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ABSTRACT
Data mining in large collections of polyphonic music has re-
cently received increasing interest by companies along with
the advent of commercial online distribution of music. Im-
portant applications include the categorization of songs into
genres and the recommendation of songs according to musi-
cal similarity and the customer’s musical preferences. Mod-
eling genre or timbre of polyphonic music is at the core of
these tasks and has been recognized as a difficult problem.
Many audio features have been proposed, but they do not
provide easily understandable descriptions of music. They
do not explain why a genre was chosen or in which way one
song is similar to another. We present an approach that
combines large scale feature generation with meta learning
techniques to obtain meaningful features for musical simi-
larity. We perform exhaustive feature generation based on
temporal statistics and train regression models to summa-
rize a subset of these features into a single descriptor of a
particular notion of music. Using several such models we
produce a concise semantic description of each song. Genre
classification models based on these semantic features are
shown to be better understandable and almost as accurate
as traditional methods.
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1. INTRODUCTION
The advent of commercial online distribution of music

brings up interesting problems that can be tackled with data
mining technologies. Many tasks are still performed largely
manually, e.g. the categorization of new music into gen-
res or the detailed analysis of music by the Music Genome
Project1. A (partial) automation of the musical gene extrac-
tion could speed up this ongoing endeavor. The recommen-
dation of music to customers can be performed with itemset
methods just like for books or other products. This way
only well known music is covered, new or less know music
is hardly ever recommended. Direct analysis of polyphonic
audio data can help to solve these problems [35].

Confronted with music data, data mining encounters a
new challenge of scalability. Music databases store millions
of records and each item contains up to several million val-
ues. The solution to overcome this issue is to extract features
from the audio signal which leads to a strong compression
of the data set at hand. Many different audio features ex-
tracted from polyphonic music have been proposed for differ-
ent applications in music information retrieval (e.g. [19, 39,
20, 29, 22, 25]). Artist and genre classification or retrieval
of similar music can be performed with machine learning
methods utilizing these features. The models can be used
for the automatic creation of taxonomies on websites or in
music recommendation systems.

The basis of most methods is the extraction of short-term
features describing the audio content of small time windows.
The sequence of short-term features is commonly aggre-
gated, e.g., with mean and standard deviation [39], in order
to obtain long-term features describing several seconds or
minutes of music. Recently, authors have started to use the
temporal structure of short-term feature for aggregation [30,
20, 3, 25, 21]. The bag of frames [43] methods alternatively
summarize the short-term features with mixture models or
vector quantization [19, 2].

Many authors use features motivated by heuristics on mu-
sical structure [39] and psychoacoustic analysis of frequency
and modulation of sound [29]. But not all features need to be
relevant for a particular task. Further, distance calculations
using very high dimensional vectors [29] can be problematic,
because these vectors spaces are inherently sparse and tend
to be equidistant [1]. Feature selection techniques can be
used to optimize the performance and create smaller repre-

1http://www.pandora.com



sentations [20, 25]. Even learning such representations can
be performed [22, 27], this is however not feasible for large
scale applications.

Almost all proposed representations of music are, how-
ever, hard to understand. The result of applying signal pro-
cessing and statistical methods can not easily be explained
to the common user of music applications. One notable ex-
ception is the approach described in [5]. Short-term audio
features are mapped to zero or one depending on the mem-
bership in genre or artist categories using supervised learn-
ing with feed-forward neural nets. The output of each neu-
ral net can then be interpreted as the similarity of the short
segment to other segments of songs from a genre or artist.
These short-term semantical features are subsequently sum-
marized with a mixture model, that cannot easily be used
to explain the music recommendations made by the system.

Our work can be seen as the combination of the large scale
generation of long-term audio features in [25] with the se-
mantical modeling of [5]. We use logistic regression [16] in
order to obtain concise and interpretable features summariz-
ing a subset of the complicated features generated directly
from polyphonic audio. Each resulting feature describes the
probability of a complete song belonging to a certain group
of similar music. In comparison to [25] we better utilize the
power of the large scale feature generation, because more
features are used. The dimensionality of the final representa-
tion is kept low through of the summarization by the regres-
sion models. Additionally, each feature of this small feature
set corresponds to a group of songs. This enables users to
easily understand these semantic models compared to mod-
els learned from short-term or long-term features alone.

First, some related work is discussed in Section 2 in order
to motivate our approach. The large scale audio feature gen-
eration is explained in Section 3. The methods we propose
for semantic modeling of musical similarity are described in
Section 4. The results are presented in Section 5 and dis-
cussed in Section 6. A summary is given in Section 7.

2. RELATED WORK AND MOTIVATION
Machine Learning has shown its benefits in many applica-

tions on music data [46, 11]. Since many machine learning
methods also rely on a good similarity measure between in-
stances, the success of these methods also depends on the
quality of the feature sets.

Musical similarity can be modeled using a set of short-
term Mel Frequency Cepstral Coefficient (MFCC, e.g. [33])
vectors summarized with a so-called bag of frames [43], i.e.
the result of a vector quantization method or Gaussian mix-
ture models [19, 2, 43]. This representation make distance
calculations between songs problematic. Comparing the Gaus-
sian mixture models of two songs requires calculation of the
pairwise likelihood that each song was generated by the
other song’s model. This representation cannot easily be
used with machine learning algorithms that require the cal-
culation of a centroid. It also scales badly with the number
of songs, because the pairwise similarities of all songs need
to be stored [4].

The seminal work of Tzanetakis [40, 39] is the foundation
for many musical genre classification methods. A single fea-
ture vector is used to describe a song, opening the problem
for many standard machine learning methods. Many follow-
ups of this approach tried to improve it by using different
features and/or different classifiers. For example wavelet

based features with Support Vector Machines (SVM) and
Linear Discriminant Analysis [18] or linear predictive coef-
ficients (LPC) and SVM [45].

In [29] several high-dimensional vector feature sets were
compared to bag of frames representations measuring the ra-
tio of inner to inter class distances of genres, artists, and al-
bums. The vector-based representation with Spectrum His-
togram performed best.

The above methods all rely on general purpose descrip-
tions of music. The ground truth of genre or timbre cate-
gories was not used in the construction of the feature sets,
except maybe as guidelines for the heuristics used in the fea-
ture design and selection of parameters. In contrast, tim-
bre similarity was modeled in [25] by selecting only few fea-
tures of a large candidate set based on the ground truth of
a manually labeled music collection. The timbre features
outperformed existing general purpose features on several
independent music collections.

Most audio features are extracted from polyphonic audio
data by a sequence of processing steps involving sophisti-
cated signal processing and statistical methods. But only
few like beats per minute are understandable to the typical
music listener. Much effort has been put into developing
highly specialized methods using musical and psychological
background knowledge to derive semantic descriptions e.g.
of rhythm, harmony, instrumentation, or intensity (see [13]
for a summary). The results are, however, often only un-
derstandable to musical experts. The calculation of musical
similarity by combining the heterogeneous descriptions for
each song is further challenging in itself.

In [5] short-term MFCC features are mapped to more ab-
stract features describing the similarity to a certain genre or
artist. This way, short segments of a song can be described
by saying that they sound like country with a certain prob-
ability. The vectors of semantical short term features of a
complete song are summarized with mixture models, how-
ever, partly destroying the understandability of the results.

We combine the exhaustive generation of long-term audio
features [25] with the semantical modeling of [5] to generate
interpretable features each describing the probability of a
complete song to belong to a certain group of music.

Using the predictions of several such learned models in or-
der to derive a final decision is known as ensemble learning
[7]. Our approach is loosely related to stacking [44]. Stack-
ing learns the same concept on different subsamples of the
data set. Then, the predictions of the learned models build a
new feature set which is used to learn a final decision model.
In contrast, we learn different concepts on the same sample.
For each concept a possibly different feature set is selected
and aggregated.

3. AUDIO FEATURE GENERATION
The raw audio data of polyphonic music is not suited for

direct analysis with data mining algorithms. It contains
various sound impressions that are overlayed in a single (or
a few correlated) time series. These time series cannot be
compared directly in a meaningful way. The sound of poly-
phonic music is commonly described by extracting audio
features on short time windows during which the sound is
assumed to be stationary. We call these descriptors short-
term features. The down sampled time series of short-term
feature values can be aggregated to form so-called long-term
features describing the music. We introduced many vari-



Table 1: Music collections. For ISMIR04 the group
Jazz also contains Blues and Rock also contains Pop

Genre GTZAN ISMIR MAB RADIO

Alternative 145

Blues 100 120

Classical 100 640

Country 100 206

Dance 100 204

Electronic 229 113

Folk 222

Funk 47

Hiphop 100 300 208

Jazz 100 52 319 201

Metal 100 90 206

Pop 100 116

Reggae 100

Rock 100 203 504

Soul 205

World 224 201

size 1000 1438 1567 1431

ants of existing short-term features and the consistent use
of temporal statistics for long-term features in [25]. The
cross-product of short- and long-term functions leads to a
large amount of audio features describing various aspects of
the sound that we generated with the publically available
MusicMiner[26]2 software.

We used four disjoint data sets for the evaluation of our
method. The GTZAN collection was first used in [39] for
classification of musical genre. The ISMIR04 corpus was
used in the ISMIR’04 genre classification contest3. The Mu-
sical Audio Benchmark (MAB) [14]4 data was collected from
www.garageband.com. Finally, we collected songs from in-
ternet RADIO stations listed on www.shoutcast.com choos-
ing seven distinct genres. The collections are summarized
in Table 1.

The audio data was reduced to mono and a sampling fre-
quency of 22kHz. To reduce processing time and avoid lead
in and lead out effects, a 30s segment from the center of each
song was extracted. For MAB only 10s were available and
for GTZAN the given 30s segment was used. The window
size was 23ms (512 samples) with 50% overlap. Thus for
each short-term feature, a time series with 2582 time points
at a sampling rate of 86Hz was produced.

We used the short-term features listed in Table 2. For
more details on the features please refer to the original pub-
lications listed or [26]. Including some variants obtained by
preprocessing the features, e.g., the logarithm of the Chroma
features, a total of 140 short-term features was generated.

The long-term features are listed in Table 3. The most
simple static aggregations are the empirical moments of the
probability distribution of the feature values. We used the
first four moments, robust variants by removing the largest

2http://musicminer.sf.net
3ismir2004.ismir.net/genre_contest/index.htm
4http://www-ai.cs.uni-dortmund.de/audio.html

Table 2: Short-term features

Name Features

Volume [17] 2

Zerocrossing [17] 2

Lowenergy [39] 2

SpectralCentroid [17] 2

SpectralBandwidth [17] 2

BandEnergyRatio [17] 2

SpectralRolloff [17] 2

SpectralCrestFactor [17] 2

SpectralFlatnessMeasure [17] 2

SpectralSlope [22] 2

SpectralYIntercept [22] 2

SpectralError [22] 2

Mel Magnitudes [33] 34

MFCC [33] 34

Chroma [10] 48

total 140

and smallest 2.5% of the data prior to estimation, the me-
dian, and the median absolute deviation (MAD). These ten
statistics are also applied to the first and second order dif-
ferences and the first and second order absolute differences,
generating 40 additional features (∆ and ∆2 moments).

The first 10 values of the autocorrelation function and
slope, intercept, and error of a linear regression of the au-
tocorrelation are used to capture the correlation structure.
The spectral centroid and bandwidth as well as the same
three regression parameters as above are used to describe
the spectrum of the short-term feature time series. Similar
to the short-term MFCC, the first 10 cepstrum coefficients
of the short-term feature time series are also extracted.

As in [20] the modulation energy was measured in three
frequency bands: “1-2Hz (on the order of musical beat rates),
3-15Hz (on the order of speech syllabic rates) and 20-43Hz
(in the lower range of modulations contributing to percep-
tual roughness)”. The absolute values were complemented
by the relative strengths obtained by dividing each through
the sum of all three.

Non-linear analysis of time series [15] offers an alternative
way of describing temporal structure that is complementary
to the analysis of linear correlation and spectral properties.
Similar to the raw audio processing in [22] the reconstructed
phase space [36] is used with an embedding dimension of
two and time lags 1-10 to obtain a 2-dimensional time series
from the univariate short-term features. The moments of
the distances and angles in this phase space representation
generate a total of 200 long-term feature functions.

The crossproduct of short- and long-term feature func-
tions amounts to 140 × 284 = 39, 760 long-term audio fea-
tures5. The framework is easily capable of producing several
hundred thousand features by activating more short- and
long-term modules. Obviously, this can take a lot of com-
putation time and memory. The above feature set requires

5The complete list of features can be obtained by emailing
the first author.



Table 3: Long-term feature functions

Functions Features

Moments: mean(·), std(·), skew(·), kurt(·), mean5%(·), std5%(·), skew5%(·), kurt5%(·), median(·), mad(·) 10

Differences: {∆(·), abs(∆(·)),∆2(·), abs(∆2(·))} × moments 40

Autocorrelation: ac1(·), ..., ac10(·), slope(ac(·)), yint(ac(·)), regerr(ac(·)) 13

Spectrum: centroid(·), bandwidth(·), slope(·), yint(·), regerr(·) 5

Cepstrum: cepstrum1(·), ..., cepstrum10(·) 10

Modulation: mod1−2(·), mod3−15(·), mod20−43(·), nmod1−2(·)), ..., nmod20−43(·) 6

Phasespace: { PS2,1(·), ..., PS2,10(·) } × { angles(·), dists(·) } × moments 200

total 284

a reasonable 115 seconds per song on a 2.6GHz system. We
also considered an extended feature set. We added variants
of the MFCC short-term features using different frequency
scales (Bark [47], Equivalent Rectangular Bandwidth (ERB)
[23], and Octave) and different orthonormal decompositions
(Discrete Cosine Transform and Haar wavelet decomposi-
tion). Additional long-term features describe the temporal
structure of distances and angles in the phase space. The
resulting 688.000 values per song required 40 minutes per
song. This made experiments with a large number of songs
infeasible with our current resources.

4. SEMANTIC AUDIO FEATURES
In the last section we discussed how each song is described

with about 40,000 features. Of course it would be possible
to directly use these features in order to learn a classifica-
tion model which separates the given songs according to the
ground truth at hand. However, there are two drawbacks:
first, using the complete feature set will cause the usual
problems of classification in such high dimensional space,
namely curse of dimensionality and higher run times. Sec-
ond, the short-term and long-term features are rather techni-
cal and derived from signal processing, psychoacoustic, and
time series analysis techniques. Models learned from up to
40,000 of these complicated features can hardly be under-
stood by end users.

The goal is to simplify the feature set by aggregating the
relevant features from the exhaustive feature set into new
concise and powerful features. Therefore, we adapt a meta
learning idea known as stacking [44]. In contrast to Stacking
we do not learn the same concept on different subsamples
but different concepts on the same sample.

Let D be the data set describing these different concepts.
D is called ground truth since the feature aggregation pro-
cess relies on the quality of the concepts described by this
data set. The concepts which should be learned are defined
by a partition of the data set into classes, i. e. D1 . . . DK

such that Dk ∩ Dl 6= ∅ ⇒ Dk = Dl and D =
SK

k=1 Dk.
Note, that each data point d ∈ D corresponds to a song
represented by the 40,000 features discussed in the previous
section.

We can now define K learning tasks based on the classes
Dk. For each k we try to separate Dk from D \ Dk. We
use Bayesian logistic regression in order to train models for
these K classification tasks. The predictions of this learn-
ing scheme can directly be interpreted as the likelihood that
a given example belongs to the learned class. Since the

values are already normalized, it is not necessary to apply
post-processing scaling schemes after learning a classifica-
tion function.

Using Laplace priors for the influence of each feature leads
to a built-in feature selection that reduces runtime and avoids
over-fitting of the final model. In comparison with Gaussian
priors, the Laplace has more weight closer to zero. Irrele-
vant features are more likely to have final weights of exactly
zero excluding them from the model. This corresponds to
“a prior belief that a small portion of the variables have a
substantial effect on the outcome while most of the others
are most likely unimportant” [9] and is equivalent [9] to the
lasso method [37, 12]. We used the BBR[9]6 software with
Laplace priors and auto selection of the parameter λ.

We applied a robust z-transformation to each long-term
feature and a logistic regression learner for each of the K

classification tasks. This leads to K models predicting the
likelihood that an unseen song belongs to class k. For exam-
ple, if Dk represents all Jazz songs in the ground truth data
set D, we learn a model separating these Jazz songs from
songs of other genres, i.e. from D \ Dk. Using this model
we are able to predict for a new song how “jazzy” it sounds,
even if it is not a song from the Jazz genre itself. Note, that
the method is by no means restricted to genre classes, any
ground truth related to the sound properties can be used.

Using these likelihood predictions as new feature set re-
duces the amount of features from 40,000 to K. In our
experiments we used genre classification data sets as the
ground truth with K < 10. The predictions of the logistic
regression models thus strongly compress the most relevant
temporal statistics derived from the long song segments.

Figure 1 shows the overview of our proposed process. In
the training phase a large number of short-term and long-
term features is generated from the audio data. The regres-
sion models are trained for each musical aspect resulting in
semantical features that can be used e.g. to train a classi-
fier. For new audio data, only those short-term and long-
term features need to be generated that have been found
relevant by at least one regression learner. The music can
be classified with the previously trained classifier, or a new
classifier can be trained using the semantical features of the
original training data. Alternatively, the features could be
used for other music mining tasks like visualization of music
collections or playlist generation.

5. EVALUATION
6http://www.stat.rutgers.edu/~madigan/BBR



Figure 1: Proposed semantic modeling of music for music mining tasks like genre classification.

Table 4: Precision, recall, and number of selected
features for the logistic regression models of each
genre in the RADIO ground truth.

Genre Precision Recall Features

Country 94.34 97.09 103

Dance 94.44 83.33 93

Jazz 100.00 97.03 146

Metal 98.91 88.35 121

Soul 89.80 84.62 168

Rap 83.02 87.13 139

World 89.77 80.00 133

In this section we present results on the real-world bench-
mark data sets described in section 3. First, we will dis-
cuss the learning of models and the influence of the features
for different genre models. In a second part we select two
of the data sets as ground truth and train specialized re-
gression models in order to build new and comprehensible
feature sets. We will evaluate the performance of the mod-
els learned from the semantic features and compare them
to models learned from standard feature sets. Finally, we
discuss the interpretability of the novel music descriptors.

5.1 Analysis of semantic audio features
The logistic regression learning of the genre ground truth

worked very well within the RADIO and GTZAN data sets.
Figure 2 shows the distribution of the output probabilities
for the genre Metal in the RADIO data. For both the train-
ing and the disjunct test part of the data, the separation of
Metal from the remaining music is clearly visible.

Table 4 summarizes the regression models for all seven
genres of the RADIO data. The precision and recall values
as measured on the test set are listed. The best performance
was observed for the Jazz genre. The last columns show
the number of long-term features picked out of the almost
40,000 candidate features. This can be interpreted as an
indicator for the complexity of separating the genre from
the remaining music. The model for Dance uses the fewest
features, whereas Soul needs the most.

In order to generate the seven semantic features for this
ground truth, the union of all selected long-term features
would need to be extracted from new songs. There seem
to exist many general purpose long-term features picked for
several models, because the union of all features counts only
712 compared to the sum of 903. Table 5 lists the long-term
features picked for 5 or 6 of the 7 models. The features are
surprisingly simple, the temporal structure of the short-term

Table 5: Most frequently selected long-term fea-
tures for the 7 models built with the RADIO ground
truth.

Long-term feature Selected

kurt(∆(BandEnergyRatio)) 6×

median(∆(SpectralRolloff)) 6×

median(∆2(SpectralRolloff)) 6×

mean(∆2(Mel28)) 5×

mean(∆2(Mel33)) 5×

kurt(Mel34) 5×

Table 6: Most influential long-term features per
genre for RADIO ground truth.

Genre Feature Weight

Country mean(ChromaF ) 0.48

Dance slope(ac(LowEnergy)) -0.46

Jazz mean(∆(log(ChromaD#))) 0.41

Metal ac1(ChromaD#) -0.41

Soul mod1−2(SpectralError) 0.64

Rap std(abs(∆2(ChromaG#))) -0.68

World kurt5%(angles(PS2,1(Mel20))) 0.23

features is only incorporated by differencing.
We further investigated which features had the largest ab-

solute weights in the logistic regression models, indicating
their relative importance in the decision for a genre (Ta-
ble 6). Both very simple and quite complex features are
among the most influential for the seven genres. For Coun-
try music the mean of the Chroma tone F has the largest
positive weight, for Soul the modulation energy from 1-2Hz
of the short-term feature SpectralError has a very large
weight.

5.2 Genre classification
We compare the small and interpretable feature sets cre-

ated from the logistic regression predictions with six pre-
viously published general purpose feature sets. We used
the the 30 dimensional feature set of [38] extracted with
the Marsyas[38]7 software in Version 0.1 and the 72 di-
mensional feature set generated by Version 0.2. The fea-
tures from [29] were extracted using the available toolbox
[28]8: Spectrum Histogram (SH, 1150 features), Periodicity

7http://marsyas.sf.net
8http://www.oefai.at/~elias/ma
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Figure 2: Distribution of predictions from the logis-
tic regression model trained with the Metal genre
in the RADIO ground truth.

Histograms (PH, 2050 features), Fluctuation Patterns (FP,
1380 features). Finally, the 20 long-term features of the Mu-

sicMiner software were used. These features were selected
from the same 40,000 candidate features according to the
procedure described in [25].

Since we intend to measure the influence of the feature
sets in contrast to the learning scheme abilities we use three
learners with different learning properties for all feature set
comparisons. These are a Support Vector Machine with lin-
ear kernel function (SVM) [31], a k-nearest neighbors learner
with k = 9 (KNN) [12], and a decision tree learner (C4.5)
[32]. All learning schemes are applied on the comparison
feature sets extracted from the four datasets. We measure
the classification accuracy for predicting the correct genre
with help of a 10-fold cross validation. The results are pre-
sented in Figure 3. All classification experiments were per-
formed with the freely available machine learning environ-
ment Yale[8]9.

Surprisingly, the combination of a linear support vector
machine with the Marsyas-0.2 feature set outperforms all
other combinations for all datasets. For KNN and C4.5 the
Marsyas-0.2 and the MusicMiner features perform best.

9http://yale.sf.net

Since the training of the logistic regression models per-
formed best for GTZAN and RADIO, we use these data
sets as ground truth. We randomly divide the data sets in
two parts with equal numbers of instances. We then use
the logistic regression learner to create 10 and 7 specialized
models respectively from one of the halves. These models
are applied on both the other datasets and the half which
was not used for training the regression models. Again, we
use a 10-fold cross validation of SVM, KNN, and C4.5 to
estimate the prediction accuracy by using these small fea-
ture sets of size 10 and 7. Figure 4 shows the results for
both GTZAN and RADIO as ground truth data sets. The
best results achieved with a SVM in combination with the
Marsyas-0.2 features are also presented.

It can be seen that using our small and interpretable fea-
ture sets derived from the exhaustive set of temporal statis-
tics features clearly outperforms the other feature sets at
least on the test half of the same data set and is at least
competitive for some of the other datasets. In most of the
other cases the new features lead to results at least higher
than the median of the results achieved by the comparison
feature sets. Both facts are a clear indicator that the re-
sults achieved by our approach are at least comparable to
the results achieved with traditional methods.

5.3 Interpretability
The k learned features can easily be interpreted since users

usually have an idea of concepts like Jazz, Soul, or Rap.
Figure 5 shows a decision tree for the genre classification
data set MAB based on the ground truth of the RADIO
data. This leads to rules like

if a song does not sound like Rap in RADIO (≤
0.34) but it sounds like Metal in RADIO (> 0.18)

then it belongs to Rock in MAB

or

if a song does not sound like Rap and Metal in

RADIO (≤ 0.34 and 0.18) but it sounds like

Country, Jazz, and Soul in RADIO (> 0.03, 0.02 and

0.25) then the it belongs to Folk in MAB.

Please note, that neither Rock nor Folk were part of the
RADIO data set, they are explained in terms of their sim-
ilarity to the songs of the clearly distinguishable genres of
the RADIO data.

Figure 6 shows the decision tree for the test half of the
radio data set. It can clearly be seen that in most cases the
corresponding genre feature is used for classification, e.g.

if a song sounds like Country in RADIO (> 0.44)

then it belongs to Country.

However, in some cases not so intuitive decisions are gener-
ated. For example, the Jazz genre is explained by the Metal
feature. We analyzed this and found that the information
gain of the Metal feature set was slightly bigger than that of
the Jazz feature causing the tree learner to seemingly pick
the wrong descriptor.

6. DISCUSSION
We presented a method for learning an arbitrary notion of

music from a labeled set of training data. The resulting se-
mantical features are better understandable than previously



Figure 3: Accuracy for previously proposed feature sets. The used learning schemes were a Support Vector
Machine with linear kernel (SVM), k-nearest neighbors (KNN) and a decision tree learner (C4.5). The results
were evaluated on the data sets GTZAN (a), ISMIR04 (b), MAB (c), and RADIO (d).

(a) GTZAN (b) ISMIR04

(c) MAB (d) RADIO



Figure 4: Accuracy for different learning schemes using the feature generation approach discussed in this
paper and the best accuracy achieved with traditional approachs (best of Figure 3). The ground truth data
set were GTZAN (a) and RADIO (b).

(a) GTZAN ground truth (b) RADIO ground truth

proposed features and were able to compete in the common
genre classification problem. Other music mining tasks like
recommendation or visualization could also profit from the
higher understandability. The semantic features could be
used to let the user control the emphasis put on certain mu-
sical aspects during the search. If the users provide a cate-
gorization of some music he knows well, our method could
generate personalized features that describe how much does
this sound like other music that makes me happy.

Interestingly, the genre ground truth of the RADIO data
performed best within the collection and when applied to
the other collections. We would like to emphasize that we
did not put a lot of effort into creating this data, we simply
relied on the consistency of several internet radio stations
and only filtered out announcements.

We used genre ground truth for our evaluation, because
it is most easily available in large quantities needed for the
regression models. In principle, however, any ground truth
related to the sound properties can be used, e.g., artist, al-
bum, timbre, mood, occasion, complexity, or intensity. If
desired, users can define aspects that best describe their
own musical preferences and provide training data in order
to learn this subjective view of musical similarity. This fur-
ther increases the interpretability of the models, since the
features directly describe concepts the user is familiar with.
Different features can be learned for multiple granularities,
e.g. broadly acknowledged genres vs. sub-genres of Jazz
that are only distinguishable by experts of the field. Re-
cently, we have added a function to the MusicMiner soft-
ware that allows the users to submit semantical ratings of
musical aspects like mood to a web service. This way we
hope to collect data for building models based on aspects
other than genre.

Of course, other regression methods could just as well be
used for learning the semantic features. One advantage of
logistic regression is, that the numerical values do not need
preprocessing for methods relying on distance calculations
like k-nearest neighbor classification, k-Means clustering, or
visualization with Emergent Self-Organizing Maps [42, 24].

The amount of candidate features is only limited by the
computational resources. We believe, that by using more
long-term features, the accuracy of our models can still be
increased. More complex higher level features that are not
formed by aggregating short-term features, like Beat Con-
tent [41], can also easily be added to the input of the regres-
sion models. The calculation of many long-term features can
be quite time consuming, but the complete set only needs to
be extracted for the training data. For the RADIO ground
truth only 712 long-term features are need thereafter to de-
termine the 7 semantic features. This enables real-time ap-
plications of music mining tasks in huge musical databases.

It would be interesting to investigate whether our ap-
proach of semantic feature generation can be applied in other
areas where a large number of technical features is available,
many of which might not be relevant. For example text min-
ing (e.g. [6]) with large feature sets corresponding to words
occurring in documents or video mining (e.g. [34]) where
many features could be derived by combining short-term
and long-term descriptions as we did for music.

7. SUMMARY
By plugging together many established data mining tech-

niques we designed a system that provides understandable
descriptions of music according to arbitrary notions of mu-
sical similarity. Exhaustive feature generation is used to
capture many different aspects of the raw audio data that
cannot be used directly. Feature selection and regression
summarize the most relevant features for a particular aspect
of music into a single number. This can be seen as a meta
learning technique loosely related to stacking. The resulting
low-dimensional vector based representations can efficiently
be used for music mining tasks in like genre classification,
recommendation, or visualization of music collections.
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Mario Nöcker, Christian Stamm, Niko Efthymiou, Martin
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Databionic visualization of music collections according
to perceptual distance. In Proc. ISMIR, pages
396–403, 2005.
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