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1 Feature Selection: State of the Art

The problem of feature selection is fundamental in a number of different
tasks like classification, data mining, image processing, conceptual learning,
etc. . . In recent times, the growing inportance of knowledge discovery and
data-mining approaches in practical applications has made the feature se-
lection problem a quite hot topic, especially when considering the mining of
knowledge from real-world databases or warehouses, containing not only a
huge amount of records, but also a significant number of features not always
relevant for the task at hand.

Looking at the literature, there are essentially two main fields where the
feature selection problem has been extensively studied:

• Statistical Pattern Recognition

• Machine Learning

In the first field, feature selection is considered from the classification point
of view, i.e. the problem is approached having the construction of an efficient
classifier (i.e. a pattern recognizer) as a target.

In the Machine Learning community, more emphasis is given to the more
general problem of concept learning, even if classification still remain an
important issue. However, this difference has provided different approaches
aimed at solving the problem, addressing different perspectives and points of
view.

In the following, we will report on the main proposals and approches
developed inside the two communities.

1.1 Feature Selection in Statistical Pattern Recogni-
tion

Statistical Pattern Recognition is a sub-field of Pattern Recognition aimed
at recognizing (classifying, describing or grouping) patterns inside available
data, by using specific statistical techniques [2]. Even if they are around
from almost 50 years, pattern recognition approaches have recently gained
a new popularity, due to emerging applications which are not only chal-
langing, but also computationally expensive and very demanding like data
mining (identifying a pattern or a correlation among data or an outlier in mil-
lions of multidimensional patterns), document classification (searching text
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documents), forecasting, multimedia organization and retrieval in databases,
flexible information retrieval (product retrieval in e-commerce applications,
solution retrieval in help-desk support), etc. . .

The statistical approach to pattern recognition represents a pattern as a
set of d features or attributes, by viewing it as a d-dimensional feature vec-
tor. Classical concepts from statistical decision theory [13] are then used to
establish decision boundaries among pattern classes. The recognition system
operates in two different modes: training or learning mode and testing or
classification mode.

In the training mode, a feature extraction/selection module finds the suit-
able features for representing the input patterns and the classifier is trained
to partition the feature space. A feedback path allows the designer to op-
timize both the preprocessing (required to segment the initial pattern from
the background, to remove noise, etc. . . ) and the feature extraction/selection
strategies.

Two important phenomena that can be identified in statistical pattern
recognition are the so called curse of dimensionality and the peaking phe-
nomenon. The performance of a classifier depends on the interrelationship
between sample size, number of features and classifier complexity. If one
consider a very simple naive table-lookup technique consisting in partition-
ing the feature space into cells and associating a class label to each cell, it can
be pointed out that this technique requires a number of training data points
which is exponential in the feature space dimension [6]. This phenomen
is termed the curse of dimensionality which produces as a consequence the
peaking phenomenon in classifier design. This is a paradoxical effect that
appears by considering the following; it is well-known that the probability
of misclassification of a decision rule does not increase as the number of
considered features increases, as long as the class-conditional densities are
known (or alternatively the number of training samples is arbitrarly large
and representative of the underlying densities). However, it has been often
noticed in practice that increasing the features to be considered by a clas-
sifier may degrade its performance, if the number of traning examples that
are used to design the classifier is small relative to the number of features.
This paradoxical behavior is termed the peaking phenomen [23, 46, 45]. The
explanation stands in the following: the most commonly used parametric
classifiers estimate the unknown parameters and plug them in for the true
ones in the class conditional densities. For a fixed sample size, as the number
of features increases (and consequently the number of unknown parameters
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to be estimated from the sample), the reliability of parameter estimation
decreases. As a consequence, the performance of the resulting classifier, for
a fixed sample size, may degrade with an increase in the number of features.

The problem of dimensionality reduction is then important and must be
addressed in the right way. There are two main resons to keep the dimen-
sionality of the pattern representation (and so the number of features) as
small as possible: the cost of the measurements and classification accuracy.
Both the pattern representation and the classifier built on that are simplified
in case a limited yet salient feature set is taken. Moreover, the paeking phe-
nomenon can be alleviated in case just a small number of training examples
is avalilable. Of course, it must be considered that, on the other hand, a
reduction in the number of features may lead to a loss of the discriminatory
power of the classifier and consequently lower the accuracy of the resulting
system.

Concerning these aspects, it is important to distinguish between feature
extraction and feature selection that are two steps that may be employed in
order to address the above issue. Even if in the literature the two terms
are often used interchangeably, in [2] it is suggested to use the first term for
feature construction techniques. By adopting this view, the term feature se-
lection refers to algorithms that identify and select tha hopefully best subset
of the input feature set with respect the target task (e.g. classification accu-
racy). Methods that create (extract) new features based on transformation
or combinations of the original features in the set are called feature extraction
algorithms. Often, feature extraction preceds feature selection; first features
are extracted from the sensed data and then, some of the extracted features
with low discriminatory power are discarded, leading to the selection of the
remaining features.

Notice that the two techniques are also complementary in their goals;
feature selection leads to savings in measurement cost (some features are
discarded and then there is no need to obtain them) and the selected features
retain their original physical interpretation (that may be important in some
cases for understanding the physical process that generates the pattern).
On the other hand, the transformed features obtained by feature extraction
techniques may provide a better discriminatory ability than the best selected
subset, but these features fail in retaining the original physical interpretation
and may not have a clear meaning.

The main issue in dimensionality reduction is the choice of a criterion
function. A commonly used criterion is the classification error of a feature
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subset. However, it must be taken into account that this information by
itself, cannot be reliably estimated when the sample size is small relative to
the number of features. Furthermore, we cannot escape from the problem
of the intrisic dimensionality of data; this refers to the fact that it is not
always possible to adequately describe d-dimensional patterns in a subspace
of dimensionality less than d.

Let us now describe some of the most used feature selection methods in
statistical pattern recognition. As mentioned before, the problem can be
summarized as follows: given a set of d features, select a subset of size m
that leads to the smallest classification error. Let Y be the given set of
features with cardinality d and let m represents the cardinality of the desired
subset X, X ⊂ Y . Consider the feature selection criterion be identified by an
evaluation function J(X): higher is the value of J(X), better is the set X.
Following the above considerations, if Pε is the classification error, a natural
choice is J = 1 − Pε. The use of Pε makes the criterion dependent on the
specific classifier that is used and on the sizes of both training and test sets.

The most straightforward approach to the feature selection problem can
be described as follows:

1. examine all possible subset of size m of the original feature set;

2. select the subset with the largest value of J(·).

In particular the first step would require examining (
d
m) possible candidate

subsets and consequently this exhaustive search becomes unfeasible and im-
practical even for moderate values of m and d.

Cover and Van Campenhous [15] have shown that no nonexhaustive se-
quential feature selection procedure can be guaranteed in general to produce
the otimal subset. The only optimal (in terms of a class of monotonic crite-
rion functions) feature selection method which avoids the exhaustive search
is based on the branch and bound technology [40]. This method can avoid
exhaustive search by using intermediate results for obtaining bounds on the
final criterion value. It only works, however, with monotonic criterion func-
tions. Most commonly used criterion functions do not satisfy the monotonic-
ity property.

Since feature selection is typically dome off-line, it has quite often been
argued that the execution time of the selection algorithm is not so critical;
however, in data mining applications it is not rare to have thousands of
features involved and the computational requirement of a feature selection
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algorithm becomes extremely important. Optimal but exhaustive strategies
like breadth-first search cannot be considered in such applications [32]. Since
this problem is not typical to data mining applications (see for instance
document classification), a number of suboptimal feature selection techniques
have been developed and proposed in the literature; they essentially tradeoff
the optimality of the selected subset for computational efficiency [24]. They
are essentially based on the simple method of selecting just the best individual
features: however, the suboptimality of these strategies is due to the fact that
the best pair of features need not contain the best single feature [14]. The
approach might still be useful as a first step to select some individually good
features in decreasing very large feature sets. Further selection has to be
done by more advanced methods that take feature dependence into account.
There are essentially two different modes of selection: forward selection when
the approach operates by evaluating growing set of features and backward
selection when it operates by evaluating shrinking set of features. The name
(forward with respect to backward) arises from the fact that the search space
can be considered as a graph with the nodes corresponding to feature subset;
the starting state is the empty subset, so adding features corresponds to
moving forward on the graph and deleting feature corresponds in moving
backward starting from the whole feature set.

The most simple methods are the Sequential Forward Selection (SFS)
and the Sequential Backward Selection (SBS). SFS (respectively SBS) adds
(respectively deletes) one feature at a time which in combination with the
selected features maximizes the criterion function. In SFS, once a feature
is retained, it cannot be discarded, while in SBS once a feature is deleted
it cannot be brought back into the optimal subset. SFS is computationally
attractive, since to select a subset of size 2 it examines only (d− 1) possible
subsets.

More sophisticated techniques are the Plus l-take away r and the Sequen-
tial Floating Search [42] that may operate either forward (SFFS) or backward
(SBFS). These methods backtrack as long as they find improvement com-
pared to previous feature sets of the same size. The first kind of selection
(“Plus l-take away r”) first enlarge the current feature subset by l features
using forward selection, then it deletes r features using backward selection.
It avoids the problem of feature subset nesting encountered in SFS and SBS
methods, but needs to select values of l and r. The floating search approach
is essentially a generalization of this approach where the values of the pa-
rameters l and r are determined automatically and updated dynamically. It
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provides close to optimal solutions, but the number of feature evaluations
may easily increase by a factor of 2 to 10.

Concerning the evaluation criterion, most feature selection methods used,
as already mentioned, the classification error of a feature subset to evaluate
its effectiveness. This could be done, for example, by a k-NN classifier using
the leave-one-out cross validation method of error estimation. However, it
is important to keep in mind that different classifiers and different meth-
ods to estimate the error rate could lead to a different feature subset being
selected. In [24], several algorithms have been compared in terms of classifi-
cation error and run time. The general conclusion is that the SFFS method
performs almost as well as the branch and bound algorithm and demands
lower computational resources. Still superior performance has been shown
for an adaptive version of SFFS [43].

Other attempted approaches have tried to combine these kind of algo-
rithms with neural network classifiers, where the node-pruning method si-
multaneosly determines both the optimal feature subset and the optimal
network classifier [18, 10]. First the network is trained and the least salient
node is removed. This procedure of training and node pruning is iterated un-
til the desired trade-off between classification error and size of the network
is achieved. The pruning of an input node in the network is equivalent to
removing the corresponding feature.

1.2 Feature Selection in Machine Learning

The problem of feature selection has been deeply investigated also in Machine
Learning, by exploiting new ideas as well as ideas presented and approached
in the field of statistical pattern recognition. The emphasis of the machine
learning approach is on conceptual learning; this task can be subdivided
into two main subtasks: deciding which attributes or features to use for
describing the concept; deciding how to combine such attributes to get the
right concept induction. Because of that, the problem of feature selection is
central to machine learning and to application of the field like data mining
and knowledge discovery [34, 44].

As for statistical pattern recognition, the dimensionality reduction is es-
sential for both complexity and accuracy issues; current machine learning
application need algorithms able to scale-up to real-world problems and at-
taining high accuracy. As already noticed in the previous section, accuracy
is in general not monotonic with respect to the addition of features, and even

7



when the learning algorithm is robust with respect to irrelevant features (as
for example the Naive-Bayes approach [38]), it is usually significantly affected
by feature correlations. In addition, with the reduction of the number of fea-
tures, it is more likely that the final learned concept il less complex and more
understandable by humans.

As reported in [1], the objective of feature subset selection in machine
learning is to reduce the number of features used to characterize a dataset so
as to improve a learning algorithm’s preformance on a given task. Feature
selection in machine learning has shown its impressive performance gains in
attacking large dimensionality with many irrelevant features [19, 41, 17], as
well as in enhancing comprensibility of the learned result [52]. As already
noticed, the problem can be exposed as a search problem, so that heuristic
search techniques can be devised in order to face it. Each state in the search
space is a subset of the original feature set and a partial ordering can be
states, with each child in the ordering DAG, having exacttly one more feature
than its parent. In [8] it is argued that the structure of this space suggests
that any feature selection method must take into consideration four basic
issues that determine the nature of the search process:

• a starting point in the search space;

• an organization of the search;

• an evaluation strategy of the selected subset;

• a stopping criterion for halting the search.

These issue are essentially the main issues of any heuristic search problem
in Artificial Intelligence, but considering them directly, we can classify in a
detailed way machine learning approaches to feature subset selection.

The starting point determines the directions of the search and provide
the already discussed distinction between forward selection (starting with no
feature and adding new features) and backward selection (starting with the
whole feature sets and shrinking it until the desired subset is reached).

The organization of the search determines the strategy in the space of size
2d if d is again the number of features available. We have already discussed
that the only non exhaustive optimal strategy that is possible is the branch
and bound algorithm [40], but optimality is guaranteed only if the evalua-
tion function is monotonic. When monotonicity cannot be satsfied heuristic
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search is the only solution. Despite classic deterministic heuristic algorithms
proposed in pattern recognition like SFS, SBS and floating methods, also
best-first search has been attempted [28]. Results from [53] suggest that
classic greedy hill-climbing approaches tend to get trapped on local peaks
caused by interdependencies among features. As we have already noticed,
this triggered the definition of more sophisticated strategies like the floating
ones [42].

On the other side, non-deterministic approaches have also been investi-
gated, in motivation to avoid getting stuck in local maximum. Randomness
is used to escape from such local maxima and this implies that one should
not expect the same solution from different runs. Different techniques has
been adopted to define this kind of algorithms namely Genetic Algorithms
(GA) [53, 55, 31], evolutionary computation [20], Simulated Annealing [25],
Las Vegas Algorithms [51].

The evaluation function measures the effectiveness of a given selected fea-
ture subset and the objective of the search is its maximization. Depending
on how a measure carries out this objective we can determine a distinction
among the approaches that has become very important in the feature selec-
tion literature [28, 16]. Approaches can be classified as:

• wrapper approaches;

• filter approaches

• embedded approaches

This distinction arises because, in order to evaluate the selected subset both
the characteristics of the data, the target concept and the learning algorithm
can be taken into account.

As reported in [19], when the goal is the maximization of the accuracy of
a given feature subset, the features selected should depend not only on the
relevance of the data with respect to the target concept, but also on the learn-
ing algorithm. This defines the so-called wrapper approach. Kohavi and John
[28] report domains in which a feature, altough being in the target concept
to be learned, does not appear in the optimal feature subset that maximizes
the predictive accuracy for the specific algorithm used. This occurs since
feature relevance and accuracy optimality are not always coupled in feature
selection. The wrapper approach implies that the selection algorithm searchs
for a good subset of features using the induction algorithm itself as a part
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of the evaluation function, the same algorithm that will be used to induced
the final target concept. Once the induction algorithm is fixed, the idea is
to train it with the feature subset encountered by the search algorithm, es-
timate the error rate and assigning it as the value of the evaluation function
of the feature subset. In this way, representational biases of the induction
algorithm used to construct the final concept are included in the selection
process.

Wrapper approaches usually need a high computational cost, but techni-
cal computer advances in the last years have made reasonable the wrapper
strategy in several applications, calculating an amount of accuracy estima-
tions (traning and testing on significant amount of data) not envisioned in
the 1980s. Before applying the wrapper approach, an enumeration of the
available resources is quite critical; two main factors can make the selection
problem large [33]: the number of features and the number of instances. One
must bear in mind that in the wrapper approach, every possible solution vis-
ited by the search engine requires the time needed by the learning algorithm
in the training phase. Many approaches have been porposed in order to alle-
viate the excessive loading of the training phase, avoiding the evaluation of
many subsets taking advantage of the intrinsic properties of the used learn-
ing algorithm [12] or reducing the burden of the cross-validation technique
for model selection [39]. Recently, a wrapper approach over Naive-Bayes and
ID3 learning algorithms has been proposed in conjuction with evolutionary
computation, where the evolution is guaranteed by the factorization of the
probaility distribution of the best solutions obtained by means of a Bayesian
network [20]. Promising results have been achieved with this approach in a
variety of tasks when domain knowledge is not available.

When the learning algorithm is not used in the evaluation function, the
goodness of a feature subset can be assessed regarding only to the intrinsic
properties of the data. This type of feature selection approach, which ignores
the induction algorithm to assess the merits of a feature subset is known as
the filter approach. The name is due to the fact that feature selection is
done before applying the learning algorithm, so a “filter” is applied to the
algorithm to select relevant features, looking just at the data and taking
into account the target concept to be learned. The learning algorithm con-
stucts the concept using the set of selected features, ignoring the others. As
we have previously discussed, the statistical pattern recognition literature
has proposed a number of measures for evaluating the goodness of a can-
didate feature subsets [5], trying to detect the feature subsets with higher
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discriminatory information with respect to the concept [27] considering the
probability distribution of the data. These measures are usually monotonic
and increase with the addition of features that afterwards can hurt the final
accuracy.

Mainly inspired by these statistical measures, in the 90s more complex
filer measures which do not use (as in the wrapper approach) the final induc-
tion algorithm, generated new selection algorithms such as Focus [3], Re-
lief [26] or its extension ReliefF [30, 54], Cardie’s algorithm [11], Koller
and Sahami’s work on probabilistic concepts [29], the incremental feature
selection method [32], Bell and Wang’s approach [4] or the mathematical
programming characterization of [35].

Nowadays, the filter approach is receiving considerable attention from
the data mining community to deal with huge databases when the wrapper
approach is unfeasible [32]. However, when the size of the problem allows
the application of the wrapper approach, works in the 90s have shown the
superiority of the approach, in terms of predictive accuracy over the filter
one.

Finally, another type of feature subset selection has been identified in
[8]: the embedded approach. In this case the feature selection process is done
inside the induction algorithm itself. For example, both partitioning and
separate-and-conquer methods implicitely select features for inclusion in a
branch or rule in preference to other features that appear less relevant, and
in the final model some of the initial features might not appear. Classical
induction algorithms like ID3, C4.5 or CART are in this category, while
algorithms like Naive-Bayes or IB1 include all the presented features in the
model and no selection is done.

The embedded approach is then done within the learning algorithm pre-
ferring some features instead of others and possibly not including all the
available features in the final model induced by the learning algorithm. How-
ever, filter and wrapper approaches are located one abstraction level above
the embedded one, performing a feature selection process for the final model
apart from the embedded selection done by the learning algorithm itself.

A final remark should be done for a category of approaches not always
considered in the classical classification of feature selection methods: feature
weighting approaches. In this class of methods, actual feature selection is
substituted by a feature weighting procedure able to weight the relevance of
the features. The most important example can be found in the multi-layer
perceptron, which weights network units depending on the error over the in-
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stances in the training set. Another example is the Winnow system [21] able
to adjust feature weights depending of the fact that a false positive or a false
negative is discovered during learning. The method FeatureBoost [22]
is also a weighting approach using boosting over the attributes; weights are
updated at each iteration in such a way that focus is given to less used fea-
tures. Finally, k-means clustering is exploited as a feature weighting method
for feature selection in [37].

In conclusion, adopting a filtering approach means to have a quite good
computational complexity, but the higher complexity of the wrapper ap-
proach will also produce higher accuracy in the final result. The filtering
approach is a very flexible one, since any target learning algorithm can be
used in conjunction, while the wrapper approach is strictly dependent on
the learning algorithm; faster is the latter, better is the selection process
from the computational point of view. Embedded approaches are intrinsic
to some learning algorithm and so only those algorithm designed with this
characteristic can be used. Finally, if a weighting scheme can be devised,
feature selection can be implemented via feature weighting, by postponing
the selection as a subsequent possible choice using the weights.

2 AdHoc Algorithm

As already mentioned, feature selection may be accomplished independently
of the performance of the learning algorithm used in the knowledge extrac-
tion stage. Optimal feature selection is achieved by maximizing or mini-
mizing a criterion function. Such approach are referred to as the absolute
or filter feature selection model. Conversely, the effectiveness of the perfor-
mance dependent or feedback feature selection model is directly related to
the performance of the concept discovery algorithm, usually in terms of its
predictive accuracy.

Kohavi and Pfleger [19] argued that feedback models are preferable for
feature selection algorithms and supported their claims with empirical evi-
dence. However, the literature do not address some important issues. First
of all, it is not clear which is the best starting point for the search of a
good subset of features. Starting the search on the whole set of original
features usually turns out to be unfeasible due to combinatorial explosion
when the number of features is not limited. Second, current feature selection
algorithms do not help to answer a basic question that arises in a number of
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data analysis tasks, that is whether there exist some fundamental dimensions
which underlie the given set of observed features. This is a major drawback
in marketing applications, for example, in which gaining an insight of the
deep structure of the data is as important as achieving a good generalization
performance.

The attempt to address these open issues have been the basis of our re-
search work on AdHoc (Automatic Discoverer of Higher- Order Correlations),
a statistical algorithm that combines the advantages of both filter and feed-
back feature selection models to enhance the understanding of the given data
and increase the efficiency of the feature selection process. AdHoc has been
successfully used in fielded applications by TiLab, for instance to support
the task of estimating the development effort of telecommunication software
projects.

2.1 AdHoc Architecture

The architecture of AdHoc is shown in Figure 1.

Figure 1: AdHoc’s architecture

AdHoc comprises two main steps, namely the Data Reduction step and
the Feature Selection step. The Data Reduction step is concerned with re-
ducing the dimensionality of the data and is independent of the knowledge
discovery algorithm. An iterative process is applied to explore dependences
between data and to partition the set of observed variables into a small
number of clusters (factors), such that those variables in a given cluster are
thought to be measures of the same underlying construct. Data reduction
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is beneficial under two point of views: on the one hand, it provides a deep
insight into the structure of the problem at hand (each factor represents a
data dimension); on the other hand, it delivers a very good starting point for
the search of relevant features. Indeed, in the second step of AdHoc, namely
the Feature Selection step, a genetic algorithm (GA) [36] is used to select
the minimum number of most informative features from every factor. This
approach has three major advantages:

• The likelihood of selecting good performing features grows markedly,
as subsets which account for all the problem dimensions are formed;

• The complexity of search diminishes consistently, as the GA works
through a far smaller space. The factor space is, usually, one order of
magnitude smaller than the original feature space;

• The possibility of selecting a bad feature subset due to overfitting prob-
lems decreases.

AdHoc delivers three outputs:

• A hierarchy of factors, that is, a representation of the dimension un-
derlying the data organized into level of abstractions;

• The best performing feature subset;

• A ranking of the observed features according to their informative power.

2.1.1 Data reduction step

Statistical techniques, like factor analysis, principal component analysis and
cluster analysis (hereafter designated as Statistical Data Reduction Tech-
niques or SDRTs), may not represent an optimal solution to the data re-
duction issue in the data mining framework [48] as they rely on a set of
mathematical assumptions that diminish their applicability in a number of
applications. Indeed, SDRTs:

• are fooled by spurious or masked correlations between features since
they reduce data dimensionality on the basis of direct (1st-order) cor-
relation only;

• are suitable to handle just numeric features;
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• their outcome is rarely easy to interpret.

AdHoc provides a different approach to data reduction that overcomes
some of the problems which degrade the performance of pure statistical tech-
niques. AdHoc search for true association between the data is based on the
concept of feature profile. The profile of a feature F denotes which features
F is related to and which ones F is not related to. For example, let A, B, C,
D, E, and F be six features that characterize a given data set. Also, let 0.2,
0.1, -0.8, 0.3, and 0.9, be estimates of the direct relationships between F and
A, B, C, D, and E, respectively. F’s profile is defined as the vector ¡0.2, 0.1,
-0.8, 0.3, 0.9, 1.0¿.

Features which have similar profiles provide different measurement of the
same concept for they are equally related (unrelated) to the rest of the fea-
tures. AdHoc can handle both numeric and symbolic features: numeric fea-
tures are automatically discretized if they need to be compared with symbolic
features [49]. Comparing feature profiles may yield to a more reliable estimate
of true association than a direct measure of association. Since components
of the profile vector express correlations, comparing feature profiles may be
viewed as correlating correlations. Nth-order correlations are recursively cal-
culated by applying a statistical test that estimates profile similarity.

By examining higher-order correlations, one can determine the strength
of relationship between features and group those features that are equivalent
measures of some data dimension (factor). AdHoc produces a hierarchy of
clusters which would resemble the concepts that characterize the observed
phenomenon. Resulting clusters either represent a well defined concept in
the data or hold features that do not contribute to a precise, unique concept.

2.1.2 Feature selection step

The problem of feature selection involves finding a good subset of features
under some objective function, such as generalization performance. A feature
subset cannot be truly informative and, consequently, good performing on
unseen cases, unless it contains at least one feature which contribute to define
every dimension underlying the data. To increase search efficiency and avoid
data overfitting, AdHoc selects at most one feature from each of the factor
(data dimension) that has been discovered in the data reduction step. As
a consequence, feature subsets that reflect all the problem dimensions are
formed.
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We investigated several search heuristics to select the smallest number of
features from each factor [50]. Among the others, genetic algorithms (GAs)
turned out to be an excellent fit to this task [47]. In our experiments, fitness
associated to a feature subset x was the ten-fold crossvalidated predictive
accuracy of the C4.5 induction algorithm that would learn the data charac-
terized by the x features only. The size of the space originated by factors
turned out to be one order of magnitude less than the one originated by the
whole set of original features, and the genetic search for good performing
feature subsets over the factor space was three/four times faster than the
search on the overall feature space. Most important, since factors accounts
for all the dimensions in the data, genetic search over the factor space is
equally likely to find the best performing feature subset than the search on
the overall feature space, but is more likely to discover the leastsized feature
subset.

2.1.3 Ranking of the features

By analyzing the distribution of features in the final population generated by
the genetic algorithm, AdHoc is able to rank the features according to their
informative content, that is, on the basis of their predictive power. For every
feature, the ranking mechanisms accounts both for its occurrence frequency
(number of its occurrences in the individuals within the population) and
for its relevance, that is, for the number of occurrences in high-performing
feature subsets. It is quite intuitive that a feature which appears many times
in subsets that yield low predictive accuracy is less relevant than a feature
that occurs a limited number but in the most predictive subsets.

2.2 Example Application

We conducted an extensive empirical analysis in order to evaluate the effec-
tiveness of AdHoc. Several realworld data sets featuring different types of
problematic features were selected from the U. C. Irvine Repository and the
StatLog Repository. The COCOMO data set was provided by [9]. To esti-
mate generalization performance of feature subsets, 10-fold cross-validation
was used. AdHoc was first run on the training data; then the test set was
used to evaluate the performance of the best feature subset learned by the
GA.
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Averaging over 10 runs, we noticed that the performance of feature sub-
sets discovered by AdHoc improves C4.5 on 11 out of 14 domains. In par-
ticular, five times the improvement is significant at the 95and twice at the
90is worse than C4.5’s on the remaining three domains, in one of which,
namely Segment, the degradation was significant at the 95As far AdHoc ’s
efficiency, the data reduction step may take at most 10 minutes to yield the
factor hierarchy on a SUN SparcStation 20. The feature selection step is
more consuming: it may last from few minutes to 3/4 hours for the largest
datasets.

2.2.1 A fielded application

Over the years, corporations have become increasingly dependent on software
to meet their objectives. As a consequence, a great amount of research has
been done to develop cost models for estimating the software development
effort. CSELT has developed a multistrategy learning methodology aimed
at assessing commercial cost estimation tools that are used to estimate the
development effort of a software project. In case commercial tools turn out
to provide unreliable estimates, the methodology is able to deliver a concise
and highly-predictive cost models by investigating a database of past projects
[7].

The methodology involves two stages. In the first stage, AdHoc explores
the database of historical projects and identifies the project characteristics,
called cost drivers, which have major influence on project cost. In the second
stage, a case-based reasoning tool (cbr) is used to select the historical project
which is the most similar one to the new project, i.e., the project whose
development effort has to be estimated. The structure and parameters of the
similarity measure embedded in the cbr system are set on the basis of the
ranking of cost drivers produced by AdHoc. A statistical procedure yields
the final estimate of the development effort for the new project.
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