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Abstract. Feature construction is essential for solving many complex
learning problems. Unfortunately, the construction of features usually
implies searching a very large space of possibilities and is often compu-
tationally demanding. In this work, we propose a case based approach
to feature construction. Learning tasks are stored together with a corre-
sponding set of constructed features in a case base and can be retrieved
to speed up feature construction for new tasks. The essential part of
our method is a new representation model for learning tasks and a corre-
sponding distance measure. Learning tasks are compared using relevance
weights on a common set of base features only. Therefore, the case base
can be built and queried very efficiently. In this respect, our approach is
unique and enables us to apply case based feature construction not only
on a large scale, but also in distributed learning scenarios in which com-
munication costs play an important role. We derive a distance measure
for heterogeneous learning tasks by stating a set of necessary conditions.
Although the conditions are quite basic, they constraint the set of appli-
cable methods to a surprisingly small number.

1 Introduction

Many inductive learning problems cannot be solved accurately by using the
original feature space. This is due to the fact that standard learning algorithms
cannot represent complex relationships as induced for example by trigonometric
functions. For example, if only base features X1 and X2 are given but the target
function depends highly on Xc = sin(X1 ·X2), the construction of the feature Xc

would ease learning – or is necessary to enable any reasonable predictions at all
[1, 2, 3]. Unfortunately, feature construction is a computationally very demanding
task often requiring to search a very large space of possibilities [4, 5]. In this
work we consider a scenario in which several learners face the problem of feature
construction on different learning problems. The idea is to transfer constructed
features between similar learning tasks to speed up the generation in such cases
in which a successful feature has already been generated by another feature
constructor. Such approaches are usually referred to as Meta Learning [6].

Meta Learning was applied to a large variety of problems and on different
conceptual levels. The importance of the representation bias, which is closely
related to feature construction, was recognized since the early days of Meta
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Learning research [7, 8]. The key to many Meta Learning methods is the defini-
tion of similarity between different learning tasks [9, 10]. In this work we propose
a Meta Learning scheme that compares two learning tasks using only relevance
weights assigned to a set of base features by the individual learners.

This is motivated by a set of constraints found in many distributed Meta
Learning scenarios. Firstly, the retrieval of similar learning tasks and relevant
features usually has to be very efficient, especially for interactive applications.
This also means that methods should enable a best effort strategy, such that the
user can stop the retrieval process at any point and get the current best result.
Secondly, the system should scale well with an increasing number of learning
tasks. Also, it has to deal with a large variety of heterogeneous learning tasks,
as we cannot make any strict assumptions on the individual problems. Finally,
as many Meta Learning systems are distributed, communication cost should be
as low as possible. As a consequence, methods that are based on exchanging
examples or many feature vectors are not applicable.

2 Basic Concepts

Before we state the conditions which must be met by any method comparing
learning tasks using feature weights only, we first introduce some basic defini-
tions. Let T be the set of all learning tasks, a single task is denoted by ti. Let
Xi be a vector of numerical random variables for task ti and Yi another random
variable, the target variable. These obey a fixed but unknown probability distri-
bution Pr(Xi, Yi). The components of Xi are called features Xik. The objective
of every learning task ti is to find a function hi(Xi) which predicts the value of
Yi. We assume that each set of features Xi is partitioned in a set of base features
XB which are common for all learning tasks ti ∈ T and a set of constructed
features Xi \ XB.

We now introduce a very simple model of feature relevance and interaction.
The feature Xik is assumed to be irrelevant for a learning task ti if it does not
improve the classification accuracy:

Definition 1. A feature Xik is called irrelevant for a learning task ti iff Xik

is not correlated to the target feature Yi, i. e. if Pr(Yi|Xik) = Pr(Yi).

The set of all irrelevant features for a learning task ti is denoted by IFi.
Two features Xik and Xil are alternative for a learning task ti, denoted by

Xik ∼ Xil if they can be replaced by each other without affecting the classifica-
tion accuracy. For linear learning schemes this leads to the linear correlation of
two features:

Definition 2. Two features Xik and Xil are called alternative for a learning
task ti (written as Xik ∼ Xil) iff Xil = a + b · Xik with b > 0.

This is a very limited definition of alternative features. However, we will show
that most weighting algorithms are already ruled out by conditions based on
this simple definition.
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3 Comparing Learning Tasks Efficiently

The objective of our work is to speed up feature construction and improve pre-
diction accuracy by building a case base containing pairs of learning tasks and
corresponding sets of constructed features. We assume that a learning task ti is
completely represented by a feature weight vector wi. The vector wi is calculated
from the base features XB only. This representation of learning tasks is moti-
vated by the idea that a given learning scheme approximate similar constructed
features by a set of base features in a similar way, e. g. if the constructed feature
“sin(Xik · Xil)” is highly relevant the features Xik and Xil are relevant as well.

Our approach works as follows: for a given learning task ti we first calculate
the relevance of all base features XB. We then use a distance function d (ti, tj)
to find the k most similar learning tasks. Finally, we create a set of constructed
features as union of the constructed features associated with these tasks.

This set is then evaluated on the learning task ti. If the performance gain
is sufficiently high (above a given fixed threshold) we store task ti in the case
base as additional case. Otherwise, the constructed features are only used as
initialization for a classical feature construction that is performed locally. If this
leads to a sufficiently high increase in performance, the task ti is also stored to
the case base along with the locally generated features.

While feature weighting and feature construction are well studied tasks, the
core of our algorithm is the calculation of d using only the relevance values of
the base features XB. In a first step, we define a set of conditions which must
be met by feature weighting schemes. In a second step, a set of conditions for
learning task distance is defined which makes use of the weighting conditions.

Weighting Conditions. Let w be a weighting function w : XB → IR.
Then the following must hold:

(W1) w(Xik) = 0 if Xik ∈ XB is irrelevant
(W2) Fi ⊆ XB is a set of alternative features. Then

∀S ⊂ Fi, S �= ∅ :
∑

Xik∈S

w(Xik) =
∑

Xik∈Fi

w(Xik) = ŵ

(W3) w(Xik) = w(Xil) if Xik ∼ Xil

(W4) Let AF be a set of features where

∀Xik ∈ AF : (Xik ∈ IFi ∨ ∃Xil ∈ XB : Xik ∼ Xil) .

Then

∀Xil ∈ XB :� ∃Xik ∈ AF : Xil ∼ Xik ∧ w′(Xil) = w(Xil)

where w′ is a weighting function for X ′
B = XB ∪ AF .

These conditions state that irrelevant features have weight 0 and that the
sum of weights of alternative features must be constant independently of the
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actual number of alternative features used. Together with the last conditions this
guarantees that a set of alternative features is not more important than a single
feature of this set. Obviously, this is a desired property of a weighting function
used for the comparison of learning tasks. In the following we assume that for
a modified space of base features X ′

B the function w′ denotes the weighting
function for X ′

B according to the definition in (W4).
Additionally, we can define a set of conditions which must be met by distance

measures for learning tasks which are based on feature weights only:

Distance Conditions. A distance measure d for learning tasks is a mapping
d : T × T → IR+ which should fulfill at least the following conditions:

(D1) d(t1, t2) = 0 ⇔ t1 = t2
(D2) d(t1, t2) = d(t2, t1)
(D3) d(t1, t3) ≤ d(t1, t2) + d(t2, t3)
(D4) d(t1, t2) = d(t′1, t

′
2) if X ′

B = XB ∪ IF and IF ⊆ IF1 ∩ IF2

(D5) d(t1, t2) = d(t′1, t′2) if X ′
B = XB ∪ AF and ∀Xk ∈ AF : ∃Xl ∈ XB :

Xk ∼ Xl

(D1)–(D3) represent the conditions for a metric. These conditions are re-
quired for efficient case retrieval and indexing. (D4) states that irrelevant fea-
tures should not have an influence on the distance. Finally, (D5) states that
adding alternative features should not have an influence on distance.

4 Negative Results

In this section we will show that many feature weighting approaches do not
fulfill the conditions (W1)–(W4). Furthermore, one of the most popular distance
measures, the euclidian distance, cannot be used as a learning task distance
measure introduced above.

Lemma 1. Any feature selection method does not fulfill the conditions (W1)–
(W4).

Proof. For a feature selection method, weights are always binary, i. e. w(Xik) ∈
{0, 1}. We assume a learning task ti with no alternative features and X ′

B =
XB ∪ {Xik} with ∃Xil ∈ XB : Xil ∼ Xik, then either w′(Xil) = w′(Xik) =
w(Xil) = 1, leading to a contradiction with (W2), or w′(Xil) �= w′(Xik) leading
to a contradiction with (W3).

Lemma 2. Any feature weighting method for which w(Xik) is calculated inde-
pendently of XB \ Xik does not fulfill the conditions (W1)–(W4).

Proof. We assume a learning task ti with no alternative features and X ′
B =

XB ∪{Xik} with ∃Xil ∈ XB : Xil ∼ Xik. If w is independent of XB \Xik adding
Xik would not change the weight w′(Xil) in the new feature space X ′

B. From
(W3) follows that w′(Xik) = w′(Xil) = w(Xil) which is a violation of (W2).
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Lemma 2 essentially covers all feature weighting methods that treat features
independently such as information gain [11] or Relief [12]. The next theorem
states that the euclidian distance cannot be used as a distance measure based
on feature weights.

Theorem 3. Euclidean distance does not fulfill the conditions (D1)–(D5).

Proof. We give a counterexample. We assume that a weighting function w is
given which fulfills the conditions (W1)–(W4). Further assume that learning
tasks ti, tj are given with no alternative features. We add an alternative feature
Xik to XB and get X ′

B = XB ∪ {Xik} with ∃Xil ∈ XB : Xil ∼ Xik. We infer
from conditions (W2) and (W3) that

w′(Xik) = w′(Xil) =
w(Xil)

2
and w′(Xjk) = w′(Xjl) =

w(Xjl)
2

and from condition (W4) that

∀p �= k : w′(Xip) = w(Xip) and ∀p �= k : w′(Xjp) = w(Xjp).

In this case the following holds for the euclidian distance

d(t′i, t
′
j) =

√
S + 2 (w′(Xik) − w′(Xjk))2) =

√

S + 2
(

w(Xik)
2

− w(Xjk)
2

)2

=

√
S +

1
2

(w(Xik) − w(Xjk))2 �=
√

S + (w(Xik) − w(Xjk))2 = d(ti, tj)

with

S =
|XB |∑

p=1,p�=k

(w′(Xip) − w′(Xjp))2 =
|XB |∑

p=1,p�=k

(w(Xip) − w(Xjp))2 .

5 Positive Results

In this section we will prove that a combination of feature weights delivered by
a linear Support Vector Machine (SVM) with the Manhattan distance obeys the
proposed conditions. Support Vector Machines are based on the work of Vapnik
in statistical learning theory [13]. They aim to minimize the regularized risk
Rreg[f ] of a learned function f which is the weighted sum of the empirical risk
Remp[f ] and a complexity term ||w||2:

Rreg[f ] = Remp[f ] + λ||w||2.

The result is a linear decision function y = sgn(w ·x+b) with a minimal length of
w. The vector w is the normal vector of an optimal hyperplane with a maximal
margin to both classes. One of the strengths of SVMs is the use of kernel functions
to extend the feature space and allow linear decision boundaries after efficient
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nonlinear transformations of the input [14]. Since our goal is the construction of
(nonlinear) features during preprocessing we can just use the most simple kernel
function which is the dot product. In this case the components of the vector w
can be interpreted as weights for all features.

Theorem 4. The feature weight calculation of SVMs with linear kernel function
meets the conditions (W1)–(W4).

Proof. Since these conditions can be proved for a single learning task ti we write
Xk and wk as a shortcut for Xik and w(Xik).

(W1) Sketch We assume that the SVM finds an optimal hyperplane. The
algorithm tries to minimize both the length of w and the empirical error. This
naturally corresponds to a maximum margin hyperplane where the weights of
irrelevant features are 0 if enough data points are given.

(W2) SVMs find the optimal hyperplane by minimizing the weight vector
w. Using the optimal classification hyperplane with weight vector w can be
written as y = sgn (w1x1 + . . . + wixi + . . . + wmxm + b). We will show that
this vector cannot be changed by adding the same feature more than one time.
We assume that all alternative features can be transformed into identical features
by normalizing the data. Adding k − 1 alternative features will result in

y = sgn

⎛

⎜⎝. . . +
(
w1

i + . . . + wk
i

)
︸ ︷︷ ︸
alternative features

xi + . . . + b

⎞

⎟⎠ .

However, the optimal hyperplane will remain the same and does not depend on
the number of alternative attributes. This means that the other values wj will
not be changed. This leads to wi =

∑k
l=1 wl

i which proofs condition (W2).
(W3) The SVM optimization minimizes the length of the weight vector w.

This can be written as

w2
1 + . . . + w2

i + . . . + w2
m

!= min .

We replace wi using condition (W2):

w2
1 + . . . +

⎛

⎝ŵ −
∑

j �=i

wj

⎞

⎠
2

+ . . . + w2
m

!= min .

In order to find the minimum we have to partially differentiate the last equation
for all weights wk:

∂

∂wk

⎛

⎜⎝. . . +

⎛

⎝ŵ −
∑

j �=i

wj

⎞

⎠
2

+ w2
k + . . .

⎞

⎟⎠ = 0

⇔ 2wk − 2

⎛

⎝ŵ −
∑

j �=i

wj

⎞

⎠ = 0 ⇔ wk +
∑

j �=i

wj = ŵ
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The sum on the left side contains another wk. This leads to a system of linear
equations of the form . . . + 0 · wi + . . . + 2 · wk + . . . = ŵ. Solving this system of
equations leads to wp = wq (condition (W3)).

(W4) Sketch We again assume that a SVM finds an optimal hyperplane given
enough data points. Since condition (W1) holds adding an irrelevant feature
would not change the hyperplane and thus the weighting vector w for the base
features will remain. The proofs of conditions (W2) and (W3) state that the
optimal hyperplane is not affected by alternative features as well.

In order to calculate the distance of learning tasks based only on a set of
base feature weights we still need a distance measure that met the conditions
(D1)–(D5).

Theorem 5. Manhattan distance does fulfill the conditions (D1)–(D5).

Proof. The conditions (D1)–(D3) are fulfilled due to basic properties of the man-
hattan distance. Therefore, we only give proofs for conditions (D4) and (D5).

(D4) We follow from the definition of the manhattan distance that

d(t′i, t
′
j) =

∑

Xip,Xjp∈XB

|w′
i(Xip) − w′

j(Xjp)| +
∑

Xiq ,Xjq∈IF

|w′
i(Xiq) − w′

j(Xjq)|

︸ ︷︷ ︸
0

= d(ti, tj)

from (W4).
(D5) Sketch We show the case for adding k features with ∀Xik : Xik ∼ Xil

for a fixed Xil ∈ XB:

d(t′i, t
′
i) =

|XB |∑

p=1,p�=k

|w′
i(Xip) − w′

j(Xjp)| + (k + 1) · |w′
i(Xik) − w′

j(Xjk)|

=
|XB |∑

p=1,p�=k

|wi(Xip) − wj(Xjp)| + |wi(Xik) − wj(Xjk)| = d(ti, tj)

from (W4) and (W2).

Therefore, we conclude that SVM feature weights in combination with man-
hattan distance fulfill the necessary constraints for an efficient learning task
distance measure based on feature weights.

6 Conclusion and Outlook

We presented a Meta Learning approach to feature construction that compares
tasks using relevance weights on a common set of base features only. After stat-
ing some very basic conditions for such a distance measure, we have shown that
a SVM as base feature weighting algorithm and the manhattan distance fulfill
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these conditions, while several other popular feature weighting methods and dis-
tance measures do not. In [15] we have presented experimental results indicating
that our method can speed up feature construction considerably. Our approach
is therefore highly relevant for practical problems involving feature construction.
Some limitations of the work presented here are the following. Firstly, our def-
inition for alternative or exchangeable features is rather simple and should be
generalized to a weaker concept as e. g. highly correlated features. Also, complex
interactions between features are not covered by our conditions. However, it is
very interesting that the conditions stated in this work are already sufficient to
rule out large sets of feature weighting methods and distance measures. Finally,
the assumption of estimating the distance of constructed features by the distance
of base features is well motivated, though it would be interesting to analyze this
relationship analytically to get a better estimation in which cases our approach
can be successfully applied.
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