
Balanced Cooperative Modeling

Katharina Morik

University of Dortmund

Dept. Computer Science VIII

P.O.Box 500 500, D-4600 Dortmund 50

telephone: +49/ 231 755 5101

e-mail:morik@kilo.informatik.uni-dortmund.de

Abstract

Machine learning techniques are often used for supporting a knowl-

edge engineer in constructing a model of part of the world. Di�erent

learning algorithms contribute to di�erent tasks within the modeling

process. Integrating several learning algorithms into one system al-

lows it to support several modeling tasks within the same framework.

In this paper, we focus on the distribution of work between several

learning algorithms on the one hand and the user on the other hand.

The approach followed by the MOBAL system is that of balanced

cooperation, i.e. each modeling task can be done by the user or by a

learning tool of the system. The MOBAL system is described in detail.

We discuss the principle of multi-functionality of one representation for

the balanced use by learning algorithms and users.

Key words:

multistrategy learning, balanced cooperative modeling, MOBAL

1 Introduction

The overall task of knowledge acquisition as well as the one of machine

learning has often been described as constructing a model of part of the

world, on purpose. If a system is to support the person constructing a

model, it must accept new items and integrate them into the knowledge

base. It must present the state of the domain model and allow the user to

inspect it. It must support revisions of all modeling decisions of the user.

1

At last, it must support the re�nement of rules or rule sets because of

additional knowledge and the introduction of new features or concepts 1.

The �rst two requirements are ful�lled by most of the knowledge acquisi-

tion environments. Revisions are frequently supported only by a text editor.

Then, it is up to the user to check consistency and integrity of the revised

domain model. The user is supported only in performing the addition of

new items and the inspection of the domain model.

Machine learning algorithms are most often used for automating the

construction of rules as additional items of the knowledge base. Recently,

automatic re�nement and automatic construction of new features or con-

cepts (constructive induction) are also provided by some machine learning

systems. Moreover, inspection can also make good use of machine learning.

Hence, for all of the modeling tasks listed above, there exists a machine

learning tool which automatizes at least parts of it.

A system that integrates several learning tools, each responsible for per-

forming a di�erent modeling subtask, is a multistrategy learning system

(Michalski 91). Questions concerning the cooperation of tools are whether

one tool can use the results of another, whether several tools can use the

same knowledge items, and whether a tool can call another one. MOBAL is

such a multistrategy learning system, where the learning tools cooperate by

means of input-output data so as to solve the global modeling task. But, also

a multistrategy learning system needs some information about the domain

and the desired domain model given by the user. The cooperation with

the user is necessary even for the most advanced learning system. This is

not a disadvantage. On the contrary, the user should guide the learning and

be in control of the modeling process. On one hand we appreciate machine

learning to automate some tasks. On the other hand we still want the users

to perform their tasks - supported by the system. The question is how to

organize the cooperation of user and system tools such that both, system

and user contribute to model-building. For MOBAL, a synergistic e�ect

can be stated which is the result of both, the user and the learning tools

contributing to the global modeling task.

1For details of the modeling process see (Morik 89), (Morik 91)

2

2 Cooperation

There are di�erent ways to use machine learning algorithms for knowledge

acquisition. They correspond to a di�erent distribution of work between

system and user. The work share has consequences for the knowledge rep-

resentation.

2.1 Work share between system and user

We may distinguish the following three prototypical ways of distributing the

work between system and user in modeling a domain:

1. the one-shot learning where the user prepares examples and back-

ground knowledge and then runs an algorithm on the data;

(examples are ID3 (Quinlan 83), FOIL (Quinlan 91), or KLUSTER

(Morik, Kietz 89),(Kietz,Morik 91))

2. the interactive learning where the user prepares examples and back-

ground knowledge and then interacts with a learning system;

(examples are DISCIPLE (Kodrato�,Tecuci 89) or CLINT (De Raedt,

91))

3. balanced interaction of system and user where learning contributes to

the preparation of background knowledge, to enhancing the domain

knowledge, and to inspecting the (learned) knowledge;

(an example is MOBAL (described in this paper))

These options of how to use machine learning correspond to di�erent tasks

handled by a learning system. A learning task can be described by a certain

type of input and the produced output. An additional characteristic of the

learning task is, whether the learning is performed incrementally (which can

be the case in the second and third option). Of course, the same learning

task can be applied to various domains. In the �rst option, the user calls

a learning algorithm for one particular task. Most often, this task is to

learn a set of rules from examples of complementary classes. The second

two options have the learning system cover a broader range of tasks. Each

learning task corresponds to a learning tool which solves it - regardless of

whether implemented as separate modules, or in one module.

Whereas in the �rst two options the user is requested to give some par-

ticular information, in the third option the user can give any information

3

and the system uses it. Of course, the information must be sensible. How-

ever, the user is free to enter, e.g., facts or rules or term sorts or predicate

sorts. That is, the distribution of work between system and user is strictly

prescribed in the �rst two options whereas it is
exible in the third one.

The control of the modeling process is in the users' hands in the �rst

option. They call the learning tool. In the second option, the system is in

control. The system prompts the user to give the needed information. In

the third option, control is mixed. The users can call tools explicitly as in

the �rst option. If they don't want that, the
ow of control between the

tools is organized by the system. The users are never prompted to input a

(counter-) example or a declaration of background knowledge. However, by

setting some parameters they can state that they want to be asked by the

system at certain decision points.

In the �rst option, revisions of the learning results are performed by the

user in an edit-and-compile cycle with no more support than a text editor

can give. If new, negative examples are acquired from the application, a new

example set must be constructed, consisting of the new and some already

known examples. The learning algorithm then constructs new rules which

probably are better than the ones learned before. In the second option,

some revision of rules is performed by a learning tool because of negative

examples. In the third option, learning techniques are used for re�nement

and the construction of new features or concepts. Moreover, revisions of all

modeling decisions that have been made are supported by some knowledge

editing tools.

The prototypical ways of using learning (1-3 above) illustrate the aspects

of work share between system and user:

� which tasks are performed by the user, which tasks are performed by

the system?

� which information is given by the user, which information is con-

structed or derived by the system?

� is the user, the system, or are both in control of the modeling process?

� which revisions are supported by the system and which revisions are

automatically done by a learning tool?

If the user as well as the system can perform a task, construct knowledge

items of a certain kind, run (learning) tools, and revise given knowledge, then

4

we call such a system balanced cooperative. MOBAL is such a balanced

cooperative system. It will be described in detail in the next chapter.

2.2 Multi-functionality

The use of the system has consequences for the knowledge representation.

In the �rst way of using a tool, the representation can easily be tailored

for the needs of the one algorithm. The representation of a multistrategy

learner (option 2 and 3) has to be designed with respect to several, possibly

con
icting needs, or the di�erent representations of di�erent tools have to be

integrated. The MOBAL system is a multistrategy learner which integrates

various tools using a uniform representation. The integration problem with

respect to knowledge representation is then to develop a formalism which

is powerful enough to suit all tools well and which is still tractable. In

contrast, the MLT system integrates several learning systems, each with its

own representation (see Morik et al. 91). The integration problem is then

to integrate given representation formalisms.

Balanced cooperative modeling allows the user as well as the system

to work on the evolving domain model. As a consequence, all knowledge

sources (examples, background knowledge, declarations, rules) have to be

represented such that the system as well as the user can easily input, mod-

ify, and inspect the knowledge. This constrains the representation to be

designed. If revisions of all knowledge entities have to be processed and

their consequences have to be maintained by the system, this constrains the

design of a representation even further.

The bi-directional use of knowledge bases has been discussed in other

�elds of arti�cial intelligence. For instance, a grammar is supposed to be

used by the parser as well as by the generator of natural language sentences.

Some e�orts have also been made to use the same knowledge for plan recogni-

tion as for plan generation. Analogously, we claim that the same knowledge

should be of good use for the user building up a model as for the learning

system enhancing the model and building parts of it.

3 Cooperation in MOBAL

All the knowledge needed for problem solving in a particular domain can

be input by the user. In this case, all the information is given by the user

5

who performs all modeling tasks and completely controls the modeling pro-

cess. The user is supported by an inference engine and a human-computer

interface (see below). However, the user does not need to input almost ev-

erything. For each knowledge item which the user might input there exists a

corresponding learning tool which can acquire parts of that knowledge. The

basic input which the system expects from the user are facts and rule models

(see next section). Of course, a system cannot create a model without any

given information! But, also to those basic items there exist corresponding

capabilities of MOBAL, namely the inference engine (deriving facts) and the

model acquisition tool (producing rule models). Between the extremes of

modeling by the user alone and some automatic contribution to the model-

ing by the system, all variations of work share are possible. This
exibility

also has a disadvantage which should not be hidden: new users of the system

miss the strict guidance which is given by interactive systems. They have

di�culties selecting among all the possible choices.

3.1 MOBAL's representation

The MOBAL system is an environment for building up, inspecting, and

changing a knowledge base. Before we present the learning tools, we describe

the items which constitute a domain model in MOBAL.

The knowledge items integrated by the inference engine of MOBAL

(Emde, 91) are:

� facts, expressing, e.g., relations, properties, and concept membership

of objects;

owner(luc, diane1) and not(owner(luc,mercedes)) are facts

� rules, expressing, e.g., relations between concepts, necessary and suf-

�cient conditions of concepts, hierarchies of properties;

owner(X,Y)&involved(Z,Y) --> responsible(X,Z) is a rule

� sorts, expressing a structure of all the objects (constant terms) of the

domain model;

� topology of predicates, expressing the overall structure of the rules

of the domain model;

� rule models, expressing the structure of the rules to be learned;

6

The items are represented in a restricted higher-order logic which was proven

to be tractable (Wrobel, 87). The user need not know all about the meta-

predicates and the meta-rules in which they appear. The user also does not

need to know the internal representation format. The windows of the human-

computer interface provide presentations, both graphical and as text, of the

knowledge base which are understandable without knowing the internal data

structures. The user beginning an application regularly starts with facts and

rules which are easy to understand. In the following, the knowledge items

are described.

3.1.1 Facts

Facts are used to state relations, properties of objects, concept member-

ship. Facts are represented as function-free literals without variables. The

arguments of a predicate are of a particular sort. A fact p(o1,o2,o3) is only

well-formed if the constant terms o1, o2, o3 belong to the sorts of the �rst,

second, or third argument place of p, respectively. For instance, the term

at the �rst place of the predicate involvedmust be a member of the sort of

events, the one at the second place must be a member of the vehicle sort.

The form of a fact is p(t1; :::; tn) where p is a n-ary predicate, tj is a constant

term or a number of the sort sj .

The mapping from a fact to a truth value may obey a fuzzy logic because,

in principle, the inference engine handles continuous truth values (Emde,

91). But, usually, it is di�cult for a user to assign a fuzzy truth value to

a fact. Therefore, only the truth values unknown, true, false, contradictory

are used. A derived or input fact without explicit negation is interpreted

as true. Every fact which is to be interpreted as false must be explicitly

negated. This explicit negation has some advantages compared with the

closed world assumption. It enables the user to input incomplete examples,

to build up the model incrementally. The closed world assumption requires

the user to know in advance which statements are necessary to complete

the description of an example. But, as was stated above, modeling does not

start with such a precise idea. Therefore, leaving out some statements in one

example does not mean the negation of these statements. Hence, MOBAL

interprets missing information simply as unknown.

Explicit negation also allows to explicitly contradict a derived fact of the

system. Supposed, the inference engine has derived the fact

7

owner(luc, diane1)

and the user knows that this is not true. The user then inputs

not(owner(luc, diane1)).

As a result the fact owner(luc, diane1)

becomes contradictory.

An explicit contradiction does not lead to the counter-intuitive behavior

of standard logic that all formulas become true. Instead, the contradictory

parts of the knowledge-base are excluded from inference processes. Hence,

facts that are not contradictory keep their truth values. Contradictions are

resolved by a knowledge revision component (Wrobel, 89).

3.1.2 Rules

In MOBAL, rules correspond to Horn clauses. In addition, the applicability

of rules is maintained. For each variable occurring in a rule, its domain is

represented as a support set (Emde, Habel, Rollinger 83; Wrobel, 89). In

the normal case, the support set is a tuple of the sets of all objects. The

rule owner(X,Y) & involved(Z,Y) --> responsible(X,Z) has a support set giving

the domains for X,Y,Z. In the regular case, these are all. The support set

then is all x all x all. But it is also possible to restrict the applicability

of a rule to a more special support set. This can be done by exceptions

of a variable's domain, by a tuple of exceptions of the support set, or by

expressing a variable's domain by a concept. The above rule is only valid

for events which are members of the concept minor violation. The domain of

variable Z is restricted to instances of minor (tra�c law) violations: all x

all x minor violation is the correct support set for that rule. 2

More formally, let all denote the set of all objects of a universe of

discourse, Di denote all or subsets of this set, Tj be a n-tuple of constant

terms, and t1:::tk be constant terms (corresponding to particular objects in

D), covered by a concept C, then the form of a support set for a rule with

the variables X1; :::; Xn is:

(X1; :::; Xn) in D1�:::�Dn except fT1; :::; Tjg where the except part

can be empty.

The Tj are tuples of objects which should not be instances of the variables

X1; :::; Xn of the rule because the rule would then lead to a contradiction.

2In Germany, the owner of a car has to pay a �ne for a minor violation, even if he was

not driving the car.

8

In a tuple Tj , each term can be of a di�erent subset of all. In our example,

such a tuple is (luc,renault2,event3).

A particular Di can be restricted by a set of exceptions, ft1; :::; tkg, writ-

tenDi except ft1; :::; tkg, in our example all except fevent3, event12,

event13 g. Or, the variable's domain Di is restricted to a particular concept

as minor violation in the example above.

3.1.3 Sorts

Sorts are used to guarantee the (semantic) well-formedness of predicates in

facts and rules. Sorts can be named and given by the user in a predicate

declaration: owner/2: <person>, <vehicle>. This means that the two-place

predicate owner accepts only terms of sort person as the �rst argument and

terms of sort vehicle as the second argument. It is not well-formed to state

owner(john, michael). A sort covers a subset Di of all. The sorts which are

built automatically by the sort taxonomy tool have constructed names, such

as arg1(owner) denoting the set of terms occurring at the �rst place of the

predicate owner.

Sorts with the same set of terms form a class. For instance, arg1(owner)

and arg1(responsible) have the same constant terms, e.g. [luc, yves, cathy].

So, together they form a class:

class21: [arg1(owner), arg1(responsible)] [luc,yves,eve]

Classes are organized in a lattice. The most general class is all, the

most special class is the empty class. There are subclasses and intersection

classes. The lattice of classes gives an overview of all sorts and classes,

their subset relations, their intersections. In this way, the structure of an

application domain can be presented with respect to the objects of that

domain. Figure 1 shows an excerpt of the lattice of sorts for the tra�c law

domain.

9

Figure 1: Excerpt of a lattice of sort classes

3.1.4 Topology of Predicates

The topology of predicates is used to guarantee the (semantic) well-formedness

of rules. Sets of predicates form a named node of a graph. For instance, the

node called Beurteilung (english: evaluation) represented as

tnode: Beurteilung -Preds: [illegal parking, responsible, unsafe vehicle violation]

-Links: [places,circumstances,laws]

contains the predicates illegal parking, responsible, unsafe vehicle violation.

In the graph, the subnodes of this node are called

[Orte, Umstaende, Verbote/Gebote, Fahrzeug, Verhalten]

(english: [places,circumstances,laws, vehicle, behavior]). In a well-formed rule, if

the predicate symbol of the conclusion is a member of a node TN (e.g.,

evaluation), the premises can only use predicate symbols from a subnode of

TN (e.g., places,circumstances,laws, vehicle, behavior) or TN itself. So, for

instance, it is not well-formed to conclude from the assurance contract of a

vehicle's owner to the evaluation of the owner's parking behavior.

The topology graph, where the nodes represent sets of predicate symbols

which can be premises of the supernodes, gives an overview of possible rules

in an application domain. Figure 2 shows the topology graph for the tra�c

law domain.

10

Figure 2: Topology graph

The topology graph can be viewed as a generalization of determinations

(Davies, Russell 87). There, it is stated that a rule is sensible which relates

some particular predicates. The topology generalizes this to sets of predi-

cates: rules are sensible which use predicates of the same topology node TN

or a predicate in TN for the conclusion, and predicates of subnodes of TN

for the premises.

3.1.5 Rule Models

A rule model is a rule in which predicate variables are used instead of actual

predicates of an application domain. A predicate variable can be instanti-

ated by a predicate symbol of the same arity. There is a substitution � for

predicate variables. Let RS be a rule model, then RS� is a (partially) instan-

tiated one. If all predicate variables are substituted by predicate symbols,

the rule RS� is predicate ground. Hence, a fully instantiated rule model is

11

a rule. The rule model R1(X,Y)& R2(Z,Y) --> Q(X,Z) can be instantiated

�: fR1/owner, R2/involved, Q/responsible g

thus becoming our example rule. Rule models are ordered with respect

to their generality such that the generality of fully instantiated rule models is

given by theta-subsumption (Plotkin 70). RS1 is more general than RS2 i�

for all � there exists a substitution of terms � such that RS2� � RS1��.

The above rule model is, for instance, more general than the rule model

R1(X,Y)&R2(Z,Y)&R3(X,Y) --> Q(X,Z), because every fully instantiated rule of

the �rst one is a subset of the second one. 3 � is not allowed to replace

di�erent predicate variables by the same predicate symbol. Rule models are

labeled by generated names such as, e.g. r1 or l2. The generality structure

is presented as a graph, where the labels of rule models are the nodes and

the generality relations are the links (see �gure 3).

Rule models can also be partially instantiated. All possible instantiations

of all rule models together form the hypothesis space for rule learning in

MOBAL. The hypothesis space is structured by the generality structure of

rule models. This is used by RDT (see below) in order to prune branches of

rule models where no instantiation can lead to an accepted rule.

The following rule models can be used to model neighborhood relations.

The domain predicate symbol conn states a neighborhood relation, the pred-

icate variables p0, p1, p2, p3, q can be instantiated to characterize the re-

lated objects. The most general rule model is the statement of a two-place

predicate which always is true. The next general rule model has in addition

a one-place premise.

r0(q) : ! q(x,y).

r1(p0,q) : p0(y) ! q(x,y).

r2(p1,p0,q) : p0(y) & p1(y) ! q(x,y).

r3(q) : conn(y, n0) ! q(x,y).

r4(p0,q) : p0(y) & conn(y, n0) ! q(x,y).

r5(p1,p0,q) : p0(y) & p1(y) & conn(y, n0) !q(x,y).

r6(q) : conn(y, n0) & conn(y, n1) ! q(x,y).

r7(p0,q) : p0(y) & conn(y, n0) & conn(y, n1)! q(x,y).

r8(p1,p0,q) : p0(y) & p1(y) & conn(y, n0) & conn(y, n1) ! q(x,y).

r9(p0,q) : conn(y, n0) & p0(n0)! q(x,y).

3The more general rule model must be instantiated to become a subset of the more

special one. This is the underlying meaning of theta-subsumption: a more general rule

must be instantiated to become a subset of a more special rule.

12

r10(p1,p0,q) : p0(y) & conn(y, n0) & p1(n0) ! q(x,y).

r11(p2,p1,p0,q) : p0(y) & p1(y) & conn(y, n0) & p2(n0)! q(x,y).

r12(p0,q) : conn(y, n0) & conn(y, n1) & p0(n0) ! q(x,y).

r13(p1,p0,q) : p0(y) & conn(y, n0) & conn(y, n1) & p1(n0)! q(x,y).

r14(p2,p1,p0,q) : p0(y) & p1(y) & conn(y, n0) & conn(y, n1) & p2(n0)! q(x,y).

r15(p1,p0,q) : conn(y, n0) & conn(y, n1) & p0(n0) & p1(n1)! q(x,y).

r16(p2,p1,p0,q) : p0(y) & conn(y, n0) & conn(y, n1) & p1(n0) & p2(n1)! q(x,y).

r17(p3,p2,p1,p0,q) : p0(y) & p1(y) & conn(y, n0) & conn(y, n1) & p2(n0) & p3(n1)!

q(x,y).

Figure 3: Generality structure of rule models

3.2 MOBAL's learning tools

The MOBAL system includes several learning tools:

� a rule discovery tool (RDT) which is a model-based, �rst-order logic

learning algorithm inducing rules from facts

� a concept formation tool (CLT) which induces necessary and su�cient

conditions for concepts from positive and negative examples

� a model acquisition tool (MAT) which abstracts rule models from rules

� a sort taxonomy tool (STT) which clusters constant terms occurring

as arguments in facts

13

� a predicate structuring tool (PST) which abstracts rule sets to an

overall structure of the knowledge base

To describe each of the learning tools in detail requires much more space

than we have in this report. As we want to concentrate on the use of the

tools - either by the user or by another tool - it is su�cient to describe them

as black boxes and only indicate the principle of how they work.

3.2.1 RDT

The rule discovery tool RDT helps the user to �nd regularities in facts. The

task is that of learning from observations or discovering regularities in order

to predict new events.

Input: a set of facts, a set of rule models

Output: a set of rules which are most general inductive generalizations of

the facts.

The necessary input to this model-based inductive algorithm are facts and

rule models. It is not necessary that the facts are complete descriptions of

examples. If rules are already learned or given by the user, they are taken

into account by the algorithm. In particular, they are not re-discovered

and they are not contradicted by a hypothesis for learning. Moreover, the

inference engine performs forward inferences from (learned or given) rules,

hence \saturating" the knowledge base for learning.

The learning strategy is top-down induction, i.e. the most general gen-

eralization is specialized until a rule is found which obeys a user-given ac-

ception criterion.

RDT can be called in di�erent ways. It can be called with a time limit so

that RDT learns within this CPU time limit and then stops. This allows to

use RDT incrementally. The aim is that RDT can learn in the background

during the modeling activity of the user. RDT then tries to learn about

the predicate the user inputs as the predicate symbol of a fact. If the user

wishes to focus on a particular predicate or a list of predicates, RDT looks

for rules with these predicates in the conclusion. The set of predicates can

be given by clicking on a node of the topology graph. RDT can also be

called from CLT with a particular set of facts. The list of rule models is

given by a parameter. The default is to use all rule models which are part of

the domain model. The evaluation criteria for accepting a hypothesis can be

set by the user. The basic building blocks for de�ning criteria are prepared.

14

A default setting is given. But, the user can de�ne particular criteria and

input them as parameter settings.

The learning result is a set of rules. The rules are not bound together in

order to build su�cient and necessary conditions for concept membership

nor is there an ordering of rules such as is in decision trees. Also, relations

that hold between features are not distinguished from relations that hold

between concepts or between features and concepts. The user may interpret

the learned rules as characterizing concepts or as background knowledge.

The learning result is used by the inference engine, hence, RDT performs

closed-loop learning.

The basic idea behind this learning in predicate logic is to instantiate

given rule models systematically and test the instantiations (i.e. rules)

against ground facts. First, the most general rule model is instantiated.

If an instance (i.e., a rule) is not accepted with respect to the acception

criterion and still enough facts are available, the next special rule model

is instantiated. This procedure is similar to Shapiro's re�nement operator

(Shapiro 81). But, whereas the re�nement operator builds up a complete

hypothesis space, the hypothesis space of RDT is restricted by the rule mod-

els. As the rule models regularly do not cover the forms of all possible Horn

clauses they restrict the hypothesis space.

For a rule model each possible instantiation is tested. An instantiation

is possible if the predicates which substitute predicate variables of the rule

model have a compatible arity, sort restriction, and topology restriction.

That is, the resulting rule hypothesis must be well-formed with respect to

the sorts and the topology of predicates (see above). This restricts the

hypothesis space further. For instance, the most general rule models can

be: P(X)-->Q(X), R(X,Y)-->Q(X,Y)All 1-ary domain predicates with the same

sort of an argument type which are in the same or linked topology node

are tried as instances of the �rst rule model. If, for an instantiation Q/q

and P/p there are many matching facts but not all of them justify the

hypothesis, then the next special rule model is tried, e.g. p(X)&R(X,Y)-->q(X).

All compatible 2-ary predicates are tried as instantiations of R. Specializing

hypotheses stops, if a rule already exists, becomes accepted, or if there are

not enough facts that could match the (more special) hypothesis. As is easy

seen, RDT is much quicker than e.g. FOIL(Quinlan 91) if the rule models

are well-suited for the desired learning results. If a rule model is missing

which would correspond to the desired result, RDT will not �nd the wanted

15

rule. 4

3.2.2 CLT

The concept learning tool CLT learns from positive and negative examples.

The task is to de�ne a concept on the basis of some concept instances

Input: a set of positive examples, a set of negative examples, a set of rule

models

Output: a set of rules giving the su�cient and necessary conditions of a

concept.

The new concept can serve as a feature for some other concepts. In other

words: CLT can be used to construct new features. The input to CLT is a

set of rule models, the name of the concept to be learned, and facts among

which are those with the target concept name as predicate symbol. If this

fact is positive, it contributes to a positive example. If this fact is negated,

it contributes to a negative example. The concept can be a relational one,

i.e. a two-place predicate can be de�ned by CLT. As is the case for RDT,

also for CLT the user can input an acception criterion as a parameter of

CLT. The list of rule models to be used by CLT needs not be identical with

the list used by RDT.

CLT can be called by the user or by the knowledge revision module KRT
5

The learning result is a set of rules which represent the su�cient and

necessary conditions for concept membership. The su�cient conditions are

rules with the concept in the conclusion. The necessary conditions are rules

with the concept as a premise.

CLT uses the RDT algorithm. It is the focused use of RDT with the

additional requirement of �nding necessary conditions for the concept. 6

4For a detailed description of RDT see (Kietz, Wrobel 91).
5Only the learning tools are described in this paper. The knowledge revision is a tool

which handles contradictions, selects a rule to be deleted, or to be re�ned. The rule

re�nement is then performed either by the user or by the system. If a concept is missing

which restricts the support set appropriately, KRT calls CLT to learn that concept.
6For a detailed description of CLT see (Wrobel 89).

16

3.2.3 MAT

The model acquisition tool MAT abstracts rule models from rules. The task

is to generate rule models.

Input: a set of rules, a set of rule models

Output: new, non-redundant rule models.

As users prefer to input rules instead of rule models, the input to MAT are

rules. The learning strategy is that of abstraction over rules. The rules are

abstracted by turning predicate symbols from the application domain into

predicate variables. It is checked, whether a new rule model corresponds to

an already extisting one. If there are constant terms in the rule, these can

be either turned into variables, too, or be introduced into the rule model.

Rule models including a constant term as argument of a predicate may be of

good use if the desired learning result is to clarify all properties and relations

concerning a particular object or attribute value. The result is a rule model

which is not redundant to any given one. 7

3.2.4 STT

The sort taxonomy tool STT organizes the objects (constant terms) of an

application domain into sorts and classes of sorts. The task is to structure

the constant terms or objects of a domain. In other words, the task is to

learn types for a typed logic. If the fact base of MOBAL changes and the

non- incremental mode has been selected, then the user can call the update

of the sort taxonomy.

Input: a set of facts

Output: a lattice of classes of sorts.

The input to the algorithm is a set of facts. The output of it is a lattice of

classes of sorts. STT can be used either incrementally or as a single-step

learner. The lattice gives an overview of the actual state of the fact base.

It is used by the user for inspection and by the system to check the sort

compatibility of new facts and rules (rule hypotheses). 8

The learning strategy is that of bottom-up induction, where the learned

classes are described by their extensions. The basic idea of the algorithm is

7For a detailed description of a previous version of MAT see (Thieme,89).
8For a more detailed description see (Kietz 88).

17

to produce sets of constant terms on the basis of their occurance at particular

argument places of predicates. These sets are inspected with respect to

subset relations, identity, or intersections. The sets are sort extensions.

Equivalence classes are built for these sorts. The classes are organized in

a lattice based on their subset relations or intersections. The most time

consuming part of the algorithm is the calculation of intersections. The

user can select whether intersections are to be built, or not. The algorithm

is e�cient, because it corresponds to learning in propositional logic.

3.2.5 PST

The predicate structuring tool PST organizes the predicate symbols of an

application domain into linked sets of predicate symbols. The task is to

structure the predicates of a domain.

Input: a set of rules

Output: an acyclic directed graph.

The output of it is an acyclic directed graph, the topology. The topology

graph gives an overview of the rule base. It is used by the user for inspection

and by the system to check the topology compatibility of rule hypotheses.

The learning strategy is that of abstraction over rule sets. The basic idea

of the algorithm is to create a rule graph and then perform abstraction on it.

A rule graph is a graph where the predicates of rule conclusions are in one

node and the predicates of the premises are in its subnodes. As a predicate

can only be in one node, the graphs for several rules can be combined easily

to form the one rule graph for all rules of the rule base. This graph can

be cyclic. It is transformed into an acyclic one by the �rst abstraction: for

each cycle, a node is created with all the predicate symbols which occur in

the cycle. The graph is further reduced by merging all nodes with the same

successors or predecessors. In the icterus application the rule graph had 127

nodes for about 200 rules, the abstracted topology had only 50 nodes, thus

giving a good overview of the rulebase. 9

3.3 Cooperating learning tools

The brief description of MOBAL's learning tools already indicated their task

and their use by user and system. The cooperation of the tools is

9For a detailed description of PST see (Klingspor 91)

18

� to use the results of another tool

� more particular, to call another tool

� to use the same knowledge as does another tool.

In MOBAL, RDT uses the results of MAT, STT and PST, if the user has

not given the rule models, predicate declarations, or topology of predicates.

In this way, the tools produce structures that on the one hand allow the

user to inspect the evolving domain model. On the other hand, the tools

produce prerequisites for another tool, namely RDT. Moreover, in doing so,

the tools take the burden of structuring which otherwise would be on the

back of the user. The results of STT and PST in particular illustrate the

multi-functionality of represented knowledge. Figure 4 shows the interaction

of the learning tools. The lines between tool names indicate the use of

knowledge produced by a tool. The arrows denote a tool calling another

one.

STT MAT PST

 RDT

 CLT

KRT

Figure 4: learning tools cooperating

CLT calls RDT with the name of the target concept and the list of rule

models. CLT can be called by the user or by the knowledge revision. If a

support set of a rule has too many exceptions (the criterion for \too many"

given by the user or by default), CLT is called to de�ne either a concept for

the good rule applications or for the exceptions. The good and contradictive

rule applications serve as positive and negative examples for CLT. In this

way, the knowledge revision prepares the set of examples for CLT. The

support sets are multi-functional in that they prohibit wrong inferences and

can be used as examples for introducing new concepts.

The same knowledge, namely facts, is used by RDT, CLT and STT,

where STT can use any set of facts and CLT needs positive and negative

19

facts concerning a particular predicate, the target concept. Indirectly, via

forward inferences (saturation), RDT, CLT, and STT use the rules also.

In addition, RDT uses rules in order to not learn a known rule, again.

If background knowledge were represented di�erently from the (learned)

rules - as is the case in many learning systems - RDT could not use its

learning results for further learning. MOBAL's uniform representation of

background knowledge and learning results enables RDT to use new facts

which were derived from learned rules as additional descriptions (examples).

In particular, negated facts can be derived from learned rules with a negative

conclusion and serve as counterexamples for further learning.

3.4 MOBAL cooperating with the user

The user is supported in modeling by several capabilities of MOBAL. As was

pointed out above, we include inspection, testing (validation), and revisions

in the modeling process. The tools of MOBAL serve the overall modeling

activity of the user. In addition to the learning tools described above, there

is an inference engine, a programmer's interface, a user interface, and a

knowledge-revision tool. In the following, �rst the user interface is scetched.

Then, it is shown how each knowledge item can be input by the user or

inferred by a tool. Finally, the opprtunities of MOBAL for revising are

indicated.

3.4.1 The interfaces

In general, all items are input using a edit-window named \scratchpad"

where the user can edit the items before entering them into the system. A

help window associated with the scratchpad shows the format of each item

for input. If the data are available they can also be read into the system as

text �les in the scratchpad format. Using the programmer's interface which

o�ers high-level system calls, MOBAL can be coupled with another system

directly. Data can be exchanged between the systems using the commands

of the programmer's interface.

All items can be displayed as texts in windows. The windows re
ect

changes of the knowledge base immediately. The content of a window can

be focused so that only items containing a particular predicate symbol or

constant term are displayed. Several windows can be opened for facts, rules,

rule models, in parallel.

20

The windows are easily used for some operations. A double click with

the mouse on a particular item pops up a menu where the user can select

an operation (e.g.delete) or displaying the item graphically.

The user interface eases the inspection of the evolving domain model.

But the overview, the consequences of changes, and the detection of contra-

dictions are delivered by the tools and provide the real support for inspec-

tion.

3.4.2 Balanced adding of items

In this section, the balanced cooperation of system and user is described

with respect to adding knowledge items. It is shown, that for each type of

knowledge there exists a tool which creates items of this type and there is

an interface which supports the user in adding items of this type.

The user may input predicate declarations with named sorts. This is

sometimes useful, when it is easy to forget what argument type was supposed

to occur where in a predicate. The predicate declaration then serves as a

reminder of, e.g., where to put the person name in the predicate owner. If,

however, the facts are already electronically available, the user needs not

input predicate declarations. STT will do the job.

The user may input a topology of predicates in order to structure the do-

main model beforehand, e.g. with respect to steps of problem solving which

uses the (learned) rules. 10 For instance, the leave nodes of the topology

may consist of predicates which refer to the given data (observations) in an

application. Intermediate nodes may refer to intermediate problem solving

results. The root node may consist of predicates which refer to possible

results of problem solving (possible solutions). In this way, the topology is

a task structure for the performance element which uses the built-up knowl-

edge base in an application. If, however, the user does not know the overall

domain structure, PST can construct it on the basis of the rules.

The user may input rules and set the parameter such that MAT is called

in order to obtain rule models from them. Or, the user may set the parameter

to \direct rule input" so that MAT is not called for an inputed rule. The

user may also input some rule models and call RDT for discovering rules.

Thus, here again, there is a
exible work share of system and user.

10Learning serves the acquisition of a rule base for a particular application where the

rules are put to use!

21

The user must input some facts. Facts are necessary for learning, in-

ferring, and building the sort taxonomy. But, also facts can be added by

the system's inferences. By selecting an inference depth for forward and for

backward inferences (parameter of the inference engine), the user can force

the inference engine to derive as many facts as possible within the selected

inference depth (inference path length).

Hence, for each knowledge item there is a system tool adding it to the

knowledge base, and there is the option that the user enters it. Balanced

modeling is the
exible use of the tools for supporting the user to add items

or to have the system adding items to the knowledge base.

3.4.3 Revisions

Revisions of all knowledge items are supported by MOBAL and the con-

sequences are immediately propagated. If a rule or fact is deleted, all its

consequences are deleted, too. Consequences are the facts derived from this

rule or fact. Also updating the sort taxonomy and the abstracted topology

re
ects the change. It is not (yet) maintained, however, that a particular

rule was learned because of facts that were deleted afterwards. This requires

more book-keeping and would slow down the inference engine.

The interface allows to react to the displayed knowledge base. If, for

instance, the user detects a (derived) fact which he wants to reject, he can

either delete it in the fact window. Or, better, the user inputs this fact with

the explicit negation. In this case, the negated fact serves as a constraint and

in
uences learning. No rule covering the rejected fact can be learned any

more. The knowledge revision detects contradictions of facts and displays

graphically the inference pathes leading to the contradiction. The user or the

system may perform the blame assignment and repair the rule base. Also,

the explicit representation of exceptions in support sets and the call of CLT

to form a new concept if too many exceptions of a rule have occurred helps

to re�ne the domain model. In this way, MOBAL integrates inspecting,

inputing, and revising a domain model.

4 Conclusion

There are some typical ways of using MOBAL. The extremes are to begin

with facts and rule models and have the system learning rules, the sort

22

taxonomy, and afterwards calling the topology tool. This is the \automatic

mode". The other extreme is to begin with some known rules, declare the

predicates, build up the topology, then input some facts and call the learning

tools RDT or CLT. This is the \manual mode" where STT and PST are

called for inspection purposes, the revision options of inference engine and

knowledge revision are frequently used. Usually, modeling is performed

using the system manually and automatically. The applications of MOBAL

are

� tra�c law domain - a self-made knowledge base with a rich structure

and not so many facts; the knowledge base evolved in thee automatic

mode.

� icterus - facts and rules were provided by Dr. Mueller-Wickop and the

knowledge base was built up in the manual mode, using the tools for

inspection, only.

� maldecensus testis - data were provided by the Foundation of Research

and Technology, Hellas (FORTH); the data do not re
ect the diagnosis

model which was manually input by us in collaboration with a medical

expert (Prof. Charisis).

� SPEED - knowledge about the supervision of security policy in dis-

tributed systems was provided by Alcatel-Alsthom Recherche, Mar-

coussis (AAR); the domain o�ers a rich structure where CLT success-

fully invented a new concept for rule re�nement.

Except for the tra�c law domain and the icterus domain, only preliminary

studies have been performed. The collaboration with FORTH and AAR has

just begun. However, some lessons have already been learned. Becoming

acquainted with a system as complex as MOBAL takes some time. Setting

the evaluation criteria, for instance, seems to be a skill which requires some

experience with MOBAL. If users are familiar with attribute-value learning

systems such as ID3, for instance, they tend to not input relations and not

use all the options which MOBAL o�ers. In this case, the users have al-

ready done beforehand, what could have been learned using MOBAL. More

naive users (with respect to computers) easier exploit the opportunities of

MOBAL. The main advantage of MOBAL was the ease of inputing back-

ground knowledge or learning parts of the background knowledge. Users

also employed the inspection and revision abilities of MOBAL. Moreover,

MOBAL o�ers all advantages of a �rst order logic learning tool as opposed

23

to a propositional logic one.

As a conclusion, MOBAL indeed accepts new items and integrates them

into the knowledge base, supports the user in inspecting the knowledge

base, detects contradictions, and re�nes the rules. All these tasks can be

performed by the user or by a tool of the system. The users choose when to

let the system do a task and when doing the task themselves. In both cases,

the same knowledge representation and operations are applied. Therefore,

MOBAL is a balanced cooperative system.

Acknowledgements

Work reported in this paper has partially been conducted within the project

MLT which is funded by the ESPRIT programme of the European Commu-

nity under P2154.

The MOBAL system is developed at the German National Research Cen-

ter for Computer Science by (in alphabetic order) Joerg-Uwe Kietz, Volker

Klingspor, Katharina Morik, Edgar Sommer, and Stefan Wrobel. It is a suc-

cessor of the BLIP system which was developed at the Technical university

Berlin. The author of this paper wishes to thank the colleagues from the

Berlin as well as the colleagues from the Bonn days.

References

Davies, T.R. & Russell, S.J. (1987) A Logical Approach to Reasoning by

Analogy. Procs. of IJCAI-87, Morgan Kaufmann.

Emde,W., Habel, C.& Rollinger, C.-R., (1983) The Discovery of the

Equator or Concept- driven Learning. Procs. of IJCAI-83, Morgan Kauf-

mann.

Kietz, J.-U.& Morik, K. (1991) Constructive Induction: Learning Con-

cepts for Learning. Arbeitspapiere der GMD, No.543

Kietz, J.-U.& Wrobel, S.(1991) Controlling the Complexity of Learning

through Syntactic and Task-oriented Models. Procs. of Int. Workshop

Inductive Logic Programming

Kietz, J.-U. (1988) Incremental and Reversible Acquisition of Taxonomies.

Linster, M., Boose, J.& Gaines, B.(eds), Procs. of EKAW-88, GMD-Studien

143.

Klingspor, V. (1991) MOBAL's Predicate Structuring Tool. Deliverable

4.3.2/G of the MLT project, MLT-Report, No. GMD/P2154/22/1.

24

Kodrato�, Y.& Tecuci, G.(1989) The Central Role of Explanations in

DISCIPLE. in K. Morik (Ed): Knowledge Representation and Organization

in Machine Learning, New York: Springer, 1989.

Michalski, R.S. (1991) Inferential Learning Theory as a Basis for Multi-

strategy Task-Adaptive Learning. In R.S.Michalski & G.Tecuci (Eds): First

International Workshop on Multistrategy Learning, West Virginia.

Morik, K. (1989) Sloppy Modeling. In K.Morik (Ed): Knowledge Rep-

resentation and Organization in Machine Learning, New York: Springer,

1989.

Morik, K.& Kietz, J.-U. (1989) A Bootstrapping Approach to Concep-

tual Clustering. in A. Serge (Ed):Procs. of 6th IWML, San Mateo: Morgan

Kaufmann.

Morik, K. (1991) Underlying Assumptions of Knowledge Acquisition and

Machine Learning. Knowledge Acquisition Journal, 3, 137-156.

Morik, K., Causse, K.& Boswell, R. (1991) A Common Knowledge Rep-

resentation Integrating Learning Tools. In R.S.Michalski & G.Tecuci (Eds):

First International Workshop on Multistrategy Learning, West Virginia.

Quinlan, R. (1983) Learning E�cient Classi�cation Procedures and their

Application to Chess End Games. In R.S. Michalski, J.G.Carbonell & T.

Mitchell Machine Learning - An Arti�cial Intelligence Approach, Vol.I, Palo

Alto, CA:Tioga.

Quinlan, R. (1990) Learning Logical De�nitions from Relations. Ma-

chine Learning Journal,3, 239-266, 1990.

Shapiro, E.Y. (1981) Inductive Inference from Facts. Yale Research Re-

port, No. 192, Yale University.

Thieme, S. (1989) The Acquisition of Model Knowledge for a Model-

driven Machine Learning Approach. In K. Morik (Ed.) Knowledge Rep-

resentation and Organization in Machine Learning, New York: Springer,

1989.

Wrobel, S. (1987)Higher-order Concepts in a Tractable Knowledge Rep-

resentation. In K. Morik(Ed)Procs. German Workshop on AI, Berlin,Heidelberg:

Springer.

Wrobel, S. (1989) Demand-Driven Concept Formation. In K.Morik (Ed)

Knowledge Representation and Organization in Machine Learning, New York:

Springer.

25

