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Abstract Dependency networks approximate a joint probability distribution over multiple
random variables as a product of conditional distributions. Relational Dependency Net-
works (RDNs) are graphical models that extend dependency networks to relational domains.
This higher expressivity, however, comes at the expense of a more complex model-selection
problem: an unbounded number of relational abstraction levels might need to be explored.
Whereas current learning approaches for RDNs learn a single probability tree per random
variable, we propose to turn the problem into a series of relational function-approximation
problems using gradient-based boosting. In doing so, one can easily induce highly complex
features over several iterations and in turn estimate quickly a very expressive model. Our
experimental results in several different data sets show that this boosting method results in
efficient learning of RDNs when compared to state-of-the-art statistical relational learning
approaches.

Keywords Statistical relational learning · Graphical models · Ensemble methods

1 Introduction

Bayesian and Markov networks (Pearl 1988) are among the most important, efficient, and
elegant frameworks for representing and reasoning with probabilistic models. They have
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been applied to many real-world problems such as diagnosis, forecasting, automated vi-
sion, sensor fusion, and manufacturing control. Nowadays, the role of structure and re-
lations in the data has become increasingly important: information about one object can
help the learning algorithm to reach conclusions about other objects. Therefore, relational
probabilistic approaches (also called Statistical Relational Learning (SRL)) (Getoor and
Taskar 2007) have been developed which, unlike what is traditionally done in statistical
learning, seek to avoid explicit state enumeration as, in principle, is traditionally done in
statistical learning through a symbolic representation of states. These models range from
directed models (Getoor et al. 2001; Kersting and De Raedt 2007; Fierens et al. 2005;
Jaeger 1997; Getoor and Grant 2006) to undirected models (Domingos and Lowd 2009;
Koller et al. 2002) and sampling-based approaches (Sato and Kameya 2001; De Raedt et al.
2007; Poole 1993). The advantage of these models is that they can succinctly represent prob-
abilistic dependencies among the attributes of different related objects leading to a compact
representation of learned models.

The compactness and even comprehensibility gained by using relational approaches,
however, comes at the expense of a typically much more complex model-selection task: dif-
ferent abstraction levels have to be explored. Recently, there have been some advances in this
problem, especially in the case of Markov Logic networks (Mihalkova and Mooney 2007;
Kok and Domingos 2009, 2010). In spite of these advances, the area of structure learning,
although the ultimate goal of SRL, is a relatively unexplored and indeed a particularly hard
challenge. It is well known that the problem of learning structure for Bayesian networks
is NP-complete (Chickering 1996) and thus, it is clear that learning the structure for rela-
tional probabilistic models must be at least as hard as learning the structure of propositional
graphical models.

A notable exception in the propositional world is Heckerman et al.’s (2001) directed
dependency networks, which are a collection of regressions or classifications among vari-
ables in a domain that can be combined using the machinery of Gibbs sampling to define an
approximate joint distribution for that domain. The main advantage is that there are straight-
forward and computationally efficient algorithms for learning both the structure and proba-
bilities of a dependency network from data. The other advantage is that these models allow
for cyclic dependencies that exist among the data and in turn combine to some extent the
best of both directed and undirected relational models. Essentially, the algorithm for learn-
ing a DN consists of independently performing a probabilistic classification or regression
for each variable in the domain. This allowed Neville and Jensen (2007) to elegantly extend
dependency networks to the relational case (called as Relational Dependency Networks) and
employ relational probability trees for learning.

The primary difference between Relational Dependency Networks (RDNs) and other di-
rected SRL models such as PRMs (Getoor et al. 2001), BLPs (Kersting and De Raedt 2007),
LBNs (Fierens et al. 2005) etc. is that RDNs are essentially an approximate model. They ap-
proximate the joint distribution as a product of marginals and do not necessarily result in a
coherent joint distribution. As mentioned elsewhere by Heckerman et al. (2001), the quality
of the approximation depends on the quantity of the data. If there are large amounts of data,
the resulting RDN model is less approximate. Neville and Jensen (2007) learn RDNs as a set
of conditional distributions. Each conditional distribution is represented using a relational
probability tree (Neville et al. 2003) and learning these trees independently is quite effec-
tive when compared to learning the entire joint distribution. Therefore, it is not surprising
that RDNs have been successfully applied to several important real-world problems such as
entity resolution, collective classification, information extraction, etc.

However, inducing complex features using probability estimation trees relies on the
user to predefine such features. Triggered by the intuition that finding many rough rules
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of thumb of how to change one’s probabilistic predictions locally can be a lot easier than
finding a single, highly accurate local model, we propose to turn the problem of learn-
ing RDNs into a series of relational function approximation problems using gradient-based
boosting. Specifically, we propose to apply Friedman’s (2001) gradient boosting to RDNs.
That is, we represent each conditional probability distribution in a dependency network as
a weighted sum of regression models grown in a stage-wise optimization. Instead of rep-
resenting the conditional distribution for each attribute (or relation) as a single relational
probability tree, we propose to use a set of relational regression trees (Blockeel and De
Raedt 1998). Such a functional gradient approach has recently been used to efficiently
train conditional random fields for labeling (relational) sequences (Dietterich et al. 2004;
Gutmann and Kersting 2006) and for aligning relational sequences (Karwath et al. 2008).

The benefits of a boosting approach to RDNs are: First, being a nonparametric approach
the number of parameters grows with the number of training episodes. In turn, interactions
among random variables are introduced only as needed, so that the potentially large search
space is not explicitly considered. Second, such an algorithm is fast and straightforward to
implement. Existing off-the-shelf regression learners can be used to deal with propositional,
continuous, and relational domains in a unified way. Third, the use of boosting for learning
RDNs makes it possible to learn the structure and parameters simultaneously, which is an
attractive feature as structure learning in SRL models is computationally quite expensive.
Finally, given the success of ensemble methods in machine learning, it can be expected that
our method is superior in predictive performance across several different tasks compared to
the other relational probabilistic learning methods.

Motivated by the above, we make several key contributions:

– We present an algorithm based on functional-gradient boosting that learns the structure
and parameters of the RDN models simultaneously. As explained earlier, this allows for
a faster yet effective learning method.

– We compare several SRL models against our proposed approach in several real-world
domains and in all of them, our boosting approach equals or outperforms the other SRL
methods and needs much less training time and parameter tuning. These real-world prob-
lems range over entity resolution, recommendation, information extraction, bio-medical
problems, natural language processing, and structure learning across seven different rela-
tional data sets.

– Admittedly, we sacrifice comprehensibility for better predictive performance. But, we
discuss some methods by which these different regression trees can be combined to a
single tree if necessary for human interpretation.

– A minor yet significant contribution of this work is the exploration of relational regres-
sion trees for learning RDNs instead of relational probability trees. As we explain, these
regression trees allow for a richer representation than the RPTs.

The rest of the paper is organized as follows: in the next section, we review the neces-
sary background. In particular, we outline dependency networks, RPTs, RDNs, functional-
gradient boosting method, etc. In the third section, we present the functional-gradient deriva-
tion for RDNs. We then present the formal algorithm for boosting RDNs and discuss some of
the features and potential enhancements to this learning method. In the experimental section,
we provide the results of the learning algorithm when applied in seven different domains.
We compare the results of our learning method against state-of-the-art SRL methods on
those problems, demonstrating the robustness of our learning method. Finally, we conclude
by discussing some possible future directions for future research.
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2 Background

In this section, we present a brief survey of dependency networks (DNs) and their relational
extension (RDNs). For a general overview of statistical relational learning, we refer to the
book on SRL (Getoor and Taskar 2007). We also give a brief introduction to functional
gradient boosting in the last subsection.We explain our notations as we introduce them.

2.1 Dependency networks

Bayesian networks (BNs) (Pearl 1988) have been widely used for learning and reasoning
about probabilistic relationships. The graphical structure of BNs encode independencies that
occur in the data. While BNs are attractive for modeling, there is a significant drawback, in
that they cannot capture cyclic dependencies that might exist in the data. Trying to capture
the cyclic dependencies in a BN can lead to a denser model than necessary. Also, the problem
of inference for arbitrary BNs is NP-hard and as a result, learning BNs is a hard problem
(because learning involves the use of repeated inference in the case of missing data). Finally,
learning the structure of BNs is extremely hard due to the requirement of enforcing acyclicity
conditions.

Heckerman et al. (2001), introduced Dependency networks (DNs) that approximate the
joint distributions of BNs as a product of individual conditional probability distributions
(CPDs). The key advantage of this representation is that these distributions can be learned
independently and hence are significantly easier to learn than the general BNs. However,
these gains are not without a price. Since the joint distribution is learned using individual
distributions, the resulting model is not necessarily guaranteed to result in a consistent joint
distribution. Although this prevents DNs from being used for causal modeling, DNs can
be used for encoding predictive relationships. Heckerman et al. (2001) prove that a Gibbs
sampling method called ordered pseudo-Gibbs sampler can be used to recover the full joint
distribution, regardless of the consistency of the local CPDs. The only constraints for the
proof are that the CPD is positive and the variables of the dependency network are discrete.
We refer to the Heckerman et al. (2001) for further details on the pseudo-Gibbs sampler.

Graphically, DNs combine the characteristics of both directed and undirected models by
allowing bi-directional links between variables. DNs are defined using a bidirected graph
G = (V ,E). The conditional independencies are interpreted using graph separation as with
undirected models (Neville and Jensen 2007). Each vertex vi corresponds to a feature Xi .
Associated with each vi is a conditional probability distribution P (vi |Pa(vi)) that gives the
probability of the feature given its parents. Correspondingly, there will be directed edges
between the parents Pa(vi) and vi . These edges also encode the conditional independence,
P (vi |V − vi) = P (vi |Pa(vi)). A sample dependency network is shown in Fig. 1. As can
be seen, there are four random variables {A,B,C,D} in the network. This network is very
similar to a BN except for the bi-directional relationship between random variables A and
D that breaks the acyclicity. Removal of one of the edges between A and D would yield a
Bayesian network or a consistent dependency network where the joint distribution is exactly
the product of marginals and not an approximation.

2.2 Relational dependency networks

RDNs (Neville and Jensen 2007) extend this idea to the relational world by approximating
the joint distribution as a product of conditional distributions over ground atoms. The orig-
inal formalism of RDNs was motivated using relational databases and the RDN package
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Fig. 1 An example dependency
network. Note the bi-directional
relationship between random
variables A and D

Fig. 2 Example of a RDN

(Proximity1) uses a relational database as its back-end. Since we use a Prolog-based learner
in this work, we present RDNs from a logical perspective.

RDNs consist of a set of predicate and function symbols that can be grounded given
the instantiation of the variables. Associated with each predicate Yi is a conditional proba-
bility distribution P (Yi |Pa(Yi)) that defines the distribution over the values of Yi given its
parents’ values, Pa(Yi). We will use capitalized letters (e.g., Y ) to denote predicates, small
letter (e.g., y) to denote the grounding of the predicate and bold letters to denote the sets
of groundings (e.g., given x). Since RDNs are in relational setting, there could be multi-
ple groundings for a predicate. RDNs use aggregators such as count, max and average to
combine the values of these groundings.

An example RDN is presented in Fig. 2 for an university domain. The ovals indicate
predicates, while the dotted boxes represent the objects in the domain. As can be seen, there
are professor, student and course objects with taughtBy and takes as the relations among
them. The nodes avgSGrade and avgCGrade are the aggregator functions over grades on

1http://kdl.cs.umass.edu/proximity/index.html.

http://kdl.cs.umass.edu/proximity/index.html


30 Mach Learn (2012) 86:25–56

students and courses respectively. The arrows indicate the probabilistic (or possibly deter-
ministic) dependencies between the predicates. For e.g., the predicate grade has difficulty,
takes, and IQ as its parents. Also note that there is a bidirectional relationship between sat-
isfaction and takes. As mentioned earlier, associated with each predicate Yi is a distribution
P (Yi |Pa(Yi)).

Learning RDNs Since the joint distribution of RDNs can be factored into a set of condi-
tional distributions (CPDs), learning RDNs corresponds to learning these distributions. This
directly implies that these conditional distributions can each be learned independently of
the others. Neville et al. (Neville and Jensen 2007) use relational probability trees (RPTs)
(Neville et al. 2003) and relational Bayesian classifiers (RBCs) (Neville et al. 2003) to cap-
ture these distributions. Of the two, RPTs have become a popular method for representing
the CPDs in RDNs and hence their RDN learning algorithm learns a RPT for every target
predicate P . The RPT tree learner constructs aggregators such as mode, count, proportion,
and degree. The features are restricted to the aggregated predicates. This ensures that there
is always one grounding for every path in the tree. (We relax this assumption in this work.)
Then feature scores are calculated using chi-square to measure the correlation between the
feature and the target.

An example of RPT is presented in Fig. 3. This RPT was constructed in Neville et al.
(2003) for the task of predicting whether a web page is a student web page. This tree can
be interpreted as extending decision trees to the relational setting and thus consists of a
series of tests about a web page and its relational neighborhood. The leaves contain the
probability distributions over the values of the isStudent target label. In this example, the
target is Boolean valued. The root node checks if the page is linked to a web page with
more than 111 out-links (e.g., a directory page). If so, then the probability of the web page
being a student web page is 0.99. Else, the next test is performed which checks whether the
page is linked to from a page without a path appended to the URL (e.g., a department home
page). If so, it is unlikely to belong to a student as can be seen from the probability being
as low as 0.02. If not, the next test is performed. The numbers in the leaf node indicate the
number of positive:negative examples that reach the given leaf node. We refer the readers
to the work by Neville et al. (2003) for further details on RPTs. They demonstrate that
RPTs build significantly smaller trees than other conditional models and obtain comparable
performance. As we present in the next section, we use relational regression trees instead of
RPTs to learn RDNs. The RDNs learned using relational regression trees serve as a baseline
to compare against our new approach. This is due to the fact we could not get the RDN
software Proximity to run on several data sets because of memory issues.

Inference As with the case of DNs, inference in RDNs is generally performed using modi-
fied ordered pseudo-Gibbs sampling. To perform inference, Neville et al., unroll the RDN to
the ground network (where each predicate is instantiated with all the possible values for the
variables in the predicate). Once the ground network is constructed, they perform modified-
ordered Gibbs sampling on the unrolled network. Although Gibbs sampling may not be very
efficient to estimate the joint distribution, Neville et al. demonstrate that it is reasonable in
estimating marginal probabilities for each predicate.

2.3 Functional gradient boosting

Functional gradient methods have been used previously to train conditional random fields
(CRF) (Dietterich et al. 2004) and their relational extensions (TILDE-CRF) (Gutmann and
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Fig. 3 Example of a RPT (Fig. 1
from Neville et al. 2003). The
goal of this RPT is to predict
whether a web page is a student
web page based on the number of
outgoing links. Numbers at a leaf
node report the number and
percentage of positive and
negative examples reaching that
leaf

Kersting 2006). Assume that the training examples are of the form (xi , yi) for i = 1, . . . ,N

and yi ∈ {1, . . . ,K}. The goal is to fit a model P (y|x) ∝ eψ(y,x). The standard method of
learning in graphical models is based on gradient-descent where the learning algorithm starts
with initial parameters θ0 and computes the gradient of the likelihood function. Note that the
parameters of CRFs encode potential functions, i.e., functions mapping configurations on
the truth values of some random variables to real values. This view allowed Dietterich et al.
(2004) to use a different approach to train the potential functions based on Friedman’s (2001)
gradient-tree boosting algorithm where the potential functions are represented by sums of
regression trees that are grown stage-wise. Since the stage-wise growth of these regression
trees are similar to the Adaboost algorithm (Freund and Schapire 1996), Friedman called
this gradient-tree boosting.

More formally, functional gradient ascent starts with an initial potential ψ0 and iteratively
adds gradients Δi . This is to say that after m iterations, the potential is given by

ψm = ψ0 + Δ1 + · · · + Δm (1)

Here, Δm is the functional gradient at episode m and is given by

Δm = ηm × Ex,y[∂/∂ψm−1 logP (y|x;ψm−1)] (2)

where ηm is the learning rate. Dietterich et al. (2004) suggested evaluating the gradient at ev-
ery position in every training example and fitting a regression tree to these derived examples.
In addition to CRFs (Dietterich et al. 2004) and TILDE-CRFs (Gutmann and Kersting 2006),
this method has also been successfully used for learning sequence alignments (Parker et al.
2006) and their relational extensions (Karwath et al. 2008), and policies (Sutton et al. 2000)
and their relational extensions (Kersting and Driessens 2008). In this paper, we employ the
idea of functional gradient boosting to learn relational dependency networks (RDNs).

3 Functional gradient boosting of RDNs

As explained in the previous section, functional gradient ascent is different from the stan-
dard gradient ascent methods in one key aspect—it does not assume a linear parameteriza-
tion for the potential function (Dietterich et al. 2004). The standard assumption is that the
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potential function ψ is represented as

ψ =
∑

βifi (3)

where {β1, . . . , βn} = θ are the parameters of ψ . As can be seen, the potential function is
assumed to be a linear function of the parameters. In functional gradient ascent, ψ is given
by Eq. 1 where the assumption is more general in that it is a weighted sum of functions and
the functional gradient is given by Eq. 2. As Dietterich et al. (2004) point out, the expectation
Ex,y[..] cannot be computed as the joint distribution P (x,y) is unknown.

Since the joint distribution is unknown, functional gradient methods treat the data as a
surrogate for the joint distribution. Hence, instead of computing the functional gradient over
the potential function, the functional gradients are computed for each training example, i.e.,

Δm(yi;xi ) = ∇ψ

∑

i

log(P (yi |xi;ψ))|ψm−1 (4)

These are point-wise gradients for each example (xi , yi) conditioned on the potential from
the previous iteration (shown as |ψm−1 ). Now this set of local gradients form a set of training
examples for the gradient at stage m. The key step in functional gradient boosting is the
fitting of a regression function (typically a regression tree) hm on the training examples
[(xi , yi),Δm(yi;xi )] (Friedman 2001). Dietterich et al. (2004) point out that although the
fitted function hm is not exactly the same as the desired Δm, it will point in the same direction
(assuming that there are enough training examples). So ascent in the direction of hm will
approximate the true functional gradient.

For the rest of the paper, we drop the predicate notations and denote the query predicates
as Y ’s and the other predicates as X’s. Note that when learning a full RDN, each of the
predicates become the query predicate successively.

3.1 Derivation of the functional gradient

As we have mentioned earlier, an RDN can be represented as a set of conditional distribu-
tions: P (Y |Pa(Y )) for all the predicates Y , and learning RDNs corresponds to learning the
structure of these distributions along with their values. Functional gradient ascent provides
us with solutions to the twin problems of structure and parameter learning simultaneously.
We consider the conditional distribution of a variable yi to be

P (yi |Pa(yi)) = eψ(yi ;xi )

∑
y′ eψ(y′;xi )

(5)

∀xi ∈ xi where (xi �= yi), ψ(yi;xi ) is the potential function of yi given all other xi �= yi and
(y ′ ∈ all possible groundings of Yi ).

Note that this is a sharp departure from the current setting of RDNs as considered by
Neville and Jensen (2007). While they use the notion of relational probability trees to repre-
sent the conditional distribution at each predicate, we instead use relational regression trees
(RRT) (Blockeel and De Raedt 1998) for the same purpose. Though not novel, this is a
secondary yet significant contribution of this work. The relational regression trees are more
expressive than the RPTs as we explain later in this section. We will also explain the RRT
learner later.
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Theorem 1 The functional gradient with respect to ψ(yi = 1;xi ) of the likelihood for each
example 〈yi,xi〉 is given by:

∂ logP (yi;xi )

∂ψ(yi = 1;xi )
= I (yi = 1;xi ) − P (yi = 1;xi )

where I is the indicator function that is 1 if yi = 1 and 0 otherwise.

Proof The probability of the grounding yi for the example i is given by

P (yi |xi ) = eψ(yi ;xi )

∑
y′ eψ(y′;xi )

(6)

Thus, we have

logP (yi;xi ) = ψ(yi;xi ) − log
∑

y′
eψ(y′;xi ) (7)

Taking the derivative w.r.t the function ψ , we get

∂ logP (yi;xi )

∂ψ(yi = 1;xi )
= I (yi = 1;xi ) − 1∑

y′ eψ(y′;xi )

∂
∑

y′ eψ(y′;xi )

∂ψ(yi = 1|xi )

= I (yi = 1;xi ) − eψ(yi=1;xi )

∑
y′ eψ(y′;xi )

= I (yi = 1;xi ) − P (yi = 1;xi ) �

Note that the gradient at each example is now simply the adjustment required for the
probabilities to match the observed value (yi ) for that example. This gradient serves as the
weight for the current regression example at the next training episode.

3.2 Using relational regression trees as functional gradients

Following prior work (Gutmann and Kersting 2006), we use Relational Regression Trees
(RRTs) to fit the gradient function at every feature in the training example. These trees
upgrade the attribute-value representation used within classical regression trees. In relational
regression trees, the inner nodes (i.e., test nodes) are conjunctions of literals and a variable
introduced in some node cannot appear in its right sub-tree (variables are bound along left-
tree paths). Each relational regression tree can be viewed as defining several new feature
combinations, one corresponding to each path from the root to a leaf. The resulting potential
functions from all these different relational regression trees still have the form of a linear
combination of features but the features can be quite complex (Gutmann and Kersting 2006).

At a fairly high level, the learning of relational regression tree proceeds as follows: The
learning algorithm starts with an empty tree and repeatedly searches for the best test for a
node according to some splitting criterion such as weighted variance. Next, the examples in
the node are split into success and failure according to the test. For each split, the procedure
is recursively applied further obtaining subtrees for the splits. We use weighted variance on
the examples as the test criterion. In our method, we use a small depth limit (of at most 3) to
terminate the search. In the leaves, the average regression values are computed. We augment
the relational regression tree learner with the aggregation functions such as count, max,
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Fig. 4 An Example Relational Regression Tree. The leaves are the regression values for the query advisedBy

average in the inner nodes thus making it possible to learn complex features for a given
target.

An example is presented in Fig. 4. The goal in the figure is to predict if A is advisedBy B .
In the tree, if B is a professor, A is not a professor, A has more than one publication and
more than one publication with B , then the regression value is 0.09. As can be seen for
most of the other cases, there are negative values indicating lower probabilities (i.e., the
probability of the target given that the particular path is true is <0.5).

The key features of our regression tree learner are:

– We implemented the version of the regression tree learner Tilde (Blockeel and De Raedt
1998) that allows for evaluation of nodes containing conjunctions of predicates.

– Our regression tree learner is able to learn recursive rules. To facilitate this, we intro-
duce special predicates (for example, recursive_target for the target predicate) and al-
low these predicates to be used in the search space. The groundings of these special
predicates are created such that when the target is true for a particular grounding, the
corresponding recursive predicates are set to true as well. Of course, such an approach
will lead to an obvious trivial clause such as, target(A,B) : −recursive_target(A,B)

that is always true. When searching a tree for the current target, this clause will always
have the highest weight. In order to avoid such a trivial rule, we ensure that when us-
ing these recursive predicates, some of the variables that appear in the head do not ap-
pear in the same recursive predicate. Only a subset of the variables that appear in the
recursive predicates are allowed in the clause. This will allow us to learn rules such as
SameBib(A,C) : −SameBib(A,B),SameBib(B,C) since each of the predicates in the
body contains only one variable that appears in the head. It should be mentioned that such
recursive rules are quite frequently useful in the domains that we consider.

– In our regression tree learner, we can include knowledge to guide the search through the
space of trees. We can specify that certain predicates should be considered/not considered.
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This is quite similar to allowing the background knowledge in many ILP systems such as
ALEPH (Srinivasan 2004) and TILDE (Blockeel and De Raedt 1998).

– Our regression tree learner constructs the aggregated predicates on the fly during the search.
So when a particular predicate is considered for inclusion in the search space, its correspond-
ing aggregated predicates are considered as well. This approach is a special case to the one
presented earlier by Vens et al. (Vens et al. 2006) for learning complex aggregator functions in
relational regression trees.

As explained earlier, the regression tree learner takes examples of the form [(xi , yi),

Δm(yi;xi )] and outputs the regression tree hm that minimizes
∑

i

[hm(yi;xi ) − Δm(yi;xi )]2 (8)

over all the examples (Dietterich et al. 2004). Note that in our work, we learn Relational
Regression Trees as presented by Blockeel and De Raedt (Blockeel and De Raedt 1998) and
as shown in Fig. 4.

The key idea in this work is to consider the conditional probability distribution of each
predicate as a set of relational regression trees. These trees are learned such that at each iter-
ation the new set of regression trees aim to maximize the likelihood of the distributions with
respect to the potential function. Hence, when computing P (a(X)|Pa(a(X))) for a particu-
lar value of X (say x), each branch in each tree is considered to determine the branches that
are satisfied for that particular grounding (x) and their corresponding regression values are
added to the potential ψ .

We developed a regression-tree learner in Java that is similar to the regression tree learner
TILDE (Blockeel and De Raedt 1998). This regression-tree learner is built upon an Inductive
Logic Programming (ILP) (Muggleton and De Raedt 1994) system called WILL (Wisconsin In-
ductive Logic Learner).2 This tree learner requires weighted examples as input where the weight
of each example corresponds to the gradient presented above for the corresponding example. Note
that the different regression trees provide the structure of the conditional distributions while the
regression values at the leaves form the parameters of the distributions. Similar to the relational
probability trees (Neville et al. 2003), we also use aggregators such as count, max and average to
handle the case of multiple groundings of a predicate.

It can be easily observed that each path between the root and leaf in the regression tree can be
considered as a clause in a logic program. For instance, the left-most path of the tree in Fig. 4 is:

professor(A) ∧ professor(B) ⇒ advisedy(A,B)

where the regression value associated with the above clause is −0.06. In our implementation, we
maintain a list of these clauses (from left to right). While evaluating a particular query, the clauses
are evaluated in the same order (from left to right) and the regression value corresponding to the
first satisfied ground clause is returned. Note that since we are in the relational (logical) setting,
there can be multiple instances that can satisfied for a particular clause. This is mainly due to
the fact that unlike RPTs, we do not include only the aggregated variables in the inner nodes
of the tree. Instead, all the predicates (not including the current query predicate) are considered
along with their aggregated versions (such as count, mean, max, min, mode) which allows our
tree learner to capture richer relationships among the features. To handle the case of multiple
instances for a given clause, once again we use the first satisfied ground clause. This is possible
because, if a particular inner node is not an aggregator, it is interpreted using existential semantics
and the first satisfied ground instance is selected.

2http://www.cs.wisc.edu/machine-learning/shavlik-group/WILL/.

http://www.cs.wisc.edu/machine-learning/shavlik-group/WILL/
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3.3 Algorithm for learning RDNs

Our algorithm for learning RDNs using functional gradient boosting is called as RDN-B and is
presented in Algorithm 1. Algorithm TreeBoostForRDNs is the main algorithm that iterates over
all predicates. For each predicate (k), it generates the examples for our regression tree learner
(that is called using function FitRelRegressTree) to get the new regression tree and updates its
model (Fk

m). This is repeated upto a pre-set number of iterations M (in our experiments, typically,
M = 20) or a different stopping criteria (for example, the average change in the gradient value
between iterations). Yet another possible criterion could be to stop the growth of the trees if
there are 1 − ε fraction of examples where the change in gradient is less than δ. We typically set
ε to be 0.05 and δ to be 0.005. Note that the after m steps, the current model Fk

m will have m

regression trees each of which approximates the corresponding gradient for the predicate k. These
regression trees serve as the individual components (Δm(k)) of the final potential function. A key
point about our regression trees is that they are not large trees. Generally, in our experiments, we
limit the depth of the trees to be 3 and the number of leaves in each tree is restricted to be about
8 (the parameter L in FitRelRegressTree). The initial potential F 1

0 is usually set to capture the
uniform distribution in all our experiments. However, it is possible to use more informative initial
potentials that can encode domain knowledge or the prior about the target.

The function GenExamples (line 4) is the function that generates the examples for the
regression-tree learner. As can be seen, it takes as input the current predicate index (k), the data,
and the current model (F ). The function iterates over all the examples and for each example,
computes the probability and the gradient. Recall that for computing the probability of yi , we
consider all the trees learned for Yi . For each tree, we compute the regression values based on the
groundings of the current example. The gradient is then set as the weight of the example.

The algorithm TreeBoostForRDNs loops over all the predicates and learns the potentials for
each predicate. The set of regression trees for each predicate forms the structure of the conditional
distribution and the set of leaves form the parameters of the conditional distribution. Thus gradi-

Algorithm 1 RDN-Boost: Gradient Tree Boosting for RDN’s
1: function TREEBOOSTFORRDNS(Data)
2: for 1 ≤ k ≤ K do  Iterate through K predicates
3: for 1 ≤ m ≤ M do  Iterate through M gradient steps
4: Sk := GenExamples(k;Data;Fk

m−1)  Generate examples
5: Δm(k) := FitRelRegressTree(Sk;L)  Functional gradient
6: Fk

m := Fk
m−1 + Δm(k)  Update models – Compute set of trees

7: end for
8: P (Yk = yk|Pa(Xk)) ∝ ψk  ψk is obtained by grounding Fk

M

9: end for
10: return
11: end function
12: function GENEXAMPLES(k,Data,F )
13: S := ∅
14: for 1 ≤ i ≤ Nk do  Iterate over all examples
15: Compute P (yi

k = 1|Pa(xi
k))  Probability of the predicate being true

16: Δ(yi
k;xi

k) := I (yi
k = 1) − P (yi

k = 1|Pa(xi
k))  Compute Gradient

17: S := S ∪ [(xi
k, y

i
k),Δ(yi

k;xi
k))]  Update relational regression examples

18: end for
19: return S  Return regression examples
20: end function
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ent boosting allows us to learn the structure and parameters of the RDN simultaneously. In our
setting, the relational regression trees are very natural. This is due to the fact that a set of relational
regression trees can replace a single relational probability tree from the original formalism.

3.4 Collective classification and Gibbs sampling

The algorithm presented above iterates through each of the predicate and learns the conditional
distribution for the corresponding predicate. One of the major advantages of SRL models is the
ability to perform collective classification: i.e., reasoning about the queries simultaneously rather
than independently. To allow for such an interaction, we include the other query predicates in the
training data while learning the model for the current query. This is possible because we assume
that in the training data, all the queries are observed.

When some of the predicates are not observed, we use Gibbs sampling for inferring the hidden
values based on the current model. The Gibbs sampling method that we use is the same modified
ordered pseudo-Gibbs sampling method that we have referred earlier. When a particular predicate
is not observed for the current example, we sample its value by using the current model for the
predicate. We assume that in these cases, there is a natural ordering for the predicates that can
be domain-specific. For instance, if we are interested in predicting a particular target, and some
of the values of other predicates are missing, those predicates must be sampled before the target
is sampled to make them predict the target. When learning a collective classification model, the
ordering is not too important: we can re-order the sampling predicates between different sampling
iterations and still converge to the same result(Neville and Jensen 2007).

Alternatively, it is possible to re-order the steps in the algorithm as follows: instead of learning
the complete model for each predicate i.e., learn the set of regression trees for the one query
predicate before the others, it is possible to learn the entire model stage-wise. This is to say
the lines 2 and 3 of the function TreeBoostForRDNs in the algorithm will be swapped. We loop
through the predicates and learn one tree for each predicate. So for each predicate, at the end of
each iteration, we will learn a single tree and continue the learning. This will enable the learning
of bi-directional relationships that can possibly exist between the query predicates in presence of
hidden data. More precisely, if there are more than one target predicate that could be inter-related
(for example in collective classification), it is quite possible that some of these predicates are
not always observed. In that case, re-ordering the steps will allow the Gibbs sampler to sample a
value for the target predicate conditioned on the current model. In most of our experiments, we
did not have to make this change to the algorithm as the target predicates were observed in all the
data sets.

3.5 Discussion

Note that our boosting algorithm provides a method to learn the structure and parameters of the
RDNs simultaneously. The predicates in the different relational regression trees form the structure
of the model (the CPD), while the regression values themselves are the parameters of the CPDs.
We believe that the functional gradient boosting might be the solution to the hardest problem in
SRL: learning the structure of the model. Note that inference in SRL models is very expensive
too, but since inference is the inner loop of the learning algorithms, structure learning is the
hardest problem of SRL. Though there are several lifted inference techniques proposed (Singla
and Domingos 2008; Kersting et al. 2009; Poole 2003; de Salvo Braz et al. 2005; Milch et al.
2008) for SRL models, the research in this area is at a nascent stage and boosting would provide
the perfect opportunity to learn the structure and parameters simultaneously.

Interpretability of the resulting trees Having presented the boosting algorithm, the obvious
question is: Are we sacrificing comprehensibility for better predictive performance? Since the
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Fig. 5 A single tree induced from the set of regression trees learned for predicting the advisedBy relation
between a professor and a student. Note that some of the nodes are conjunctions of predicates with “,” de-
noting the conjunction symbol. The numbers at the leaves are the probability of the advisedBy relation being
true

trees learned later in the process are dependent on the initial trees, it is certainly true that they
cannot be interpreted individually. The entire CPD is a set of regression trees and it does not make
sense to interpret them individually. But, this does not necessarily mean that the CPD itself is not
interpretable.

We can make the trees interpretable in a few different ways. The first obvious method is to
collect all the predicates in the different trees and determine the probability of the target predi-
cate for all the combination of predicates. Once the probabilities are computed, it is possible to
imagine the induction of a single tree from the gigantic CPT similar to that of context specific
independence trees (Boutilier et al. 1996). Though theoretically possible, this method is quite
cumbersome as the number of combinations is exponential in the groundings of the predicates.
Instead we use a more practical and a reasonable method. Here the first-step is to predict the
probabilities of the target predicate in the training set once all the regression trees are learned.
Now the new training data set consists of the training examples along with their probabilities.
Hence, it is possible to learn a single tree (without restricting its depth) that would capture the
entire data set. This resulting tree can then serve as a surrogate for our set of regression trees.
This idea was earlier explored in the context of neural networks by Craven and Shavlik (1996).
In this work, we adopt the second method for interpreting the learned trees. An example of the
learned tree for predicting if a student is advisedBy a Professor is presented in Fig. 5.

Bagging Bagging (Breiman 1996) is a technique that is generally employed in machine learn-
ing to reduce the variance of the model. As boosting is primarily a bias-reduction technique, there
could be non-trivial variance associated with the learned model. To reduce this variance, it is pos-
sible to combine the two ensemble techniques of bagging and boosting in a single model. We tried
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bagging a set of boosted RDN models, where each run of the RDN-B algorithm used a “boostrap
replicate” of the training examples. In addition, to further increase variance across the models we
only allowed the RDN-B algorithm, when selecting the best conjunct for a node, to consider a ran-
dom 50% of the candidate literals, analogous to what is done in decision forests (Breiman 1996;
Van Assche et al. 2006). This approach led to improved predictions, plus it has the benefit of easy
parallelization. It is the bagging+boosting version we use in the NFL data set experiments in
the next section. This bagging method reduces the variance for a small number of gradient-steps
but as the number of gradient-steps increase,it does not provide significant reduction in variance.
This is mainly due to the property of boosting which is a bias-reduction technique for a small
number of models and a variance reducing technique as the number of models increases drasti-
cally. Variance is automatically reduced as the number of regression trees increases and bagging
does not seem to provide an additional advantage for the boosting method.

4 Experiments

In this section, we present two different kinds of experiments: first is the problem of predicting a
single attribute (or relationship) while the second setting is the problem of collective classification
where the goal is to perform combined classification of a set of interlinked objects. For each of
these classification tasks, we use several different relational data sets and several different kinds
of problems ranging from entity resolution, to recommendation, to relation extraction. In all these
problems, we compare against different SRL methods that have been reported to have the best
results in the corresponding data sets. In the cases where we used MLNs, we used the default
settings in Alchemy (http://alchemy.cs.washington.edu). Unless otherwise mentioned, we used
discriminative learning(−d flag) without making any change to the number of iterations. We also
used the −queryEvidence flag if all the negatives are not enumerated. For inference,we used MC-
SAT (option −ms) with other flags set to the default values. Also, for all our experiments (except
the NFL data set), we subsampled the negatives so that there were twice as many negative as
positive examples. This meant that we had to set the initial potential to be −1.8 to capture the
uniform distribution. Finally, it should be mentioned that for most of the data sets, we used the
setting used in the literature previously and we refer to the previous work as appropriate.

4.1 Prediction of a single relation

We first present our results from three different data sets: (1) UW dataset to predict the advisedBy
relationship between students and professors (entity-resolution); (2) Movie lens dataset to predict
the ratings of movies by users (recommendation); (3) Predicting adverse-drug reactions to drugs
(bio-medical problem).

Q1:How does the boosting approach to learning RDNs compare against state of the art SRL
approaches on the different kinds of prediction problems?

UW data set For the UW-data set (Domingos and Lowd 2009), the goal is to predict the ad-
visedBy relationship between a student and a professor. The data set consists of details of pro-
fessors, students and courses from 5 different sub-areas of computer science (AI, programming
languages, theory, system and graphics). Predicates include professor, student, pub-
lication, advisedBy, hasPosition, projectMember, yearsInProgram,
courseLevel, taughtBy, teachingAssistant etc. and equality predicates such as
samePerson, sameCourse etc. The goal is to predict the advisedBy relation given all the
other predicates. There are 4 106 841 possible advisedBy relations out of which 3380 relations
are true.

http://alchemy.cs.washington.edu
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Table 1 Results on UW data set. We compare our RDN learner that uses boosting (RDN-B), regression
learner RDN and MLNs. We present the results for the area under curves for ROC and PR, the likelihood of
test examples and the training time

Algorithm Likelihood AUC-ROC AUC-PR Training time

RDN-B 0.810 0.976 ± 0.01 0.956 ± 0.03 9 s

RDN 0.805 0.894 ± 0.04 0.863 ± 0.06 1 s

MLN 0.731 0.626 ± 0.09 0.629 ± 0.08 93 h

Table 2 P-values for two-tailed
t-test on AUC-PR for UW-CSE p-value RDN MLN

RDN-B 0.0614 0.003

RDN 0.009

Fig. 6 Precision-Recall curves for UW-CSE data set over 5 folds. Each curve is evaluated on one area which
are in the following order: {theory, systems, language, graphics, ai}

We trained on four areas and evaluated the results on the other area. This is the same approach
taken in the MLN literature (Domingos and Lowd 2009) where each of the four areas form a
“mega-example” that consists of all the inter-related objects of that area. Thus each area can
be seen as a single example. Our results are thus averaged over five runs (mega-examples). We
compared our RDN-B method against RDN (that is learned using a single large regression tree)
and MLNs (Domingos and Lowd 2009). For RDN, we used 20 leaves and the same features that
were used for RDN-B. For MLNs, we used Alchemy.

The results of the UW-dataset are presented in Table 1. We present the likelihood on the test
data (

∑
i P (yi = ŷi )), the area under curve for PR and ROC and the time taken for training. For

computing AUC, we used the code present at http://mark.goadrich.com/programs/AUC/.
As can be seen, RDN-B that uses gradient tree boosting has the best likelihood on the test

data and is marginally better than RDN . As shown in Table 2, both RDN-B and RDN perform
statistically significantly better than MLNs. MLNs were able to identify the negative examples but
did not identify the positives well. This fact is also made obvious by the AUC-PR and AUC-ROC
curves shown for every fold in Figs. 6 and 7. Since MLNs are able to identify negative examples
well, they are able to get higher precision at the cost of lower recall. For the AUC on both ROC
and PR curves, it is clear that RDN-B dominates all the other methods. To put this in context,
SAYU (Davis et al. 2007) which had the best reported AUC (for PR curve), is significantly worse
than our approach (their reported results were 0.468 for AUC). For MLNs, we had to use all the
clauses that predicted advisedBy from the Alchemy website since learning the structure on this
data set was very expensive. Hence we learned only the weights for these clauses. As can be seen
from the last column, weight learning for this data set took us four days as against a few seconds

http://mark.goadrich.com/programs/AUC/
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Fig. 7 ROC curves for UW-CSE data set over five folds. Each curve is evaluated on one area which are in
the following order: {theory, systems, language, graphics, ai}

Table 3 Results on Movie Lens data set

Algorithm AUC-ROC AUC-PR Training time Accuracy

RDN-B 0.611 ± 0.016 0.602 ± 0.015 332 s 0.587

RDN∗ 0.587 ± 0.011 0.587 ± 0.011 6.25 s 0.573

for our approach. As mentioned earlier, we used the default setting of Alchemy for these runs
and it is quite possible that fine tuning the different parameters could yield better results on this
problem. We attempted to reduce the running time of Alchemy to five hours but ended up getting
poorer results with an average AUC around 0.3 for both ROC and PR curves.

Movie Lens data set: Our next data set is the Movie Lens data set (Xu et al. 2009). The dataset
was created by randomly selecting a subset of 100 users and 603 movies. The task is to pre-
dict the preferences of the users on the movies. The users have attributes age, gender, and
occupation while the movies have released year and genre. Since we are interested in pre-
dicting the preference of the user, we created a new predicate called likes for every user-movie
combination that takes a value true if the user likes the movie and false otherwise. Originally,
the ratings of the movie by the user were in a 5-star scale. We created the likes relationship by
setting the value true if the rating of a movie by an user is greater than the average rating of all
the movies by the same user. Typically, every user rated (30–400) movies with a total number of
78 445 user-movie ratings. We performed 5-fold cross validation on the data by choosing 80% of
the data to be the training set and evaluating on the other 20%.

Since this domain involved complex interaction between attributes, we introduced four aggre-
gators for both RDN methods: (a) count of movies rated by the user, (b) count of ratings for a
movie, (c) count of ratings of movies of a genre by the user and (d) count of the movies that the
user likes in a genre. From Table 3, it can be observed that RDN-B is marginally better than RDN
(statistically significant results in AUC-PR with p-value = 0.023). As expected the time taken
for boosting is higher when compared to learning a large single tree. We attempted to use Prox-
imity3 (the default package for RDNs), but ran out of memory. If we restrict the search space,
the results were close to random. This is the key reason to use RRTs for learning RDN and not
the Proximity system. We later present an experiment that compares our method with Proximity.
But both the methods are significantly better than MLNs where we used the hyper-graph lifting
option of Alchemy to learn the structure (Kok and Domingos 2009). Alchemy was not able to
learn any meaningful structure (even with the aggregated predicates) and hence did not learn any
useful model. We do not present Alchemy results here as all the examples are predicted false.

3http://kdl.cs.umass.edu/proximity.

http://kdl.cs.umass.edu/proximity
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Fig. 8 Precision-Recall curves for Movie Lens data set over 5 folds

Fig. 9 ROC curves for Movie Lens data set over five folds

The results of RDN-B are quite similar to the best results reported using multi-relational
Gaussian Processes (Xu et al. 2009), where the AUC for ROC was 0.627 for the same exper-
imental setup. The precision-recall and ROC curves for the two RDN-based methods are pre-
sented in Figs. 8 and 9. As can be seen, there is not much difference between the two meth-
ods for this problem. It appears that the aggregators helped both the methods equally. A single
tree learned using RDN-B is presented in Fig. 10. As can be seen, it uses mostly aggregators
such as the count of ratings of the movie, the count of ratings of the user etc. The query in
this experiment is movie_rating(A,B,C) where A is the user, B is the movie and C is the
rating. Hence, count_ratings_u_n(A,C,50) implies user A has rated at least 50 movies as C.
count_ratings_m_n(B,C,50) implies movie B has been rated as C by at least 50 users. This is
one problem where boosting did not yield very significant results compared to the non-boosted
method of learning RDNs (except for a better predictive accuracy) due the usefulness of these
aggregators.

Predicting adverse drug reactions Our third problem is the prediction of adverse drug reactions
on patients. The Observational Medical Outcomes Partnership (OMOP) designed and developed
an automated procedure to construct simulated datasets4 that are modeled after real observational
data sources, but contain hypothetical people with fictional drug exposure and health condition
occurrence. We used the OMOP simulator to generate a dataset of 10 000 patients that included
record of drugs and diagnoses (conditions) with dates. The goal is to predict drug use based on
the conditions. 75% of the data was used for training, while the remaining 25% was used for
testing. The test was conducted on 5 drugs with a training set of 1950 patients on the drug and a
test set of 630 patients. We measured accuracy by predicting true if the predicted probability is
>0.5 and false otherwise.

The results are presented in Table 4 with the t-test results shown in Table 5. As can be seen, in
this domain our approach RDN-B is significantly better than RDN in all the metrics except train-

4http://omopcup.orwik.com.

http://omopcup.orwik.com
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Fig. 10 One regression tree learned by RDN-B for Movie Lens data set

Table 4 Results on OMOP data set

Algorithm AUC-ROC AUC-PR Training time Accuracy

RDN-B 0.824 ± 0.04 0.839 ± 0.04 497.8 s 0.753

RDN 0.738 ± 0.04 0.736 ± 0.04 39.4 s 0.697

Noisy-Or* 0.420 ± 0.08 0.582 ± 0.07 – 0.687

Table 5 P-values for two-tailed
t-test on AUC-PR for OMOP
dataset

p-value RDN Noisy-Or∗

RDN-B 0.0021 0.0025

RDN 0.0252

ing time. This is due to the fact that in this domain, there were several different weak predictors
of the class.

The third row of the table (Noisy-Or) is a relational method where we used Aleph (Srinivasan
2004) to learn ILP rules. For each drug, we learned 10 rules using Aleph which are essentially
Horn clauses with the target in the head. Some examples of the rules are:
on_drug(A) :-
condition_occurrence(B,C,A,D,E,3450,F,G,H).
on_drug(A) :-
condition_occurrence(B,C,A,D,E,140,F,G,H),
condition_occurrence(I,J,A,K,L,1487,M,N,O).
The first rule identifies condition 3450 as interesting while the second rule identifies two other
conditions as interesting when predicting whether person A was on the current drug. Note that in
pure ILP, the result is the disjunction of these rules (i.e., each rule is evaluated and the resulting
concept is true if any of those rules are true). In SRL, we soften these rules using probabilities.
Associated with each rule is a conditional distribution P(head|body) and since all the rules have
the same head, these rules are combined using the Noisy-Or combining rule. We had to learn
two set of parameters for combining the ILP rules using Noisy-Or. For every rule obtained from
Aleph, we learn one parameter to capture the conditional probability distribution for the rule be-
ing true, P(head|body). We also learned one inhibition probability parameter for the Noisy-Or
combining rule. These parameters were learned using the EM algorithm presented in Natarajan et
al. (2009) where it is derived for learning the parameters of the distributions and the noise param-
eters simultaneously. We ran the EM algorithm for 50 iterations. We refer the reader to Natarajan
et al. (2009) for further details on the algorithm. Our current approach is significantly better than
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Fig. 11 Precision-Recall curves for predicting drug use of five drugs

Fig. 12 ROC curves for drug use of five drugs

the ILP-SRL combination in all the evaluation metrics. We were unable to get Alchemy to learn
rules for this data set due to the prohibitively large number of groundings in the data.

We present the ROC and PR curves for this data set in Figs. 11 and 12 respectively. As can
be seen, the performance of the RDN-based methods were much better compared to the rela-
tional learning method that uses ILP and combining rules. Also, in this data set, boosting greatly
helps in performance for almost all the drugs. While the non-boosted RDN is better than the
ILP/combining rule combination algorithm, RDN-B dominates clearly in this domain.

In summary, we can answer Q1 affirmatively. Boosting RDN (RDN-B) compares favorably
(equal to or better than) the state-of-the-art SRL approaches on the three different kinds of tasks.
The key benefit is that this performance has been obtained across these domains with minimal
parameter tuning.

4.2 Collective classification

We now present our results of collective classification in four domains: Internet Movie Database
(IMDB), Cora, Citeseer and National Football League on different types tasks such as infor-
mation extraction, structure learning and entity resolution. We reported the running times for the
earlier experiments, but on the following experiments, we are not able to report the running times.
This is mainly due to the fact that the datasets are large and thus require running on clusters. This
meant that different methods may have run on different machines, with various cpu speeds and
amounts of RAM; hence, reporting the running times is not meaningful. Thus we avoid the run-
ning times and report only the area under curves as had been reported in earlier work on these
datasets. The error bars in the bar graphs represent the standard deviations. Also, the NFL dataset
was used to understand the relationship to bagging. Since, to our knowledge, not many SRL meth-
ods have been applied to this dataset, we compare against the other ensemble method of bagging.
For the other datasets, we consider the algorithms that are reported to have the best results. We
also present the RDNs learned by boosting for the IMDB and the Citeseer datasets.

Cora dataset We used the Cora dataset for performing two kinds of tasks: entity resolution
and information extraction. Cora dataset, now a standard dataset for citation matching, was first
created by Andrew McCallum, later segmented by Bilenko and Mooney (2003) and fixed by Poon
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Fig. 13 Area under curves for the entity-resolution task in Cora dataset. The first graph shows the PR curve
results while the second one is the area under curve for ROC curves

and Domingos (2007).5 In citation matching, a cluster is a set of citations that refer to the same
paper, and a nontrivial cluster contains more than one citation (Poon and Domingos 2007). The
Cora dataset has 1295 citations and 134 clusters where almost every citation in Cora belongs to
a nontrivial cluster; the largest cluster contains 54 citations. Our experimental setup is similar to
the one presented in Poon and Domingos (2007).

Q2: How does boosting RDN compare against MLNs on the task of entity resolution?

For the entity resolution task, the following predicates were used: author, title,
venue, sameBib, sameAuthor, sameVenue, sameTitle, hasWordAuthor,
hasWordTitle, hasWordVenue. We make a joint prediction over the predicates—
SameBib, SameTitle, SameVenue and SameAuthor. We used the B + N + C + T

MLN presented in Singla and Domingos (2006) and available on the Alchemy website to com-
pare against the boosted and non-boosted versions of RDN. Note that we are not learning the
structure of MLN, but merely learn the weights of the MLN clauses. In the case of RDN and
RDN-B, we learn the structure and parameters of the model.

The area under curves of the PR curves for the entity resolution task is presented in Fig. 13(a).
The results are averaged over 5-folds for the four predicates that we mentioned earlier. As can
be seen, RDN-B dominates the other methods consistently on all the four different predicates.
MLNs exhibit good performance in the case of SameAuthor predicate, but are outperformed by
the RDN methods in the other predicates. RDN learning that does not use boosting performs
reasonably well, but is still outperformed by RDN-B in all the predicates.

Also, the results are similar for the ROC curves and are presented in Fig. 13(b). As with the
PR curves, these results are obtained over 5-folds. RDN-B dominates for all the predicates in this
case as well and is statistically significantly better on SameBib predicate as shown in Table 6.

In summary, we can answer Q2 positively as we clearly see the superior performance of RDNs
learned via boosting compared against the other methods.

Q3: How does boosting RDN compare against MLNs in the task of information extraction?

For the information extraction task, we use predicates such as the tokens at each position in
a citation(token), attributes about each token(isDate, isDigit, etc.). Given these facts,
we try to predict the field type(Title, Author, Venue) for each position in the citation.
For learning, the field types for each position are known; while for inference, none of the field

5Available for download at http://alchemy.cs.washington.edu/papers/-poon07.

http://alchemy.cs.washington.edu/papers/-poon07
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Table 6 P-values for two-tailed t-test on AUC-PR for Cora entity-resolution

(a) SameBib (b) SameVenue

p-value RDN MLN

RDN-B 0.037 0.036

RDN 0.037

p-value RDN MLN

RDN-B 0.263 0.034

RDN 0.050

(c) SameTitle (d) SameAuthor

p-value RDN MLN

RDN-B 0.172 0.033

RDN 0.029

p-value RDN MLN

RDN-B 0.139 0.035

RDN 0.030

Fig. 14 Area under curves for the information extraction task in Cora dataset. The first graph shows the PR
curve results while the second one is the area under curve for ROC curves

types are known and need to be inferred jointly. We compared against the MLNs used by Poon
and Domingos (2007). While their work performed entity resolution and information extraction
jointly, we only use the features specific to information extraction. Again, we do not learn the
structure of MLNs while the RDN-based methods learn both the structure and parameters for this
task.

For the boosting method, instead of using two arguments 〈Bib,Pos〉 in every predicate to
indicate a particular position in the citation, we created objects of type BibPos. Hence, posi-
tion P0001 in citation B1000 would result in a BibPos object B1000_P 0001. Since citations
are of varying length, this creation of new objects allows us to avoid predicting labels for po-
sitions that do not exist. Also we changed InField(Bib, Field, Pos) to three different predicates:
infield_Field(BibPos) where Field={Fauthor, Ftitle, Fvenue}.

The average area under curves for PR-curves over five folds for the information extraction
task are presented in Fig. 14(a). We compared RDN-B and RDN against MLNs where we learn
the weights using generative weight learning. We could not get discriminative learning of MLN
weights working as Alchemy seemed to run out of memory. The results are presented for the three
Infield predicates. As can be seen, RDN-B greatly dominates MLNs on all the three predicates.
On the other hand, RDNs without boosting are comparable in the title field to that of RDN-B.
But for the other two fields namely, author and venue, the performance of RDN-B is significantly
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Table 7 P-values for two-tailed t-test on AUC-PR for Cora information extraction task

(a) Infield_fvenue (b) Infield_ftitle (c) Infield_fauthor

p-value RDN MLN

RDN-B 0.183 0.092

RDN 0.097

p-value RDN MLN

RDN-B 0.958 0.141

RDN 0.110

p-value RDN MLN

RDN-B 0.355 0.113

RDN 0.182

Table 8 P-values for two-tailed t-test on AUC-PR for Citeseer

(a) Infield_fvenue (b) Infield_ftitle (c) Infield_fauthor

p-value RDN MLN

RDN-B 0.237 0.037

RDN 0.036

p-value RDN MLN

RDN-B 0.075 0.036

RDN 0.067

p-value RDN MLN

RDN-B 0.067 0.035

RDN 0.035

better than RDNs without boosting. The results are very similar in the case of ROC curves as well
as shown in Fig. 14(b). RDN-B dominates MLNs in all the predicates while dominating RDNs
significantly in the author predicate. The statistical significance results are shown in Table 7.

Citeseer dataset Similar to the Cora dataset, we used the Citeseer dataset created by Poon
and Domingos (2007) for performing information extraction. This dataset was first created by
Lawrence et al. (1999). This dataset has 1563 citations and 906 clusters. It consists of four sec-
tions, each on a different topic. Over two-thirds of the clusters are singletons and the largest
contains 21 citations (Poon and Domingos 2007).

Following the methodology used in prior work (Poon and Domingos 2007), we created 4-folds
using the 4 sections. As with the previous experiment, we compared our learning method against
the standard RDN learning and MLNs. We used the MLNs presented in Poon and Domingos
(2007). We learned the weights of the MLN clauses using alchemy and discriminative weight
learning setting.

The RDN learned using the boosting algorithm (RDN-B) is presented in Fig. 15. The three
predicates that are queried jointly in this dataset, viz., Infield_fauthor, Infield_ftitle, and In-
field_fvenue are showed in shaded (dark) ovals. Recall that we created such predicates in the
Cora dataset as well. The rest of the predicates are observed in the dataset and hence we do not
learn the models for those predicates. This RDN is presented by collecting all the predicates that
appear in different trees for a target predicate and making those predicates as the parents of the
target predicate. Note that in this dataset, there was no necessity for any aggregation and hence
we did not have to create any aggregated features for learning the models.

The results of the experiment are presented in Fig. 16 with the t-test results shown in Table 8.
The experiments were conducted in a similar fashion to the Cora dataset presented before. The
results demonstrate that the boosted RDN’s have a significantly better average AUC for both the
ROC and PR curves. MLN’s on the other hand have lower average AUC for all the targets.

Based on our results on two different datasets, we can answer Q3 positively as boosted RDN’s
outperform most methods on citation segmentation.

IMDB dataset This dataset that describes a movie domain was created by Mihalkova and
Mooney (2007) and contains information about actors, movies, directors and the relationships
between them. The dataset is divided to 5 independent folds. Following Kok and Domingos
(2009), we omitted the 4 equality predicates. The goal is to learn the conditional distribution to
predict all the predicates except actor and director. More precisely, the goal is to perform
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Fig. 15 RDN learned using Boosting for the Citeseer dataset. The nodes that are shaded are the query nodes
for which the models have been learned. The set of the nodes that are the parents for the query nodes are the
set of all nodes that appear in the different regression trees

Fig. 16 Area under curves for the information extraction task in Citeseer dataset. The first graph shows the
PR curve results while the second one is the area under curve for ROC curves

“structure learning” in this dataset. We compare RDN, RDN-B with two MLN structure learning
algorithms BUSL (Mihalkova and Mooney 2007) and hypergraph lifting (Kok and Domingos
2009). We used the MLNs from these two papers and did not modify or learn weights for them.
We simply queried for the target predicates given the other predicates using these MLNs.

The structure of the RDN learned using boosting (RDN-B) for this task is presented in Fig. 17.
We collected all the predicates present in the different trees for a particular target predicate and
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Fig. 17 RDN learned using Boosting for the IMDB dataset. The dashed nodes are the aggregated nodes. For
example, a1 is an aggregation over workedUnder and genre predicates. For this model, all the nodes form the
query predicates

presented them in the figure. The dotted ovals are the aggregated predicates and there are four of
them. a1 is the aggregation performed over two predicates genre and workedUnder. Similarly, a2
and a3 are aggregations performed over movie and genre and workedUnder and female_gender
predicates respectively. Note that a4 is the aggregation over a single predicate workedUnder.
Also, it is worth mentioning that unlike RPTs that allow only for aggregated predicates to be
in the model, we allow the original non-aggregated predicates as well. We treat the presence
of these predicates as existentials, leading to more expressive models compared to original RDN
models (Neville and Jensen 2007). It should also be pointed out that when learning RDNs without
boosting we allow both aggregated and non-aggregated variables for fair comparison.

Q4: How does the structure learned using boosting RDN compare against the state-of-the-art
learning algorithm for learning MLNs?

The area under curve for precision-recall is presented in Fig. 18(a). The results are presented
for three predicates worked_under, genre, and female_gender. We do not include predicates such
as actor, director, etc. for evaluation because they can be captured by mutual exclusivity rules
and instead focused on the more interesting predicates. We have compared four different algo-
rithms for this task. The algorithms compared are RDN-B that uses boosting, RDN learning that
uses a single large regression tree and two different MLN learning algorithms BUSL (Mihalkova
and Mooney 2007) and hypergraph lifting (Kok and Domingos 2009). The last two algorithms are
shown as BUSL and LHL respectively in the figure. As can be clearly seen, RDN-B performs con-
sistently across all the query predicates. Hyper-graph lifting performs well for the worked_under
but BUSL outperforms hyper-graph lifting in the other queries. The statistical significance results
are shown in Table 9.

The results are quite similar for the ROC curves as well. As can be seen, RDN-B performs
consistently well across the different queries. The results for the other methods mirror the results
in the PR-curves. Thus Q4 can be answered affirmatively. RDN-B compares favorably against
the state-of-the art methods in the IMDB structure learning task.

NFL dataset The final dataset that we evaluate our method is the National Football League
(NFL) dataset from LDC corpora.6 This dataset consists of articles of NFL games over the past

60http://www.ldc.upenn.edu.

0http://www.ldc.upenn.edu
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Fig. 18 Area under curves in IMDB dataset. The first graph shows the PR curve results while the second
one is the area under curve for ROC curves

Table 9 P-values for two-tailed t-test on AUC-PR for IMDB

(a) workedUnder (b) female_gender (c) genre

p-value RDN LHL BUSL

RDN-B 0.039 0.242 0.138

RDN 0.036 0.813

LHL 0.106

p-value RDN LHL BUSL

RDN-B 0.534 0.198 0.762

RDN 0.645 0.623

LHL 0.232

p-value RDN LHL BUSL

RDN-B 0.710 0.020 0.508

RDN 0.020 0.426

LHL 0.019

two decades. This is essentially a natural language processing (NLP) task. The goal of this ex-
periment is to compare the two different ensemble approaches: bagging and boosting on the NLP
task. The idea is to read the texts and identify concepts such as score, team and game in the text.
As an easy example, consider the text, “Greenbay defeated Dallas 28–14 in Saturday’s Superbowl
game”. Then, the goal is to identify Greenbay Packers and Dallas Cowboys as the teams, and 28
and 14 as their respective scores and the game to be a Superbowl game. There are cases in which
the scores may not be directly specified in the text. The text could specify that “There were 3
touchdowns in the game” and the score must be inferred from this to be 21.

The corpus consists of articles, some of which are annotated with the target concepts. We con-
sider only articles that have annotations of positive examples. The number of positive examples
for score is 461, while that of game is 172 and that of team is 780. The number of examples here
refer to the number of actual human annotations in the articles. The corresponding negative ex-
ample counts are 2900, 3300 and 10 700 respectively. Each article is typically about a particular
game, but there could be references to related games or other NFL teams. For example a single
article might refer to the next team that the winner of the current game would play. In this case,all
the games and teams may or may not be annotated in the article. Negatives examples for a given
target concept were created by randomly sampling from noun phrases not marked as positive
examples of that target concept.

In addition to using the features from the annotated text, we also use the Stanford NLP toolkit7

to create more features. These features are obtained from the parse trees constructed using the
parser, the tags from the part-of-speech tagger, the named entity-recognizer, etc. The features

7http://nlp.stanford.edu/software/index.shtml.

http://nlp.stanford.edu/software/index.shtml
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Fig. 19 Precision-Recall values
for the NFL corpora. The results
are presented for RDNs with a
single RRT, Bagged RDNs,
Boosted RDNs and Bagged,
Boosted RDNs

were constructed at different levels: word-level, sentence-level, paragraph-level and article-level.
Hence, the data set consisted of the annotations and linguistic information from the NLP parser.
These features were provided as inputs to the different learning algorithms.

The methods that are being compared are (1) RDNs (2) Bagging (random forests) (3) Boosted
RDNs and (4) Bagging of Boosted RDNs—we touched upon this method in the previous sec-
tion. The key idea in the bagging+boosting method is that we run the boosting algorithm for a
few gradient-steps and collect the regression trees and repeat the procedure 100 times and the
gradient is averaged over these 100 sets of different trees. Thus the bagging+boosting method
is a generalization of our current method that uses a single set of regression trees. We perform
five-fold cross validation to predict the above concepts.

Q5: How does boosting RDN compare against bagging and bagging of boosted RDNs in the NLP
task?

The area under curve for precision-recall (AUCPR) curves of the different methods are pre-
sented in Fig. 19. There are three different sets of graphs corresponding to the three concepts:
score(count), game, team. As can be seen, for all the concepts, the boosted RDN method outper-
forms standard RDN learning method and the random forests (bagging) method. Interestingly,
the method that uses both bagging and boosting helps in one concept (count), but is not statis-
tically significantly better in other concepts. It is not clear if bagging always helps and requires
more experiments to identify potential benefits of combining the bagging and boosting methods.
As can be seen from the figure, while the concept of score is easier to learn, there is a lot of
room for improvement for identifying the teams and the game. The key reason is that the natural
text is quite ambiguous. For example, one article could mention the team as “San Francisco”, the
other article could mention them as “49ers” and the third article could be “SF 49ers” etc. Hence,
there is a need to perform co-reference resolution across articles and we are currently exploring
different methods to do so. We are also currently working on identifying relationships such as
team in a game, game winner, game loser, plays in a game etc. We hope to identify the effects
of bagging vs. boosting and how bagging can improve boosting etc with these experiments. The
NFL experiments reported in this paper are the first-step of the complex NLP task.

4.3 Comparison to proximity

In most of our earlier experiments, we were unable to compare our boosting algorithm with the
original formulation of RDNs. This is due to the fact that the state-of-the-art system for learning
RDNs—Proximity ran out of memory for our data sets. Sub-sampling the data might have helped
Proximity. But, in all our previous data sets we deal with a single mega example (for example,
a single area of research) and it is not correct to sample from this mega example.
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Table 10 Results on WebKB
data set Algorithm AUC-ROC AUC-PR

RDN-B 0.980 ± 0.018 0.965 ± 0.032

RDN 0.980 ± 0.020 0.956 ± 0.050

Proximity 0.753 ± 0.020 0.648 ± 0.028

Table 11 P-values for two-tailed
t-test on AUC-PR for WebKB p-value RDN Proximity

RDN-B 0.723 0.125

RDN 0.100

Hence, in this experiment we compared Proximity to our method on the WebKB data set that
is provided as part of the Proximity package. This data is small enough and also has the query
model as part of the package. Thus we did not have to make any transformations to the data set.
The data set consists of web pages with their most commonly occurring words. It also contains
the links between these web pages. The goal is to collectively classify these web pages. While
there are multiple categories for the web pages, we present the results of binary classification
of web pages into Student or Non-student pages. We created one fold for every school in the
data set (Wisconsin, Washington, Cornell, Texas). This seemed to be a more natural split than an
arbitrary sampling and fold creation. This is also consistent with the picture of viewing the set of
web pages from a single school as a single mega-example.

Q6: How does the boosting method compare to that of proximity in the binary classification task
in the WebKB domain?

We performed 4-fold cross-validation and present the results averaged over these folds in
Fig. 10. We ignore the predictions made by Proximity on other categories apart from Student to
calculate their AUC since we are interested in the binary classification problem. As can be seen
from the table, our RDN learning algorithms perform better than Proximity learning algorithm.
Table 11 shows the t-test results on the AUC-PR values. We tried increasing the depth of the RPT
in Proximity; but it did not improve the results. Between RDN-B and RDNs that use RRTs, there
is not a big difference in performance making the results in this domain quite similar to Movie
lens data set. We also tried to increase the number of negative examples to see if it makes a big
difference. For Proximity, the AUC values decreased marginally for both ROC and PR curves.
There was no significant difference in the performance of the RDN algorithms. Hence, providing
more negatives did not improve the performance of Proximity.

A part of the relational probability tree (learned using Proximity) and a single relational re-
gression tree (learned using RDN-B) for the WebKB data set are presented in Figs. 21 and 20
respectively. Since, the tree learned by Proximity is quite large (32 leaves), we present only a
part of the original tree. In this tree, Proximity learns to classify all kinds of web pages (not
just student or not). The results presented in Table 10 were using 1-Vs-Many classification task
for Proximity. We observed that the performance of Proximity is actually worse if we pose the
problem as binary classification. Hence, we presented the best results that we could obtain using
Proximity.

Discussion In summary, there are a few key questions answered by the experiments. The first
is the use of RRTs as against RPTs. In the single experiment that we were able to get Proximity
to work, there is a significant difference in performance. A second question is the usefulness
of RDNs as against other SRL models. For the cases where we compared to MLNs and other
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Fig. 20 RRT learned for WebKB data set learned using RDN-B

Fig. 21 RPT learned for WebKB data set learned using Proximity

SRL methods, RDNs learned using Boosting demonstrated superior performance. The final and
possibly the most important question is the difference between RDNs learned using RRTs and
using boosting (RDN vs RDN-B). While in a small number of tasks such as entity resolution
problems, RDNs using just a single RRT performed comparably against boosting, in several
tasks the performance of RDN-B was clearly superior. An equally important observation is that
RDN-B was always comparable or significantly better than RRT in all the tasks.

5 Conclusion

Structure learning, that is learning the structure that captures a complex distribution, lies at the
heart of statistical relational learning. The higher expressivity of relational models, however,
comes at the expense of a more complex structure learning problem: potentially infinitely many
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relational abstraction levels have to be explored. This may explain why traditional statistical
relational learning approaches have not fully achieved their promise yet: they aim at selecting a
single model from the data at hand. In general, however, we might need a large number of clauses
and this translates to a very large number of parameters.

To account for this, we have presented the first non-parameteric approach to relational den-
sity estimation: we turn the problem into a series of relational function approximation prob-
lems using gradient-based boosting. For the example of relational dependency networks, we
have shown that this non-parametric view on statistical relational learning allows one to effi-
ciently and simultaneously learn both the structure and the parameters of RDNs. We used func-
tional gradient ascent that can be interpreted as boosting regression trees that are grown stage-
wise. We demonstrated empirically in several domains that the learning of RDNs using boost-
ing is effective and efficient. While the intermediate structures are not always interpretable, we
can always ‘compile’ the final structures it into ‘single tree per predicate’ models that are in-
deed comprehensible. Moreover, the boosting approach yields superior performance over tra-
ditional RDNs and other SRL models (such as MLNs (Domingos and Lowd 2009), SAYU
(Davis et al. 2007) and combining rules based formalisms (Natarajan et al. 2009)). Boosting
has been previously explored in the context of propositional graphical models (Jing et al. 2008;
Truyen et al. 2006). In this paper, we present the first algorithm on boosting for relational proba-
bilistic models.

One possible future direction is to evaluate the approach in several other real-world domains
and problems. Another possible research direction is to more thoroughly compare the current
approach of gradient-tree boosting against learning random forests (i.e., Bagging). Bagging vs.
Boosting has long been an interesting problem in traditional machine learning and it will be
worthwhile to compare the methods in the context of relational models (particularly in the case
of RDNs). We have taken the first-step in this direction with the NFL dataset as presented in
Sect. 4.2, but more experiments are necessary to draw more useful conclusions. Finally, given
that structure learning in SRL models is expensive and relatively unexplored, boosting provides
an interesting possibility of structure learning in several different SRL models such as MLNs.
Hence, we plan to investigate the problem of boosting for other SRL models in the future.
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