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Abstract

Human learning appears to be heavily inuenced by prior knowledge, yet the complex

relationships between individual conceptions and their inuence on the learning process

are still subject to research. The computational representation of learning processes is

assumed to yield a deeper insight into the interdependence of background knowledge and

the product of learning.

Based on a cross age study on children's explanations of the day/night cycle conducted

by S. Vosniadou and W. F. Brewer, children's conceptions of the celestial bodies and their

conceptions of the appearance and disappearance of objects have been modeled within the

knowledge representation system mobal. The formal and operational models help to spec-

ify the interconceptual relations and the conceptual development reconciling the culturally

accepted scienti�c explanation of the day/night cycle with alternative conceptions.
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1 Prior Knowledge in Human Learning

The earth is a huge sphere suspended in space. Is it really? How do you know? Well,

the concept of the earth as being a huge sphere suspended in space is usually acquired

sometime during childhood. But it is not the very �rst conception of the earth which is

acquired at young age. Before children learn the scienti�cally accepted concepts of the

earth, the sun, and the moon, they hold alternative conceptions of the celestial bodies,

e.g., that the earth is at and that it is supported by an in�nite ground [Nussbaum, 1979,

Mali and Howe, 1979, Sneider and Pulos, 1983, Vosniadou and Brewer, 1992]. And it

seems plausible to assume that these alternative conceptions heavily inuence further

learning in astronomy [Vosniadou, 1991, Nussbaum, 1985].

There is a substantial body of evidence indicating the impact of prior knowledge on the

learning process | a process leading to the construction of individual conceptual frame-

works [Posner et al., 1982, Driver and Erickson, 1983, Driver, 1989, Duit, 1991]. These

idiosyncratic knowledge structures are organized of concepts that take their meaning from

the theories in which they are embedded [Murphy and Medin, 1985, Carey, 1985]. This

perspective on human learning parallels the constructivist view on the way in which science

itself proceeds [Novak, 1988, Nussbaum, 1989].

Learners are regarded as architects of their own learning through a process of equi-

libration between knowledge structures and new observations and information. Thereby,

the learning process appears to be inuenced by sequencing e�ects in two ways: On the

one hand, the order in which information is available to the learner and observations are

experienced by the learner may ease the formation of a particular concept. On the other

hand, the availability of a particular concept may be prerequisite for acquiring another

one. Hence, progress in understanding would be reected by passing through a series of in-

termediate conceptions, with their sequence depending on the sequence of new information

or observations.

Representing human learning on computer systems is assumed to advance the the-

ory on conceptual change, i.e., how prior and new knowledge interfere within the process

of human knowledge acquisition. Requiring explicitness, computational representations

may help to specify and verify existing hypotheses on conceptual change, as well as they

may suggest directions for further investigations by way of indicating the formation of new

hypotheses [Strube et al., 1993]. In addition, computer systems facilitate not only the rep-

resentation of individual conceptions, but also the simulation of conceptual development .

[Simon and Kaplan, 1989]. Under this perspective, major interest lies in the investigation

of the progressive evolution on the level of individual concepts and conceptual structures

within speci�c, possibly knowledge intensive, real world domains.

The next section gives an overview of the knowledge representation system mobal,

which has been used to represent human learning in the domain of observational astron-

omy. Starting from a cross age study on children's explanations of the day/night cycle

[Vosniadou and Brewer, 1994], computational models have been developed to specify the

precise relationships between children's individual concepts that are involved in explaining

the alternation of day and night. Section 3 will outline these mobal models, followed by

the speci�cation of possible sequencing e�ects on their conceptual development in sec-

tion 4.
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2 Modeling Conceptual Structures

The constructivist view on human learning has been adapted to arti�cial knowledge rep-

resentation systems, where it has been termed Sloppy Modeling [Morik, 1989]. The notion

of sloppiness emphasizes the evolutionary character of computational models. A model is

always incomplete and more or less adequate, since modeling is an incremental and yet

in�nite process. A knowledge representation system that is to assist in Sloppy Model-

ing would have to feature the extensive construction, inspection, and change of complex

computational models.

The knowledge representation system mobal

1

constitutes a modeling environment de-

signed to approximately meet the requirements of Sloppy Modeling [Morik et al., 1993,

Sommer et al., 1993]. Design goals for the system have been to maintain incomplete and

revisable knowledge, to check its consistency, and to enable the user to inspect the knowl-

edge base. In particular, the inspection is eased by an immediate display of the conse-

quences which the user's activities have.

Meaningful human learning relates to concepts and conceptual structures. In mobal,

concepts and conceptual structures are represented within a restricted higher{order pred-

icate logic. Concepts are referred to by means of predicates, i.e., predicates with single or

multiple arity provide names for concepts. In addition, these predicates may have sorted

arguments. For instance, consider the following unary predicate declaration

opaque/1: <object>

This declaration creates the name opaque for a concept of opaqueness , which applies to

arguments of the sort <object>.

Concept membership is being expressed by facts. By specifying the members of a

concept, facts represent the concept extension. Thus for instance the fact

opaque(hill).

states that a particular object, which is referred to by the constant term hill, is a member

of the concept referred to as opaque. This might be read as The hill is opaque. At the

same time, non{membership to a concept may be explicitly denoted by negated facts such

as

not(opaque(cloud)).

which says that the object cloud is not a member of the concept referred to as opaque.

This could mean that The cloud is not opaque.

Multi{ary predicates are to represent concepts that are rather relational than propo-

sitional in character. The following 4{ary predicate declaration

covers/4: <object>,<object>,<object>,<event>

creates the name covers for a concept of covering , which applies to quadruples of the sort

<object>,<object>,<object>,<event>. A fact such as

covers(cloud,sun,me,event0).

1

mobal has been developed at the German National Research Center for Computer Science (GMD).
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states the membership of the quadruple (cloud,sun,me,event0) to the concept covers.

The above fact speci�es a relationship between the objects cloud, sun, me and the event

event0. It might be read as The cloud covers the sun for me in event0 .

A concept description (concept intension) consists of necessary and su�cient condi-

tions, which are represented by rules. Necessary conditions are rules that contain the

concept predicate as the only premise, e.g.,

covers(o1,o2,o3,e) -> disappears(o2,o3,e).

Note that disappears is also a concept predicate, which is to represent a concept of dis-

appearing , and that o1, o2, o3 and e are variables. This rule states a relationship between

the concepts covers and disappears, which in turn denote relations themselves. It says

that covering implies disappearing , or, more speci�cally, that If one object covers another

one from the viewpoint of a third object, then the second object disappears for the third

one.

Finally, su�cient conditions are rules that contain the concept predicate in the con-

clusion, such as

not(between(o1,o2,o3,s1)) & invisible(o2,o1,o3,s2) & state_seq(s1,e,s2)

& not(stationary(o1,e)) -> covers(o1,o2,o3,e).

This rule speci�es that the concepts between, invisible, state_seq, and stationary imply

the concept covers. This implication is further restricted by co{occurrences of variables in

arguments of di�erent concept predicates. As you can see, rule premises may be negated.

The same applies to conclusions of rules.

The relationship between concepts is inferential in nature, i.e., mobal uses rules to infer

facts by forward and backward chaining. Facts are assigned unique truth values, which

could either be true, or false, or both for contradictory facts, or unknown for facts that are

currently not inferable from the knowledge base. The truth values determine the inferences

that can be made from the corresponding facts. The four valued interpretation of facts

helps to maintain contradictory and incomplete knowledge. Contradictory knowledge will

be displayed on an Agenda and is subject to a knowledge revision

2

and concept formation

component of mobal.

Since rules link individual concept predicates, they represent conceptual structures.

Conceptual structures might get rather complex, particularly when they are conceptions

of real world phenomena, and so do their computational representations. Local concept

changes might a�ect a number of other concepts, for concepts are closely related and

changes may spread in conceptual structures. The system keeps track of all changes, be

those either in the extension of a concept, represented by facts of the concept predicate,

or in the intension of a concept, represented by rules with the concept predicate. Local

changes are automatically and recursively propagated onto linked concept predicates.

Aside from maintaining changes, mobal o�ers several views to inspect the knowledge

base, being quite helpful with complex conceptual structures. Among other things, the

system organizes the domain predicates into interlinked sets of predicates. Two sets of

predicates are linked if there are rules which have a predicate contained in one of the

two sets as a premise and and a predicate from either set as a conclusion. A graphical

2

The system resolves contradictions by minimal base revisions. For details refer to [Wrobel, 1993].
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representation of the sets and their linkages, the so{called Predicate Topology, is generated

by the system as an abstraction of the predicate intensions. It gives an overview of the

conceptual structure that is currently being represented.

3 Explanations of the Day/Night Cycle

Observational astronomy appears to be a suitable domain for the investigation of con-

ceptual change in children. Not only is it a relatively rich knowledge domain com-

posed of a number of concepts with complex relations, but also does children's every-

day experience provide them with su�cient information to develop an intuitive under-

standing of many of the phenomena that are part of the domain of scienti�c astronomy

[Vosniadou and Brewer, 1992]. As we will see, scienti�c conceptions of astronomical phe-

nomena di�er from children's intuitive conceptions in some major respects. This makes

the inuence of scienti�c information on those intuitive conceptions a center of interest.

A number of psychological studies investigated children's conceptions of the celestial

bodies such as the earth, the sun, and the moon and their conceptions of processes such

as the day/night cycle and the waxing and waning of the moon. In a particular study,

�rst, third, and �fth grade children were asked to explain the disappearance of the sun

during the night, the disappearance of the stars during the day, and the alternation of

day and night [Vosniadou and Brewer, 1994]. The study makes explicit the criteria used to

identify children's ideas and provides information regarding the systematicity, consistency,

and robustness of children's conceptions.

The children's explanations of the day/night cycle could be assigned to a limited num-

ber of conceptual frameworks, which have been modeled with mobal. The younger chil-

dren retained conceptions that appeared to contain a certain concept of the earth, viz.

that the earth is at, being supported by an in�nite ground [Vosniadou and Brewer, 1994].

Figures 1 and 2 exemplarily sketch two of these conceptions, showing graphical formal-

izations of the children's explanations. Model 1 explains the day/night cycle by virtue

of clouds that cover the sun at night (see �gure 1). In Model 3 the sun moves behind

some hills at night and causes the day/night cycle in this way (see �gure 2). Note that

in Model 1 the sun seems to be stationary and the clouds move, whereas in Model 3 it is

the sun that moves. In both models the earth is stationary, extending in�nitely at least

in downward direction.

Many of the older children that were probed in the study held the concept of an earth

being a huge sphere suspended in space [Vosniadou and Brewer, 1994]. Some of these

children think that the sun moves to the other side of the earth at night, this being the

cause for the day/night cycle (Model 5 in �gure 3). Just a few children appeared to have

adopted an advanced conception similar to the scienti�c explanation of the day/night

cycle (Model 9 in �gure 4). This model contains | in contrast to the other three models

presented here | the concept of an earth that is not stationary, but rotates on its axis

and hence brings about the alternation of day and night.

Even though the children's ideas of the earth's axis have not been investigated in

any major study on astronomy, none of the children would (probably) think that the

earth's axis looks like some enormous dotted lines as �gure 3 and 4 might suggest. These

dotted lines rather refer to some characteristics of spatial reasoning within the formal
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Figure 1: Model 1 | Clouds

cover the sun.
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Figure 2: Model 3 | The sun

moves behind hills.

N

�

Figure 3: Model 5 | The sun

moves to the other side of the

earth.

q

i

Figure 4: Model 9| The earth

rotates. (scienti�c explanation

of the day/night cycle)
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Figure 5: Predicate Topology of the computational models.

computational models that represent the children's conceptions. But instead of listing all

the facts and rules that constitute the computational models of the day/night cycle, the

easier{to{survey Predicate Topology will do better here. Figure 5 shows the Predicate

Topology, which is an abstraction of all rules and depicts general intensional relationships

between concept predicates (cf. section 2).

Within the Topology, you may recognize the predicates opaque, covers, disappears,

between, invisible, state_seq, and stationary, which have been subject of the examples

in section 2 to illustrate concept representation in mobal. These predicates and some

others label the Topology nodes, with each node standing for one or more concept predi-

cates. Hence not every declared predicate is visible. The Topology pictures the inferential

relations between the concept predicates. It depicts how these concepts are embedded in

the conceptual framework from that they take their meanings. Particularly, it shows how

the concepts altogether de�ne a concept of day/night cycleness , which is represented by

the concept predicate day_night_cycle at the top of the Topology.

The Predicate Topology in �gure 5 represents what is common to all computational

models of the day/night cycle, viz. the concepts' intensions, which are identical for all of

the four models presented here. Only the concepts' extensions, which are represented by



7

q

i

)

1

Figure 6: Sketched contradic-

tions between Model 1 and

Model 9.

facts (cf. section 2), vary from model to model and entail the di�erent explanations of the

day/night cycle. This means that the concepts' descriptions are rather general and apply

to all models that explain the day/night cycle. Moreover, concepts such as opaqueness ,

covering , and disappearing not only apply to the domain of observational astronomy, but

presumably to other domains as well.

3

4 Conceptual Change in Observational Astronomy

Where do the speci�c di�erences between the individual explanations of the day/night

cycle lie? This question can be answered with reference to the computational models.

Figure 6, for instance, suggests where Model 1 and Model 9 may di�er and where the

conceptions they represent might contradict. Similarly, these contradictions occur with

the computational models, yet on a more explicit and operational level. Figure 7 shows

a mobal Agenda with contradictions between Model 1 and Model 9, gathered therein

for further processing. Agenda entries either hint at contradictory facts, which call for a

knowledge revision (cf. section 2), or signify violations of integrity constraints. An integrity

constraint is a clause just like a rule, though its head can be empty or a disjunctive

normal form expression [Morik et al., 1993]. Integrity constraints allow to state negative

information without the explicit computation of all possible inferences. They are checked

permanently by mobal or upon user request. Both kind of Agenda items will be illustrated

below by way of example.

Contradictions between some model and Model 9 are of particular interest, since

Model 9 represents the scienti�c explanation of the day/night cycle. These contradictions

therefore hint at the information the alternative model should be exposed to in order to

enhance its adequacy of explanation in regard to the day/night cycle. However, children

only gradually get in touch with scienti�c information concerning the day/night cycle,

3

For instance, the fact covers(door,mother,me,event7) implies disappears(mother,me,event7).
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Figure 7: Agenda with contradictions between Model 1 and Model 9.

and this will change their conceptions only gradually, too. That means, the sequence of

scienti�c information plays an important part, because di�erent sequences of information

will lead to di�erent sequences of intermediate conceptions:

The evidence from a number of carefully conducted studies suggests that children's

ideas within speci�c domains tend to follow certain trajectories. Moreover, although

there is a variation at the individual level and there may be speci�c cultural inuences

to be considered, the general picture is that there is much in common in the concep-

tual trajectories for children from di�erent backgrounds and from di�erent countries.

[Driver, 1989, p. 488]

Such a trajectory, which is suggested by the computational models, might be construed

by Model 1, Model 3, Model 5, and Model 9 (cf. �gures 1 to 4). How can this sequence

of models be characterized? Informally, the earth at �rst extends in�nitely downward

(Model 1 and Model 3), but then gets conceptualized as being spatially bounded in all

directions (Model 5 and Model 9). The concept of an earth being entirely surrounded by

space seems to be necessary to construct the concept of an earth that is not stationary

(Model 9). The same conception is likely to be necessary to desist from the idea of some

clouds covering the sun (Model 1), passing the idea of the sun hiding behind some hills

(Model 3), to eventually attain the concept of a sun that hides on the other side of the

earth (Model 5). But note that though the sun concept of being stationary (Model 1)

is altered to being unstationary in Model 3 and Model 5, it is reverted to the initial

conception in the scienti�c explanation of the day/night cycle (Model 9).

What might have been the information that led to this sequence of models? A sequence

of information that is proposed by the computational models might be the following. The

�rst model, Model 1, contains the information that the clouds are opaque and cover the

sun to make it night on earth. The contradicting information or observation that the

clouds are not opaque, represented by the fact
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not(opaque(cloud)).

would reject the covering explanation of the day/night cycle. In �gure 7, this contradiction

is being indicated by the last Agenda item. In mobal, facts are interpreted by evidence

points , which in principle are continuous truth values in a two{dimensional evidence space

[Morik et al., 1993]. In particular, a pair of integers, each between 0 and 1000, represents

positive and negative evidence. The symbolic truth values that have been introduced in

section 2 are the corner points of this evidence space: true corresponds to [1000,0], false

to [0,1000], both to [1000,1000], and unknown to [0,0]. According to the last Agenda

item in �gure 7, the fact opaque(cloud) is assigned the evidence point [1000,1000]. Hence,

this represents a contradiction between Model 1 and Model 9 in regard to the opaqueness

of the clouds.

4

Although the new information on clouds retracts Model 1, Model 3 constitutes a suit-

able explanation of the day/night cycle, since the hills are still being conceptualized as

opaque (cf. section 2). However, the information that at night the sun is on the other side

of the earth contradicts Model 3. This information may be expressed by

between(earth,sun,me,state1).

which partially corresponds to the facts

in(me,up,earth,state1).

in(sun,down,earth,state1).

On the contrary, Model 3 states with

in(earth,down,earth,state1).

that the earth itself is on the other side of the earth | meaning that it extends in�nitely

downward. Furthermore, Model 3 says that if an object is in�nite and solid there may be

no other object in the occupied area, which is represented by the integrity constraint

5

in(o1,a,o1,t) & in(o2,a,o1,t) & solid(o1) & ne(o2,o1) �>.

Since this integrity constraint is violated by the above facts, an Agenda entry is generated

by the system (see the second Agenda item in �gure 7).

Finally, Model 5 would be contradicted by the facts

in(sun,left,me,event0).

in(sun,right,me,event1).

which represent the information or observation that the sun sets in a direction opposite

to the one where it rises. The additional fact

not(stationary(earth,event0)).

which might be read as The earth is not stationary in event0 , may then lead to the

acquisition of Model 9, which explains the day/night cycle by virtue of the daily rotation

of the earth.

4

In addition, the Agenda item is labeled with the index of the fact in the knowledge base.

5

The predicate ne is a built{in predicate to express unequalness and the empty conclusion is to be read

as `fail' or `false' [Morik et al., 1993].
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5 Concluding Remarks

Complying with Sloppy Modeling, the computational models are to be developed further

to improve their adequacy concerning the children's explanations. Methodologically this

means, on the one hand, to conduct experiments with the computational models and to

compare their answers to those the children gave in the underlying psychological study. On

the other hand, it seems necessary to empirically validate those concepts that partly had to

be postulated within the computational models in order to obtain explicit representations.

As mentioned in sections 2 and 3, the mobal formalism renders possible to state in-

ferential relations between relational concepts and hence allows for rather general concept

descriptions. For instance, essential to explanations of the day/night cycle are concepts of

the appearance, disappearance, and reappearance of objects, as can be seen in the Predicate

Topology in �gure 5. It seems reasonable to assume that these concepts are rather ac-

quired with everyday phenomena and are then applied in the construction of explanations

of the alternation of day and night [Vosniadou and Brewer, 1994, M�uhlenbrock, 1994].

This would account for the simplifying assumption that conceptual change in observa-

tional astronomy only consists of changing concept extensions, leaving concept intensions

unchanged. However, this in turn raises the question of how the concept intensions are

acquired in daily situations.

In addition, the computational models merely explain the robustness of particular

concepts in children's explanations. On the one hand, the computational models do not

account for the di�erence between received information and experienced observations. For

instance, children's conceptions seemed to be persistently constrained by the presupposi-

tion that the earth is at, as it in fact appears to be [Vosniadou and Brewer, 1992]. On

the other hand, there seem to be concepts whose intensions are not likely to be acquired

in everyday situations, such as the gravity concept. Hence the need to �rst construct an

intensional concept description would account for sequencing e�ects that involve concept

robustness.
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