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Abstract. Most valid rules that are learned from very large and high
dimensional data sets are not interesting, but are already known to the
users. The dominant model of the overall data set may well suppress the
interesting local patterns. The search for interesting local patterns can
be implemented by a two step learning approach which �rst acquires the
global models before it focuses on the rest in order to detect local pat-
terns. In this paper, three sets of interesting instances are distinguished.
For these sets, the hypothesis space is enlarged in order to characterize
local patterns in a second learning step.

1 Introduction

Most valid rules that are learned from very large and high dimensional data sets
are not interesting, but are already known to the users. For instance, we have
learned from a very large data set on cars and their warranty cases that the
production date of a car is preceding its sales date, which is what we expected
[14]. However, there were some exceptions to the rule and these are interesting.
Which customers order cars before they are o�ered? Are the exceptions typing
errors? The decision can only be made by domain experts. Either we use the
outliers for data cleaning or we �nd interesting instances by learning a general
rule and outputing its exceptions. This idea has been put forward by Vladimir
Vapnik [7]. In some data bases, we are looking for fraudulent use of cellular
phones as has been reported by Fawcett and Provost [4]. There, �nding the
instances that are exceptions to generally reliable rules corresponds to �nding the
criminal indiviuals. In other applications we learn general models for customer
behavior, but are interested in exceptionally lucrative customers. Again, these
customers are found by collecting the exceptions to accepted rules. Hence, one
reason for a set of instances being interesting is that they are exceptions to a
general model.

Many learning algorithms aim at covering all positive examples. However,
there might be some instances that cannot be covered by any rule. Why do they
not �t into any general model? What makes them so exceptional? Maybe these
uncovered instances are the most interesting ones and lead us to a local pattern.

A third phenomenon can again be illustrated by the database of cars and their
parts. We encountered valid rules not being learned. For instance, it could not be
learned that each car has at least one axle. Since we know that this rule should be



veri�ed by the data, we inspected the evidence against the rule and found many
missing attribute values in the database. We could clean the data base on the
basis of the refutation of valid rules. In a medical application, we looked for e�ects
of drugs. We knew from the domain expert that a particular drug should decrease
blood pressure. However, the rule was not learned that after the intake of the
drug, the blood pressure showed a clear level change. Too many patients either
showed no level change or their blood pressure even increased. We inspected
the patient records that formed negative evidence against the rule. There were
patients with arhythmic heart beat, patients where the blood pressure varied
more than usual, patients where the rate of increasing blood pressure decreased
but not the blood pressure itself. On one hand, the hypothesis can be made more
precise: the drug decreases the rate of increasing blood pressure. On the other
hand, the variance of blood pressure and its relation to arythmic heart beat
forms a local pattern. Again, the user has to decide whether the data are wrong
or the instances allow us to form an interesting local pattern. Hence, another
reason for a set of instances being interesting is that they are negative evidence
for a valid rule.

Without the claim of completeness, we may state that there are three reasons
for a set of instances to be interesting:

{ exceptions to an accepted general rule
{ examples that are not covered by any valid rule
{ negative examples that prevent the acceptance of a rule.

The acceptance of a rule hypothesis depends on the acceptance criterion or
quality measure. In the preceding paragraphs we argued on the basis of a general
quality measure which combines positive and negative evidence for and against
the validity of a rule in some manner. Such a measure is tailored to �nding gen-
eral models. The pattern detection then means to �nd the deviations from the
general rules. There is an alternative, though. The quality measure can be tai-
lored to �nding interesting sets of instances directly. Subgroup detection is the
learning task of �nding parts of the overall instance space, where the probability
distribution di�ers signi�cantly from the global one [12]. The subgroups can be
considered local patterns which are selected by a quality criterion that imple-
ments the refutation of the null hypothesis, namely that the distribution in the
subgroup equals that in the entire population. A logical approach to subgroup
detection has been developed by Stefan Wrobel [18]. The same subgroups can be
found by the collection of negative or uncovered examples and by a well-suited
quality measure for subgroup detection. Hence, in principle the two approaches
fall into the same category. The algorithms, however, are di�erent. Subgroup de-
tection explores the overall search space and uses pruning methods and language
restrictions in order to become tractable. The two-step approach allows to use
di�erent search spaces and learning methods for the general model and the local
patterns. Since the number of negative or uncovered examples is comparatively
small, a larger search space can be explored by a more demanding procedure.

In this paper, we describe an inductive logic programming algorithm which
�rst �nds all valid rules in a very restricted search space. These rules are used to



collect interesting instances as described above. The second learning step then
�nds de�nitions for the small samples in an enlarged search space. There are
three ways to enlarge the hypothesis space for the learning algorithm:

{ the synactic language restriction of hypotheses is weakened
{ the dimensionality of the examples is increased, i.e. more (possibly �ner
grained) attributes are taken into account

{ a more expensive learning strategy is chosen

We investigate these three options on the di�erent sets of interesting instances.
For illustration we use the movie database which is freely available in the internet
(www.imdb.com). The paper is organised as follows. First, we describe the learn-
ing algorithm Rdt/dm and indicate the size of the hypothesis space depending
on the syntactic language restrictions, the dimensionality of examples and the
learning strategy. Second, we shortly present results of learning global models
(i.e. all valid rules) and discuss some quality measures for accepting hypotheses.
Third, the sets of interesting instances and the detection of local patterns is il-
lustrated by our movie application. A discussion relating the approach to others
concludes the paper.

2 Inductive logic programming using RDT/dm

The rule learning task has been stated within the inductive logic programming
(ILP) paradigm by Nicolas Helft [9] using the notion from logic of minimal
models of a theory M+(Th) � M(Th). Of course, in general there may well
exist many minimal models. However, for �rst-order logic there exist restrictions
such that there is exactly one minimal model to a theory.

De�nition 1. (Minimal model) An interpretation I is a model of a theory Th,
M(Th), if it is true for every sentence in Th. An interpretation I is a minimal
model of Th, written M+(Th), if I is a model of Th and there does not exist
an interpretation I 0 that is a model of Th and I 0 � I.

Rule learning
Given observations E in a representation language LE and background knowl-
edge B in a representation language LB,
�nd the set of hypotheses H in LH, which is a (restricted) �rst-order logic, such
that

(1) M+(B [ E) �M(H) (validity of H)
(2) for each h 2 H there exists e 2 E such that B; E�feg 6j= e and B; E�feg; h j=

e (necessity of h)
(3) for each h 2 LH satisfying (1) and (2), it is true that H j= h (completeness

of H)
(4) There is no proper subset G of H which is valid and complete (minimality

of H).



The �rst sentence states that the minimal model of the observations and the
background knowledge must be a subset of the model of the learned rules. There
is one interpretation for learning result, examples, and background knowledge.
This sentence expresses the correctness of the learning result. The other sentences
approximate the completeness and minimality of theories. Since Kleene's proof
that we cannot �nd the minimal set of axioms to a set of observations (facts),
the minimality had to be reduced to not including rules that could be removed
without any loss. It is still possible that by combining some rules into one rule,
the set of rules that is valid and complete is smaller than the learning result. We
cannot escape this possible shortcoming of too large a learning result. What we
can escape is having redundant rules in the learning set that do not contribute
to covering observations. This is stated in (2) and (4). The third sentence states
that all rules that are valid and necessary in the sense of (2) are included in the
learning result. Again, this property does not exclude that there are more elegant
and concise rules that are not learned, since this would contradict Kleene's proof.
It only states that all correct rules that are necessary for covering examples are
included in the learning result. This learning task has been taken up by several
ILP researchers, e.g., [10], [5], [3]. Rule learning is more di�cult than the concept
learning task because it is possible that all results of concept learning could also
be found by rule learning, but not vice versa [11]. Since the learning task is hard
in terms of computational complexity, it must be constrained. Constraining the
hypothesis language LH to less expressive power than �rst-order logic is the key
to making rule learning e�cient. The clear learnability border has been shown
for restrictions of �rst-order logic [11].

In order to restrict the hypothesis space, Rdt/dm uses a declarative speci-
�cation of the hypothesis language, just as its predecessor Rdt does [10]. The
speci�cation is given by the user in terms of rule schemata. A rule schema is a
rule with predicate variables (instead of predicate symbols). In addition, argu-
ments of the literals can be designated for learning constant values. Examples
of rule schemata are:

mp1(P1; P2; P3) : P1(X1)&P2(X1)! P3(X2)
mp2(P1; P2; P3) : P1(X1; X2)&P2(X2)! P3(X1)
mp3(P1; P2; P3; P4) : P1(X1)&P2(X1)&P3(X1)! P4(X1)
mp4(C;P1; P2; P3) : P1(X1; C)&P2(X1)! P3(X1)

Where the �rst and third rule schema restricts LH to propositional learning, the
second and fourth schema expresses a simple relation. In the last schema, the
second argument of the �rst literal is a particular constant value that is to be
learned. This is indicated in the meta-predicate by C.

For hypothesis generation, Rdt/db instantiates the predicate variables and
the arguments that are marked for constant learning. The arity of a predicate as
well as the sorts of arguments are taken into account, so that only sort-correct
and �tting predicates instantiate the predicate variables. A fully instantiated
rule schema is a rule. An instantiation is, for instance,

mp1(america, drama,top) america(X1)&drama(X1)&! top(X1)



The rule states that a movie that was produced at the American continent
and is of genre \drama" belongs to the top hundred of the movie rating as given
by the movie database.

The rule schemata are ordered by generality: for every instantiation of a
more general rule schema there exist more special rules as instantiations of a
more special rule schema, if the more special rule schema can be instantiated at
all. Hence, the ordering of rule schemata re
ects the generality ordering of sets of
rules. This structure of the hypothesis space is used while doing top-down search
for learning. If a rule is learned its specialization w.r.t. the generality ordering of
rule schmeata will not be tried, since this would result in redundant rules. Hence,
Rdt/dm delivers most general rules. The user writes the rule schemata in order
to restrict the hypothesis space. The user also supplies a list of the predicates
that can instantiate predicate variables (i.e. determines the dimensionality of
the examples). This list can be a selection of all predicates in LE .

Another kind of user-given control knowledge is the acceptance criterion. It
is used to test hypotheses. The user composes an acceptance criterion for a rule
premise ! conclusion out of four terms which count frequencies in the given
data:

pos(h) the number of supporting instances: fr(premise ^ conclusion);
neg(h) the number of contradicting instances: fr(premise ^ :conclusion);
concl(h) the number of all tuples for which the conclusion predicate of the hy-

pothesis holds: fr(conclusion); and
negconcl(h) the number of all instances for which the conclusion predicate does

not hold: fr(:conclusion).

This general form for criteria directly corresponds to interestingness criteria as
presented in [8]. Using the four terms, one can easily express di�erent acceptance
criteria. A typical one (similar to that of Apriori [1]) is:

pos(h)

concl(h)
�

neg(h)

concl(h)
� 0:8

The acceptance criterion can also be written in a Bayesian manner. If there
are two classes for the conclusion predicate (e.g., top 100 movies and bottom 100
movies), the following criterion is similar to the requirement that the a posteriori
probability must equal or exceed the a priori probability:

pos(h)

pos(h) + neg(h)
�

concl

concl + negconcl

Rdt/dm is similar to Rdt/db [2] in that it directly accesses the Ora-
cle database system. It is a re-implementation using the Java programming
language. The main di�erence is the search stratey in the hypothesis space
LH. Where Rdt/db performs a breadth-�rst search which allows safe prun-
ing, Rdt/dm performs a depth-�rst search in order to minimize the database
accesses and to exploit already selected subsets of records. For each accepted
hypothesis h its instances ext(h) are collected as pos(h) (support) and neg(h)



(outliers). The uncovered instances of all rules S� ext(H) are also stored 1. The
data dictionary of the database system contains information about relations and
attributes of the database. This information is used in order to map database
relations and attributes automatically to predicates of Rdt's hypothesis lan-
guage. For hypothesis testing, Sql queries are generated by the learning tool
and are sent to the database system. The counts for pos(h); neg(h); concl(h),
and negconcl(h) are used for calculating the acceptance criterion for fully in-
stantiated rule schemata.

The size of the hypothesis space of Rdt/dm does not depend on the num-
ber of database records, but on the number of rule schemata, r, the number
of predicates that are available for instantiations, p, and the maximal number
of literals of a rule schema, k. For each literal, all predicates have to be tried.
Without constant learning, the number of hypotheses is r � pk in the worst case.
As k is usually a small number in order to obtain understandable results, this
polynomial is acceptable. Constants to be learned are very similar to predicates.
For each argument marked for constant learning, all possible values of the ar-
gument (the respective database attribute) must be tried. We write c for the
number of constants that are marked for learning in a rule schema. Let i be the
maximal number of possible values of an argument marked for constant learning;
then, the hypothesis space is limited by r � (p � ic)k. The size of the hypothesis
space determines the cost of hypothesis generation. For each hypothesis, two
Sql statements have to be executed by the database system. These determine
the cost of hypothesis testing.

2.1 The movie database and the chosen hypothesis spaces

The movie database imdb.com stores millions of movies with their genre, actors,
producers, directors, the production country, keywords, and year of publication.
For actors and directors tables with further information about them exist. What
makes the database of interest to us is the voting of movie visitors and the
resulting ranking of movies into the top 100 movies and the bottom 100 movies.
For our experiments we selected only the top and bottom 100 movies. The �rst
task was to learn all valid rules about the top 100 movies. Hence, we reduced
the �rst learning task more or less to concept learning, here, the classi�cation
of top movies. This exercise in automatic modeling or learning global models is
meant to be the basis for detecting local patterns in the second step. Hence, the
restriction should not be a problem.

In order to map database relations and attributes to predicates, the system
o�ers a tool which constructs predicates using the data dictionary of the database
and exploiting foreign key relations. In our experiments we used two mappings.

Mapping 1: For each relation R with attributes A1; : : : ; An; where the at-
tributes Aj ; : : : ; Al are the primary key, for each x 2 [1; : : : ; n]n[j; : : : ; l]
a predicate rn AX(Aj ; : : : ; Al; Ax) is formed, where AX is the string of the
attribute name.

1 S is the set of all instances.



Since the primary key of the relations is a single attribute, we get two{place
predicates. The number of predicates is bound by the number of relations times
the maximal number of attributes of a relation (without key attributes).

The other mapping reduces the expressiveness to propositional logic. Of
course, this means that the size of the hypothesis space is reduced.

Mapping 2: For each attribute Ai which is not a primary key and has the values
a1; : : : ; an a set of predicates rn AI ai(Aj ; : : : ; Al) are formed, Aj ; : : : ; Al

being the primary key.

Mapping and rule schemata together determine the size of the hypothesis
space. For learning the general model of top movies, we used the �rst two rule
schemata shown above and the �rst and second mapping. 22 predicates were
selected for learning. In the propositional case this corresponds to 22 dimensions
of movies. In the worst case only 2 � 222 = 968 hypotheses need to be tested 2.
For the detection of local patterns in selected instance sets, we enlarged the hy-
pothesis space by including the third rule schemata shown above and by forming
more predicates. Changing the learning strategy to constant learning using the
fourth rule schema further enlarges the hypothesis space.

3 Learning the global model for movie ranking

Given the top 100 movies classi�ed top(MovieID) and the bottom 100 movies
classi�ed not(top(MovieID)), we instantiated the conclusion predicate of the
�rst three meta-predicates by top(X). Each movie was characterised by predi-
cates with arity 1 for genre and production country or continent and by predi-
cates with arity 2 for the relation between a movie and any actor of it as well
as the relation between a movie and its director. Actors and directors were de-
scribed by a one{place predicate stating, whether the actor performed in or
the director made at least 2 of the top 100 movies, namely topActor(X) and
topDir(X). Similarly, noBotActor(X) respectively noBotDir(X) states that an
actor or director was never involved in one of the bottom movies. The acceptance
criterion was set to

pos(H)
concl(H) �

neg(H)
concl(H) � 0:3

These are the learned rules:

h1 : usa(X)&drama(X)! top(X)

h2 : director(X;Y )&topDir(Y )! top(X)

h3 : actor(X;Y )&topActor(Y )! top(X)

h4 : director(X;Y )&noBotDir(Y )! top(X)

h5 : actor(X;Y )&noBotactor(Y )! top(X)

2 Since the conclusion predicate is always instantiated by top(X), the conclusion literal
is not counted.



Of course, the rules do not make sense for cineasts, but only for the ranking of
the movie database in the excerpt we used. The ranking clearly favours American
movies: 68 of the top movies and 82 of the bottom movies are American. Taking
the genre into account, 40 of the top movies are American dramas, but only 7
of the bottom movies. The tolerant acceptance criterion allows us to collect 7
outliers. 15 top movies are uncovered by the rules. These are candiates for local
patterns hidden by the overwhelming dominance of American movies.

We wonder whether another acceptance criterion would allow us to describe
the uncovered instances already in the �rst step. It should be a criterion which
focuses on subgroups within the data. Hence, we applied the criterion based on
the Binomial test heuristic:q

pos(h)+neg(h)
concl+negconcl

� j pos(h)
pos(h)+neg(h) �

concl
concl+negconcl

j� 0; 05

The �rst factor weights the size of ext(h) in relation to the samples size and
the second factor compares the distribution in ext(h) with that of the overall
population. A theoretical investigation of quality functions as this one and its
distinction from averaging functions can be found in [16]. Here, we identify the
data set with the overall population and consider ext(h) a sample. The signif-
icance of a di�erence in the distribution is determined with respect to the null
hypothesis. In fact, additional rules are found that cover some of the previously
uncovered instances:

h6 : italy(X)&drama(X)! top(X)
h7 : denmark(X)&drama(X)! top(X)

However, many more rules were also found and cover instances redundantly. If
we narrow the pruning criterion, we get exactly the rules learned in the �rst
step. Hence, we either receive too many rules, among them senseless ones, or we
end up with the global rules.

4 Interesting instances in the movie database

Our aim is to detect local patterns. We have learned general rules in order to get
rid of the dominant process. We now want to inspect the remaining instances
using a larger hypothesis space. We used additionally the third rule schema and
changed the acceptance criterion to

pos(h)�neg(h)
pos(h)+neg(h) � 0:6

We enlarged the number of predicates for learning. The table \keywords"
contains up to 200 words for each movie. We formed 286 one-ary predicates out
of these. That is, for the few interesting instances we o�ered a hypothesis space
of a hundred million hypotheses (3 � 3303 = 107811000).

The �rst potentially interesting set of instances are the outliers to accepted
rules. Do these American dramas which are ranked within the bottom movies
have something in common? We switched the learning strategy to learning con-
stant values for actors and directors. The possible values for the argument
marked for constant learning are 2544. Hence, the hypothesis space consists



of about 1017 hypotheses, 4 � (330 � 25441)3. 6 rules were found which character-
ize bottom movies covered by general rules for top movies. Three rules blamed
certain actors which performed in none of the top movies but only in the bot-
tom ones3. Another rule found the combination of \drama" and \musical", two
other rules refer to directors who made bottom movies or top movies. The rules
covered only about half of the exceptions. Decreasing the threshhold value of
the acceptance criterion led to 34 actors who play in bottom movies and to
some keywords for American bottom �lms, among them \police", \screwball",
and \independent". However, more rules were learned than there are exceptions.
Decreasing the selectivity of the criterion leads to arbitrary rules. Hence, using
Occam's razor, we prefer the 6 rules and list the remaining instances.

The second possibly interesting set of instances are the uncovered examples.
With the enlarged set of rule schemata but without the additional predicates,
h6 and h7were found, indicating the subgroups of Italian and Danish dramas. A
third learned rule states that those European movies are top, which are classi�ed
as \drama" and as \romance" as well. However, these rules still leave some
instances uncovered. Using the enlarged set of predicates 7 rules were found.
Rule h6 covering particularly the famous movies \bicycle thieves" (1948) and
\La vita e bella"(1997) is again found. The keywords \independent �lm" or
\family" make a European movie top. Independent �lms such as the Danish
dogma movies that led to rule h7 are covered. The keyword \love" together with
the genre \drama" also characterise the uncovered instances. Funny enough, the
keyword \bicycle" is also characteristic for European top movies as well as for
those of genre \drama". All rules do make sense and it is not surprising that 6
of the 7 rules deal with European movies. These seem to be the ones that are
dominated by the American movie population4.

The third collected set of instances was neg(h) where h was rejected in the
�rst learning step. In our movie application, this set of instances was quite large
(85) and uninteresting. It shows that the general model is quite appropriate
and learning the global model excludes successfully senseless rules. No further
learning was performed on this sample.

5 Conclusion

Instance selection usually means to reduce the original data set such that the
reduced set allows to �nd the general model underlying the original data. Sam-
pling is its most popular technique, search for critical points or the construction
of prototypes are others [13].The detection of outliers in such a context aims at
easing learning from the reduced set [6].In this paper, we are concerned with
the opposite goal of �nding instance sets that allow us to �nd local patterns

3 What the learning algorithm did not �nd because we did not apply constant learning
to movie titles, is that these actors play in \Police Academy"...

4 It is a pity that we could not �nd the nationalities of the voting population in the
database, because it could well be that the aubgroups actually do not refer to the
producing nation of the movies but to the nation of the voters.



that contrast the general model. The instance sets do not mirror the overall
distribution as do (random) samples. The detection of outliers in this context
means to focus on small abnormal subsets of the data. Similarly, the collection
of uncovered instances focuses on subsets which do not �t the general model.
These subsets of data are candidates for being the extension of local patterns.
We consider local patterns the e�ect of behavior of a distinct, small population
that is dominated by the large population. In other words, we assume a mixture
distribution made of distinct components, where one is overwhelmingly large.
Therefore, usual methods like, e.g., Markov switching models or models of �nite
mixture distributions do either not detect these small groups or detect overly
many small groups.

The two-step approach presented here, excludes the large population in its
�rst step and hence prevents us from �nding too many subgroups. In spirit, our
�rst experiment on outliers is similar to the demand-driven concept formation
of Stefan Wrobel [17]. In an incremental setting, he collected the exceptions of
strongly supported rules and learned their de�nition. The hypothesis space re-
mained the same for rule learning and de�ning new concepts over exceptions.
He did not deal with uncovered instances. In our movie application, the �rst
step characterises American movies (the majority group of the population). The
collection of uncovered positive examples worked particularly well. The second
step then concentrates on European movies (the minority group of the popula-
tion). From an algorithmic point of view, the two-step procedure allows us to
change the search space and search method within a learning run. The �rst step
processes the overall data set using a small hypothesis space, i.e. it estimates the
overall distribution on the basis of low-dimensional instances and a tight restric-
tion of hypotheses' complexity. The second step processes the selected abnormal
instances on the basis of high-dimensional instances and more complex hypothe-
ses. Here, we applied the same learning algorithm in both steps. Further work
could apply complex algorithms in the second step such as the lgg [15] in order
to bottom-up generalise interesting instances. We have illustrated our approach
by the movie database with an excerpt of four tables. Further experiments and
{ more important { theoretical considerations are still needed.

Acknowledgment Dirk M�unstermann has developed Rdt/dm and has run the
experiments on the movie database. His diploma thesis which explains the new
search strategy and data management is forthcoming.
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