead of simply deselecting it. This could, however, lead to situations where relevant
original features are removed and the optimization scheme cannot move across local
extrema. Therefore, we developed an alternative mutation strategy called combined
probabilistic mutation. In the expectation, this mutation leads to the desired behavior.
Let p be the basic mutation probability which might also depend on the current number
nf of features. The combined probabilistic mutation performs the following steps:

Removal: the mutation deleted each of the nf features of the given individual with
probability 2

4p·nf ,

Construction: the mutation constructs a new feature with probability 1
4p ,

Adding Original: the mutation adds with probability 1
4po one of the o original features

to the individual.

Since constructing and adding features increase the feature set size, the probability of
feature removal is twice as high as the probability for adding features. This ensures that
in the expectation the size of the feature set remains the same until longer or shorter
feature sets actually prove to be better. This mutation strategy is superior especially
in cases where only less complex functions of many of the original features have to be
built. All three techniques for intron prevention, namely structural equivalence checks,
the sampling-based equivalence checks, and the combined probabilistic mutation, are
incorporated into the Yagga2 operator which will be shortly evaluated in the next
section and used as a base for the comparison in Chapter 10.

6.5. Experiments and Results

Exhaustive experiments for evolutionary feature construction are presented in [138, 154,
155] and also in Chapter 10. In this section, we will concentrate on a simple numerical
function dependent of only one variable in order to give a visual impression of the ability
of the improved feature construction. The function which has to be learned is defined
as

f(X) = 3 ·X3
1 −X2

1 +
1000

|X1|
+ 2000 · |X1|+ ε

with Gaussian noise ε sampled from N(0, 0.02) and an additional random noise feature
X2 which is also part of the input space X together with the variable X1. The data
set of 500 data points is uniformly sampled in the range [−20, 25] for feature X1 and
with mean 0 and standard deviation 1 for the noise feature X2. Figure 6.3 shows the
regression label plotted against the feature X1. Please note the general structure of the
function including the small peak around 0. The plot shows the 2% label noise but not
the influence of the noise attribute X2.

142

6.5. Experiments and Results

Figure 6.3.: A simple non-linear function which can hardly be completely learned by
state of the art learning schemes without feature construction.

We first apply a regression support vector machine with radial basis kernel function
but without any feature construction on this data set. Figure 6.4 shows the result. It
can clearly be seen that the noise attribute affects the prediction of the learned model.
Furthermore, only the most basic parts of the structures are learned (the model for
example misses the peak around 0) and the error gets larger at the edges of the considered
space. The latter is a well known phenomenon for support vector machine models since
the number of support vectors get smaller at the edges of the data space compared to
the central parts. Without support vectors, the predictions tend to become 0.

If we apply only a feature selection, the random noise attribute X2 will be removed.
This drastically improves the quality of the learned model, although the predictions are
still wrong at the edges of the data space. The peak around 0 is also not covered by the
learned model. Figure 6.5 shows the result.

As a last improvement before we apply the multi-objective feature construction discussed
in this chapter, we increase the error penalty C for the support vector machine. This
should lower the error at the data space edges. In fact, this error is decreased as it can
be seen in Figure 6.6. If C is set to high values (108 in this case), the values at the
edges will be correctly predicted but there are several disadvantages: first, the learning
times become infeasibly long. The learning machine needed about 10 minutes for such
a simple and small data set like the one discussed here. Second, overfitting to the label
noise begins and a good parameter tuning for C or a multi-objective learning run has to
be performed. This would probably take a very long time taking the computation time

143

6. Multi-Objective Supervised Feature Construction

Figure 6.4.: A regression SVM (RBF kernel) model built on the discussed data set.
The influence of the noise attribute can clearly be seen, also the missing
support vectors at the data space edges affect the model quality.

Figure 6.5.: A regression SVM (RBF kernel) model built on the discussed data set
after the noise attribute was removed. The missing support vectors at the
data space edges still affect the model quality.

144

6.5. Experiments and Results

Figure 6.6.: A regression SVM (RBF kernel) model built on the discussed data set
after the noise attribute was removed and the value for the parameter C
was drastically increased. Although the error at the edges vanished, the
learning takes too long time now and overfitting to the label noise begins.

above into account at least for the parameter optimization approach and is hence not
feasible for many learning tasks.

Even applying a powerful non-linear learning scheme like regression SVM with RBF
kernels is not sufficient to deliver a good model for the underlying processes of this simple
data set. Even worse is that analysts usually cannot understand the created model and
no insight is gained by looking at it. Therefore, we now apply the multi-objective feature
construction approach discussed in this section on the data set. We use a simple and fast
linear regression learner (no kernel mapping) as the inner learning scheme and evaluated
it with a fixed single split validation. The possible feature generators were multiplication,
the calculation of reciprocal values, triangular functions, and the exponential function
which turned out to be a good set of basic feature construction generators on a wide
range of applications. The result is shown in Figure 6.7. It can clearly be seen that the
constructed features help to get the global structure of the function. It even allows to
predict the peak around 0. No influence of noise can be seen.

6.5.1. Interpretation of the Pareto Front

The corresponding Pareto front of this result is shown in Figure 6.8. The x-axis shows
the negative squared error which should be maximized. The y-axis shows the negative

145

6. Multi-Objective Supervised Feature Construction

Figure 6.7.: A linear regression model based on the newly constructed features. The
overall structure is found and overfitting does not occur. In contrast to the
optimized SVM learning run of Figure 6.6, the learning procedure needs
less than one second and the new attributes give additional insights.

number of used features, which also should be maximized. The negation again transforms
the original minimization problems into maximization problems. This ensures that all
multi-objective optimization in this thesis try to move the Pareto front as far to the
upper right part of the plot as possible.

Each point in the plot corresponds to set of features which might consist of original
features and / or those features constructed from existing ones. The first point, for
example, corresponds to a very simple feature set consisting of one feature only, namely
the original feature X1. Moving to the lower right part of the curve, larger feature sets
are depicted by the points. The curve in the Pareto front tells the analyst that not all
features are equally important.

Instead of that, a feature ranking can clearly be seen starting with the single feature X1

to a feature set containing 5 features, each of which describe one part of the generating
process. Table 6.2 summarizes the found features. The analyst can read the most
important terms from this table which of course is even more important for problems
with higher dimensions than in this illustrating example. Please note that this ranking
is very interesting, adding any feature after the third hardly improves the prediction
performance which can directly be seen in the Pareto front: the negative squared error
is hardly increased after the first three features.

146

6.5. Experiments and Results

-6

-5

-4

-3

-2

-1

 0

-3.5e+08 -3e+08 -2.5e+08 -2e+08 -1.5e+08 -1e+08 -5e+07 0

nu
m

be
r

of
 fe

at
ur

es

squared error

Figure 6.8.: The feature ranking induced by the multi-objective feature construction
approach discussed in this chapter. It can clearly be seen that the first
three features are most important for this data set.

It can also be seen, that the multi-objective selection scheme again was able to cover the
complete possible range of sensible solutions. From a single feature (-1 on the y-axis) to
a maximum of 5 features all possible feature numbers are part of the resulting Pareto
set. Adding more features than 5 does not seem to help to reduce the prediction error
since an almost vertical part is already reached for more than 3 features.

Finally, the Pareto front again starts with the smallest feature sets and larger feature
sets are often build on top of the previous ones. For example, the optimal feature set
with size 2 contains the attributes X1 and X2

1 . The optimal feature set with size 3
consists of all features from the optimal feature set of size 2 and one additional feature
X3

1 . This inherent structure in the Pareto front gives insight into the relevance ranking
of the features even for the multi-objective feature construction case. However, just as
for the mere feature selection case where such a ranking can also not be guaranteed for
all cases, this also applies for feature construction. Experiments have shown [155] that
greedy heuristics will more likely fail in the constructive setting due to the multi-modal
optimization problems induced by feature interaction.

We can conclude that the Pareto front contains all sensible feature subsets in the trade-off
region between the most simple model based on one feature only and more complicated
models based on a set of partly constructed features.

147

6. Multi-Objective Supervised Feature Construction

Rank Number of Features Feature Set

1 1 X1

2 2 X1; X2
1

3 3 X1; X2
1 ; X3

1

4 4 X1; X2
1 ; X3

1 ; 1/X2
1

5 5 X1; X2
1 ; X3

1 ; 1/X2
1 ; X4

1

Table 6.2.: The feature sets of the Pareto front presented in Figure 6.8. The inher-
ent structure can again be seen, adding more features than three hardly
improves the prediction performance.

148

CHAPTER 7

Multi-Objective Supervised Feature
Extraction

This chapter describes how a set of describing features can be extracted from instances
given in the form of series data. Since the data and the learning problems analyzed in
this chapter derive from the field of musical classifications, we use this particular learning
problem in order to motivate an adaptive feature extraction from series data. Later, we
will also discuss a forecasting or prediction setting on stock data.

Firstly, this chapter presents a unifying framework for feature extraction from value
series. Operators of this framework can be combined to feature extraction methods
automatically, using a genetic programming approach. The construction of features
is guided by the performance of the learning classifier which uses the features. Our
approach to automatic feature extraction requires a balance between the completeness of
the methods on one side and the tractability of searching for appropriate methods on the
other side. In this chapter, some theoretical considerations illustrate the trade-off. After
the feature extraction, a second process learns a classifier from the transformed data.
The practical use of the methods is shown by two types of experiments: classification of
musical genres and classification according to user preferences.

Secondly, we will show that Ω(X) discussed in the last chapter again can simply be
defined as the number of used features and we will see that the quite more complex
process of supervised feature extraction can also easily be turned into a multi-objective
optimization problem.

149

7. Multi-Objective Supervised Feature Extraction

7.1. Feature Extraction from Audio Data

Today, many private households as well as broadcasting or film companies own large
collections of digital music plays. These are time series that differ from, e.g., weather
reports or stocks market data. The task is normally that of classification, not prediction
of the next value or recognizing a shape or motif. New methods for extracting features
that allow to classify audio data have been developed. However, the development of
appropriate feature extraction methods is a tedious effort, particularly because every
new classification task requires tailoring the feature set anew.

Since music is stored in digital form and distributed via the internet, there is a need for
the management and retrieval of audio data. How can we index large numbers of audio
records? How can we structure music databases according to genre (e.g., classic, pop,
hip hop) or occasions (e.g., dinner, party, wedding)? How can a system automatically
recommend music records to users? Information retrieval has started several efforts
to automatic indexing [92] and retrieval (e.g., querying by humming [58]). Machine
learning has shown its benefits for text classification and ranked document retrieval
with respect to user preferences [74]. It is straightforward to expect a similar benefit for
the classification and personalized retrieval of music records.

Confronted with music data, machine learning encounters a new challenge of scalabil-
ity:

• music databases store millions of records,

• given a sampling rate of 44100 Hz, a three minute music record has a length of
about 8 · 106 values.

Moreover, current approaches to time series indexing and similarity measures rely on
a more or less fixed time scale [79, 80]. Music plays, however, differ considerably in
length. More general, time series similarity is determined with respect to some (flexible
and generalized) shape of curves [77, 197]. However, the shape of the audio curve does
not express the crucial aspect for classifying genres or preferences. The i-th value of a
favorite song has no correspondence to the i-th value of another favorite, even if relaxed
to the (i±n)-th value. The decisive features for classification have to be extracted from
the original data. Some approaches extract features from music given in the form of
Midi data, i.e. a transcription according to the 12 tone system [98]1. This allows to
include background knowledge from music theory. Usually, music data is given in the
form of – possibly compressed – waves records, the audio data. Hence, feature extraction
from audio data has become a hot topic recently [60, 97, 181, 201]. Several specialized
extraction methods have shown their performance on some task and data set. It is now

1For an overview, see [143].

150

7.1. Feature Extraction from Audio Data

hard to find the appropriate feature set for a new task and data set. In particular, the
problems are:

Unifying framework missing: The large set of extraction methods has not yet been
systematically investigated, a unifying framework is still missing. This makes it
hard to compare the proposed feature sets and to detect missing feature extraction
methods.

Variety of feature sets: Different classification tasks ask for different feature sets (see
Section 7.4). It is not very likely that a feature set delivering excellent performance
on the separation of classical and popular music works well also for the separation
of techno and hip hop music. Classifying music according to user preferences even
aggravates the problem.

Large search space for feature sets: There is no concise feature set from which we
would select an appropriate subset for a new task and data set by standard wrapper
approaches [87]. Even if it existed, it would be most cumbersome to enumerate it.

In this chapter, we present our approach to tackle the problems. We present a unified
framework for extraction methods in Section 7.2. The framework covers the known
methods, and several new ones have been added. The repository of elementary extraction
operators allows us to handle feature extraction as a sequence of data transformations
which delivers a feature set in the end. Hence, we construct a feature set for each
given task and data set, anew. Since it would be tedious to do so by hand, we apply a
learning algorithm to construct the feature set for us. Section 7.3 describes the genetic
programming approach to the automatic construction of (nested) sequences of data
transformations, the method trees. The search within the universe of method trees
is guided by a fitness function. Here, we embed a classification learner: the better
the learning result using the transformed data, the higher the fitness of the feature
set (i.e., the method tree). Genetic programming puts together the building blocks of
feature extraction operators according to the targeted classification task and data set.
It outputs a feature extraction method tree. Applying a method tree to the given audio
data delivers a transformed data set, i.e., the examples rewritten by the corresponding
feature set. This becomes the input to a second learning step, namely classifier learning.
Figure 7.1 shows the overall process with the two learning steps, one using genetic
programming, the other using the support vector machine mySVM [160] for classifier
learning. Please note that the learning scheme used in the second learning step is also
part of the feature extraction training. In contrast to the second learning step described
here, the embedded learning scheme works on an excerpt of the examples to estimate the
accuracy and provide a fitness value (fitness evaluation). Further details are explained in
Section 7.3 and 7.4. The approach is tested on the learning tasks of genre classification
and user preferences (Section 7.4).

151

7. Multi-Objective Supervised Feature Extraction

excerpt of raw data

fitness

evaluation

automatic feature extraction

(GP)
learned

feature

extraction

method

learned

classifiermySVM

classifier learning

raw training set

Figure 7.1.: The overall process of automatic feature construction for classification.

7.2. Methods for Feature Extraction

Audio data are time series, where the y-axis is the current amplitude corresponding to
a loudspeaker’s membrane and the x-axis corresponds to the time. They are univariate,
finite, and equidistant. We may generalize the type of series which we want to investigate
to value series. Each element xi of the series consists of two components. The first is the
index component, which indicates a position on a straight line (e.g., time). The second
component is a m-dimensional vector of values which is an element of the value space.

Definition 7.1 (Value Series) A value series is a mapping v : N→ R×C
m where

we write vi instead of v(i) and (vi)i∈{1,...,n} for a series of length n.

This general definition covers time series as well as their transformations. All the meth-
ods described in the following refer to value series. They are not only applicable to audio
data, but to value series in general. The usage of a complex number value space instead
of a real number value space allows a convenient way to use basis transformations like
the Fourier transformation. Finally, the introduction of the index component allows
both equidistant and non-equidistant value series.

Feature extraction methods for value series can be described in a general framework.
Such a framework offers the following advantages:

• Missing features for classification can be detected and their extraction methods be
developed.

• Specialized methods can be decomposed into their general extraction methods:

– the repository of general extraction methods can easily be implemented and
extended, and

152

7.2. Methods for Feature Extraction

– combinations of extraction operators can be built, generating a large variety
of feature sets.

In other words, organizing a repository of elementary feature extraction methods allows
us to see the feature extraction for a certain learning task as a sequence of methods.
The known methods are fixed sequences of such elementary extraction methods. Here,
we give an overview of the building blocks, so that we later on can flexibly construct
sequences. We now present the new notions of general windowing and interval mark-up
together with the overall structure and some basic definitions.

7.2.1. Basis Transformations

Basis transformations map the data from the given vector space into another space.
Audio data – like all univariate time series – are originally elements of the vector space
R

2. The basis B of a vector space V is a set of vectors which can represent all vectors
in V by their linear combination. The only required operation on vector spaces as the
domain of transformations is the dot product. Since the most common basis transforma-
tion performed on audio data is the transformation into the infinite space of harmonic
oscillations we assume Hilbert spaces.

Definition 7.2 (Hilbert Space) Let H be a vector space with an inner product 〈f, g〉.
H is called Hilbert space if the norm defined by ||f || =

√

〈f, f〉 turns H into a
complete metric space, i.e. any Cauchy sequence of elements of the space converges to
an element in the space.

The assumption of Hilbert spaces is no constraint, because all finite-dimensional spaces
with a dot product (such as Euclidean space with ordinary dot product) are Hilbert
spaces. In order to introduce the concept of Fourier transformations, we need an infinite-
dimensional Hilbert space of functions.

Definition 7.3 (Function Space) Let P be a Hilbert space. If the elements f ∈ P
are functions, P is called a function space.

Example 7.1 (L2 as Function Space) The set of all functions f : R → R with a
finite integral

∞∫

−∞

f2(a)da

together with the inner product

〈f, g〉 =

∞∫

−∞

f(a)g(a)da

form a well known function space: L2.

153

7. Multi-Objective Supervised Feature Extraction

-4

-2

0

2

4

0 0.2 0.4 0.6 0.8 1

am
pli

tu
de

time

(a) Time space

0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 8 10

int
en

sit
y

frequency

(b) Frequency space

Figure 7.2.: Overlay of two curves, ν1 = 2Hz, a1 = 3 and ν2 = 8Hz, a2 = 1, shown left
in time space, right in frequency space after a Fourier transformation.

7.2.1.1. Frequency Space

The goal of Fourier analysis is to write the series (vi)i∈{1,...,n} as a (possibly infinite)
sum of multiples of the given base functions, which are e−jνi with j as the imaginary
unit, the (time) index i and the frequencies ν. A Fast Fourier Transformation [29] maps
the given time space into this frequency space and is valid for audio data (Figure 7.2).
The frequency space is a special case of a function space. The transformation uses the
infinite number of complex valued dimensions of a Hilbert space. Complex numbers are
necessary because Fourier transformations actually deliver two values: the intensity of
occurring frequencies and the phase shifts. In general, the Fourier transformation can
be seen as a projection of the series function on the base functions in the trigonometrical
function space similar to that defined by the dot product in regular Euclidean spaces.
The amplitudes (projection lengths) for all frequencies can be calculated by the following
convolution:

FT (ν) =
1√
2π

∞∫

−∞

vie
−jνi di

where the real valued part of FT (ν) is the intensity corresponding to the frequency ν
and the complex valued part of FT (ν) is the phase shift for this frequency.

7.2.1.2. Correlation Space

The frequency space expresses a sort of correlation between values in terms of frequencies.
For some features it would be more appropriate to express the correlation in terms of
time dependencies. Therefore, the transformation into another space is used.

Definition 7.4 (Correlation Space) The calculation of correlations of values be-
tween two points in time, i and i + k, produce the correlation space, where for each
lag k their correlation coefficient in [−1,+1] is indicated.

154

7.2. Methods for Feature Extraction

0.108

0.112

0.116

0.12

0.124

90 100 110 120 130 140 150 160 170

m
ea

n
di

ffe
re

nc
e

speed (bpm)

Figure 7.3.: Autocorrelation differences for a phase shift depending on speeds ranging
from 90 to 170 beats per minute.

Transforming audio data into the correlation space eases the recognition of the speed
of the music, measured in beats per minute. Assuming T is the number of beats per
measure (in pop music, the most commonly used value for T is 4) and SR the sampling
rate of the audio file. If we shift the original time series by shift = T · SR · 60/l for
several values of l in reasonable regions of 20 < l < 300 we can determine the correlation
between the original and the shifted time series. Maximal correlation corresponds to
minimal difference between the shifted and the original series. Figure 7.3 shows the
differences of original values with the shifted ones. Clearly, the difference at l = 97 beats
per minute is minimal.

7.2.1.3. Reconstruction of the State Space

Nonlinear dynamic systems can be described with the aid of non-linear differential equa-
tions. The number of variables which must be known to completely describe the behavior
of such a system corresponds to the dimension of this system. These variables are called
state variables.

Definition 7.5 (State Space) The basis of the state space of a dynamic system
is given by the state variables of the system, i.e. the variables which must be known
to describe the system. The elements of a state space represent the values of the state
variables at the examined (time) points.

The state space emphasizes characteristics which can hardly be seen in the original
space. Since the state variables are often unknown, a topologically equivalent space is
constructed [176]. This is known as reconstruction of state space.

155

7. Multi-Objective Supervised Feature Extraction

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

(a) pop music

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

(b) classic

Figure 7.4.: Phase space representation of a popular song (left) and a classical piece
(right) created with the discussed state space reconstruction with d = 1
and m = 2.

Definition 7.6 (Phase Space) Vectors within phase space are constructed, where
the components are parts of the original series:

pi = (vi, vi+d, vi+2d, ..., vi+(m−1)d)

where d is the delay, and m the dimension of the phase space. The set

Pd,m = {pi | i = 1, ..., n − (m− 1)d}

is the phase space representation of the original series (vi)i∈{1,...,n}.

Within the phase space, several features can be extracted, e.g., the unordered angles
between vectors. Small variances of angles indicate smooth changes of the state variables,
large variances harsh changes. This is a dominant feature when separating classic from
the more percussive pop music as shown in Figure 7.4.

7.2.1.4. Reversibility

Basis transformations most often are reversible, because only the basis, not the position
of the elements is changed. In contrast, if intervals in the index dimension are used, the
transformation is not reversible. If, for instance, we summarize the original series by
some time intervals and assign a value to each interval, the transformed series has still
the same number of elements but fewer different values (see Figure 7.5 for illustration).
We will discuss some possible ways to detect intervals in different dimensions of a value
series in Section 7.2.3.

156

7.2. Methods for Feature Extraction

(a) Intervals in index dimension (b) Smoothing of intervals

Figure 7.5.: Intervals found in the index dimension are summarized.

7.2.2. Filters

Filters transform elements of a series to another location within the same space. Moving
average and exponential smoothing, for instance, are filters. Many known transforma-
tions are subsumed by weighting functions. We consider the window functions Bartlett,
Hanning, Hamming, Blackman-Harris, linear and exponential functions as particular
instances of a function fw(i) which weighs the position within the window.

Definition 7.7 (Weight Filter) Given a value series (vi)i∈{1,...,n}, a filter ui = fw(i)·
vi is a weight filter. The weighting function fw only depends on the position i.

For example, the often used Hanning filter can be written as

ui =

(

0.5 − 0.5 · cos 2πi

n

)

· vi

where n is the total length of the series (vi)i∈{1,...,n}. The Hanning filter gives high
weights to the central parts of the series and lower weights to the border regions. This
is for example desired to reduce the aliasing effects of Fourier transformations which are
introduced by the finite lengths of the input series.

Other examples for this type of filters are frequency pass filters, filtering the extremes,
the Bark-filter, and the ERB filter, which are all often used when analyzing music data.

7.2.3. Mark-up of Intervals

In analogy to mark-up languages for documents, which annotate segments within a text,
also segments within a time series can be annotated.

Definition 7.8 (Mark-Up) A mark-up M : S → C assigns an arbitrary character-
istic C to a segment S.

157

7. Multi-Objective Supervised Feature Extraction

We define special instances of mark-up by assigning characteristic value types to intervals
in one of the dimensions of the considered space.

Definition 7.9 (Interval) An interval I : S → C is a mark-up within one dimen-
sion. The segment S = (d, s, e) is given by the dimension d, the starting point s, and
the end point e. The characteristic E = (t, ̺) indicates a type t and a density ̺.

Often clustering (e.g., k-means) is used in order to detect suitable intervals [63]. A
clustering scheme is only usable in dimensions with a non-equidistant value distribution.
Additionally, clustering in one or several dimensions is a batch process to be applied to
the complete series. An incremental process is the signal to symbol process [131]:

Signal to symbol processing: Given the series (vi)i∈{1,...,n} with n values, a decision
function fe and an interval dimension,

initialize the interval counter with t = 1, start a new interval It and add the first
point.

For the remaining points of the series, do:

1. If fe(It, vi) = 1, then add vi to the current interval It.

2. Else close It, increase t by 1, and add vi to the new It.

Typical examples of the decision function fe refer to the gradient, delivering charac-
teristics such as, e.g., increase, decrease. Signal to symbol processing is applied to the
index dimension (time). If intervals have already been found in the value dimension,
these can be used to induce intervals in the index dimension. For instance, whenever a
interval change in the value dimension has been found, the current interval in the index
dimension is closed and a new one is started. Figure 7.6 illustrates this combination.

7.2.4. Generalized Windowing

Many known operators on times series involve windowing. Separating the notion of
windows over the index dimension from the functions applied to the values within the
window segment allows to construct many operators of the kind.

Definition 7.10 (Windowing) Given the series (vi)i∈{1,...,n}, a transformation is
called windowing, if it shifts a window of width w over (vi)i∈{1,...,n} using a step size s
and evaluates in each window the function f :

uj = f((vi)i∈{j·s+1,...,j·s+w}).

All uj together form again a series (uj)j∈{0,...,⌊(n−w)/s⌋}.

158

7.2. Methods for Feature Extraction

(a) Series (b) Value Intervals

(c) Index intervals (d) Result

Figure 7.6.: The process of finding intervals in a series (a), first in the value dimension
(b), then projected on the index dimension (c), delivering (d).

Definition 7.11 (General Windowing) A windowing which performs an arbitrary
number of transformations in addition to the function f is called general windowing.

The function f summarizes values within a window and thus prevents general windowing
from enlarging the data set too much. Since the size of audio data is already rather large,
it is necessary to consider carefully the number of data points which is handled more
than once.

Definition 7.12 (Overlap) The overlap of a general windowing with step size s
and width w is defined as g = w/s.

Only for windowings with overlap g = 1 the function can be omitted. Such a windowing
only performs transformations for each window and is called piecewise filtering. Section
7.2.6 investigates the runtime effects of transformations used within general windowing
and the overlap.

Combining general windowing with the mark-up of intervals allows to consider each
interval being a window. This results in an adaptive window width w and no overlap,
i.e. g = 1. Of course, this speeds up processing considerably.

7.2.5. Functions

Transformations convert a series into another series. In contrast, functions calculate
single values from a series. The group of functions includes all kinds of statistics like
different averages, variance and standard deviation. They refer to the value dimension.
We may also consider the index dimension, for instance, the point with the largest value
or highest amplitude. Often used functions are those indicating peaks.

159

7. Multi-Objective Supervised Feature Extraction

Definition 7.13 (k-Peaks function) The k-peak function delivers the position (index
dimension), the height, and the width of the k largest peaks of a series (vi)i∈{1,...,n}.

It is an instance of finding extremes (minimum, maximum). Similarly, the gradient of a
regression line can be formulated. For audio data, the spectral flatness measure or the
spectral crest factor can be expressed as an arithmetic combination of simple functions
[71].

The widely used Mel-frequency cepstral coefficients (MFCCs) can also be constructed as
a general windowing. The MFCCs are a spectrum of a specifically transformed frequency
spectrum, hence the word cepstral as a reversed form of the word spectral. The differ-
ence between a traditional cepstrum (spectrum of a spectrum) and the mel-frequency
cepstrum is that in the case of MFCCs the frequency bands are equally spaced on the
so-called mel scale, which approximates the human auditory system’s response more
closely than the linearly-spaced frequency bands used in the normal cepstrum. This
frequency warping can allow for better representation of sound, for example, in audio
compression.

MFCCs are commonly derived as follows:

1. apply a general windowing,

2. apply a window function like a Hanning or Hamming function on each window,

3. calculate the Fourier transform of each window,

4. map the values of the obtained spectrum for each window onto the mel scale with
mel = 1127.01048 · log(1 + ν/700),

5. take the logs of the powers at each of the mel frequencies,

6. take the discrete cosine transform of the list of mel log powers as if it were a signal,

7. the MFCCs are the amplitudes of the resulting spectrum.

There can be variations on this process, for example, differences in the shape or spacing
of the windows used to map the scale.

Figure 7.7 shows how the methods for feature extraction are put together to compute
the cepstral coefficients. From these coefficients additional features can be extracted. It
is easy to see how variants of this series can be generated, e.g., replacing the frequency
spectrum and its logarithm by the gradient of a regression line.

160

7.2. Methods for Feature Extraction

 Root

Windowing

value kfiltering
mel−scaled

inv. FFTFFTHamming

LowPass

Figure 7.7.: Constructing the cepstral method from elementary extraction operators.

7.2.6. Some Properties of the Methods

Since large amounts of data have to be processed, each method must be fast. Of course,
the mere sequence of methods is then fast, too. What needs to be checked is the effect of
general windowing. How much does the runtime increase, if we apply methods running
in O(n2) within the windows? How many data points are handled more than once? If
the step size s is 1, k windows of width n− k can be built. The number of values to be
processed increases from n to k · (n− k). The value k = n/2 maximizes this product. In
other words, for a step size of 1 the worst case is a window size of w = n/2 for a series
of length n. Then g = n/2 values are handled more than once.

In general, the number of windows for a series of length n and a step size s is

k =
n− w

s
+ 1 =

n

s
− g + 1 (7.1)

We assume that all transformations occur only once in a sequence of methods and that
the number of methods is finite. The resulting runtime for methods in O(n) is generally
stated by Lemma 7.1.

Lemma 7.1 (Windowing on Linear Methods) General windowing using methods
in O(n) has the worst case runtime of O(gn − gw + w), where g is the overlap.

Proof. Processing data within a window costs O(w). k windows are to be processed.
The overall runtime is k · w:

k · w =
(n

s
− g + 1

)

· w

=
n

s
w − gw + w

= gn− gw + w

161

7. Multi-Objective Supervised Feature Extraction

Lemma 7.1 means, that for g = 1, a series is processed in O(n). For g = 2 the effort
becomes 2n − w which is more expensive than processing the methods on the overall
series since w is always less than n. If g = n/2, the general windowing effort becomes
n2

2 − wn
2 +w which is an order of magnitude larger than the runtime of the inner methods

applied to the whole series.

Analogously, we state the runtime for general windowing for methods with logarithmic
complexity, with quadratic complexity, and those with exponential complexity.

Lemma 7.2 (Windowing on Methods with O(n log n)) Assuming that each method
is applied at most once, general windowing using methods in O(n log n) has the worst
case runtime of O(gn log w− gw log w + w log w), where g is the overlap, n the length of
the series, and w the width of the windows.

Proof. Processing data within a window costs O(w log w). k windows are to be processed.
The overall runtime is k · w log w:

k · w log w =
(

n
s − g + 1

)
· w log w

= n
s w log w − wg log w + w log w

= gn log w − gw log w + w log w

Lemma 7.3 (Windowing on Quadratic Methods) Assuming that each method
is applied at most once, general windowing using methods in O(n2) has the worst case
runtime of O(gnw − gw2 + w2), where g is the overlap, n the length of the series, and
w the width of the windows.

Proof. Processing data within a window costs O(w2). k windows are to be processed.
The overall runtime is k · w2:

k · w2 =
(

n
s − g + 1

)
· w2

= n
s w2 − gw2 + w2

= gnw − gw2 + w2

Lemma 7.4 (Windowing on Polynomial Methods) Assuming that each method
is applied at most once, general windowing using methods in O(np) has the worst case
runtime of O(gnwp−1 − gwp + wp), where g is the overlap, n the length of the series,
and w the width of the windows.

162

7.2. Methods for Feature Extraction

Proof. Processing data within a window costs O(wp). k windows are to be processed.
The overall runtime is k · wp:

k · wp =
(

n
s − g + 1

)
· wp

= n
s wp − gwp + wp

= gnwp−1 − gwp + wp

We discuss several values for the overlap g. For g = 1 the terms with wp cancel out and
the total running time is n · wp−1 which is smaller than np for all values w < n. For a
more realistic windowing with g = 2 the total effort is 2nwp−1−wp which is also smaller
than np for all w = n. The total effort for an overlap of n

2 is the worst and is calculated
as

gnwp−1 − gwp + wp = n · n
2
·
(n

2

)p−1
−
(n

2

)p
+
(n

2

)p

= n ·
(n

2

)p
−
(n

2

)p+1
+
(n

2

)p

= n · n
p

2p
−
(n

2

)p+1
+
(n

2

)p

=
np+1

2p
−
(n

2

)p+1
+
(n

2

)p

=
2np+1

2p+1
−
(n

2

)p+1
+
(n

2

)p

=
np+1

2p+1
+
(n

2

)p

=
(n

2

)p+1
+
(n

2

)p

The total running time for this large overlap is always one degree larger than applying
the same methods without windowing on the complete value series. However, values for
g larger than 2 are seldomly used for windowings for feature extraction.

Lemma 7.5 (Windowing on Exponential Methods) Assuming that each method
is applied at most once, general windowing using methods in O(an) has the worst case
runtime of O(gn

w aw − gaw + aw), where g is the overlap, n the length of the series, and
w the width of the windows.

Proof. Processing data within a window costs O(aw). k windows are to be processed.

163

7. Multi-Objective Supervised Feature Extraction

The overall runtime is k · aw:

k · aw =
(

n
s − g + 1

)
· aw

= n
s aw − gaw + aw

= gn
w aw − gaw + aw

It can easily be seen that for all but the linear complexity methods, the general windowing
is faster than applying the methods to the overall series, if g = 1, and at least as fast
if g = 2. If g = n/2, the runtime for windowing is worse than the runtime for applying
the methods to the overall series except for exponential inner methods2.

7.3. Adaptive Construction of Method Trees

The elementary methods described above are combined in order to construct more com-
plex features for classification tasks. Figure 7.7 already showed how elementary methods
can be used for the reconstruction of known complex feature extraction methods. There
are many more complex feature extraction methods which can be built using the frame-
work described above (Section 7.2). For instance, the general windowing may apply a
Fourier transformation FT so that the peaks of the transformed series can be related
with windows in time:

uj = maxindex(FT ({vi}i∈{j·s+1,...,j·s+w}))

The result is a value series, where the value of uj denotes the highest frequency for each
window. From this series, the average and variance is built, yielding a good feature for
the separation of techno and pop music – the variance is greater in pop music.

It is rather cumbersome to find such combinations that perform well for a classification
task. We are looking for chains of method applications. Moreover, there might be some
windowing within which such chains are applied. This is a rather large search space (see
Section 7.3.3). It is too large to be inspected manually. Hence, genetic programming
is applied in order to look for the best combination of methods [64, 91]. The result
is a complex method consisting of a combination of the elementary methods presented
above. Its use for the classifier learning will be shown in Section 7.4.

In order to structure the huge search space, we may separate functions, chains of method
applications, and general windowing, where a chain of method applications is applied to
each window.

2When constructing features from audio data, exponential methods or too large overlaps are not used.

164

7.3. Adaptive Construction of Method Trees

Filter

FFT MaxIndex

 Root

Avg/VarWindow.ExpSmo

Figure 7.8.: A method tree for feature extraction built of elementary methods. Solid
arrows show the data flow, dashed lines define the tree structure.

Definition 7.14 (Chain) A chain consists of an arbitrary number of transformations
and a function at the end.

A function is a chain with no transformations. It has the length 1. A longer chain
consists of some transformations followed by a function. In any case, a chain delivers
one value. Incorporating windowings leads to the concept of method trees:

Definition 7.15 (Method Tree) A method tree is a general windowing whose
children build a chain. If the chain entails a windowing, this becomes the root of a new,
embedded method tree.

The methods which are performed on each window can be seen as children of the win-
dowing operator. Together they output a value series. The tree structure emerges from
the nesting of windowing operators.

An example of a method tree is shown in Figure 7.8, where the root identifies the element
within the search space. Its four children are exponential smoothing, a filtering, another
method tree consisting of the chain just described (Fourier transformation with peaks
applied to windows), and the average of the peaks. This last child returns the desired
features.

Before the genetic programming approach is technically described, Figure 7.9 presents
the process of automatically extracting features for a given classification task and data
set. The picture details on the first box of Figure 7.1 above which shows the overall
process. The search space within which the best method tree is to be found is called the
universe of method trees. A population is a set of method trees. The navigation within
the universe of method trees is a cycle of selecting a population, applying the method
trees to the raw data, evaluating the fitness of the population, and enhancing the fittest
method trees further to build a new population (Section 7.3.2). This cycle corresponds
to the standard process of genetic algorithms. What differs from the standard is that
method trees instead of binary vectors form the search space, that the search space is

165

7. Multi-Objective Supervised Feature Extraction

automatic feature extraction (GP)

fitness evaluation: mySVM

crossover and mutation

Fitness

population

excerpt of

raw data

transformed data

method tree

universe

learned feature

extraction

method tree

Figure 7.9.: Automatic feature extraction using genetic programming.

structured, and that the fitness evaluation is not merely a function but the result of
running another learning algorithm.

7.3.1. Representation

Genetic programming constructs finite automata. Here, method trees are to be con-
structed. They are represented by XML expressions. Figure 7.10 shows the representa-
tion of the method tree from Figure 7.8. The RapidMiner system executes such trees
and takes care of the syntactic well-formedness.

The restriction that chains are concluded by a function implies a level-wise structure of
all possible method trees. The lowest level 1 entails only functions. These are chains
of length 1. The next level, 2, covers chains with a concluding function. Levels 3 and
above entail windowing. Method trees are constructed according to their levels. The
level-wise growing means small changes to a current method tree. On the one hand, this
reduces the probability of missing the optimal method tree. On the other hand, it may
slow down the search, if the fitness of the lower levels does not distinguish between good
and bad method trees.

7.3.2. Mutation, Crossover, and Selection

The operations of genetic programming are mutation and crossover. By random, muta-
tions insert a new method, delete a method, or replace a method by one of the same class,
i.e. by a function or transformation. Crossover replaces a sub-tree from one method tree

166

7.3. Adaptive Construction of Method Trees

<operator name="Root" class="ValueSeriesPreprocessing">

<operator name="Chain 1" class="OperatorChain">

<operator name="ExpSm" class="ExponentialSmoothing" />

<operator name="Filter" class="FilterTransformation" />

<operator name="Windowing" class="Windowing">

<parameter key="overlap" value="2"/>

<operator name="Chain 2" class="OperatorChain">

<operator name="FFT" class="FastFourierTransform" />

<operator name="MaxIndex" class="MaxIndexPoint" />

</operator>

</operator>

<operator name="Avg" class="AverageFunction" />

</operator>

</operator>

Figure 7.10.: XML method tree representation for RapidMiner.

by a sub-tree from another method tree, respecting the well-formedness conditions. This
means that the roots of the sub-trees must be of the same type of methods.

For selection purposes, the fitness of all method trees is expressed by a roulette wheel,
i.e. fitness proportional parts of a wheel’s 360 degrees. The larger the portion, the
more likely it becomes that the particular individual is selected for the next generation
or crossover. Other possible selection schemes include tournament selection, where t
method trees are randomly chosen from the population and the winner of this set, i.e.
the method tree with the largest fitness, is added to the next generation. The parameter
t allows the definition of selection pressure. In our experiments, we use a tournament
selection with a tournament fraction size of 0.25.

7.3.2.1. Fitness Evaluation

Since method trees serve classification in the end, the quality of classification is the
ultimate criterion of fitness (wrapper approach). Individuals which provide better clas-
sification results when used as features for the classification task at hand should have a
greater probability to survive into the next generation. To evaluate the fitness of each
method tree in a population the following steps are performed:

1. Each individual method tree is applied to an excerpt of the raw data.

2. This method application returns a transformed data set, which is used by classifier
learning.

3. A k-fold cross validation is executed to estimate the performances of the learning
scheme in combination with the feature sets provided by the method trees.

167

7. Multi-Objective Supervised Feature Extraction

4. The mean accuracy, recall, and/or precision of the result becomes the fitness value
of the applied feature construction method trees.

5. The fitness values of the method trees are used to build the next population with
one of the selection schemes described above.

7.3.3. Some Properties of the Search Space

Automatically constructing methods for feature extraction which deliver well suited
feature sets for classifier learning is a demanding task. How fast can we expect a good
result to be found? This general question can be split into three more specific ones.
First, the size of the search space is important. Second, the complexity of processing
one individual in the search space helps to bound the overall complexity of search. Third,
the convergence to an optimum determines the speed of the genetic programming. The
last issue is not yet solved. Even simple evolutionary algorithms demand complicated
proofs [40]. Here, we answer the first and second question.

7.3.3.1. Size of the Search Space

If all mathematical operations were allowed within method trees, the search space would
become infinite, hence only a fixed set of transformations and functions are allowed. The
following theorem states an upper bound for the size of the search space.

Theorem 7.1 (Size of the Search Space) The size of the search space of all method
trees is upper bounded by

F ·
Tn−1∑

k=0

Tn−1!

(Tn−1 − k)!
. (7.2)

Proof. Let T0 be the number of transformations and F the number of functions, n the
length of the input series. The number of possible methods at level 1 becomes F . At
level 2, transformations could be applied once in any order. The two levels can be
summarized. For chains of length k, there exist the following number of different chains:

K0 = F ·
T0∑

k=0

T0!

(T0 − k)!
(7.3)

The higher levels are produced by windowing. Within the windows, a chain of trans-
formations is executed, if no nested windowing is allowed. Hence, there exist as many

168

7.3. Adaptive Construction of Method Trees

windowing operations as there are chains (equation 7.3). Adding the number of win-
dowed transformation chains K0 to the other transformations T0 returns the number of
method trees at level 3:

T1 = T0 + K0 = T0 + F ·
T0∑

k=0

T0!

(T0 − k)!
(7.4)

For nested structures, the recursive structure can be illustrated by equation 7.5:

T2 = T0 + K1 = T0 + F ·
T1∑

k=0

T1!

(T1 − k)!
(7.5)

The depth of nested windowing is restricted by the length of the series: after n − 1
levels of embedded windowing, there is no data of a series with n points left for further
windowings. Hence, the overall size of the search space of all method trees is upper
bounded by:

F ·
Tn−1∑

k=0

Tn−1!

(Tn−1 − k)!
(7.6)

Each element in the search space delivers as many features as are determined by the
concluding function. If genetic programming has to construct more features, it can
either be applied several times, or transformations can be applied more than once. In
the latter case, equation 7.2 states the lower bound of the search space size.

7.3.3.2. Processing a Method Tree

Until now we have ignored that the window size of embedded windowings must become
smaller for increased depth of embedding. Regarding the embedded windowing operators
leads to the notion of dynamic windowing.

Definition 7.16 (Dynamic Windowing) Let (vi)i∈{1,...,n} be the original value series
of length n and d ∈ {2, ...n/2}. Windowing with overlap g, width w = n/d and step size
s = n/gd is called dynamic windowing.

The maximal depth of a method tree can now be determined.

Lemma 7.6 (Maximal Depth) Given a value series (vi)i∈{1,...,n} of length n, a
method tree using dynamic windowing cannot exceed the depth of logd n− 1.

169

7. Multi-Objective Supervised Feature Extraction

Proof. Dynamic windowing splits the series into windows of width n/d. The width
depends on the length of the series as well as on parameter d. For embedded windowing,
only n/d values are available. Windows on this smaller series have a window width of
n/d2. Only logd n − 1 repetitions are possible. The last embedding of windowing with
width

n

dlogd n−1
=

n
dlogd n

d

=
nd

n
= d

does not allow any further windowing, because then only one value would remain for a
window.

Remember that the number of windows with overlap g on a series of length n is n/s−g+1
(equation 7.1). Combining the maximal depth of a method tree with the number of
windows and their computation efforts estimates the worst runtime complexity of a
method tree.

Theorem 7.2 (Runtime of a Method Tree) Let CM(n) be the complexity of ap-
plying an internal method of at most quadratic time complexity to a series of length n.
Using dynamic windowing, no method tree requires a runtime which is exponential in the
length of the series (vi)i∈{1,...,n}.

Proof. The number of windows times the effort per window determines the overall effort.
Using equation 7.1 this is for a first level:

(n

s
− g + 1

)

· CM
(n

d

)

= (g(d − 1) + 1) · CM
(n

d

)

Embedding a further windowing delivers at level i the following effort estimation:

(g(d − 1) + 1)i · CM
(n

di

)

Using Lemma 7.6 for the bound of i results in the total effort:

(g(d− 1) + 1)logd n−1 · CM
(n

dlogd n−1

)

= (g(d− 1) + 1)logd n−1 · CM

(
n · d
n

)

= (g(d− 1) + 1)logd n−1 · CM(d) (7.7)

For the worst case of CM(d) = d2, equation 7.7 becomes:

(g(d − 1) + 1)logd n−1 · d2

=
d2

g(d− 1) + 1
· n

1
logg(d−1)+1 d

=
d2

g(d− 1) + 1
· nlogd(g(d−1)+1)

170

7.4. Classification Using Learned Method Trees

classifier learning

classifier learning:

mySVM

learned feature extraction

method tree

transformed

training set

feature selection

optimized

training set

raw

training set

learned

classifier

Figure 7.11.: Classifier learning step using the best method tree found by the genetic
programming approach.

As is easily seen, the runtime is not exponential in the length of the series, but is limited
by the overlap and the parameter d and is therefore pseudo-polynomial.

Dynamic windowing avoids a particular case with exponential effort, which otherwise
could easily be constructed. If, for instance, the series was divided into two windows
at each level with a fixed step size but dynamic window width, the effort would be
2i · O(n

2i) at the i-th level. After n − 1 splits, no further embedding of windowing
is possible, since only two values are left. Hence, the overall effort would be 2n. This
exponential construction, however, does not obey dynamic windowing with fixed overlap
and dynamic width. Hence, it cannot happen in our scenario which is one of the major
results of this chapter.

7.4. Classification Using Learned Method Trees

Automatic feature construction aims at good results of a second learning step which uses
the features, namely classifier learning. Remember Figure 7.1 from the introduction,
where genetic programming were presented to deliver the input to classifier learning.
Now, Figure 7.11 details the second box of the overall picture.

Feature construction is already guided by the classification task in that cross-validated
learning determines the fitness of method trees (individuals of genetic programming).
Now, also feature selection is performed by a simple evolutionary method, namely the
(1+1)EA [6]. Again, the classification task decides upon the fitness. The feature set is
built using a subset of the training data. The selected method trees are then applied to
all the training data. The support vector machine mySVM is applied to these rewritten
data and learns a classifier.

171

7. Multi-Objective Supervised Feature Extraction

Classic/Pop Techno/Pop Hiphop/Pop

Accuracy 100% 93.12% 82.50%
Precision 100% 94.80% 85.27%
Recall 100% 93.22% 79.41%
Error 0% 6.88% 17.50%

Table 7.1.: Classification of genres with a linear SVM using the task specific feature
sets.

7.4.1. Classifying Genres

Since results are published for the genre classification task, we have applied our approach
to this task, too. Note, however, that no published benchmark data sets exist. Hence,
the comparison can only show that feature construction and selection leads to similar
performance as achieved by other approaches. For the classification of genres, three data
sets have been built.

• Classic/pop: 100 pieces for each class were available in Ogg Vorbis format.

• Techno/pop: 80 songs for each class from a large variety of artists were available
in Ogg Vorbis format.

• Hiphop/pop: 120 songs for each class from few records were available in MP3
format with a coding of 128 kbits/s.

The classification tasks are of increasing difficulty. Using mySVM with a linear kernel,
the performance was determined by a 10-fold cross validation and is shown in Table 7.1.
Concerning classic vs. pop, 93% accuracy, and concerning hiphop vs. pop, 66% accuracy
have been published [181, 182].

41 features have been constructed for all genre classification tasks. For the distinction
between classic and pop, 21 features have been selected for mySVM by the evolutionary
approach. Most runs selected features referring to the phase space (angle and variance).
The use of features can also be inspected by restricting a top-down induction of decision
trees to a few levels. For a one level stump, 93% accuracy could be achieved by just
using the RMS volume, i.e. the root mean square average of the series.

For the separation of techno and pop, 18 features were selected for mySVM, the most
frequently selected ones being the filtering of those positions in the index dimension
where the curve crosses the zero line. The decision tree starts with a phase space feature,
the average of angles. A one level stump uses the starting value of the second frequency
band, giving a benchmark of 76% accuracy.

For the classification into hiphop and pop, 22 features were selected with the mere
volume being the most frequently selected feature. The decision tree classifying hiphop

172

7.4. Classification Using Learned Method Trees

Classic/Pop Techno/Pop Hiphop/Pop

Accuracy 96.50% 64.38% 72.08%
Precision 94.12% 60.38% 70.41%
Recall 95.31% 64.00% 67.65%
Error 3.50% 35.63% 27.92%

Table 7.2.: Classification performance using the same non-tailored standard feature set
for all classification tasks (linear SVM).

Classic/Pop Techno/Pop

SVM (linear) 0.00% 6.88%
SVM (rbf) 1.50% 14.38%
C4.5 0.00% 7.50%
k-NN 3.00% 9.38%
Naive Bayes 2.50% 10.63%

Table 7.3.: Classification errors with respect to different learning schemes.

against pop is rather complex. It starts with the length of the songs. Experiments with
naive Bayes and k-NN did not change the picture: an accuracy of about 75% can easily
be achieved, increasing the performance further demands better features.

In order to demonstrate the effect of tailored feature sets for each classification task
we performed experiments with the same feature set for all data sets. We used only
features which were used in at least 50% of all subsets produced by feature selection
for all data sets to simulate a reasonable standard feature set. Table 7.2 shows the
classification performance for a linear SVM estimated with a 10-fold cross validation.
The performance is significantly lower than the performance which can be achieved using
the tailored feature sets (see Table 7.1).

Table 7.3 shows the achieved classification errors with respect to different learning
schemes. Since the extraction of features and the transformation in another feature
space is performed by the applied method tree, the usage of a linear kernel function is
actually no restriction. Therefore, we use a linear SVM for all our experiments and as
inner learner to estimate the fitness of the method trees. The conclusions which can be
drawn from Table 7.2 and 7.3 indicate that a tailored set of task specific features and not
the quality of the learning scheme is the crucial aspect for the successful classification of
audio data.

173

7. Multi-Objective Supervised Feature Extraction

User1 User2 User3 User4

Accuracy 95.19% 92.14% 90.56% 84.55%
Precision 92.70% 98.33% 90.83% 85.87%
Recall 99.00% 84.67% 93.00% 83.74%
Error 4.81% 7.86% 9.44% 15.45%

Table 7.4.: Classification according to user preferences.

7.4.2. User Preferences

Recommendations of songs to possible customers are currently based on the individual
correlation of record sales. This collaborative filtering approach ignores the content of
the music. A high correlation is only achieved within genres, because the preferences
traversing a type of music are less frequent. The combination of favorite songs into
a set is a very individual and rare classification. It is not a generalization of many
instances. Therefore, the classification of user preferences beyond genres is a challenging
task, where for each user the feature set has to be learned. Of course, sometimes a user
is interested only in pieces of a particular genre. This does not decrease the difficulty
of the classification task. In contrast, if positive and negative examples stem from the
same genre, it is hard to construct distinguishing features. Genre characteristics might
dominate the user-specific features. As has been seen in the difficulty of the data set
for hiphop vs. pop, sampling from few records also increases the difficulty of learning.
Hence, four learning tasks of increasing difficulty have been investigated.

Four users brought 50 to 80 pieces of their favorite music ranging through diverse genres.
They also selected the same number of negative examples. User 1 selected positive
examples from rock music with a dominating electric guitar. User 2 selected positive as
well as negative examples from jazz music. User 3 selected music from classic over latin
and soul to rock and jazz. User 4 selected pieces from different genres but only from few
records. Using a 10-fold cross validation, mySVM was applied to the constructed and
selected features, one feature set per learning task (user). Table 7.4 shows the results.

The excellent learning result for a set of positive instances which are all from a certain
style of music corresponds to our expectation (user 1). The expectation that learning
performance would strongly decrease if positive and negative examples are taken from
the same genre is not supported (user 2). Surprisingly well is the learning result for a
broad variety of genres among the favorites (user 3). This fact indicates that for this
user the constructed feature set supports the building of preference clusters in feature
space instead of dominating genre clusters. In contrast to this result the (negative) effect
of sampling from few records can be seen clearly (user 4). Applying the learned decision
function to a database of records allowed the users to assess the recommendations.
They were found very reasonable. No particularly disliked music was recommended, but
unknown plays and those, which could have been selected as the top 50.

174

7.5. Multi-Objective Feature Extraction

Of course, this method of user preference recognition is just the first step. There are
several ways to improve the results. For instance, users could indicate those examples
that must be classified correctly, because they feel that it is an essential expression
of their taste. Weighting examples as a further cost function for learning has been
investigated in [86]. The inspection of the chosen features by the users themselves is not
yet possible. Regular users are not acquainted with Fourier transformation and peaks,
for instance, but would like to see understandable and interpretable features. For this
reason, the author of this work has co-developed a large-scale feature construction based
approach which delivers aggregated high-level descriptors based on massive amounts of
phase space features [128].

7.5. Multi-Objective Feature Extraction

In the last chapter, we have defined a regularized risk for feature space transformations:

RFST
reg (X) = Rinner + λΩ(X).

We have seen in this chapter that the used wrapper approach again delivers the risk
Rinner. We have already used this performance as a guide for the evolutionary feature
extraction. Now, an appropriate measurement for the feature space complexity Ω(X)
has to be defined. For multi-objective supervised feature selection and multi-objective
supervised feature construction, we have already seen that the number of used features
is a simple and good measurement for the feature space complexity.

Since supervised feature extraction is only a special case of supervised feature construc-
tion, we can again use the number of extracted features as a complexity measure for
the resulting feature space. Hence, we can still apply Lemma 6.1 and the number of
features which is extracted should be minimized in order to minimize the regularized
risk RFST

reg (X).

The final two criteria for multi-objective supervised feature extraction hence are the
performance of the inner supervised learner Rinner which should be maximized together
with the number of used features nf which should be minimized. We extend the genetic
programming approach discussed above by using these criteria as a base for the non-
dominated sorting selection scheme known from NSGA-II.

7.5.1. Experiments and Results

For the audio classification experiments, it turned out that a (1+1)EA working on one
individual only already delivers good classification results. Unfortunately, the necessary
runtime for this single-individual optimization approach already is very high on these

175

7. Multi-Objective Supervised Feature Extraction

Figure 7.12.: The daily S&P 500 index between January 1st, 1980 and October 8th,
1992. The task is to predict the value for the next day from the values
which were encountered in the past.

large amount of data and using an appropriate number of individuals in order to get
complete Pareto fronts would no longer be feasible. Therefore, we use another and much
smaller data set for the multi-objective feature extraction experiment discussed here,
namely the daily S&P 500 data set consisting of all values of this index between January
1st, 1980 and October 8th, 1992. The task is that of a time series prediction, i.e. the
value for the next day should be predicted from the values which were encountered in
the past. Figure 7.12 shows the complete series.

A windowing is applied on this data set with window width 80 and step size 20. The
next value after the last value in the window is used as label, i.e. the prediction horizon
is 1. The original series has a length of 3333 values. After the windowing, the resulting
example set has 163 examples with 80 attributes plus the label attribute. We applied the
genetic programming approach discussed in this chapter on this data set. The number of
individuals in the population is 15, the maximum number of generations was restricted
to 50.

7.5.2. Interpretation of the Pareto Front

Figure 7.13 shows the Pareto front in generation 11. Although not all dominated points
are removed yet, the Pareto front can already be seen. At the end of the optimization
process, only non-dominated points are part of the final Pareto set.

The fitness is evaluated by a 10-fold back-testing validation, i.e. the data set is divided
into 10 parts where the first k parts are (cumulatively) used for training and the part k+1
is used for testing. The performance criterion root relative squared error is calculated as

176

7.5. Multi-Objective Feature Extraction

Figure 7.13.: The Pareto front after generation 11. Although not all dominated points
are removed yet, the Pareto front can already be seen.

the average value of all 10 results. The second criterion is simply the number of features
as it was proposed in the last section. As before, we again use the negative values as
criteria in order to turn the problems into maximization problems. The error is shown
on the x-axis and the number of features is shown on the y-axis.

Each point of the Pareto front then corresponds to a specific method tree with a certain
performance and complexity. Figure 7.14 shows the method tree from this Pareto set
which produces 8 features. Please note that each point in the Pareto set corresponds
to a method tree for feature extraction as it was described in this chapter. The trees
on the upper left side are pretty simple and produce only a single feature. Of course,
they also do not provide good prediction performances. Walking to the lower right
part, the method trees are growing and more features are constructed (up to 11 in this
intermediate result) while the error decreases.

It can also be seen, that the multi-objective selection scheme again covers a wide range
of sensible solutions. From a single feature (-1 on the y-axis) to the maximum number of
features many possible feature numbers are part of the resulting Pareto set. The points
in the resulting Pareto sets also have a property similar to the feature set rankings seen
in the previous chapter. More complicated method trees are often build from subtrees
defined by the less complex results.

Hence, beside the change in data structure for the search points, the basic interpretation
of these Pareto fronts is equal to those for the simple multi-objective feature selection
case (see Section 6.2.1) or for the similar multi-objective feature construction case (see
Section 6.5.1).

177

7. Multi-Objective Supervised Feature Extraction

Figure 7.14.: A medium-sized feature extraction method tree from the Pareto front
shown in Figure 7.13.

178

7.5. Multi-Objective Feature Extraction

Method Root Relative Squared Error

Linear Regression 0.035 ± 0.013
GP Feature Extraction 0.022 ± 0.005

Table 7.5.: Comparison of the genetic programming based method tree learning ap-
proach and a simple windowed linear regression approach for time series
predictions. The results are obtained by a 10-fold back-testing validation.
The bold font marks a significantly better result on a 1% confidence level
for the feature extraction approach.

We finally compared a linear regression model learned on the features resulting from
the best method tree with a linear regression model learned on the original windows.
Table 7.5 shows the results. The bold font marks a significantly better result on a 1%
confidence level for the feature extraction approach if all constructed features from the
Pareto set are used. As it was expected, the best method tree delivered by the multi-
objective feature extraction approach clearly outperforms the model without feature
extraction.

179

CHAPTER 8

Multi-Objective Unsupervised Feature
Selection

The last chapters concentrated on the problem of supervised feature space transforma-
tions. We have seen that we can define a structural risk for feature space transformations
similar to that known from statistical learning. The probably most simple instance for
the model complexity is the number of features used in the resulting feature space. This
even works for the quite complex task of supervised feature extraction. The definition
of this structural risk for feature space transformations leads to a non-convex multi-
objective optimization problem which we solved by means of evolutionary algorithms.

We will now change the underlying learning task and no longer deal with supervised
learning problems. For unsupervised learning, the definition of a structural risk (Chap-
ter 6) is not possible, neither for the learning problem nor the feature space transforma-
tions. The main reason for this of course is that no loss function can be defined due to the
lack of a label. Nevertheless, we will show in the next two chapters that the problem of
unsupervised feature space transformations again has a multi-objective nature. We will
use known clustering criteria which try to measure the quality of clusters instead of the
empirical risk. We also transfer the idea of feature set size to the unsupervised setting.
This will lead to a surprising change which must be performed in order to define a valid
multi-objective optimization problem for unsupervised feature space transformations.

Feature selection for unsupervised learning is a challenging new application in machine
learning. In this chapter, we show how the rigorous definition of competing criteria
leads to a novel and sound theoretical framework based on multi-objective optimization.
This approach creates Pareto sets which share an interesting property: depending on the
number of inherent patterns each front shows several kinks. These kinks allow an inter-
pretable segmentation from which the user can select few prototypes which drastically
reduces the effort of selecting a final solution. This turns unsupervised feature selection

181

8. Multi-Objective Unsupervised Feature Selection

into a case study for automatic segmentation of highly complex Pareto sets. Another
important consequence of the necessary paradigm change discussed in this chapter is
a method which segments the Pareto sets produced by our approach. Inspecting only
prototypical points from these segments drastically reduces the amount of work for se-
lecting a final solution. In the last section of this chapter, we will compare our methods
against existing approaches on eight data sets.

8.1. Unsupervised Feature Selection

Chapter 2 discussed two different machine learning tasks, namely supervised and unsu-
pervised learning. For supervised learning, a set of labeled data points must be given.
The learning method should merely find a function which predicts the label for unseen
data points. Supervised learning methods cannot be applied if no information is known
beforehand. Unsupervised machine learning should rather describe the data set. Hence,
the task is to automatically find the inherent, natural patterns of the data. Such natural
patterns can express useful information for a decision maker. Typical application areas
include customer segmentation, information retrieval, and image analysis [69, 133].

We have seen that the search for a proper supervised prediction function can usually be
formulated as an optimization problem where the number of wrong predictions for the
known data points should be minimized. A similar criterion for validity does not exist
in the unsupervised setting. The optimization function of an unsupervised algorithm
cannot rely on given patterns in order to decide if a found pattern is “correct” or “wrong”.
The validity of discovered patterns also depends on the background knowledge and
intention of the user. It is therefore often desirable that unsupervised learning methods
present more than one solution to the user.

The main problems for both supervised and unsupervised learning algorithms is to de-
cide which dimensions of the data space should be taken into account. The prediction
accuracy of a learned decision function can be dramatically increased if redundant or
noisy features are omitted during learning. Although the problem is the same for both
learning paradigms, the consequences might be rather different.

The last chapters have shown that supervised feature selection and extraction problems
can be solved by minimizing the number of used features while prediction accuracy is
preserved. The search for the best feature subset out of all 2m possible subsets usually
requires heuristics for larger dimensions m. Genetic algorithms have demonstrated their
ability to solve this problem several times before [149, 196] and this thesis extended these
approaches by explicitly defining the trade-offs between several conflicting criteria. This
turns the minimization of the number of features and the maximization of the prediction
accuracy into a multi-objective optimization problem since removing necessary features
from the data set will decrease accuracy.

182

8.2. Data Clustering

The same problem exists for unsupervised learning. The existence of noisy or redun-
dant features can cover inherent data clusters and omitting those features might reveal
the actual natural patterns. There are several approaches which try to directly iden-
tify promising feature subsets for clustering [158]. However, these approaches do not
reflect the multi-objective character of the problem setting. Although no loss function
L(f(X), Y) exist and hence the definition of a regularized risk in the way we know
will not work, we will see that the problem of unsupervised feature selection is still
multi-objective. Therefore, state of the art feature selection approaches for unsuper-
vised learning use multi-objective optimization. They transfer the idea of minimizing
the number of features while the clustering optimization criterion should be preserved
[81, 82, 132].

However, the definition of the optimization problem in this way is not appropriate.
Under very weak assumptions we will show that the Pareto set will collapse into one
singular point if the number of features should be minimized while the existing cluster
evaluation measures should also be optimized. Even if the population does not collapse
it tends to cover only a small fraction of the solution space.

Nevertheless, there is a trade-off between the number of features and cluster validity.
However, the number of features must be maximized instead of minimized in order to
achieve this competition. Although this might sound surprising at first, the change of
the optimization direction has a natural origin in the aim of unsupervised learning. In
order to describe the data set at hand, the amount of information which could be derived
from the used feature set should be preserved during the feature selection process.

We will see in the experiments that the resulting Pareto sets are more beneficial for
users since they provide a larger coverage of possible candidate solutions. The Pareto
fronts produced by our selection approach can also be segmented into meaningful regions.
This eases the selection of a final solution from the set of Pareto optimal points. We
enable feature selection for density based clustering schemes as well. In contrast to
combinatorial clustering algorithms like k-means, these clustering algorithms are able to
find non-Gaussian clusters like rings or spirals. In the following, we propose an improved
feature selection approach which is applicable to a wide variety of clustering algorithms
and provides interpretable segmentations of the complex Pareto set.

8.2. Data Clustering

One of the most important approaches to unsupervised learning is data clustering. The
aim of cluster analysis is to group data points into sets of similar data points. Given a
data set X, which is an unlabeled set of individual data points xi ∈ X (observations). A
cluster is a subset of data points Cq ⊆ X. In principle, clusters may overlap. However,
most clustering algorithms are designed to produce partitions of data points, i. e. a set

183

8. Multi-Objective Unsupervised Feature Selection

of clusters C1 . . . Ck such that Ci ∩ Cj 6= ∅ ⇒ Ci = Cj (clusters do not overlap) and
⋃k

q=1 Cq = X (each data point is covered by a cluster).

8.2.1. Combinatorial Clustering Algorithms

Cluster analysis aims at assigning items to clusters where elements within a cluster are
more similar to each other than to the elements of other clusters. This notion can be
expressed as an optimization problem by using a distance measure d(xi, xj) on the set
of data points:

minimize ωd =

k∑

q=1

∑

xi∈Cq

∑

xj∈Cq

d(xi, xj).

It can be shown that by minimizing ωd the mean pairwise difference between pairs of
points in different clusters is maximized [63]. A very efficient approach for optimizing
this function is k-means clustering. It is based on the squared Euclidean distance. In
the following, we assume that the data points are represented by a set of m real valued
features, i. e. xi ∈ R

m, and that xip is the value of the p-th feature for data point xi.
The Euclidean distance of two points xi and xj is

d(xi, xj) =

√
√
√
√

m∑

p=1

(xip − xjp)2.

It can be shown that optimizing ωd with respect to the squared Euclidean distance is
equivalent to optimizing the function

ω =

k∑

q=1

∑

xi∈Cq

m∑

p=1

(xip − cqp)
2

where cqp is the p-th value of the centroid of cluster Cq. The centroid is the point with
the smallest distance to all points in Cq. It can be calculated as

cqp =

∑

xi∈Cq

xip

|Cq|
.

The k-means algorithm uses this relationship by applying an alternating optimization
procedure [62]. In each step, every data point is assigned to the cluster with the nearest
centroid. Then, the centroids are recalculated for each cluster and data points are
newly assigned to clusters based on the new centroids. This alternation stops if there
is no further change in cluster assignment or after a maximal number of steps. The

184

8.2. Data Clustering

centroids are initialized with random data points drawn from X. k-means does not
guarantee to find an optimal solution and is sensitive to the choice of initial points.
Therefore, a common strategy is to start k-means several times with different random
initializations. For its simplicity and efficiency, k-means is one of the most popular
clustering algorithms.

A natural choice for evaluating a set of clusters produced by k-means is ω, i. e. the
function it optimizes. This measure has several drawbacks. Most important, it is not
normalized with respect to the feature values and to the number of clusters. With
an increasing number of clusters, ω decreases monotonically. ω decreases as well for a
decreasing number of features. For these reasons, it is not well suited as criterion for
unsupervised feature selection problems.

Several other evaluation measures for k-means were proposed. Probably the most im-
portant is the Davies-Bouldin (DB) index [34]. It is calculated as

ωDB =
1

k

k∑

q=1

max
q,r 6=q

{
sq + sr

d(cq, cr)

}

where sq and sr are the average within cluster distances for cluster Cq and Cr respectively
which are defined as

sq =
1

|Cq|
∑

xi∈Cq

d(xi, cq)

and

sr =
1

|Cr|
∑

xi∈Cr

d(xi, cr)

with the centroids cq and cr.

ωDB takes into account only the relative separation of the two clusters which are worst
separated. This value is normalized as it is divided by the distance between the corre-
sponding centroids. Therefore, it is less sensitive to the number of clusters. And it is
also less sensitive to the number of features since the dimension of the space is also part
of the centroid-based normalization. Focusing on the clusters that are worst separated
allows for a very fine grained optimization, as the parts of the clustering that are well
separated do not overshadow these important parts. Please note that ωDB is only used
in order to evaluate a cluster structure. There is no efficient algorithm which optimizes
ωDB directly.

8.2.2. Gaussian Mixtures

Gaussian mixture clustering assumes that the underlying data generating process con-
sists of a mixture of different overlapping Gaussian distributions and that each distribu-
tion represents an individual cluster. Clustering is achieved by estimating the parameters

185

8. Multi-Objective Unsupervised Feature Selection

of the underlying distributions and assigning each data point to the distribution that
most likely produced it. This notion can be formalized by

ωGM = log
∑

xi∈X

k∑

q=1

pqg(xi|µq,Σq)

where g is a multivariate Gaussian distribution representing cluster Cq with mixture
parameters µq and Σq. The probability pq is the apriori probability of a data point
belonging to cluster Cq.

The expectation maximization (EM) approach employs an alternating optimization pro-
cedure similar to the one applied in k-means clustering [38]. First, each data point is
assigned to the distribution that most likely generated it, then the parameters of all
distributions (and thus clusters) are recalculated based on the data points in each clus-
ter. This procedure is repeated until no further change occurs or a maximum number
of steps is reached.

8.2.3. Graph-Based Clustering

Instead of assigning data points to clusters directly, we can first impose a graph (X,E) on
these points consisting of the nodes (data points) X and a set E of edges between them.
Two data points xi and xj are connected if they are sufficiently similar to each other. For
a maximum distance threshold dmax, xi and xj are connected if d(xi, xj) ≤ dmax. The
by far most common clustering criterion is to regard clusters as connected components
in the distance graph. This approach is denoted as single link clustering. Finding such
connected components in a graph is usually achieved by a graph search [30].

The value dmax determines the coherence of the resulting clusters. If a fixed number of
clusters k is given, we can find a maximal value for dmax such that the graph contains at
most k connected components and thus clusters. In this case, the resulting dmax can be
used as evaluation measure as it denotes the strength of the weakest link in the cluster
structure. The weakest link is the point at which a given cluster would split up into two
components if dmax would be decreased. If we use dmax as a cluster quality evaluation
measure, we denote it similar to the other measurements as ωd−max.

Graph based clustering is very popular and can be combined with many advanced con-
nectivity criteria as in density based clustering [45] or support vector clustering [13]. In
contrast to k-means and Gaussian mixtures, these algorithms can detect clusters of any
shape while k-means is limited to find spherical clusters boundaries. Figure 8.1 shows an
example of a structure that cannot be clustered with neither EM nor k-means. Structures
like these play an important role in applications as image recognition or astronomical
data analysis [161].

186

8.2. Data Clustering

-15

-10

-5

 0

 5

 10

 15

-15 -10 -5 0 5 10 15

Figure 8.1.: The SPIRAL data set created for single link clustering.

187

8. Multi-Objective Unsupervised Feature Selection

8.3. Multi-Objective Feature Selection for Clustering

Multi-objective optimization is a natural choice for selecting appropriate feature subsets
for clustering problems. The current state of the art is represented by the work described
in [81, 82] and [132]. In the following, we will describe both approaches and show that
they are both limited in several ways. These limitations are a result of the way the
multi-objective optimization problem is posed.

Kim, Street, and Menczer introduce four performance criteria for k-means clustering1[81,
82]. The first one is a variant of ω that is normalized by the number of features nf :

ωnorm =
1

nf
ω.

A variant of between cluster distance is used as a second measure. However, this measure
behaves essentially in the same way as normalized ω (minimizing within cluster distance
is equivalent to maximizing between cluster distance). The third measure represents the
maximum number of clusters k which should be minimized. The last measure captures
the number of features nf that should be minimized as well.

In the following theorem we show that for a given number of clusters k minimizing ωnorm

and the number of features leads to exactly one Pareto optimal point. This optimal point
always selects one single feature from the dataset, in particular the one that leads to a
minimal loss with respect to the used clustering performance criterion.

Theorem 8.1 (Pareto Front Collapse) Minimizing ωnorm and the number of fea-
tures nf leads to one single Pareto optimal point.

Proof. Let m be the total number of available features. For ωnorm we can denote the
loss lp of an individual feature p as

lp =

k∑

q=1

∑

xi∈Cq

(xip − cqp)
2.

In order to minimize the number of features selecting only one feature out of the m
possible features is optimal. We show that always

ωnorm ≥ min
1≤p≤m

{lp}.

1In the original work all criteria are normalized by a constant. This, however, has no influence on
Pareto optimality.

188

8.4. Information Preserving Feature Selection

That means that the performance can only decrease by adding any feature but the one
that optimizes lp. It can easily be seen that

ωnorm =
1

m

m∑

p=1

lp

≥ 1

m

m∑

p=1

min
1≤p≤m

{lp}

= min
1≤p≤m

{lp}.

Using ωnorm for the optimization is not a well suited approach for feature selection in
clustering problems as it leads to trivial solutions. A similar proof can be given for
normalized between cluster distance.

In [132] a normalized variant of ωDB is proposed as alternative performance criterion to
ωnorm:

ωDB,norm =
1

nf
ωDB.

This approach is better suited, as ωDB is normalized with respect to the feature space.
However, this criterion is very sensitive. If the feature set contains for example a real
valued feature that takes discrete values only, then choosing this one feature is again
Pareto optimal. However, this one feature does almost certainly not represent the com-
plete dataset in the descriptive sense mentioned in the introduction. In Section 8.5, we
will see several examples for which the Pareto set collapses into a single trivial solution.

Furthermore, using normalized ωDB does lead to a “build-in” competition between the
number of features nf and the cluster quality measure 1

nf ωDB. Therefore, even clustering
random data produces a Pareto front that exhibits an artificially introduced inversely
proportional relationship (see Figure 8.2 (c)).

The major problem of both approaches is that they do not pose the problem correctly
from the point of view of multi-objective optimization. In the next section we give an
alternative problem formulation that solves the described difficulties.

8.4. Information Preserving Feature Selection

In the last sections, we discussed several quality measurements for different clustering
schemes. In the following, we assume that all criteria should be maximized during
feature selection. Criteria which should be minimized in the original problem definition
are therefore multiplied by −1.

189

8. Multi-Objective Unsupervised Feature Selection

In contrast to the existing approaches discussed in Section 8.3 we do not minimize the
number of features but maximize nf . This prevents the algorithm from selecting trivial
solutions and leads to more complete Pareto sets of diverse natural clusterings. Although
this change of the optimization direction might sound surprising from a supervised learn-
ing point of view, it is a direct consequence from the definition of the clustering evaluation
criteria. The value of these criteria typically increases with the density of the data set
which decreases with an increasing number of features. We have already seen that this
relationship leads to the collapse of Pareto sets for certain criteria. Hence, the decision
for maximizing the is well motivated if any competition between the criteria should be
established. Otherwise, Pareto sets collapses will occur like it was proved in the previous
section.

The fitness evaluation is done by performing a clustering scheme on the reduced feature
sets. Depending on the used scheme we use ωDB (equation 8.2.1) for k-means clustering
and ωd−max for single link clustering. Since there is a natural competition between
maximizing the number of features nf and the selected cluster criterion we do not need
to apply an artificial normalization factor.

The unsupervised feature selection problem is inherently multi-objective and cannot be
solved with single-objective evolutionary algorithms. In the clustering setting the user
has no idea of criteria weights and, furthermore, there exist no simple decision about
correct or wrong clusterings. Such a decision would totally depend on the amount of
information the user can obtain from different clusterings. Therefore, we try to maintain
as much information as possible and aim at finding all solutions which are optimal
for arbitrary criteria weight vectors, i.e. the complete Pareto set. It was mentioned
before that multi-objective evolutionary algorithms do not strongly depend on form and
continuity of the Pareto-optimal set. We will see that for clustering with non-normalized
optimization criteria the Pareto front is neither nicely shaped nor continuous.

We again use NSGA-II as the evolutionary selection technique for the unsupervised
multi-objective feature selection task. Individuals are bit vectors of length m indicating
if a feature should be selected or not. The population size is set to 2m, the maximal
number of generations is 1000. A bit flip mutation is performed with probability 1/m
and uniform crossover with probability 0.9.

8.4.1. Finding Interesting Points in the Pareto Front

The Pareto plots derived by the multi-objective optimization procedure described in
the last section show a clear structure. This structure is not accidental but reflects
structure in the underlying data. We can exploit this Pareto plot structure in order
to discover patterns in the underlying data set. Moreover, exploiting this structure
drastically reduces the effort of selecting a final solution from the Pareto set.

190

8.5. Experiments and Results

The basic idea is to find points at which the trade-off between the number of features
and the cluster quality significantly changes. As this trade-off is represented by the slope
of the Pareto plot at a given point, we want to find points where the change in slope
is maximal. In the following, this notion is formalized. Since the following does not
depend on the actual cluster quality evaluation measure, we will use the term ω if we
refer to one of the cluster quality measures, for example ωDB or ωd−max. We assume
that all Pareto optimal points are sorted and that the p-th point is denoted by the pair
(ωp, nfp). The value ηp then represents the slope at point p by

ηp = arctan

(
ωp+1 − ωp

nfp+1 − nfp

)

.

As we are interested in points at which the slope significantly changes we further calcu-
late

∆ηp =
ηp

ηp−1

with η0 = π/2.

A value of ∆ηp greater than 1 indicates that adding an additional feature has a significant
smaller negative influence on the cluster coherence than the proceeding features. A value
smaller than 1 indicates that an additional feature has a stronger negative influence. The
points between a strong increase and a strong decrease in slope often represent redundant
features or very coherent sets of features (vertical parts). Adding an individual feature
does not change the performance much. The features between a decrease and an increase
represent areas with many noisy and incoherent features (horizontal parts). Adding such
features has a direct negative influence on the cluster quality for each of the features
that is added. For an example, please refer to Section 8.5.3 and Figure 8.6.

8.5. Experiments and Results

In this section, we will show results for both the approach proposed in this chapter
and the normalized minimization approach discussed in Section 8.3 as it was proposed
in [81, 82, 132]. We applied both algorithms to several synthetic and real world data
sets.

8.5.1. The Data Sets

In order to measure the effect of the artificial normalization factor necessary for feature
set minimization we applied the algorithms on a grid data set (GRID) and a random
data set (RANDOM) containing only white noise. Another artificial data set (GM)

191

8. Multi-Objective Unsupervised Feature Selection

consisting of 32 Gaussian clusters with random standard deviations between 0.0 and 1.0
in five dimensions was created. This data set was enriched with ten additional single
Gaussian noise features with standard deviation 0.5.

We also applied both algorithms on two clustering benchmark datasets, namely the
IRIS data set [49] and the WPBC (Wisconsin Prognostic Breast Cancer) data set [192].
The latter is especially interesting because of many redundant features. This allows
us to check how well both approaches are able to cope with redundancy. The IRIS
data set is also used in two enriched variants containing additional noise features, either
with nominal noise (IRIS-NN; a discrete-valued feature with randomly selected nominal
values was added) or with Gaussian noise (IRIS-GN).

In order to evaluate feature selection for non-standard cluster boundaries we also gen-
erated an artificial data set consisting of two spirals and apply single link clustering to
it. Such clusterings cannot be found be combinatorial clustering algorithms as k-means.
Figure 8.1 shows the two non-noise dimensions of the created data set.

Table 8.1 summarizes the properties of all data sets. All experiments were performed
with the freely available machine learning environment RapidMiner [125].

8.5.2. Interpretation of the Pareto Fronts

Figures 8.2, 8.3, and 8.4 shows all Pareto sets for the simultaneous optimization of the
used cluster criterion and the feature set size. It should be noted that in most cases the
population converges to the final front after less than 20 generations. Moreover, NSGA-II
selection was again able to sustain the found solution until the end of optimization.

The basic interpretation of the resulting Pareto fronts is equal to that for the simple
multi-objective feature selection case (see Section 6.2.1). We hence concentrate our
discussion on the differences between the two approaches.

It can clearly be seen that in all cases the Pareto sets provided by our information
preserving approach contain more points than the results of the normalized minimization
approach. If there is only one feature with a relative small standard deviation, the Pareto
set of the minimization approach will still collapse (GRID, IRIS-NN, and SPIRAL).
Moreover, the artificial normalization factor 1/nf introduces a convex front although
there is nothing to optimize at all. This effect can be seen for the random data set,
where the minimization approach finds a convex Pareto front while the front provided
by our approach is still linear. For both the normal IRIS data set and the IRIS-GN
data set enriched with noise features the proposed approach finds the complete Pareto
set while the minimization approach was only able to find a small number of feature
subsets. Since it is not clear which clustering is “correct” beforehand, the user should be

192

8
.5

.
E

x
p
erim

en
ts

a
n
d

R
esu

lts

Abbr. Properties n m Noise σo σn k Results

GRID equidistant values in all dimensions 3125 5 0 n.a. n.a. 0 (a) and (b)
RANDOM uniformly distributed values 500 10 10 n.a ∞ 0 (c) and (d)
GM Gaussian mixture with 32 clusters 1000 15 10 0.5 0.5 32 (e) and (f)
IRIS Iris data set without noise features 150 4 0 0.8 n.a. 3 (g) and (h)
IRIS-NN Iris data set with nominal noise 150 5 1 0.8 0.01 3 (i) and (j)
IRIS-GN Iris data set with Gaussian noise 150 14 10 0.8 0.8 3 (k) and (l)
WPBC WPBC data set without noise features 198 34 0 33.2 n.a. ? (m) and (n)
SPIRAL Two spirals around the origin 500 7 5 5.5 5.5 2 (o) and (p)

Table 8.1.: The used data sets. The first column summarizes the abbreviations used in the text, the second summarizes
some properties of the data set. n is the total number of examples, m the total number of features. The
column noise defines how many features of m where explicitly added noise features. The next columns
define the mean standard deviation of the original features (σo) and the noise features (σn). The column k
indicates the number of clusters if it is known. The last column indicates which Pareto sets were found for
the data set with both approaches.

193

8. Multi-Objective Unsupervised Feature Selection

-1.01

-1.005

-1

-0.995

-0.99

-0.985
-1 -0.5 0 0.5 1

nu
m

be
r

of
 fe

at
ur

es

DB norm

(a) GRID Min vs. ωDB,norm

 2

 4

 6

 8

 10

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5

nu
m

be
r

of
 fe

at
ur

es

DB

(b) GRID Max vs. ωDB

-10

-8

-6

-4

-2

-0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2

nu
m

be
r

of
 fe

at
ur

es

DB norm

(c) RANDOM Min vs. ωDB,norm

 2

 4

 6

 8

 10

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

nu
m

be
r

of
 fe

at
ur

es

DB

(d) RANDOM Max vs. ωDB

-12

-10

-8

-6

-4

-2

 0

-0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1

nu
m

be
r

of
 fe

at
ur

es

DB norm

(e) GM Min vs. ωDB,norm

 0

 2

 4

 6

 8

 10

 12

 14

 16

-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4

nu
m

be
r

of
 fe

at
ur

es

DB

(f) GM Max vs. ωDB

Figure 8.2.: The Pareto fronts for all data sets. The left result for each dataset is
achieved by the approach discussed in section 8.3 for a normalized value
ωDB,norm (DBnorm). It can clearly be seen that these results are not as
complete and that kinks are covered by the artificial inversely propor-
tional structure. The results on the right are achieved by our information
preserving maximization approach. Part 1 of the results.

194

8.5. Experiments and Results

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

-0.11 -0.105 -0.1 -0.095 -0.09 -0.085 -0.08 -0.075

nu
m

be
r

of
 fe

at
ur

es

DB norm

(a) IRIS Min vs. ωDB,norm

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

-0.32 -0.3 -0.28 -0.26 -0.24 -0.22 -0.2 -0.18 -0.16 -0.14 -0.12 -0.1

nu
m

be
r

of
 fe

at
ur

es

DB

a2

a3, a4

(b) IRIS Max vs. ωDB

-1.01

-1.005

-1

-0.995

-0.99

-0.985
-0.01525-0.0152-0.01515-0.0151-0.01505-0.015-0.01495-0.0149

nu
m

be
r

of
 fe

at
ur

es

DB norm

noise feature

(c) IRIS-NN Min vs. ωDB,norm

 1

 2

 3

 4

 5

-0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0

nu
m

be
r

of
 fe

at
ur

es

DB

noise feature

a3, a4

all

(d) IRIS-NN Max vs. ωDB

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

-0.22 -0.2 -0.18 -0.16 -0.14 -0.12 -0.1 -0.08

nu
m

be
r

of
 fe

at
ur

es

DB norm

(e) IRIS-GN Min vs. ωDB,norm

 0

 2

 4

 6

 8

 10

 12

 14

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0

nu
m

be
r

of
 fe

at
ur

es

DB

a2

a3, a4

all

all and all randoms

(f) IRIS-GN Max vs. ωDB

Figure 8.3.: The Pareto fronts for all data sets. The left result for each dataset is
achieved by the approach discussed in section 8.3 for a normalized value
ωDB,norm (DBnorm). It can clearly be seen that these results are not as
complete and that kinks are covered by the artificial inversely propor-
tional structure. The results on the right are achieved by our information
preserving maximization approach. Part 2 of the results.

195

8. Multi-Objective Unsupervised Feature Selection

-35

-30

-25

-20

-15

-10

-5

 0

-0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0

nu
m

be
r

of
 fe

at
ur

es

DB norm

(a) WPBC Min vs. ωDB,norm

 5

 10

 15

 20

 25

 30

 35

-0.7 -0.65 -0.6 -0.55 -0.5 -0.45 -0.4 -0.35

nu
m

be
r

of
 fe

at
ur

es

DB

(b) WPBC Max vs. ωDB

-1.01

-1.005

-1

-0.995

-0.99

-0.985
-0.262-0.261-0.26-0.259-0.258-0.257-0.256

nu
m

be
r

of
 fe

at
ur

es

dMax

(c) SPIRAL Min vs. dmax

 1

 2

 3

 4

 5

 6

 7

-14 -12 -10 -8 -6 -4 -2 0

nu
m

be
r

of
 fe

at
ur

es

dMax

(d) SPIRAL Max vs. dmax

Figure 8.4.: The Pareto fronts for all data sets. The left result for each dataset is
achieved by the approach discussed in section 8.3 for a normalized value
ωDB,norm (DBnorm). It can clearly be seen that these results are not as
complete and that kinks are covered by the artificial inversely propor-
tional structure. The results on the right are achieved by our information
preserving maximization approach. Part 3 of the results.

196

8.5. Experiments and Results

able to select from the complete Pareto front. The same applies for the other real-world
data set WPBC (Figure 8.4 shows the results for k = 2).

We did not focus on the simultaneous optimization of the number of clusters although
this is of course possible. Since our approach does not differ from existing approaches
in this respect we concentrated on the usability of information preservation. However,
for the real world data set WPBC we simultaneously optimize k in the range of [2, 10]
which leads to a three dimensional Pareto set (Figure 8.5). The Pareto plot shows the
influence of the number of clusters on the kinks in the Pareto fronts. There are two
regions with distinct deviations from the convex hull of the Pareto set. One small kink
for k = 8 in the rear region and one bigger kink for k = 2, 3, 4 in the front region. These
kinks were also totally covered by the inversely proportional structure introduced by
the normalization approach and it would not be possible to detect a structure at all.
Furthermore, redundant features can easily be determined in the almost vertical parts
of the front.

8.5.3. Pareto Front Segmentation

Besides the fact that the Pareto sets are more complete, there is another advantage of
the non-normalized maximization: kinks are not covered by any artificially introduced
inversely proportional relationship structure. In contrast, these kinks can easily be dis-
covered in the result of our approach. We applied the segmentation algorithm described
in section 8.4.1 on the Pareto set delivered for WPBC and k = 2. The kinks between
neighbors can clearly be seen if the number of features is maximized (Figure 8.4 (b))
instead of minimized (Figure 8.4 (a)) and the clustering criterion was not normalized.
Selecting the five points with highest absolute deviances of ∆ηp to 1 leads to an in-
terpretable segmentation of the result. Figure 8.6 shows the selected points and the
segments.

197

8. Multi-Objective Unsupervised Feature Selection

Figure 8.5.: We applied information preserving feature selection on the real-world data
set WPBC. The number of features nf (F in the plot), the Davies Bouldin
clustering criterion ωDB (DB in the plot), and the number of clusters k
(K in the plot) should be simultaneously optimized. The result is a three
dimensional Pareto set containing all necessary information allowing a
decision about the best clustering. The kinks could be used to segment
the Pareto set and ease the analysis of the front.

198

8.5. Experiments and Results

Figure 8.6.: The five points with the highest absolute deviation of ∆ηp to 1 are marked
with perpendicular lines. This leads to an interpretable segmentation of
the Pareto front which eases the process of selecting a final solution from
the Pareto set.

199

CHAPTER 9

Multi-Objective Feature Space
Transformation for Clustering

The last chapter presented a novel multi-objective evolutionary framework for feature
selection in unsupervised machine learning settings. Clustering is an ideal test case for
evolutionary computation methods for several reasons. First, it is an inherently multi-
objective problem. There is usually not one correct result as for supervised learning.
Users rather explore the space of results interactively to gain insight into the natural
patterns within the data set. Second, the approach proposed in this work yields Pareto
sets that show significant inner structures. These structures are not accidental but
reflects patterns in the underlying data. The last chapter also discussed a generic method
for an automatic Pareto set segmentation and showed that the discovered segments can
be interpreted with respect to unsupervised feature selection.

These benefits can only be achieved if the optimization problem is posed in a sound
way. Although maximizing the number of features during feature selection might sound
surprising at first, this paradigm change can be motivated by the aim of unsupervised
learning: the search for descriptive, natural patterns. In particular, we have shown that
existing approaches to multi-objective unsupervised feature selection based on minimiza-
tion are not appropriate as they produce trivial or incomplete solution sets. Another
contribution of this approach is its applicability to other clustering algorithms than EM
or k-means. This is essential in applications in which clusters of any shape must be
found, e. g. by means of density based clustering algorithms.

This chapter will show an extension of these basic ideas for the case of unsupervised fea-
ture construction. We will discuss a novel, generalized framework for feature space trans-
formation in unsupervised knowledge discovery settings. Unsupervised feature space
transformation is also inherently multi-objective. To facilitate data exploration, trans-
formations should increase the quality of the result and should still preserve as much of

201

9. Multi-Objective Feature Space Transformation for Clustering

the original data set information as possible. We exemplify this relationship on the prob-
lem of data clustering. We have already seen that existing approaches to multi-objective
unsupervised feature selection do not pose the optimization problem in an appropriate
way. This was corrected in the previous chapter. However, using feature selection only
is often not sufficient for real-world knowledge discovery tasks. We propose a new, gen-
eralized framework based on the idea of information preservation presented in the last
chapter. This framework enables feature selection as well as a simple form of feature
construction for unsupervised learning.

9.1. Motivation for Feature Space Transformations

Many knowledge discovery problems cannot be solved accurately by using the original
feature space. This is due to several factors as noise, redundancy, sparsity or the fact that
standard learning algorithms cannot represent complex relationships. Both supervised
and unsupervised knowledge discovery therefore depend on methods that transform the
feature space in an appropriate way.

We have discussed a solution for unsupervised feature selection in the previous. However,
feature selection is only a limited form of feature space transformation. It can for example
not solve the problems of sparsity and feature interaction. Methods for feature space
reduction can be applied to reduce noise and sparsity before applying unsupervised
learning, e. g. Kernel-PCA [164]. Selecting appropriate parameters for new data sets is
non trivial. This is especially problematic as such methods lead to feature spaces that
are hard to interprete and resulting patterns are even harder to analyze.

The main limitation of these approaches is, however, that they do not reflect that feature
space transformation for unsupervised learning inherently is a multi-objective optimiza-
tion problem. We have seen, that for the task of feature selection the number of features
must be maximized instead of minimized in order to define a sound multi-objective unsu-
pervised feature selection setting. This change in the optimization direction also means
that the original space should not be completely changed - which perfectly corresponds
to the descriptive goal of the unsupervised learning.

We now try to transfer the basic idea of information preservation to the task of feature
construction. The general idea is to optimize the quality of the resulting patterns by
partially transforming the original feature space, i.e. the original data should be modified
as little as possible. This goal is clearly conflicting to the goal of optimizing a cluster
evaluation measure. It will, for example, be very easy to create a constant feature
yielding a global optimum for all clustering criteria known today.

202

9.2. Information Preserving Feature Aggregation

9.2. Information Preserving Feature Aggregation

We have motivated that merely selecting features is often not sufficient. First, sparse
data is a severe problem in many applications areas. For example in text clustering,
generalizing terms by adding superordinate terms can significantly improve the quality
of the result [67]. The same holds for association rule mining. Adding generalized fea-
tures which combine individual items to classes, enables the algorithm to find patterns,
which would not be valid in the original data space [171]. Second, many datasets con-
tain features produced by similar underlying processes, e.g. time series data. Popular
preprocessing approaches as moving average replace neighboring values by a generalized
value exploiting the assumption that neighbors are similar.

9.2.1. Definition of Feature Aggregation

In the following, we present a general formalism for feature aggregation. The goal is
to pairwise aggregate features as long as performance increases. On the other hand,
the feature space is not allowed to change too drastically because otherwise the found
clusters would hardly provide any insight into the actual structures in the data set.

The formalism proposed here is a straightforward generalization of the feature selection
framework presented in the previous chapter and should fulfill several requirements.
First, the constructed feature space should be easily interpretable in order to allow for
a quick inspection of the results. Second, the optimization problem should be posed in
a way that it can be solved efficiently. Third, as for selection, trivial solutions must be
avoided. This directly leads to the fact that aggregated values should deviate as little
as possible from both given feature values.

Definition 9.1 (Feature Aggregation Function) Let X denote the data set and Xr

a single feature. A feature aggregation function is a function f : Xr ×Xs → Xt

that maps two features to a new feature.

Please note that the newly aggregated feature replaces the arguments. In the following,
we state formal conditions that an aggregation function should fulfill in order to meet
the requirement stated above. As point of departure, we use the concept of a t-conorm,
that captures the notion of combining values by disjunction very naturally.

Definition 9.2 (t-Conorm) A function is a t-conorm if it fulfills the following
constraints:

1. Boundary condition: f(x, 0) = x

2. Commutativity: f(xr, xs) = f(xs, xr)

203

9. Multi-Objective Feature Space Transformation for Clustering

3. Associativity: f(f(xr, xs), xt) = f(xr, f(xs, xt))

4. Monotonicity: xr ≥ xs ⇒ f(xr, xt) ≥ f(xs, xt)

Associativity and commutativity ensure that the feature aggregation is order indepen-
dent, thus that the order in which features are aggregated does not have an influence
on the result. This considerably reduces the search space and leads to results that are
easier to interprete, as the system produces sets of features instead of trees. The bound-
ary condition ensures that the aggregation follows the notion of a disjunctive merging.
Monotonicity preserves the ordinal information in the data.

9.2.2. Information Preserving Feature Aggregation

The formalization of the feature aggregation presented in the last section, however, is
not sufficient to capture the notion of a minimal deviation. For example, it would still be
possible that f(x, x) 6= x. Thus, even if both features have the same value, the resulting
value would be different. This clearly violates the concept of merging two features and
altering them minimally. We therefore add an additional constraint that excludes such
functions:

Definition 9.3 (Information Preserving t-Conorm) A function is an informa-
tion preserving t-conorm if it is a t-conorm and fulfills the following minimal devi-
ation condition:

∀x, x′ ∈ X : ¬∃f ′(x, x′) : |f ′(x, x′)− x|+ |f ′(x, x′)− x′| < |f(x, x′)− x|+ |f(x, x′)− x′|.
(9.1)

This condition states that the aggregation function should always yield a merged value
that has a minimal deviation from both original values. In the following, we show that
from the t-conorm conditions and condition 9.1, two additional conditions can be derived
analytically. The first one is idempotence:

Definition 9.4 (Idempotence) A function fulfills idempotence iff f(x, x) = x.

Aggregation functions definitely should fulfill idempotence since it could hardly be mo-
tivated why an aggregated value should differ from identical function arguments. This
would not meet our notion of aggregation functions as it was motivated above. The
next lemma states the formal connection between information preservation and idempo-
tence:

Lemma 9.1 (Information Preservation and Idempotence) An information pre-
serving t-conorm f(x, x′) (fulfills condition 9.1) also fulfills idempotence.

Proof. Trivial.

204

9.2. Information Preserving Feature Aggregation

9.2.3. Domain Preserving Feature Aggregation

We need another property for our aggregation functions which will ensure that the
domain of the feature spaces will not change:

Definition 9.5 (Domain Preservation) A function fulfills domain preservation
iff min(x, x′) ≤ f(x, x′) ≤ max(x, x′).

Thus the merged value must be in the domain spanned by the input values. This is
again something we would expect from an aggregation function. The following theorem
states that our notion of information preserving t-conorms also already captured this
property:

Theorem 9.1 (Information and Domain Preservation) An information preserv-
ing t-conorm f(x, x′) (fulfills condition 9.1) also fulfills domain preservation.

Proof. We will prove by contradiction. For x = x′ the condition is trivially violated. We
have to prove four cases and assume that f(x, x′) > max(x, x′) and x > x′. Then:

|f(x, x′)− x|+ |f(x, x′)− x′| = (f(x, x′)− x) + (f(x, x′)− x′)

> (f(x, x′)− x) + (x− x′) ≥ (x− x′)

= |max(x, x′)− x|+ |max(x, x′)− x′|

Thus condition 9.1 is violated. The other cases can be shown analogously.

We have now stated the definition of feature aggregation functions and also the conditions
for information preserving and domain preserving aggregation functions. Both conditions
are very important to ensure only minimal deviations of the original feature space which
is desired for unsupervised feature space transformations. It it now very interesting that
the above conditions constraint the set of possible aggregation functions to exactly a
single one, the maximum function:

Theorem 9.2 (Maximum as Information Preserving t-Conorm) The maximum
function is the only aggregation function fulfilling all conditions stated above.

Proof. We will first show that for all t-conorms: f(x, x′), max(x, x′) ≤ f(x, x′). This is
actually a consequence from the boundary condition, the commutativity condition, and
the monotonicity condition in Definition 9.2. We prove by contradiction by assuming
that there exists a t-conorm f(x, x′) with f(x, x′) < max(x, x′). We will discuss the
case where x < x′, the other cases can be analogously shown. If x < x′, it holds that
f(x, x′) < x′ in our contradiction setting. Let now x > x0 = 0, then we can follow
from the monotonicity constraint that f(x, x′) ≥ f(x0, x

′) = f(0, x′) = x′ which is a
contradiction to f(x, x′) < x′.

205

9. Multi-Objective Feature Space Transformation for Clustering

On the other hand, the domain preservation conditions requires that f(x, x′) ≤ max(x, x′),
hence f(x, x′) = max(x, x′).

9.3. Criteria for Multi-Objective Unsupervised Feature Space

Transformations

Given the aggregation function, we still need to extend the performance measure pro-
posed in the previous chapter in order to capture feature aggregation as well. We have
seen that for mere feature selection the number nf of selected features is sufficient for
measuring the degree of feature space preservation. One of the surprising results of this
work is that this number should be maximized instead of minimized in the unsupervised
setting. We want to extend the proposed framework in a way that feature selection is
a special case of the more generic feature space transformation setting. We give two
conditions which must be fulfilled by this generalized cost measure:

Conditions 9.1 (Unsupervised Feature Space Transformation Measure) Let
nfo be the number of selected original, i.e. non-aggregated, features. Let nfa be the
number of aggregated features in the transformed feature set. For an unsupervised feature
space transformation measure nf the following must hold:

1. nf = nfo if the feature set does not contain any aggregated features.

2. Every aggregation must lead to a loss of −a with a > 0.

In the following we will assume a = 1. A very simple measure fulfilling these conditions
is given by nf = nfo +nfa. If no features were aggregated nfa is 0 and nf = nfo. Since
all aggregation functions must replace the input features, aggregating two original base
features reduces nfo by 2 and increases nfa by 1. Hence nf is totally increased by 1.
The same applies in the case of two already aggregated features or in the case of a merge
of one base feature with an already aggregated features. Hence, every aggregation leads
to the same loss of −1. Just as for the mere feature selection case the number nf should
be maximized.

Allowing the aggregation of features induce a representation change for the individuals
of the evolutionary algorithm. Individuals are still represented by vectors ~v of length
m. In contrast to the feature selection case, each coefficient of this vector is a number
vi ∈ [−1,max (v1, . . . , vm)]. This number vi represents the state of the i-th feature. −1
means that the feature is not selected at all. 0 means that the feature is used in its original
form. Any number greater than 0 means that the feature should be aggregated with
other features with the same number. This ensures that each feature is used at most once
in the complete set. The mutation operator performs a uniformly distributed random
change of each coefficient in the interval [−1,max (v1, . . . , vm) + 1]. This mutation is

206

9.4. Experiments and Results

Abbr. Properties n m k Results

IRIS-M Iris data set with divided features 150 8 3 (a)
KDDCUP-2004 quantum physics data (KDD 2004) 5000 78 2 (b)
NEWSGROUPS articles from three newsgroups 3000 1052 16 (c)

Table 9.1.: The used data sets for unsupervised feature space transformation.

performed with probability 1/m for each coefficient. The other parameters are the same
as in the special case of feature selection.

One important property of our approach is that the number of features is strictly mono-
tonically decreasing. This is important for the efficiency of the proposed method, as
increasing the number of features will decrease the runtime of the inner clustering algo-
rithm. In contrast to other feature construction approaches the used vector represen-
tation also ensures that the amount of memory is restricted to the start individual size
since the length m of the individuals does not change during the feature aggregation
process. Therefore, our approach can also be used for large scale unsupervised feature
selection and aggregation and is feasible even for large data sets with many features.

9.4. Experiments and Results

We analyze the properties of our generalized feature space transformation on several
synthetic and real-world data sets. The essential requirement is that the resulting Pareto
sets are as broad as possible. The worst case is a Pareto front that collapses into a
single point. All experiments were performed with the freely available machine learning
environment RapidMiner [125].

We applied the new unsupervised feature aggregation algorithm on one synthetic and
two real-world data sets. The properties of these data sets are summarized in Table 9.1.
For the data set IRIS-M we divided the values of the four Iris features into two parts A
and B resulting in a total of eight features. For each of the original feature values, we
randomly select one of the corresponding two new features as target and use the original
value as the value for this randomly chosen target feature. The value of the non-chosen
feature is set to a random value between 0 and the original value. This way the complete
original information can only be reconstructed by aggregating the correct features by
means of the maximum function. The KDDCUP-2004 data set consists of a sample of
5000 examples drawn from the quantum physics data of the KDD cup 2004. For the data
set NEWSGROUPS we combined three newsgroups of the well known 20-newsgroups
data set which results in 3000 examples.

207

9. Multi-Objective Feature Space Transformation for Clustering

 1

 2

 3

 4

 5

 6

 7

 8

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2

nu
m

be
r

of
 fe

at
ur

es

DB

all

max(a2A,a2B); max(a3A,a3B); a4B

Figure 9.1.: The Pareto fronts delivered by the unsupervised multi-objective feature
aggregation experiments on the IRIS-M data set. The Pareto sets still
cover the complete range of possible solutions from 1 until 8 features for
the IRIS-M data set. Additionally, features were only aggregated if this
combination was necessary.

 50

 55

 60

 65

 70

-0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01

nu
m

be
r

of
 fe

at
ur

es

DB

Figure 9.2.: The Pareto fronts delivered by the unsupervised multi-objective feature
aggregation experiments on the KDDCUP-2004 data set.

208

9.4. Experiments and Results

 595

 600

 605

 610

 615

 620

 625

 630

 635

 640

-4 -3.5 -3 -2.5 -2 -1.5 -1

nu
m

be
r

of
 fe

at
ur

es

DB

(a) NEWSGROUPS

Figure 9.3.: The Pareto fronts delivered by the unsupervised multi-objective feature
aggregation experiments on the NEWSGROUPS data set.

9.4.1. Interpretation of the Pareto Fronts

Figure 9.1, 9.2, and 9.3 shows the results for unsupervised feature space transformation.
The basic interpretation of the resulting Pareto fronts is equal to that for the simple
multi-objective feature selection case (see Section 6.2.1). The x-axis shows the negative
cluster criterion which is to be maximized and the y-axis shows the number of features
which also should be maximized. Hence, the complete front should again be moved to
the upper right part of the multi-objective optimization scheme.

For the IRIS-M data set, the complete range of solutions is covered by the resulting
Pareto set and the necessary features a2 and a3 were reconstructed by aggregation.
For KDDCUP-2004 a clear kink can be seen indicating redundant features which are
aggregated in the lower part of the vertical line. For both real-world data sets again a
broad range of the feature space is covered by the result which supports our claim that
our approach yields robust and useful solutions.

In the following paragraphs, we conclude our results for unsupervised feature space
transformations. We presented a novel multi-objective framework for feature space
transformation in clustering settings which plays an important role in a wide variety
of applications ranging from pattern recognition to customer relationship management
and web search. Clustering is an inherently multi-objective problem. There is usually

209

9. Multi-Objective Feature Space Transformation for Clustering

not one correct result as for supervised learning. Users rather explore the space of results
interactively to gain insight into the natural patterns within the data set.

The results in this chapter are based on the results in the previous one on multi-objective
feature selection for clustering. Since merely selecting features is not sufficient in many
settings, we extended the proposed approach to the task of feature construction. Espe-
cially the problems of sparse data and feature interactions cannot be properly solved by
feature selection only.

The last two chapters presented an approach that is based on the idea of information
preservation. As much of the original data space should be preserved as possible, while
the validity of the resulting clusters is optimized. We show that this approach yields
complete and useful Pareto sets. The original feature set and clusterings were found in
all cases. These Pareto sets moreover show a strong inner structure which can be used
to explore the set of solutions even more efficiently by inspecting only these interesting
points.

Furthermore, we extended our approach to allow for a limited form of feature construc-
tion as well. Aggregation is used to derive new features, that generalize over two or more
features in the original data set. A set of basic conditions limits feature construction
to the t-conorm maximum which summarizes two features with minimal alteration. We
show that even for feature aggregation our approach leads to robust Pareto sets.

Also, our approach is very generic. As it essentially adopts a wrapper approach, it can
be combined with a large variety of problems and algorithms. It is therefore easy to
adapt to new problems and application domains.

And this is the major result of the second part of this thesis: posing the optimization
problem of unsupervised feature selection and construction in a sound way by maximizing
the number of features solves the unsupervised feature space transformation problem for
a very first time.

210

CHAPTER 10

Feature Set Transfers

It is widely known that feature selection and construction is essential for solving many
complex learning problems. We have seen in the previous chapters how multi-objective
optimization can help to improve the results and increase the insight into the underlying
processes.

Unfortunately, the construction of features usually implies searching a very large space
of possibilities and is often computationally demanding. We now propose a case based
approach to feature construction which should overcome the issues connected to compu-
tation time. Learning tasks are stored together with a corresponding set of constructed
features in a case base and can be retrieved to speed up feature construction for new
tasks. The essential part of our method is a new representation model for learning tasks
and a corresponding distance measure. Learning tasks are compared using relevance
weights on a common set of base features only. Therefore, the case base can be built
and queried very efficiently. In this respect, our approach is unique and enables us to
apply case based feature construction not only on a large scale, but also in distributed
learning scenarios in which communication costs play an important role. We derive a dis-
tance measure for heterogeneous learning tasks by stating a set of necessary conditions.
Although the conditions are quite basic, they constrain the set of applicable methods to
a surprisingly small number.

10.1. Motivation for Feature Set Transfers

Many inductive learning problems cannot be solved accurately by using the original
feature space. This is due to the fact that standard learning algorithms cannot represent
complex relationships as induced for example by trigonometric functions or ratios. For
example, if only base features X1 and X2 are given but the target function depends

211

10. Feature Set Transfers

highly on Xc = sin(X1 ·X2), the construction of the feature Xc would ease learning and
most often is necessary to enable any reasonable predictions at all [17, 33, 89].

Unfortunately, feature construction is a computationally very demanding task often
requiring to search a very large space of possibilities [115, 114, 194]. In this chapter, we
consider a scenario in which several learners face the problem of feature construction on
different learning problems. The idea is to transfer constructed features between similar
learning tasks to speed up the generation in such cases in which a successful feature
has already been generated by another feature constructor. Such approaches are usually
referred to as Meta Learning [187].

Meta Learning was applied to a large variety of problems and on different conceptual
levels. The importance of the representation bias, which is closely related to feature
construction, was recognized since the early days of Meta Learning research [10, 11].
The key to many Meta Learning methods is the definition of similarity between different
learning tasks [12, 178]. Here, we propose a Meta Learning scheme that compares two
learning tasks using only relevance weights assigned to a set of base features by the
individual learners.

This is motivated by a set of constraints found in many distributed Meta Learning
scenarios. Firstly, the retrieval of similar learning tasks and relevant features usually
has to be very efficient, especially for interactive applications. This also means that
methods should enable a best effort strategy, such that the user can stop the retrieval
process at any point and get the current best result. Secondly, the system should scale
well with an increasing number of learning tasks. Also, it has to deal with a large
variety of heterogeneous learning tasks, as we cannot make any strict assumptions on
the individual problems. Finally, since many Meta Learning systems are distributed,
communication cost should be as low as possible. As a consequence, methods that are
based on exchanging examples or many feature vectors are not applicable.

Considering the given constraints, we develop and analyze a method for feature construc-
tion based on Meta Learning that estimates the distance of two learning tasks using only
base feature weights. All learners weigh a common set of base features according to their
relevance to the given learning task. Some of the learners, those that have already per-
formed feature construction, send these relevance weights and the constructed features
to a case base. From this case base, learners can retrieve possibly relevant features by
sending their own base feature weights. The central challenge is to find a measure that
compares two learning tasks using only base feature weights.

212

10.2. Basic Concepts

10.2. Basic Concepts

Before we state the conditions which must be met by any method comparing learning
tasks using feature weights only, we first introduce some basic definitions. Let τ be the
set of all learning tasks, a single task is denoted by Ti. Let Xi be a vector of numerical
random variables for task Ti and Yi another random variable, the target variable. These
obey a fixed but unknown probability distribution P (Xi, Yi). The components of Xi are
called features Xik. Please note that we have to add the index i in order to identify
the instance spaces Xi and also the features Xik which was not necessary in previous
chapters and thus omitted. We need this additional index variable since we now have to
distinguish between different learning tasks Ti represented by possibly different feature
sets Xi.

The objective of every learning task Ti is to find a function fi(Xi) which predicts the
value of Yi. We assume that each set of features Xi is partitioned in a set of base
features XB which are common for all learning tasks Ti ∈ τ and a set of constructed
features Xi \XB .

We now introduce a very simple model of feature relevance and interaction. The fea-
ture Xik is assumed to be irrelevant for a learning task Ti if it does not improve the
classification accuracy:

Definition 10.1 (Irrelevant Features) A feature Xik is called irrelevant for a
learning task Ti iff Xik is not correlated to the target feature Yi, i. e. if P (Yi|Xik) = P (Yi).

The set of all irrelevant features for a learning task Ti is denoted by Ii.

Two features Xik and Xil are alternative for a learning task Ti, denoted by Xik ∼ Xil,
if they can be replaced by each other without affecting the classification accuracy. For
linear learning schemes, this leads to the linear correlation of two features:

Definition 10.2 (Alternative Features) Two features Xik and Xil are called al-
ternative for a learning task Ti (written as Xik ∼ Xil) iff Xil = a + b · Xik with
b > 0.

In the following, we will denote those features which are either irrelevant or alternative
to one of the base features (and hence also irrelevant - at least they do not need to be
constructed) with the symbol A. Please note that the definition above is a very limited
definition of alternative features. However, we will show that most weighting algorithms
are already ruled out by conditions based on this simple definition.

213

10. Feature Set Transfers

Figure 10.1.: Overview of the case-based feature construction process. Source: [138].

10.3. Comparing Learning Tasks Efficiently

The objective of our work is to speed up feature construction and improve prediction
accuracy by building a case base containing pairs of learning tasks and corresponding
sets of constructed features. We assume that a learning task Ti is completely represented
by a feature weight vector wi. The vector wi is calculated from the base features XB

only. This representation of learning tasks is motivated by the idea that a given learning
scheme approximate similarly constructed features by a set of base features in a similar
way, e. g. if the constructed feature sin(Xik ·Xil) is highly relevant the features Xik and
Xil are relevant as well.

Our approach works as follows: for a given learning task Ti we first calculate the relevance
of all base features XB . We then use a distance function d (Ti, Tj) to find the k most
similar learning tasks. Finally, we create a set of constructed features as union of the
constructed features associated with these tasks.

This set is then evaluated on the learning task Ti. If the performance gain is sufficiently
high (above a given fixed threshold) we store task Ti in the case base as additional case.
Otherwise, the constructed features are only used as initialization for a classical feature
construction that is performed locally. If this leads to a sufficiently high increase in
performance, the task Ti is also stored to the case base along with the locally generated
features. See Figure 10.1 for an overview.

214

10.3. Comparing Learning Tasks Efficiently

While feature weighting and feature construction are well studied tasks, the core of our
algorithm is the calculation of d using only the relevance values w of the base features
XB . In a first step, we define a set of conditions which must be met by feature weighting
schemes. In a second step, a set of conditions for learning task distances is defined which
makes use of the weighting conditions.

Weighting Conditions 1 (Weighting Function Axioms) Let w be a weighting
function w : XB → R. Then the following must hold:

(W1) w(Xik) = 0 if Xik ∈ XB is irrelevant

(W2) Fi ⊆ XB is a set of alternative features. Then

∀S ⊂ Fi, S 6= ∅ :
∑

Xik∈S

w(Xik) =
∑

Xik∈Fi

w(Xik) = ŵ

(W3) w(Xik) = w(Xil) if Xik ∼ Xil

(W4) Let A be a set of features where

∀Xik ∈ A : (Xik ∈ Ii ∨ ∃Xil ∈ XB : Xik ∼ Xil) .

Then
∀Xil ∈ XB :6 ∃Xik ∈ A : Xil ∼ Xik ∧ w′(Xil) = w(Xil)

where w′ is a weighting function for X ′
B = XB ∪ A.

These conditions state that irrelevant features have weight 0 and that the sum of weights
of alternative features must be constant independently of the actual number of alter-
native features used. Together with the last condition this guarantees that a set of
alternative features is not more important than a single feature of this set. Obviously,
this is a desired property of a weighting function used for the comparison of learning
tasks. In the following we assume that for a modified space of base features X ′

B the func-
tion w′ denotes the weighting function for X ′

B according to the definition in (W4).

Additionally, we can define a set of conditions which must be met by distance measures
for learning tasks which are based on feature weights only:

Distance Conditions 1 (Distance Function Axioms) A distance measure d
for learning tasks is a mapping d : τ × τ → R

+ which should fulfill at least the following
conditions:

(D1) d(T1, T2) = 0⇔ T1 = T2

(D2) d(T1, T2) = d(T2, T1)

(D3) d(T1, T3) ≤ d(T1, T2) + d(T2, T3)

215

10. Feature Set Transfers

(D4) d(T1, T2) = d(T ′
1, T

′
2) if X ′

B = XB ∪ I and I ⊆ I1 ∩ I2
(D5) d(T1, T2) = d(T ′

1, T
′
2) if X ′

B = XB ∪A and ∀Xk ∈ A : ∃Xl ∈ XB :
Xk ∼ Xl

(D1)–(D3) represent the conditions for a metric. These conditions are required for
efficient case retrieval and indexing, using e. g. M-Trees [26]. (D4) states that irrelevant
features should not have an influence on the distance. Finally, (D5) states that adding
alternative features should not have an influence on distance.

10.4. Negative Results

In this section we will show that many feature weighting approaches do not fulfill the
conditions (W1)–(W4). Furthermore, one of the most popular distance measures, the
Euclidian distance, cannot be used as a learning task distance measure as it was intro-
duced above.

Lemma 10.1 (Feature Selection) Any feature selection method does not fulfill the
conditions (W1)–(W4).

Proof. For a feature selection method, weights are always binary, i. e. w(Xik) ∈ {0, 1}.
We assume a learning task Ti with no alternative features and X ′

B = XB ∪ {Xik} with
∃Xil ∈ XB : Xil ∼ Xik, then either w′(Xil) = w′(Xik) = w(Xil) = 1, leading to a
contradiction with (W2), or w′(Xil) 6= w′(Xik) leading to a contradiction with (W3).

Lemma 10.2 (Greedy Feature Weighting) Any (greedy) feature weighting method
for which w(Xik) is calculated independently of XB \Xik does not fulfill the conditions
(W1)–(W4).

Proof. We assume a learning task Ti with no alternative features and X ′
B = XB ∪{Xik}

with ∃Xil ∈ XB : Xil ∼ Xik. If w is independent of XB \ Xik adding Xik would
not change the weight w′(Xil) in the new feature space X ′

B . From (W3) follows that
w′(Xik) = w′(Xil) = w(Xil) which is a violation of (W2).

Lemma 10.2 essentially covers all feature weighting methods that treat features inde-
pendently such as Information Gain [147] or Relief [84].

The next theorem states that the Euclidian distance cannot be used as a distance measure
based on feature weights.

Theorem 10.1 (Euclidean Distance) Euclidean distance does not fulfill the condi-
tions (D1)–(D5).

216

10.5. Positive Results

Proof. We give a counterexample. We assume that a weighting function w is given
which fulfills the conditions (W1)–(W4). Further assume that learning tasks Ti, Tj are
given with no alternative features. We add an alternative feature Xik to XB and get
X ′

B = XB ∪ {Xik} with ∃Xil ∈ XB : Xil ∼ Xik. We infer from conditions (W2) and
(W3) that

w′(Xik) = w′(Xil) =
w(Xil)

2
and w′(Xjk) = w′(Xjl) =

w(Xjl)

2

and from condition (W4) that

∀p 6= k : w′(Xip) = w(Xip) and ∀p 6= k : w′(Xjp) = w(Xjp).

In this case, the following holds for the Euclidian distance

d(T ′
i , T

′
j) =

√

S + 2 (w′(Xik)− w′(Xjk))
2 =

√

S + 2

(
w(Xik)

2
− w(Xjk)

2

)2

=

√

S +
1

2
(w(Xik)−w(Xjk))2 6=

√

S + (w(Xik)− w(Xjk))
2 = d(Ti, Tj)

with

S =

|XB|
∑

p=1,p 6=k

(
w′(Xip)− w′(Xjp)

)2
=

|XB|
∑

p=1,p 6=k

(w(Xip)−w(Xjp))
2 .

10.5. Positive Results

We have shown that many common feature weighting algorithms and distance measures
cannot be used as learning task distance in our scenario. In this section we will prove
that a combination of feature weights delivered by a linear Support Vector Machine with
the Manhattan distance obeys the proposed conditions.

We have seen that SVMs aim to minimize the regularized risk Rreg(w, b) of a learned
function f which is the weighted sum of the empirical risk Remp(w, b) and a complexity
term ||w||2:

Rreg[f] = Remp(w, b) + λ||w||2.
The model parameters w and b correspond to the function class parameters γ known
from the introduction. The result is a linear decision function y = sgn(〈w, x〉+ b) with a
minimal length of w. The vector w is the normal vector of an optimal hyperplane with
a maximal margin to both classes. One of the strengths of SVMs is the use of kernel
functions to extend the feature space and allow linear decision boundaries after efficient
non-linear transformations of the input. Since our goal is the construction of (non-linear)

217

10. Feature Set Transfers

features during preprocessing we can just use the most simple kernel function which is
the dot product. In this case, the components of the vector w can be interpreted as
weights for all features.

Theorem 10.2 (SVM Weighting) The feature weight calculation of SVMs with
linear kernel function meets the conditions (W1)–(W4).

Proof. Since these conditions can be proved for a single learning task Ti we write Xk

and wk as a shortcut for Xik and w(Xik).

(W1) We assume that the SVM finds an optimal hyperplane. The algorithm tries to
minimize both the length of w and the empirical error. This naturally corresponds to
a maximum margin hyperplane where the weights of irrelevant features are 0 if enough
data points are given because otherwise the length ||w||2 of the normal vector w would
not be minimal.

(W2) SVMs find the optimal hyperplane by minimizing the weight vector w. Using
the optimal classification hyperplane with weight vector w can be written as y =
sgn (w1x1 + . . . + wixi + . . . + wmxm + b). We will show that this vector cannot be
changed by adding the same feature more than one time. We assume that all alternative
features can be transformed into identical features by normalizing the data. Adding
k − 1 alternative features will result in

y = sgn

. . . +
(

w1
i + . . . + wk

i

)

︸ ︷︷ ︸

alternative features

xi + . . . + b

.

However, the optimal hyperplane will remain the same and does not depend on the
number of alternative attributes. This means that the other values wj will not be
changed. This leads to

wi =
k∑

l=1

wl
i

which proofs condition (W2).

(W3) The SVM optimization minimizes the length of the weight vector w. This can be
written as

w2
1 + . . . + w2

i + . . . + w2
m

!
= min .

We replace wi using condition (W2):

w2
1 + . . . +

ŵ −
∑

j 6=i

wj

2

+ . . . + w2
m

!
= min .

218

10.5. Positive Results

In order to find the minimum we have to partially differentiate the last equation for all
weights wk:

∂

∂wk

. . . +

ŵ −
∑

j 6=i

wj

2

+ w2
k + . . .

 = 0

⇔ 2wk − 2

ŵ −
∑

j 6=i

wj

 = 0

⇔ wk +
∑

j 6=i

wj = ŵ.

The sum on the left side contains another wk for each derivation. This leads to a system
of linear equations of the form

...

. . . + 1 · wi−1 + 0 · wi + 1 · wi+1 + . . . + 1 · wk−1 + 2 · wk + 1 · wk+1 + . . . = ŵ

...

The coefficient 0 always stays at the same i-th position, the coefficient 2 moved across all
other positions but the i-th position. Solving this system of equations leads to wp = wq

(condition (W3)) for all pairs p and q.

(W4) We again assume that a SVM finds an optimal hyperplane given enough data
points. Since condition (W1) holds adding an irrelevant feature would not change the
hyperplane and thus the weighting vector w for the base features will remain. The
proofs of conditions (W2) and (W3) state that the optimal hyperplane is not affected
by alternative features as well.

In order to calculate the distance of learning tasks based only on a set of base feature
weights we still need a distance measure that met the conditions (D1)–(D5).

Theorem 10.3 (Manhattan Distance) Manhattan distance does fulfill the condi-
tions (D1)–(D5).

Proof. The conditions (D1)–(D3) are fulfilled due to basic properties of the Manhattan
distance. Therefore, we only give proofs for conditions (D4) and (D5).

219

10. Feature Set Transfers

(D4) We follow from the definition of the Manhattan distance that

d(T ′
i , T

′
j) =

∑

Xip,Xjp∈XB

|w′
i(Xip)− w′

j(Xjp)|+
∑

Xiq ,Xjq∈I

|w′
i(Xiq)−w′

j(Xjq)|

︸ ︷︷ ︸

0

= d(Ti, Tj)

from (W4).

(D5) We show the case for adding p features with ∀Xik : Xik ∼ Xil for a fixed Xil ∈ XB :

d(T ′
i , T

′
i) =

|XB|
∑

p=1,p 6=k

|w′
i(Xip)− w′

j(Xjp)|+ (p + 1) · |w′
i(Xik)− w′

j(Xjk)|

=

|XB|
∑

p=1,p 6=k

|wi(Xip)− wj(Xjp)|+ |wi(Xik)− wj(Xjk)| = d(Ti, Tj)

from (W4) and (W2).

Therefore, we conclude that SVM feature weights in combination with Manhattan dis-
tance fulfill the necessary constraints for an efficient learning task distance measure based
on feature weights.

10.6. Experiments and Results

All experiments were performed with the machine learning environment RapidMiner
[125].

10.6.1. Synthetical Data

In this section, we describe two experiments which were performed on synthetical re-
gression problems. All cases have an important property: linear regression schemes are
not able to predict the target function without applying some feature construction. Two
case bases containing maximal 1000 cases was generated. For each case the following
was done:

Example set generation: 300 examples with five base features were generated (plus
four alternatives for the second data set). The target variable obeys a randomly
created regression function containing the building blocks +, ∗, sin and exp. The
maximal depth of the target function was 3, the probability for leafs which does

220

10.6. Experiments and Results

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

(a) Synthetical base weights

-0.008

-0.006

-0.004

-0.002

 0

 0.002

-0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0 0.01

(b) Real world base weights

Figure 10.2.: The base feature weights of the synthetical test cases and for the real
world cases after a dimensionality reduction on two dimensions.

not contain another function was 0.3. These parameters could for example lead to
functions like X5 · eX2 + sin(X3), the features X1 and X4 were irrelevant for this
learning task example.

Weight calculation: The weights of the base features were calculated. We tried both
linear SVM weights and weights calculated by Relief [84].

Feature construction: An evolutionary approach for feature construction was used
to generate new features from the base features [115]. We used the following
parameters: 200 generations, population size 10, and crossover probability 0.5.

Adding the case: the weights and the constructed features were added to the case
base. Please note that the case base does not contain the data itself, information
about the target variable, or the learned hypothesis.

The first learning task does not contain any alternative features. The second data set
contains five alternatives for each feature to demonstrate the influence of the alternatives.
Figure 10.2 (a) shows the base feature weights of all cases of the first learning task after a
dimensionality reduction on two dimensions. The five main “axes” (the rays originating
from the center of the data set) represent the five base features, the outermost points
on each axis derive from the cases exp(exp(exp(Xi))). Cases between two axes contain
functional parts depending on both base features.

After creation of the case base, 200 test cases were created in the same manner but
without feature construction. We only performed feature construction on the test set
to determine the optimal relative error which can be achieved in the optimal feature
space. This minimal error was 2.93% and builds the bottom baseline for our comparison
experiments. The upper bound for the error is the average error for a regression model
on the base features only without any feature construction. In this case, the benchmark

221

10. Feature Set Transfers

 3

 3.5

 4

 4.5

 300 400 500 600 700 800 900 1000

re
la

tiv
e

er
ro

r

case base size

Random
Optimal construction

SVM + Manhattan
Relief + Euclidian

(a) Result for non-alternative data set

 1000

 2000

 3000

 4000

 5000

 150 200 250 300 350 400 450 500 550 600

sq
ua

re
d

er
ro

r

case base size

Random
SVM + Manhattan
Relief + Euclidian

Optimal

(b) Result for alternative data set

Figure 10.3.: The results of case based feature construction. The averaged relative
error of all 200 test cases is plotted against the number of cases used
as case base. The combination SVM weights plus Manhattan distance
clearly outperforms the combination Relief plus Euclidian distance. This
applies especially for data sets containing alternative features.

error is 4.70% and this error should of course be reduced by means of feature construction
and feature transfers.

The case based feature construction was performed with the constructed features of the
10 cases with minimal distance. Figure 10.3 shows the results. The averaged relative
errors of all 200 test cases was plotted against the number of cases used for the case base.
The plots show two curves for the combination of SVM feature weighting with Manhattan
distance and Relief weighting with Euclidian distance. For the first learning task without
alternative features, both approaches reduced the error beneath the benchmark error
of 4.70% for all examined case base sizes. As expected the combination SVM plus
Manhattan distance outperforms the combination of Relief plus Euclidian distance, at
least for sufficiently large case bases. This combination almost reaches the minimal
error 2.93% achieved by evolutionary feature construction. For data sets with several
alternative features, the combination Relief and Euclidian distance does not significantly
improve the performance.

Our approach fulfills the constraints presented above and can speed up the process of
feature construction considerably. The average time needed for the automatic construc-
tion of an optimal feature set without using the case base was 76.8 seconds. Using the
feature construction induced by the 20 most similar cases reduces the time needed for
learning to 0.8 seconds.

222

10.7. Exploiting the Similarity of Constructed Features

Method Accuracy

Base features only 64.7
Random 68.4
Euclidean 73.37
Manhattan 73.37

Table 10.1.: The achieved accuracy using base features only and feature recommen-
dations (based on Random, Manhattan, and Euclidian distances of base
feature weights).

10.6.2. Real World Data

We performed additional experiments using real world data based on the distributed
music retrieval and structuring application described in Section 10.1. Our experiments
are based on 39 taxonomies created by a group of students. The underlying audio data
consists of about 2000 audio clips from the Garageband site1. We used 24 randomly
chosen taxonomies for training and the remaining 15 for testing. The hierarchical classi-
fication problems are split into a set of flat, binary classification problems, by using each
inner node with two or more children as a split point. If there are more than two sub
nodes, two of them are selected at random. Also, all selected sub nodes have to contain
more than 30 examples, as very small example sets would add a considerable amount of
noise.

Random recommendation of features was compared with recommendations based on
Manhattan and Euclidian distance. Ten base features were used to compare the cases.
Figure 10.2 (b) shows the base feature weights of all cases after a singular value decom-
position. The accuracy was estimated by 10-fold cross validation. Table 10.1 shows the
results for the different approaches.

As can be seen, case based feature construction significantly improves the accuracy of
the learners. However, there is no difference between Manhattan and Euclidian distance.
This is due to the fact, that an optimized set of base features was used, that by construc-
tion contains only minimal redundancy. However, alternative features were the reason
to prefer Manhattan over Euclidian distance which might be important in cases where
alternative features exist.

10.7. Exploiting the Similarity of Constructed Features

In the previous sections, we discussed an approach to feature construction that is based
on Meta Learning. Learning tasks are stored together with a corresponding set of con-

1http://www.garageband.com

223

10. Feature Set Transfers

Figure 10.4.: We improve the usual evolutionary based feature construction algorithms
like those described in Chapter 6 and 7 by adding the discussed case base
feature retrieval as additional mutation. Source: [138].

structed features in a case base. This case base is then used to constrain and guide the
feature construction for new tasks.

Now we want to also take into account the information about the already constructed
features. This is for example necessary, if the case base should be queried multiple times.
This new query method consists essentially of the new data task representation model
from the previous section and a corresponding two step distance measure. Learning
tasks are first compared using relevance weights on a common set of base features only.
Such a case base can be built and queried very efficiently. In a second step, sampling is
used to compare the additionally constructed features to the base features.

This two-phase approach is unique as it enables us to apply case based feature con-
struction not only on a large scale, but also in distributed learning scenarios in which
communication cost plays an important role and as a part of generation based ran-
domized search heuristics like evolutionary algorithms. The idea is simply to add an
additional mutation performing the case base retrieval to the search process (see Figure
10.4). Using the two step process, the accuracy of recommendations can be increased
while not loosing the benefits of efficiency. The theoretical results are also confirmed
by experiments on both synthetical data and data obtained from a distributed learning
scenario on audio data.

224

10.7. Exploiting the Similarity of Constructed Features

Given: learning tasks ti and tj

total = 0;

for all constructed features Xik \ XB do {
dist = Infinity;

for all constructed features Xjl \ XB do {
dist = min(dist, calc distance(Xik, Xjl));

}
total = total + dist;

}
return total;

Figure 10.5.: The main routine to calculate the distance between two different feature
sets including constructed attributes.

10.7.1. Similarity of Constructed Features

In the last section, we discussed a distance measure on a set of common base features.
The calculations can be performed in linear time of both the number of training cases and
the number of features. Furthermore, since the measure is a metric, efficient indexing of
cases is possible using data structures like M-Trees.

However, if the base features are not sufficient to approximate the target function, the
base weights alone might be a poor indicator for learning task distance. In the following,
we introduce two extensions of the case based feature construction approach. First, we
incorporate the similarity of constructed features into the distance measure presented
above. This follows the idea that for similar learning tasks similar features must be
constructed. Without loss of generality, the constructed features can be modeled as
function trees. In the case of value series data the constructed features can be given as
method trees (see Chapter 7). In order to take the similarity of constructed features
into account, the distance between the feature trees must be calculated. It has been
shown that calculating the difference of two unordered labeled trees is an NP-complete
problem [200]. Approximations for this problem using syntactical heuristics are still not
feasible for large feature trees and case bases [85]. Additionally, the data distribution
is not considered by syntactical approaches. For example, sin(x) is very similar to x
for small absolute values of x but of course not for x → ∞. Therefore, we are using a
probabilistic sampling approach considering the ranges of interest instead of syntactical
heuristics. The main routine just compares each constructed feature of the first learning
task with all constructed features of the second learning task. The minimum distances
for all features are summed up and returned (Figure 10.5).

We employ a sampling approach for the routine calc distance which ensures that the
feature construction distance is calculated in some range of interest, i.e. with respect

225

10. Feature Set Transfers

Given: - base feature std. dev. σi and σj

- features Xik and Xjl

// calculate ranges

for (p = 1 until |XB|) do {
σp = min(σip,σjp);

}
// generate small artificial data set

artificial_data = empty;

for (i = 1 until m) do {
generate base feature data using σ;
construct Xik and Xjl on generated data;

}
// calculate correlation and return as distance

r = correlation(Xik,Xjl) on artificial_data;

return 1 - (r * r);

Figure 10.6.: The routine calc distance which calculates the distance between two
constructed features using a range sensitive sampling and the squared
correlation on a small artificially generated data set with size m.

to the data distributions in the base dimensions. Since the data does not need to
be accessible, the basic idea is to generate m artificial data points in the base space
XB and construct both features Xik and Xjl for this small artificial data set. The
distance can then be calculated with help of the correlation coefficient or the absolute
deviation of both constructed features. In order to ensure that the m artificial points
are generated in interesting ranges of all dimensions, the data ranges of all features must
be submitted to the case base in addition to the base feature weights. If the data is
mean standardized only the standard deviation must be transfered. Figure 10.6 shows
the sampling based algorithm calc distance using the squared correlation as feature
distance for constructed features.

Using a probabilistic sampling approach allows an estimation how the distance calcu-
lation varies with different possible samples. This way we are able to say how close or
far from the actual distance our estimation is likely to be [134]. Since the construction
of features can be done in O(1) (at least in the non-series case), the runtime of this
sampling approach is quadratic in the number of constructed features and linear in the
number m of sample points and cases, i.e. O(|Xi \ XB | · |Xj \XB | ·m) for each case.
Hence, this sampling based distance measure does not only consider the feature ranges
but is also feasible for large numbers of constructed attributes and cases.

The second extension to the case based feature construction approach introduced above
is to allow learners to query the case base repeatedly. We start using base features only

226

10.8. Experiments and Results

and add further features in each iteration until a given stopping criterion is fulfilled.
This can be a desired performance or a maximal amount of time. In each step, a learner
can construct features on its own, e.g. with help of an evolutionary feature construction
approach. This can also be seen the other way round: for an evolutionary approach the
retrieval of similar cases and construction of new features is just another mutation of
the input data.

10.7.2. Decreasing Runtime using a 2-Phase Distance Calculation

We have seen that the runtime of the discussed learning task similarity using constructed
features is more efficient than other approaches calculating the syntactical tree distance
of constructed features. However, a quadratic runtime might be too slow for real world
applications using huge case bases. In this section, we combine both the simple base
weight distance using SVM weights with Manhattan distance and the sampling based
construction distance. In a first phase, we employ only the base feature weight dis-
tance to find a candidate set of the k most promising cases. In a second phase, we
use a weighted combination of both, the weight distance and the construction sampling
distance introduced in the last section. This leads to a number of k′ cases from this
candidate set whose constructed features are also constructed for the case at hand. Of
course these steps can be embedded in the iterative learning process described above.
The parameter k allows an adaption of the trade-off between runtime and accuracy
depending on the application.

10.8. Experiments and Results

Again, all experiments were performed with the machine learning environment Rapid-
Miner [125]. We use data sets similar to those described in Section 10.6.1. A base
containing maximal 1500 cases was generated. For each case the following was done:

Example set generation: We employ the same data generation processes as in Sec-
tion 10.6.1 but generated 500 instead of 300 examples.

Weight calculation: The weights of the base features were calculated with a linear
SVM.

Feature construction: An evolutionary approach for feature construction was used to
generate new features from the base features [155] with the following parameters:
400 generations, population size 10, and crossover probability 0.5.

Adding the case: the standard deviations of the base features, the base weights, and
a syntactical description of the constructed features were added to the case base.

227

10. Feature Set Transfers

Size No. Random Euclidean Manhattan 2-Phase

50 ∞ ∞ 0.228 0.213 0.145
100 ∞ ∞ 0.201 0.196 0.106
250 ∞ 8.720 0.125 0.125 0.102
500 ∞ ∞ 0.126 0.125 0.105
1000 ∞ ∞ 0.120 0.119 0.106
1500 ∞ 4.010 0.121 0.116 0.106

Table 10.2.: The averaged relative errors for the different approaches. The symbol ∞
indicates that no result was produced in a reasonable amount of time.

Please note that the case base does not contain the data itself, information about
the target variable, or the learned hypothesis.

After creation of the case base the 241 test cases were created in the same manner but
without feature construction. It was not possible to reliably determine the averaged
relative error for these test cases without using feature construction since most SVM
runs does not converge. The relative error is defined as the absolute error divided by the
minimum of the prediction and the true value. The case based feature construction
was performed with the constructed features of the most similar case only. If this
case was randomly selected from the case base without using a distance measure, an
averaged relative error of 4.010 and 8.720 respectively could only be achieved for 1500
and 250 cases. For the other case base sizes it was also not possible to calculate an error
in a reasonable amount of time. All error estimations were done with a 10-fold cross
validation. Table 10.2 summarizes the results and Figure 10.7 plots the averaged relative
errors of all 241 test cases against the number of used training cases. The plot shows the
errors for the combination of SVM feature weighting and Manhattan distance and the
new 2-phase construction approach with Manhattan distance on the base feature weights
in the first phase (20 cases) and a construction sampling weight of 50. Both approaches
dramatically reduced the error compared to the randomly selected cases and the 2-phase
distance outperforms the base weight only distance. However, further experiments have
shown that increasing the number k′ of similar cases reduce the performance gain of the
2-phase approach.

Our approach fulfills the constraints presented above and can speed up the process of
feature construction considerably. The average time needed for the automatic construc-
tion of an optimal feature set without using the case base was 216.9 seconds. Using
the feature construction induced by the most similar case reduces the time needed for
learning to 2.18 seconds for the Manhattan distance and 3.67 seconds for the 2-phase ap-
proach. Using only the sampling construction distance also provides a very competitive
error of 0.109 but needs a runtime of 58.73 seconds for each case.

228

10.8. Experiments and Results

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0 200 400 600 800 1000 1200 1400 1600

SVM + Manhattan
2-Phase

Figure 10.7.: The results of case based feature construction. The averaged relative
error of all 241 test cases is plotted against the number of cases used
as case base. The 2-phase approach clearly outperforms the SVM plus
Manhattan distance.

The master thesis of Michael Nöthe provides additional insights into the performance
gain which can be achieved by using a case base feature retrieval as part of an evo-
lutionary feature construction algorithm [138]. In this work, the author extended the
supervised feature construction approach presented in Chapter 6 (called Yagga2) and
added an additional case base feature retrieval mutation to Yagga2. The resulting algo-
rithm, called Yagga3, queries the case base for the first time in the 5th generation and
then in each 10th generation anew by using the discussed 2-phase retrieval approach.
Figure 10.8 shows the performance of both algorithms depending on the current gen-
eration. It can clearly be seen that Yagga3 converges much faster and receives huge
performance gains in each lookup generation.

Another set of experiments was performed by Michael Nöthe on 10 different data sets
which show that the new Yagga3 approach is clearly better on most data sets. In the
first set of experiments (Figure 10.9), the total runtime of both approach was limited
to 100 seconds. The average results of 10 runs is reported for both algorithms. It can
clearly be seen that the new Yagga3 approach leads to smaller errors for most of the
data sets.

In a second set of experiments (Figure 10.10), the number of generations was limited
instead of the total runtime. We also used a larger number of cases which was retrieved
from the case base by using the 2-phase approach. For 2 cases, the results are already
much better than the Yagga2 approach without feature transfer as it was proposed in
Chapter 6. For 5 cases, the error is further reduced and for some data sets, errors cannot
be measured any longer.

229

10. Feature Set Transfers

Figure 10.8.: The performance of Yagga2 and Yagga3 with respect to the number of
generations. Yagga3 performs a case base lookup in the 5th, the 15th,
and the 25th generations which results in a clear performance gain and
faster convergence times. Source: [138].

Figure 10.9.: Average performance of 10 runs for 10 different data sets after a runtime
of 100 seconds. Both algorithms are performed 10 times on each data set.
The bars denote the average performance (root mean squared error) and,
hence, lower bars are better. It can clearly be seen that Yagga3 leads to
much smaller errors for most of the data sets. Although the standard de-
viations are not shown in this plot, Yagga3 delivers significantly better
results in 7 out of the 10 cases. Source: [138].

230

10.8. Experiments and Results

Figure 10.10.: Another comparison on the same 10 data sets between Yagga2 and
Yagga3. The generation number was limited to 100. The best 2 (5)
cases delivered for each retrieval process formed the base for feature
construction. Although not shown, Yagga3 based on 5 cases delivers
significantly better results in 9 out of the 10 cases. Source: [138].

Please note that the presented approach for feature transfers mainly depends on the
selection of a set of base features common for all learning tasks. But even if such a
common base feature set is found it must be ensured that the base features in the case
base are correctly mapped to (a subset of) features of a new learning task. A follow-up
work [138] presents a simple solution for this problem and discusses empirical results
demonstrating the success of this base feature mapping approach.

231

CHAPTER 11

Conclusion

The main goal of this work was to connect optimization techniques, especially those suit-
able for non-convex and multi-objective optimization problems, with data mining. We
have seen that statistical learning, which today is among the most successful data min-
ing paradigms, inherently defines a multi-objective optimization problem. We made this
problem explicit and removed the trade-off factor which has to be used otherwise. Since
there is no clear border between the actual learning phase and the preprocessing phase,
we tried to transfer the positive results from learning to feature space transformation
problems. This led to some interesting results, especially for the task of unsupervised
feature space transformations.

11.1. Multi-Objective and Non-Convex Learning

We started with a connection between evolutionary computation and statistical learn-
ing theory. The idea of large margin methods was very successful in many machine
learning and data mining applications. We used the most prominent representative of
this paradigm, namely Support Vector Machines, and employed evolution strategies and
particle swarm optimization in order to solve the constrained optimization problem at
hand. We developed a hybrid mutation which decreases convergence time while the
classification accuracy is preserved.

We have seen that evolutionary SVMs are at least as accurate as their quadratic pro-
gramming counterparts. For practical values of C, the evolutionary SVM variants fre-
quently outperformed their competitors. With respect to the original fitness function,
the evolutionary approach always outperform the traditional SVM. We can conclude
that evolutionary algorithms proved as reliable as other optimization schemes for this
type of problems.

233

11. Conclusion

We then demonstrated how the trade-off between training error and model complexity
can be made explicit. We divided the optimization problem of SVMs in two parts and
transformed both parts into its dual form of its own. These transformations reduce the
runtime for fitness evaluation and provide space for other well-known improvements like
incorporating arbitrary kernel functions for non-linear classification tasks which is the
key idea of SVMs.

We exploited the new objectives by employing a multi-objective evolutionary algorithm
after some consequences of the explicit trade-off optimization were discussed. These in-
clude the possibility of further reducing the runtime by using only parts of the objectives
and the optional usage of a hold-out set in order to produce a hint which areas of the
resulting Pareto front should be inspected by the user. This turns the Pareto front of all
solutions between minimal training error and minimal model complexity into a powerful
tool for controlling the overfitting of machine learning methods. For a first time, this
overfitting control does not have to be performed by the user (like setting the parameter
C for traditional SVM) but is automatically performed by a learning method. Please
note also that all information about these plots are collected in one single run of the
algorithm in contrast to wrapper approaches where the learner must be performed once
for each point of such an overfitting plot.

The idea of statistical learning theory, i.e. taking the model complexity into account, is
simple and appealing. Current approaches, however, did not make use of the inherent
trade-off but demanded the definition of a weighting factor of the conflicting criteria
from the user. The multi-objective evolutionary SVM proposed in this work is the first
solution explicitely solving the basic problem of statistical learning theory.

Besides the inherent advantages of evolutionary algorithms (e. g. parallelization, multi-
objective optimization of training error and capacity) it is now also possible to employ
non-positive semidefinite or indefinite kernel functions which would lead to unsolvable
problems for other optimization techniques. As the experiments have shown, an SVM
based on evolutionary computation is the first practical solution for this type of problem
and outperforms both traditional SVMs as well as Relevance Vector Machines.

Finally, we discussed a problem of high practical relevance which as well leads to a non-
convex optimization problem and can also be improved by multi-objective optimizations:
transductive learning. We defined and transformed all objectives into the dual form and
developed a new multi-objective evolutionary transductive SVM. Besides the fact, that
this solution again is able to deliver all results in one single optimization run there is a
quite more important conclusion: the multi-objective transduction SVM can be seen as
a formal connection between supervised and unsupervised learning. In the optimization
function of this SVM there is no difference between classification and clustering. It is
as simple as this: if no training data is given, we automatically get a clustering scheme.
If no test data is given, we end up with the traditional SVM for supervised learning.
If both is given, we have a semi-supervised learning scheme lying in between. Thus,

234

11.2. Multi-Objective Feature Space Transformations

analysts always get the full trade-off between these corner points in form of a 3D Pareto
front. This again is achieved with only one single optimization run instead of multiple
optimizations.

This formal connection between statistical classification and clustering together with the
automatic overfitting control possible in a single optimization run is the major result of
the first part of this thesis.

11.2. Multi-Objective Feature Space Transformations

In the second part of this work, we tried to transfer the idea of the regularized risk to
the problem of feature space transformations. We first discussed a measure for feature
space complexity before we employed this measure and introduced a simple solution for
multi-objective feature construction for supervised learning problems. This also includes
the problem of multi-objective supervised feature selection.

Thereafter, we discussed a novel way of supervised feature extraction based on genetic
programming. At first, operators for the analysis of large collections of series data have
been presented in a unifying structure. Some new operators have been developed, for
instance those in the phase space. Other operators have been generalized, for instance,
the windowing and mark-up operators. The operators are organized by method trees,
which extract complex features. All known feature extraction methods for the used audio
data sets are covered, either directly as an operator, or as the result of a method tree.
Many different method trees (features) can be built from the presented primitives. The
method trees are automatically generated for a certain classification task by a genetic
programming approach.

The construction of method trees has been restricted to functions at the first level,
chains concluded by a function at the second level, and to windows embedding chains at
higher levels. The complexity of windowings including methods of a certain complexity
has been investigated. It was shown under which circumstances windowing decreases
runtime, compared to processing the overall value series. Dynamic windowing with
reasonable parameters prevents the approach from becoming infinite or exponential in
the length of a series. The countable search space for method trees has been shown to be
very large but at least not infinite if each transformation is only allowed once. Despite
of this large search space, we can again employ a multi-objective selection scheme and
the result will be the Pareto front of possible extractions from the most simple to the
most accurate ones.

We then moved forward to the task of unsupervised feature selection and presented a
novel multi-objective evolutionary solution for feature selection in unsupervised machine
learning settings. We exemplified this approach on the task of data clustering which plays

235

11. Conclusion

an important role in a wide variety of applications ranging from pattern recognition to
customer relationship management and web search.

First, it turned out that clustering inherently is a multi-objective optimization problem.
There is usually not one correct result as for supervised learning. Users rather explore
the space of results interactively to gain insight into the natural patterns within the data
set. Second, the approach proposed in this work yields Pareto sets that show significant
inner structure. This structure is not accidental but reflects patterns in the underlying
data. We presented a generic method for an automatic Pareto set segmentation and
showed that the discovered segments can be interpreted with respect to unsupervised
feature selection. This turns clustering into a reference application of automatic Pareto
set analysis.

We argued that these benefits can only be achieved if the optimization problem has
been posed in a sound way. Although maximizing the number of features during feature
selection might sound surprising at first, this paradigm change can be motivated by the
aim of unsupervised learning: the search for descriptive, natural patterns. In particular,
we have shown that existing approaches do not pose the optimization problem in a sound
and robust way. We showed both analytically and empirically, that the corresponding
sets of Pareto optimal solutions collapse to a single, trivial solution.

Finally, we presented a multi-objective framework for feature space transformation in
clustering settings. This new approach is based on the idea of information preservation.
As much of the original data space should be preserved as possible, while the validity
of the resulting clusters is optimized. We extended our unsupervised feature selection
approach to allow for a limited form of feature construction as well. Aggregation is used
to derive new features, that generalize over two or more features in the original data
set. t-Conorms are a class of theoretically and empirically established generic aggregation
functions. They are a natural extension of disjunctions for continuous values, which have
proven to be essential for many data mining applications, e.g. generalized association
rules. A set of basic conditions limits feature aggregation to the t-conorm maximum
which summarizes two features with minimal alteration. We show that even for feature
aggregation our approach leads to robust Pareto sets. Our experiments support this
claim.

The last contribution of this work is a Meta Learning approach to feature construction
in order to speed-up the expensive feature space optimization runs. This feature transfer
approach compares tasks using relevance weights on a common set of base features only.
After stating some very basic conditions for such a distance measure, we have shown
that an SVM as base feature weighting algorithm and the Manhattan distance fulfill
these conditions, while several other popular feature weighting methods and distance
measures do not.

236

11.2. Multi-Objective Feature Space Transformations

We introduced some enhancements for this case based feature construction approach.
These enhancements include the distance calculation of already constructed features
using a sampling procedure in a 2-phase distance measure. We have then presented
experimental results indicating that our method can speed up feature construction con-
siderably. Our approach is therefore highly relevant for practical problems involving
feature construction.

The definition of a feature space complexity and the first solution for unsupervised
feature space transformations by posing a sound multi-objective optimization problem
together with the runtime improvements achieved by using feature transfers are the
major results of the second part of this thesis.

In total, we can conclude that the usage of multi-objective evolutionary algorithms can
enhance the power of both data mining (Part I) and preprocessing techniques (Part
II). The proposed algorithms can cope with non-convex optimization problems. The
inherent trade-off between error and complexity can now be made explicit and also
solved by employing multi-objective evolutionary optimization techniques. This led not
only to a formal connection between classification and clustering but also to an automatic
overfitting control for both learning and preprocessing as well.

237

Joint Work and Other Work by the Author

This chapter summarizes other work by the author and states the collaborations and
contributions of other authors to this work.

Joint Work

Some parts of this work are adapted versions of joint publications. In the following, the
individual contributions are described in detail.

Chapter 7
Automatic feature extraction from series data by means of genetic programming was
already the topic of the author’s masters thesis [106]. Large parts of this chapter builds
on the thesis and on a following joint publication with Katharina Morik [115]. For this
work, the author has improved smaller parts of the former publications and added the
feature space complexity measurement as well as the multi-objective optimization ap-
proach for the method tree creation.

Chapter 8
Multi-objective feature selection [123] is based on joint work with Michael Wurst who
contributed his highly acknowledged knowledge in the field of clustering schemes and
clustering evaluation methods.

Chapter 9
Multi-objective feature space transformations [124] is joint work with Michael Wurst
who again contributed his valuable knowledge of clustering schemes, evaluation mea-
sures, and aggregation methods.

239

11. Conclusion

Chapter 10
The idea for recommendations of feature transfers based on feature weights is the result
of joint work with Michael Wurst [120, 121, 122]. The weighting axioms and the corre-
sponding proofs are sole work of the author. The distance axioms and the corresponding
proofs are work of Michael Wurst. Some of the figures and empirical results were taken
from the master thesis of Michael Nöthe as it was stated in the text.

Other Publications

This section describes a selection of other publications of the author which were not used
as a base of this thesis. Since these publications are at least loosely connected to this
work this overview should serve as a starting point for further reading.

Collaborative Use of Features in a Distributed System for the Organization of Music
Collections [118] This work describes the singe-objective feature extraction approach
which was the basis for Chapter 7 together with the feature transfer known from Chap-
ter 10 and uses these techniques in order to support the collaborative structuring of
music collections.

Understandable models of music collections based on exhaustive feature generation
with temporal statistics [128] This work employs a large-scale feature construction
approach based on the phase space features discussed in Chapter 7. The goal was to
produce understandable models even in this high-dimensional data space.

A Benchmark Dataset for Audio Classification and Clustering [65] This work presents
a new benchmark data set consisting of freely accessible music files together with ex-
tracted features and 39 structures created during a student project.

Beatles vs. Bach: Merkmalsextraktion im Phasenraum von Audiodaten [103] This
work (German) discusses some new features which can be extracted from the phase space
(reconstruction of the state space) of audio data. The resulting features perform quite
well for different audio genre classification tasks.

Localized Alternative Cluster Ensembles for Collaborative Structuring [195] The
LACE algorithm is a novel solution for collaborative structuring tasks exploiting the
locally valid structures defined by others.

240

11.2. Multi-Objective Feature Space Transformations

Handling Local Patterns in Collaborative Structuring [119] This work defines a tax-
onomy for supervised and unsupervised learning tasks and introduces new learning tasks,
among them the LACE algorithm mentioned in this work.

Optimizing Process Plant Layouts [90] A comparison of different optimization tech-
niques for a layout problem of chemical plants. It turns out that for this type of problems
multi-objective evolutionary algorithms deliver the best results.

Incorporating Fuzzy Knowledge into Fitness: Multi-objective Evolutionary 3D Design
of Process Plants [107] Introduces the multi-objective evolutionary optimization for
layouts and combines it with a fuzzy logic based fitness function for 3D process plant
layouts.

On the Automated Creation of Understandable Positive Security Models for Web
Applications [18] This work presents a representation for the normal way of web ser-
vices accesses and discusses a simple approach to learn such a positive security models
from web log data.

A Flexible Platform for Knowledge Discovery Experiments: Yale – Yet Another
Learning Environment [113, 125] The official publications for the learning environ-
ment RapidMiner (formerly Yale) which is the base of all experiments of this work.

241

Bibliography

[1] D. W. Aha and Bankert R. L. A comparative evaluation of sequential feature
selection algorithms. In D. Fisher and H.-J. Lenz, editors, Learning from Data,
chapter 4, pages 199–206. Springer, 1996.

[2] David Aha, Dennis Kibler, and Marc Albert. Instance-based learning algorithms.
Machine learning Journal, 6:37–66, 1991.

[3] M. A. Aizerman, E. M. Braverman, and L. I. Rozonoer. Theoretical foundations
of the potential function method in pattern recognition learning. Automation and
Remote Control, 25:821–837, 1964.

[4] H. Almuallim and T. G. Dietterich. Learning with many irrelevant features. In
Proc. of the 9th National Conference on Artificial Intelligence, pages 547–552. MIT
Press, 1991.

[5] Gerhard Arminger and Norman Götz. Asymmetric loss functions for evaluating
the quality of forecasts in time series for goods management systems. SFB475–
Report 22, Universität Dortmund, 1999.

[6] T. Bäck, U. Hammel, and H.-P. Schwefel. Evolutionary computation: comments
on the history and current state. IEEE Trans. on Evolutionary Computation,
1(1):3–17, 1997.

[7] C. Bahlmann and H. Burkhardt. The writer independent on-line handwriting
recognition system frog on hand and cluster generative statistical dynamic time
warping. IEEE Trans. Pattern Anal. and Mach. Intell. (TPAMI), 26(3):299–310,
2004.

[8] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Programming
– an introduction: on the automatic evolution of computer programs and its appli-
cations. Morgan Kaufman, 1998.

243

Bibliography

[9] S. Baumann and T. Pohle. A comparison of music similarity measures for a p2p
application. In Proc. of the 6th International Conference on Digital Audio Effects,
London, UK, 2003.

[10] J. Baxter. Learning internal representations. In Proc. of the Eighth Annual Con-
ference on Computational Learning Theory (COLT 1995), pages 311–320. ACM
Press, 1995.

[11] J. Baxter. A model of inductive bias learning. Journal of Artificial Intelligence
Research, 12:149–198, 2000.

[12] S. Ben-David and R. Schuller. Exploiting task relatedness for multiple task learn-
ing. In Proc. of the Sixteenth Annual Conference on Learning Theory (COLT
2003), 2003.

[13] A. Ben-Hur, D. Horn, H.T. Siegelmann, and V. Vapnik. Support vector clustering.
Journal of Machine Learning Research, 2(1):125–137, 2001.

[14] H.-G. Beyer and H.-P. Schwefel. Evolution strategies: a comprehensive introduc-
tion. Journal Natural Computing, 1(1):2–52, 2002.

[15] E. Bloedorn and R. Michalski. Data-driven constructive induction: methodology
and applications. In Huan Liu and Hiroshi Motoda, editors, Feature Extraction,
Construction, and Selection – A Data Mining Perpective, chapter 4, pages 51 –
68. Kluwer, 1998.

[16] E. Bloedornm, J. Wnek, and R. Michalski. Multistrategy constructive induction.
In Proc. of the Second International Workshop on Machine Learning (MSL93).
Morgan Kaufman, 1993.

[17] A. L. Blum and P. Langley. Selection of relevant features and examples in machine
learning. Artificial Intelligence, pages 245–271, 1997.

[18] C. Bockermann, I. Mierswa, and K. Morik. On the automated creation of under-
standable positive security models for web applications. In Proc. of the Pervasive
Computing (PERCOM 2008), 2007.

[19] B. E. Boser, I. M. Guyon, and V. N. Vapnik. A traininig algorithm for optimal
margin classifiers. In Proc. of the 5th Annual ACM Workshop on Computational
Learning Theory, pages 144–152, 1992.

[20] E. Bradley. Intelligent Data Analysis: an introduction, chapter Time-Series Anal-
ysis. Springer, 1999.

[21] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and
Regression Trees. Wadsworth, Belmont, CA, 1984.

244

Bibliography

[22] C. Burges. A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2(2):121–167, 1998.

[23] C. Burges. Geometric methods for feature extraction and dimensional reduction:
A guided tour. Technical report, Microsoft Research, 2004.

[24] G. Camps-Valls, J.D. Martin-Guerrero, J.L. Rojo-Alvarez, and E. Soria-Olivas.
Fuzzy sigmoid kernel for support vector classifiers. Neurocomputing, 62:501–506,
2004.

[25] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vector machines, 2001.

[26] P. Ciaccia, M. Patella, and P. Zezula. M-tree: an efficient access method for
similarity search in metric spaces. In Proc. of 23rd International Conference on
Very Large Data Bases (VLDB 1997), pages 426–435. Morgan Kaufmann, 1997.

[27] C. A. Coello Coello. A comprehensive survey of evolutionary-based multiobjective
optimization techniques. Knowledge and Information Systems, 1(3):129–156, 1999.

[28] R. Collobert, Sinz, J. F. Weston, and L. Bottou. Large scale transductive SVMs.
Journal of Machine Learning Research, 7(1):1687–1712, 2006.

[29] J. W. Cooley and J. W. Tukey. An algorithm for the machine computation of the
complex Fourier series. Mathematics of Computation, 19:297–301, 1965.

[30] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. The MIT Press, 2001.

[31] D. Cox and F. O’Sullivan. Asymptotic analysis of penalized likelihood and related
estimators. Annals of Statistics, 18:1676–1695, 1990.

[32] G. B. Dantzig. Linear programming and extensions. Princeton University Press,
1966.

[33] M. Dash and H. Liu. Feature selection for classification. Intelligent Data Analysis,
1(3):131–156, 1997.

[34] D. L. Davies and D. W. Bouldin. A cluster separation measure. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 1(2):224–227, 1979.

[35] K. Deb and A. Kumar. Light beam search based multi-objective optimization using
evolutionary algorithms. In Proc. of the Congress on Evolutionary Computation
(CEC 2007), pages 2125–2132, 2007.

[36] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multi-objective
genetic algorithm: NSGA-II. Technical report, Kanpur Genetic Algorithms Labo-
ratory, Indian Institute of Technology, 2002.

245

Bibliography

[37] K. Deb and J. Sundar. Reference point based multi-objective optimization using
evolutionary algorithms. In Proc. of the 8th annual conference on Genetic and
evolutionary computation (GECCO 2006), pages 635–642, New York, NY, USA,
2006. ACM.

[38] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the em algorithm. Journal of the Royal Statistical Society, Series
B, 39(1):1–38, 1977.

[39] P. Deuflhard. Newton methods for nonlinear problems. Affine invariance and adap-
tive algorithms. Springer, 2004.

[40] S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1) evolutionary
algorithm. Technical Report Reihe CI 21/98, SFB 531, Universität Dortmund,
Germany, 1998.

[41] R. O. Duda and P. E. Hart. Pattern classification and scene analysis. John Wiley
& Sons, New York, 1973.

[42] J. P. Eakins, J. Edwards, J. Riley, and P. Rosin. A comparison of the effectiveness
of alternative feature sets in shape retrieval of multi-component images. In Proc. of
the SPIE 4315, Storage and Retrieval for Media Databases, pages 196–207, 2001.

[43] R. El-Yaniv, D. Pechyony, and V. Vapnik. Large margin vs. large volume in
transductive learning. Machine Learning, 72(3):173–188, 2008.

[44] C. Emmanouilidis, A. Hunter, and J. MacIntyre. A multiobjective evolutionary
setting for feature selection and a commonality-based crossover operator. In Proc.
of the Congress on Evolutionary Computation (CEC 2000), pages 309–316, 2000.

[45] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for dis-
covering clusters in large spatial databases with noise. In Proc. of the International
Conference on Knowledge Discorvery in Databases (KDD 1996), pages 226–231,
1996.

[46] J. P. Evans and R. E. Steuer. A revised simplex method for linear multiple objective
programs. Mathematical Programming, 5:375–377, 1973.

[47] T. E. Fawcett and P. E. Utgoff. Automatic feature generation for problem solving
systems. In Proc. of the 9th International Workshop on Machine Learning, pages
144–153, 1992.

[48] S. Fischer, R. Klinkenberg, I. Mierswa, and O. Ritthoff. YALE: Yet Another Learn-
ing Environment – tutorial. Technical Report CI-136/02, Collaborative Research
Center 531, University of Dortmund, 2002.

[49] R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals
of Eugenics, 7(2):179–188, 1936.

246

Bibliography

[50] N.S. Flann and T.G. Dietterich. Selecting appropriate representations for learning
from examples. In AAAI-86, pages 460–466, Philadelphia, 1986.

[51] R. Fletcher. Practical Methods of Optimization. Wiley, 2000.

[52] F. Fleuret and H. Sahbi. Scale-invariance of support vector machines based on the
triangular kernel. In Proc. of the Third International Workshop on Statistical and
Computational Theories of Vision (part of ICCV 2003), 2003.

[53] J. Foote. Content-based retrieval of music and audio. In In Multimedia Storage
and Archiving Systems II, Proc. of SPIE, pages 138–147, 1997.

[54] A. Freitas. Data mining and knowledge discovery with evolutionary algorithms,
chapter 3, pages 55–58. Springer, 2002.

[55] F. Friedrichs and C. Igel. Evolutionary tuning of multiple SVM parameters. In
Proc. of the 12th European Symposium on Artificial Neural Networks (ESANN
2004), pages 519–524, 2004.

[56] H. Fröhlich, O. Chapelle, and B. Schölkopf. Feature selection for support vector
machines using genetic algorithms. International Journal on Artificial Intelligence
Tools, 13(4):791–800, 2004.

[57] T. Gevers and H. M. G. Stokman. Robust histrogram construction from color
invariants for object recognition. IEEE Trans on Pattern Analysis and Machine
Intelligence, 26:113–118, 2004.

[58] A. Ghias, J. Logan, D. Chamberlin, and B. C. Smith. Query by humming: musical
information retrieval in an audio database. In Proc. of ACM Multimedia, pages
231–236, 1995.

[59] F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks
architectures. Neural Compuation, 7(2):219–269, 1995.

[60] G. Guo and S. Z. Li. Content-based audio classification and retrieval by support
vector machines. IEEE Trans. on Neural Networks, 14(1):209–215, 2003.

[61] B. Haasdonk. Feature space interpretation of SVMs with indefinite kernels. IEEE
Trans. on Pattern Analysis and Machine Intelligence, 27(4):482–492, 2005.

[62] J. A. Hartigan and M. A. Wong. A k-means clustering algorithm. Applied Statistics,
28(1):100–108, 1979.

[63] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning:
data mining, inference, and prediction. Springer Series in Statistics. Springer,
2001.

247

Bibliography

[64] J. H. Holland. Escaping brittleness: The possibilities of general–purpose learning
algorithms applied to parallel rule–based systems. In R. S. Michalski, J. G. Car-
bonell, and T. M. Mitchell, editors, Machine Learning – An Artificial Intelligence
Approach, volume 2, pages 593–624. Morgan Kaufmann, 1986.

[65] H. Homburg, I. Mierswa, B. Möller, K. Morik, and M. Wurst. A benchmark dataset
for audio classification and clustering. In Proc. of the International Symposium on
Music Information Retrieval (ISMIR 2005), 2005.

[66] J. Horn, N. Nafpliotis, and D. E. Goldberg. A niched pareto genetic algorithm
for multiobjective optimization. In Proc. of the First IEEE Conference on Evolu-
tionary Computation, IEEE World Congress on Computational Intelligence, pages
82–87. IEEE Service Center, 1994.

[67] A. Hotho, S. Staab, and G. Stumme. Ontologies improve text document clustering.
In Proc. of the IEEE International Conference on Data Mining (ICDM 2003),
2003.

[68] T. Howley and M.G. Madden. The genetic kernel support vector machine: De-
scription and evaluation. Artificial Intelligence Review, 2005.

[69] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM
Computing Surveys, 3(31):264–323, 1999.

[70] W. James and C. Stein. Estimation with quadratic loss. In Proc. of the Fourth
Berkeley Symposium on Mathematics, Statistics and Probability, pages 361–380,
1960.

[71] N. S. Jayant and P. Noll. Digital coding of waveforms: principles and applications
to speech and video. Prentice Hall, 1984.

[72] T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf,
C. Burges, and A. Smola, editors, Advances in kernel methods - support vector
learning, chapter 11. MIT Press, Cambridge, MA, 1999.

[73] T. Joachims. Transductive inference for text classification using support vector
machines. In Proc. of the 16th International Conference on Machine Learning,
1999.

[74] T. Joachims. Learning to classify text using support vector machines, volume 668.
Kluwer, 2002.

[75] T. Joachims. A support vector method for multivariate performance measures. In
Proc. of the International Conference on Machine Learning (ICML 2005), pages
377–384, 2005.

248

Bibliography

[76] G. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset selection
problem. In William W. Cohen and Haym Hirsh, editors, Proc. of the 11th Inter-
national Conference on Machine Learning ICML94, pages 121–129, San Francisco,
USA, 1994. Morgan Kaufmann.

[77] T. Kahveci and A. K. Singh. An efficient index structure for string databases.
In Proc. of the 27th International Conference on Very Large Data Bases (VLDB
2001), pages 352–360. Morgan Kaufmann, 2001.

[78] J. Kennedy and R. C. Eberhart. Particle swarm optimization. In Proc. of the In-
ternational Conference on Artificial Neural Networks (ICANN 1995), pages 1942–
1948, 1995.

[79] E. Keogh and M. Pazzani. An enhanced representation of time series which allows
fast classification, clustering and relevance feedback. In Proc. of the 4th Conference
on Knowledge Discovery in Databases (KDD 1998), pages 239–241, 1998.

[80] E. Keogh and P. Smyth. A probabilistic approach to fast pattern matching in
time series databases. In Proc. of the 3rd Conference on Knowledge Discovery in
Databases (KDD 1997), pages 24–30, 1997.

[81] Y. Kim, W. N. Street, and F. Menczer. Feature selection in unsupervised learning
via evolutionary search. In Proc. of the 6th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data mining (KDD 2000), pages 365–369.
ACM Press, 2000.

[82] Y. Kim, W. N. Street, and F. Menczer. Evolutionary model selection in unsuper-
vised learning. Intelligent Data Analysis, 6:531–556, 2002.

[83] G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions.
Journal of Mathematical Analysis and Applications, 33:82–95, 1971.

[84] K. Kira and L. Rendell. The feature selection problem: traditional methods and a
new algorithm. In Proc. of the Tenth National Conference on Artificial Intelligence,
pages 129–134. MIT Press, 1992.

[85] P. Klein. Computing the edit-distance between unrooted ordered trees. In Pro-
ceedings of the 6th Annual European Symposium, pages 91–102. Springer, 1998.

[86] R. Klinkenberg. Learning drifting concepts: Example selection vs. example weight-
ing. Intelligent Data Analysis (IDA), Special Issue on Incremental Learning Sys-
tems Capable of Dealing with Concept Drift, 8(3):281–300, 2004.

[87] R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial
Intelligence Journal, Special Issue on Relevance, 97(1–2):273–324, 1997.

249

Bibliography

[88] R. Kohavi and G. H. John. The wrapper approach. In H. Liu and H. Motoda, edi-
tors, Feature Extraction, Construction, and Selection: A Data Mining Perspective,
pages 33–50. Kluwer, 1998.

[89] D. Koller and M. Sahami. Toward optimal feature selection. In Proc. of the
13th International Conference on Machine Learning (ICML 1996), pages 129–134,
1996.

[90] H. Köpcke and I. Mierswa. Optimizing process plant layouts. In Proc. of the
6th International Symposium on Tools and Methods of Competitive Engineering
(TMCE 2006), 2006.

[91] J.R. Koza. Genetic Programming: on the programming of Computers by Means of
Natural Selection. MIT Press, 1992.

[92] F. Kurth and M. Clausen. Full-text indexing of very large audio data bases. In
110th Convention of the Audio Engineering Society, 2001.

[93] W. B. Langdon, T. Soule, R. Poli, and J. A Foster. The evolution of size and
shape. In Advances in Genetic Programming 3, pages 163–190. MIT Press, 1999.

[94] P. Langley. Elements of machine learning. Morgan Kaufmann, Inc. San Francisco,
California, 1996.

[95] N. Lavrac, D. Gamberger, and P. Turney. A relevancy filter for constructive in-
duction. In H. Liu and H. Motoda, editors, Feature Extraction Construction and
Selection – A Data Mining Perspective, pages 137–154. Kluwer, 1998.

[96] H.-T. Lin and C.-J. Lin. A study on sigmoid kernels for SVM and the training of
non-PSD kernels by SMO-type methods, 2003.

[97] Z. Liu, Y. Wang, and T. Chen. Audio feature extraction and analysis for scene
segmentation and classification. Journal of VLSI Signal Processing System, 20,
1998.

[98] G. Loy. Musicians make a standard: the MIDI phenomenon. Computer Music
Journal, 9(4), 1989.

[99] S. W. Mahfoud. Niching methods. In Evolutionary Computation 2: Advanced
Algorithms and Operators, pages 87–92. Institute of Physics Publishing, 2000.

[100] X. Mary. Hilbertian subspaces, subdualities and applications. PhD thesis, Institut
National des Sciences Appliquees Rouen, 2003.

[101] J. Mehnen, H. Traumann, and A. Tiwari. Introducing user preference using desir-
ability functions in multi-objective evolutionary optimisation of noisy processes. In
Proc. of the Congress on Evolutionary Computation (CEC 2007), pages 2687–2694,
2007.

250

Bibliography

[102] J. Mercer. Functions of positive and negative type and their connection with the
theory of integral equations. Philosophical Trans. of the Royal Society, A 209:415–
446, 1909.

[103] I. Mierswa. Beatles vs. Bach: Merkmalsextraktion im Phasenraum von Audio-
daten. In Proc. of the Annual National German Workshop on Machine Learning
(FGML 2003), 2003.

[104] I. Mierswa. Automatic feature extraction from large time series. In C. Weihs and
W. Gaul, editors, Proc. of the 28. Annual Conference of the GfKl 2004, pages
600–607. Springer, 2004.

[105] I. Mierswa. Automatic feature extraction from large time series. In A. Abecker,
S. Bickel, U. Brefeld, I. Drost, N. Henze, O. Herden, M. Minor, T. Scheffer, L. Sto-
janovic, and S. Weibelzahl, editors, Proc. of the Annual National German Work-
shop on Machine Learning (FGML 2004), 2004.

[106] I. Mierswa. Automatisierte Merkmalsextraktion aus Audiodaten. Master’s thesis,
Fachbereich Informatik, Universität Dortmund, 2004.

[107] I. Mierswa. Incorporating fuzzy knowledge into fitness: Multiobjective evolution-
ary 3d design of process plants. In Proc. of the Genetic and Evolutionary Compu-
tation Conference (GECCO 2005), 2005.

[108] I. Mierswa. Evolutionary learning with kernels: A generic solution for large mar-
gin problems. In Proc. of the Genetic and Evolutionary Computation Conference
(GECCO 2006), 2006.

[109] I. Mierswa. Making indefinite kernel learning practical. Technical report, Collab-
orative Research Center 475, University of Dortmund, 2006.

[110] I. Mierswa. Controlling overfitting with multi-objective support vector machines.
In Proc. of the Genetic and Evolutionary Computation Conference (GECCO 2007),
2007.

[111] I. Mierswa. Finding all local models in parallel: Multi-objective SVM, 2007. Talk
at the Dagstuhl Seminar on Local Models.

[112] I. Mierswa. Regularization through multi-objective optimization. In R. Klinken-
berg, I. Mierswa, A. Hinneburg, S. Posch, and S. Neumann, editors, Proc. of LWA
2007 - Lernen - Wissensentdeckung - Adaptivität, 2007.

[113] I. Mierswa, R. Klinkenberg, S. Fischer, and O. Ritthoff. A flexible platform for
knowledge discovery experiments: YALE – Yet Another Learning Environment.
In Proc. of the Annual National German Workshop on Machine Learning (FGML
2003), 2003.

251

Bibliography

[114] I. Mierswa and K. Morik. Learning feature extraction for learning from audio
data. Technical Report 55/04, Collaborative Research Center 475, University of
Dortmund, 2004.

[115] I. Mierswa and K. Morik. Automatic feature extraction for classifying audio data.
Machine Learning Journal, 58:127–149, 2005.

[116] I. Mierswa and K. Morik. Evolutionäre Aufzucht von Methodenbäumen zur
Merkmalsextraktion aus Audiodaten. Informatik Spektrum, Themenheft Musik,
28(5):381–388, 2005.

[117] I. Mierswa and K. Morik. Method trees: Building blocks for self-organizable repre-
sentations of value series. In Proc. of the Genetic and Evolutionary Computation
Conference (GECCO 2005), Workshop on Self-Organization in Representations
for Evolutionary Algorithms: Building complexity from simplicity, 2005.

[118] I. Mierswa, K. Morik, and M. Wurst. Collaborative use of features in a distributed
system for the organization of music collections. In Shen, Shepherd, Cui, and Liu,
editors, Intelligent Music Information Systems: Tools and Methodologies, pages
147–175. Information Science Reference, 2007.

[119] I. Mierswa, K. Morik, and M. Wurst. Handling local patterns in collaborative
structuring. In Florent Masseglia, Pascal Poncelet, and Maguelonne Teisserie,
editors, Successes and New Directions in Data Mining, pages 167–186. Information
Science Reference, 2007.

[120] I. Mierswa and M. Wurst. Efficient case based feature construction for heteroge-
neous learning tasks. Technical Report CI-194/05, Collaborative Research Center
531, University of Dortmund, 2005.

[121] I. Mierswa and M. Wurst. Efficient case based feature construction for heteroge-
neous learning tasks. In J. Gama et al., editor, Proc. of the European Conference
on Machine Learning (ECML 2005), LNAI 3720, pages 641–648. Springer, 2005.

[122] I. Mierswa and M. Wurst. Efficient feature construction by meta learning – guiding
the search in meta hypothesis space. In Proc. of the Internation Conference on
Machine Learning (ICML 2005), Workshop on Meta Learning, 2005.

[123] I. Mierswa and M. Wurst. Information preserving multi-objective feature selection
for unsupervised learning. In Proc. of the Genetic and Evolutionary Computation
Conference (GECCO 2006), 2006.

[124] I. Mierswa and M. Wurst. Sound multi-objective feature space transformation for
clustering. In In Proc. of the Knowledge Discovery, Data Mining, and Machine
Learning (KDML 2006), 2006.

252

Bibliography

[125] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. YALE: Rapid
prototyping for complex data mining tasks. In Proc. of the ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining (KDD 2006),
2006.

[126] S. Mika, B. Schölkopf, A. J. Smola, K.-R. Müller, M. Scholz, and G. Ratsch. Kernel
PCA and de–noising in feature spaces. In M. S. Kearns, S. A. Solla, and D. A.
Cohn, editors, Advances in Neural Information Processing Systems 11. MIT Press,
1999.

[127] B. L. Miller and M. J. Shaw. Genetic algorithms with dynamic niche sharing for
multimodal function optimization. Technical Report IlliGAL Report No. 95010,
Department of General Engineering, University of Illinois, 1995.

[128] F. Mörchen, I. Mierswa, and A. Ultsch. Understandable models of music collections
based on exhaustive feature generation with temporal statistics. In Proc. of the
12th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD-06), 2006.

[129] P. J. Moreno and P. P. Ho. A new SVM approach to speaker identification and
verification using probabilistic distance kernels. In Proc. of Eurospeech 2003, 2003.

[130] K. Morik. The representation race - preprocessing for handling time phenomena.
In Proc. of the European Conference on Machine Learning (ECML 2000), pages
4–19. Springer, 2000.

[131] K. Morik and S. Wessel. Incremental signal to symbol processing. In K. Morik,
M. Kaiser, and V. Klingspor, editors, Making Robots Smarter – Combining Sensing
and Action through Robot Learning, chapter 11, pages 185–198. Kluwer Academic
Publishers, 1999.

[132] M. Morita, R. Sabourin, F. Bortolozzi, and C. Y. Suen. Unsupervised feature selec-
tion using multi-objective genetic algorithms for handwritten word recognition. In
Proc. of the 7th International Conference on Document Analysis and Recognition
(ICDAR 2003), 2003.

[133] F. Murtagh. Clustering in massive data sets, pages 501–543. Kluwer Academic
Publishers, 2002.

[134] R. M. Neal. Probabilistic inference using markov chain monte carlo methods.
Technical report, Department of Computer Science, University of Toronto, 1993.

[135] J.A. Nelder and R. Mead. A simplex method for function minimization. Computer
Journal, 7:308–313, 1964.

[136] D.J. Newman, S. Hettich, C.L. Blake, and C.J. Merz. UCI repository of machine
learning databases, 1998. http://www.ics.uci.edu/∼mlearn/MLRepository.html.

253

Bibliography

[137] J. Nocedal and S. J. Wright. Numerical optimization. Springer, 2006.

[138] M. Nöthe. Erweiterung evolutionärer Merkmalskonstruktionen um Case Base Re-
trieval. Master’s thesis, Fachbereich Informatik, Universität Dortmund, 2008.

[139] A. L. Oliveira and A. Sangiovanni-Vincentelli. Constructive induction using a non-
greedy strategy for feature selection. In Proc. of the International Conference on
Machine Learning, pages 354–360. Aberdeen, 1992.

[140] C. Ong, X. Mary, S. Canu, and A. J. Smola. Learning with non-positive kernels.
In Proc. of the 21st International Conference on Machine Learning (ICML 2004),
pages 639–646, 2004.

[141] E. Osuna, R. Freund, and F. Girosi. Support vector machines: training and
applications. Technical Report AIM-1602, Massachusetts Institute of Technology,
1997.

[142] A. Osyczka. Multicriterion optimization for engineering design, chapter 7, pages
193–227. Academic Press, 1985.

[143] J. Pickens. A survey of feature selection techniques for music information re-
trieval. Technical report, Center of Intelligent Information Retrieval, Department
of Computer Science, University of Masschusetts, 1996.

[144] J. Platt. Advances in large margin classifiers, chapter Probabilistic outputs for
support vector machines and comparisons to regularized likelihood methods. MIT
Press, 1999.

[145] R. Poli, J. E. Rowe, and N. McPhee. Markov chain models for GP and variable-
length GAs with homologous crossover. In Proc. of the Genetic and Evolutionary
Computation Conference (GECCO-2001), pages 112–119, 2001.

[146] J. R. Quinlan. C4.5: Programs for Machine Learning. Machine Learning. Morgan
Kaufmann, San Mateo, CA, 1993.

[147] R. J. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.

[148] C. E. Rasmussen and J. Quinonero-Candela. Healing the relevance vector machine
through augmentation. In Proc. of the 22nd International Conference on Machine
learning (ICML 2005), pages 689–696. ACM Press, 2005.

[149] M. L. Raymer, W. F. Punch, E. D. Goodman, L. A. Kuhn, and A. K. Jain.
Dimensionality reduction using genetic algorithms. IEEE Trans. on Evolutionary
Computation, 4, 2000.

[150] I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Frommann-Holzboog, 1973.

254

Bibliography

[151] A. Ribbrock and F. Kurth. A full-text retrieval approach to content-based audio
identification. In International Workshop on Multimedia Signal Processing, 2002.

[152] D. Richardson. Some unsolvable problems involving elementary functions of a real
variable. Journal of Symbolic Logic, 33:514–520, 1968.

[153] F. Riesz and B. Nagy. Functional analysis. Frederick Ungar Publishing Co., 1955.

[154] O. Ritthoff and R. Klinkenberg. Evolutionary feature space transformation using
type-restricted generators. In Proc. of the Genetic and Evolutionary Computation
Conference (GECCO 2003), pages 1606–1607, 2003.

[155] O. Ritthoff, R. Klinkenberg, S. Fischer, and I. Mierswa. A hybrid approach to
feature selection and generation using an evolutionary algorithm. In John A.
Bullinaria, editor, Proc. of the 2002 U.K. Workshop on Computational Intelligence
(UKCI 2002), pages 147–154, 2002.

[156] E. Rivlin and I. Weiss. Deformation invariants in object recognition. Computer
Vision and Image Understanding, 65:95–108, 1995.

[157] J. P. Rosca. Generality versus size in genetic programming. In Genetic Program-
ming 1996: Proc. of the 1st Annual Conference, pages 381–387. Morgan Kaufman,
1996.

[158] V. Roth and T. Lange. Feature selection in clustering problems. In Proc. of Neural
Information Processing Systems (NIPS 2003), 2003.

[159] T. P. Runarsson and S. Sigurdsson. Asynchronous parallel evolutionary model
selection for support vector machines. Neural Information Processing, 3(3):59–67,
2004.

[160] S. Rüping. mySVM Manual. Universität Dortmund, Lehrstuhl Informatik VIII,
2000.
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/.

[161] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-based clustering in spa-
tial databases: The algorithm gdbscan and its applications. Data Minining and
Knowledge Discovery, 2(2):169–194, 1998.

[162] R. Schlittgen and B. H. J. Streitberg. Zeitreihenanalyse. Oldenburg, 2001.

[163] B. Schölkopf. The kernel trick for distances. In Todd K. Leen, Thomas G. Di-
etterich, and Volker Tresp, editors, Advances in Neural Information Processing
Systems 13, Papers from Neural Information Processing Systems (NIPS) 2000,
pages 301–307. MIT Press, 2001.

[164] B. Schölkopf and A. J. Smola. Learning with kernels – support vector machines,
regularization, optimization, and beyond. MIT Press, 2002.

255

Bibliography

[165] M. Seeger. Gaussian processes for machine learning. International Journal of
Neural Systems, 14(2):1–38, 2004.

[166] M. M. Silva, T. T. Maia, and A. P. Braga. An evolutionary approach to transduc-
tion in support vector machines. In Proc. of the Fifth International Conference on
Hybrid Intelligent Systems, pages 6–11, 2005.

[167] A. Smola, B. Schölkopf, and K.-R. Müller. General cost functions for support
vector regression. In Proc. of the 8th International Conference on Artificial Neural
Networks, pages 79–83, 1998.

[168] A. J. Smola, Z. L. Ovari, and R. C. Williamson. Regularization with dot-product
kernels. In Proc. of the Neural Information Processing Systems (NIPS 2000), pages
308–314, 2000.

[169] A. J. Smola and B. Schölkopf. A tutorial on support vector regression. Technical
report, NeuroCOLT2 Technical Report Series, 1998.

[170] T. Soule, J. A. Foster, and J. Dickinson. Code growth in genetic programming. In
Genetic Programming 1996: Proc. of the 1st Annual Conference, pages 215–223.
Morgan Kaufman, 1996.

[171] R. Srikant and R. Agrawal. Mining generalized association rules. In U. Dayal,
P. M. D. Gray, and S. Nishio, editors, Proc. of 21th International Conference on
Very Large Data Bases (VLDB 1995), pages 407–419. Morgan Kaufmann, 1995.

[172] I. Stahl. Predicate invention in inductive logic programming. In Luc DeRaedt,
editor, Advances in Inductive Logic Programming, pages 34 – 47. IOS Press, 1996.

[173] Statlib – datasets archive. http://lib.stat.cmu.edu/datasets/.

[174] D. Steuer. Multi-criteria-optimisation and desirability indices. Technical Re-
port 20, Universität Dortmund, FB Statistik, 1999.

[175] T. Storch. On the impact of objective function transformations on evolutionary
and black-box algorithms. In Proc. of the Genetic and Evolutionary Computation
Conference (GECCO 2005), pages 833–840, 2005.

[176] F. Takens. Detecting strange attractors in turbulence. In D. A. Rand and L. S.
Young, editors, Dynamical systems and turbulence, volume 898 of Lecture Notes
in Mathematics, pages 366–381. Springer, 1980.

[177] B. Taskar, V. Chatalbashev, D. Koller, and C. Guestrin. Learning structured pre-
diction models: A large margin approach. In Proc. of the International Conference
on Machine Learning (ICML 2005), 2005.

256

Bibliography

[178] S. Thrun and J. O’Sullivan. Discovering structure in multiple learning tasks: The
TC algorithm. In L. Saitta, editor, Proc. of the 13th International Conference on
Machine Learning (ICML 1996). Morgen Kaufmann, 1996.

[179] M. E. Tipping. Sparse bayesian learning and the relevance vector machine. Journal
of Machine Learning Research, 1:211–244, 2001.

[180] H. Trautmann and C. Weihs. On the distribution of the desirability index using
harringtons desirability function. Metrika, 63(2):207–213, 2005.

[181] G. Tzanetakis. Manipulation, analysis and retrieval systems for audio signals.
PhD thesis, Computer Science Department, Princeton University, 2002.

[182] G. Tzanetakis, G. Essl, and P. Cook. Automatic musical genre classification of
audio signals. In Proc. of the International Symposium on Music Information
Retrieval (ISMIR 2001), pages 205–210, 2001.

[183] H. Vafaie and K. De Jong. Evolutionary feature space transformation. In Huan
Liu and Hiroshi Motoda, editors, Feature Extraction, Construction, and Selection
– A Data Mining Perpective, pages 307–323. Kluwer, 1998.

[184] V. N. Vapnik. The nature of statistical learning theory. Springer, 1995.

[185] V. N. Vapnik. Statistical learning theory. Wiley, 1998.

[186] V. N. Vapnik and A. Chervonenkis. The necessary and sufficient conditions for
consistency in the empirical risk minimization method. Pattern Recognition and
Image Analysis, 1(3):283–305, 1991.

[187] R. Vilalta and Y. Drissi. A perspective view and survey of meta-learning. Artificial
Intelligence Review, 18(2):77–95, 2002.

[188] H. Wang, D. Bell, and F. Murtagh. Relevance approach to feature subset selection.
In H. Liu and H. Motoda, editors, Feature Extraction Construction and Selection
– A Data Mining Perspective, pages 85–99. Kluwer, 1998.

[189] C. Weihs, S. Berghoff, P. Hasse-Becker, and U. Ligges. Mathematical Statistics and
Biometrical Applications, chapter Assessment of purity of intonation in singing pre-
sentations by discriminant analysis, pages 395–410. Josef Eul, Bergisch-Gladbach,
Köln, 2001.

[190] I. Witten and E. Frank. Data mining: practical machine learning tools and tech-
niques. Morgan Kaufmann, 2005.

[191] J. Wnek and R. S. Michalski. Hypothesis–driven constructive induction in aq17: A
method and experiments. Reports of Machine Learning and Inference Laboratory P
91-9 MLI 91-4, Center for Artificial Intelligence, George Mason University, Fairfax,
VA 22030, 1991.

257

Bibliography

[192] W. H. Wolberg, W. N. Street, D. M. Heisey, and O. L. Mangasarian. Computer-
derived nuclear “grade” and breast cancer prognosis. Analytical and Quantitative
Cytology and Histology, 17:257–264, 1995.

[193] D. H. Wolpert and W. G. Macready. No free lunch theorems for search. Technical
Report SFI-TR-95-02-010, Santa Fé Institute, Santa Fé, CA., 1995.

[194] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimisation.
IEEE Trans. on Evolutionary Computation, 1:67–82, 1997.

[195] M. Wurst, K. Morik, and I. Mierswa. Localized alternative cluster ensembles
for collaborative structuring. In Johannes Fürnkranz, Tobias Scheffer, and Myra
Spiliopoulou, editors, Proc. of the European Conference on Machine Learning,
pages 485–496, Berlin, 2006. Springer.

[196] J. Yang and V. Honovar. Feature subset selection using a genetic algorithm. In
IEEE Intelligent Systems (Special Issue on Feature Transformation and Subset
Selection), volume 13, pages 44–49. Kluwer, 1998.

[197] B. Yi, H. Jagadish, and C. Faloutsos. Efficient retrieval of similar time series
under time warping. In Proc. of the 14th Conference on Data Engineering, pages
201–208, 1998.

[198] P. L. Yu and M. Zeleny. The set of all nondominated solutions in linear cases and a
multicriteria Simplex method. Journal of Mathematical Analysis and Applications,
49:430–468, 1975.

[199] A. Zellner. Bayesian estimation and prediction using asymmetric loss functions.
Journal of the American Statistical Association, 81:446–451, 1992.

[200] K. Zhang, J. T. L. Wang, and D. Shasha. On the editing distance between undi-
rected acyclic graphs and related problems. In Proc. of the 6th Annual Symposium
on Combinatorial Pattern Matching, pages 395–407. Springer, 1995.

[201] T. Zhang and C. Kuo. Content-based classification and retrieval of audio. In Proc.
of the Conference on Advanced Signal Processing Algorithms, Architectures, and
Implementations, 1998.

[202] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: a comparative
case study and the strength Pareto approach. IEEE Trans. on Evolutionary Com-
putation, 3(4):257–271, 1999.

258

Notes

259

Notes

260

Notes

261

Notes

262

Notes

263

Notes

264

