REIHE COMPUTATIONAL INTELLIGENCE
COLLABORATIVE RESEARCH CENTER 531

Design and Management of Complex Technical Processes
and Systems by means of Computational Intelligence Methods

A Hybrid Approach to Feature Selection and
Generation Using an Evolutionary Algorithm.

Oliver Ritthoff,
Ralf Klinkenberg,
Simon Fischer,
Ingo Mierswa

No. CI-127/02

Technical Report ISSN 1433-3325 February 2002

Secretary of the SFB 531 - University of Dortmund - Dept. of Computer Science/Xl
44221 Dortmund - Germany

This work is a product of the Collaborative Research Center 531, “Computational
Intelligence”, at the University of Dortmund and was printed with financial support of
the Deutsche Forschungsgemeinschaft.

A Hybrid Approach to Feature Selection and
Generation Using an Evolutionary Algorithm

Oliver Ritthoff, Ralf Klinkenberg, Simon Fischer, and Ingo Mierswa

Chair of Artificial Intelligence, Department of Computer Science,
University of Dortmund, 44221 Dortmund, Germany
{ritthoff,klinkenberg,fischer ,mierswa}@ls8.cs.uni-dortmund.de

Abstract. Genetic algorithms proved to work well on feature selection
problems where the search space produced by the initial feature set al-
ready contains the hypothesis to be learned. In cases where this premise
is not fulfilled, one needs to find or generate new features to adequately
extend the search space. As a solution to this representation problem
we introduce a framework that combines feature selection and genera-
tion in a wrapper based approach using a modified genetic algorithm for
the feature transformation and an inductive learner for the evaluation of
the constructed feature set. The basic idea of this concept is to combine
the positive search properties of conventional genetic algorithms with an
incremental adaptation of the search space. To evaluate this hybrid fea-
ture selection and generation approach we compare it to several feature
selection wrappers both on artificial and real world data.

1 Introduction

One aspect in machine learning crucial for successfully solving a learning task at
hand is the formalism in which the hypotheses (i.e. possible solutions) are repre-
sented. Formally, the set of examples £ is specified using a description language
Le. Single hypotheses h from the set of possible hypotheses H are described
in a hypotheses language L. In conventional machine learning methods, the
features used in L¢ and Ly are usually identical.

Two learning tasks that handle the representation problem by properly trans-
forming an inadequate feature space Lg, are feature selection and feature gen-
eration. 1 Models of feature selection [9] assume that the description language
contains a superset of the features that are sufficient to describe the target
hypothesis. Thus, learning comprises the selection of a feature subset that max-
imizes the learning performance of a classification or regression task.

Most machine learning methods for classification and regression are already
designed to find the most suitable, i.e. relevant features in a given feature set.
Thus, feature selection is already implicitly done. Nevertheless one often needs
an additional pre-processing step prior to the application of the actual learning

1 An overview of different approaches in feature abstraction, selection and construction
is given in [17].

method. One reason is, that the prediction accuracy of many learning algorithms,
including e.g. decision tree learners like C4.5 [21] decreases, when irrelevant? or
redundant features are added [13]. Another problem particularly affecting the
computation time is the lacking scalability of many learning methods, since their
applicability significantly decreases on large-scale data sets [19].

Two of the possible dimensions proposed in [7] for categorizing different fea-
ture selection algorithms are search organization and evaluation strategy. With
regard to the first dimension, the simplest search strategy is the erhaustive
search, which guarantees to find the best feature subset® but needs exponential
runtime and thus is not applicable in most cases. Another class, called heuristic
search methods, uses an evaluation function that directs the search into areas of
increased performance. A subclass of these algorithms, called hill climbing meth-
ods, incrementally chooses feature subsets that lead to the highest performance
increase in one iteration. Two instances of hill climbing methods are forward
selection and backward elimination [1]. Forward selection starts with an empty
set of selected features and iteratively adds the feature leading to the highest
performance increase to the set of selected features, until the performance can-
not be enhanced any further by adding a single feature. Backward elimination
starts with the complete feature set and iteratively removes the feature whose
removal yields the maximal performance increase. A major shortcoming of such
sequential hill climbing methods is their lacking ability to cope with feature
interaction, which is one of the main difficulties in feature selection. Feature,
or attribute, interaction is characterized as a situation, where the effect of a
particular feature on the target depends on the value of other features [10]. A
popular probabilistic search method, that can handle these feature interactions
are evolutionary algorithms [3].

According to the second dimension we can distinguish methods that select
feature subsets irrespective of their effect on the learning performance (known
as filter approaches [2,14]) from those that use a specific learning method for
the evaluation of the feature subsets (known as wrapper approach [15]). Descrip-
tions of several hybrid approaches that use evolutionary methods for the feature
selection and different learning methods for the evaluation of particular feature
sets, especially neural networks and decision trees, can be found in [20,4, 28, 22].

In contrast to the learning task of feature selection, models of feature gener-
ation* enrich the hypothesis language with additional constructed and derived
features, respectively [18]. Thus, one goal of feature generation and especially of
constructive induction is to reveal and accordingly represent feature dependen-
cies explicitly, that cannot be found by the applied learning method alone.

Feature generation and selection are closely related learning tasks. They can
be viewed as two sides of the representation problem in machine learning, i.e. the
problem of finding an adequate representation language for the learning task at

2 Several definitions of feature relevance are stated in [7].

% Provided, that the search space already contains the searched hypothesis.

1 A special case of feature generation using inductive generalization is also known as
constructive induction.

hand. In cases, where the given representation language is insufficient to describe
the (learning) problem, feature generation can assist in augmenting the original
language by appropriately composed features. In cases, where the representation
language contains more features than necessary to solve the learning task, feature
selection can be used to simplify the language. Since some of the constructed
features are irrelevant or redundant, they can be eliminated from the feature set
by a proper selection method. Corresponding hybrid approaches that combine
feature generation and selection can e.g. be found in [16, 6].

Approaches using a combination of feature generation and selection methods
based on probabilistic search strategies have rarely been considered so far. [8, 5,
26] An according framework using bitstrings for the feature representation, GP
operators for the feature transformation and C4.5 for the feature evaluation is
described in [26]. In contrast to our GA-based wrapper approach, this framework
does not provide the use of meta-data for the feature generation process to
restrict the resulting search space to useful, i.e. admissible, subspaces and thus
to accelerate the search process.

In the following section, we describe our hybrid feature selection and genera-
tion approach in more detail. Since we use a modified genetic algorithm adapted
to the process of feature transformation, we start with a short introduction
into the applied concepts of canonical genetic algorithms. Then, we present the
modified genetic operators, comprising mutation, crossover, and an additional
type-restricted feature generator. Afterwards, we delineate the feature evalua-
tion concept using an arbitrary induction algorithm. A comparison of this hybrid
feature selection and generation approach with several feature selection wrap-
pers, both on artificial and real world data, is presented in the third part of this

paper.

2 Architecture

In this section, we introduce a wrapper-based approach using a modified ge-
netic algorithm for the incremental selection and generation of new features,
employing an attribute-based induction algorithm for the evaluation of the fea-
ture sets at hand. The general idea is to combine the positive search properties
of conventional genetic algorithms with the option to adapt the search space
incrementally.

The combined approach as stated in Figure 1 is an adapted version of the
wrapper-approach presented in [15]. According to our approach, the feature se-
lection and generation by means of a modified genetic algorithm encloses the
chosen induction algorithm. ® The genetic algorithm conducts the search for a
good feature subset using the induction algorithm for the evaluation of the cur-
rent feature subsets. The training data set the induction algorithm is run on, is
partitioned into internal training and hold out sets, with different sets of features
removed from and added to the data. The process of creating feature sets, using
the modified genetic algorithm and evaluating these sets 1s repeated until a given

5 The induction algorithm we chose in our experiments was a support vector machine
(SVM) [27], although any other inductive learning algorithm could have been used.

Training Set

: l Induction Algorithm ‘
‘ Feature Selection ‘ Feature Set
} Estimated

l Feature Sets . R Performance
Final Evaluation

‘ Induction Algorthm ‘

l Evaluations

‘ Termination Criterion

Test Set

Fig. 1. Combined wrapper-based feature selection and generation approach

termination criterion is fulfilled. This criterion could e.g. be a maximum number
of generations, a fixed time limit, the achievement of a preliminary fitness value,
or the convergence of the genetic algorithm. The resulting feature set 1s chosen
as the final set on which to run the induction algorithm. The final evaluation of
the resulting classifier is done using an independent test set not used during the
learning step.

Conceptionally, the key idea in using the incremental feature generator in
the context of a genetic algorithm is, that any feature can be generated with a
probability p > 0 in a finite number of iterations, i.e. generations of the genetic
algorithm, given particular feature generators and the original features. Thus,
more formally, given a feature set f; at time point ¢, a set of feature generators
G applicable in one step with G(ft) = ft41 and f being the target feature, then
the following proposition is assumed:

e Jim G

The following section gives a short introduction into genetic algorithms as
they are described e.g. in [12,11] and presents the modifications that have been
conducted on the standard genetic operators to perform the task of feature
selection and generation.

2.1 Genetic Algorithms

The canonical genetic algorithm works on an n-tuple of binary strings b; of
length I, where the bits of each string are considered to be genes of an individual
chromosome, and where the n-tuple is said to be a population. Following the
terminology of biologic evolution the operations performed on the population
are called mutation, crossover, and selection.® Each individual b; represents a
feasible solution of a given problem and its objective function value ¢(b;) is
said to be its fitness, which has to be maximized. The general framework of

6 In this context we have to distinguish between the selection of features in a feature
set and the selection of individuals in an evolutionary sense.

create an initial population
evaluate initial population
repeat
perform selection
perform crossover
perform mutation
evaluate population
until termination criterion is fulfilled

Fig. 2. The main algorithm of a canonical genetic algorithm

a canonical genetic algorithm is shown in figure 2. According to this figure,
we first of all create an initial population, which is generally done by setting
each bit of a chromosome, or individual, to 1 or 0 with probability 0.5 each. In
the next step, the individuals are evaluated based on a given fitness function
¢. In the main loop we select particular chromosomes for reproduction, vary
them by mutation and crossover, and evaluate them using the fitness function.
The standard selection scheme is the so-called fitness proportional selection. In
fitness proportional selection, the probability for an individual b; to be selected
for recombination is proportional to its relative fitness value, or more formally
given by ps(bi):qﬁ(bi)/zglzo &(b;). After n individuals have been selected, the
variation operators, mutation and crossover, are applied.

For the crossover, it first has to be determined, if a crossover should be ap-
plied at all. Therefore we generate a uniformly distributed random variable U
in the interval [0,1]. A crossover will only be performed if U < p., with p. being
the given probability of performing a crossover. In this case we randomly chose
two individuals from the set of selected individuals for the crossover procedure.
The crossover type usually applied in the canonical genetic algorithm is the so-
called one-point crossover. To apply this operator we first have to determine a
crossover point and afterwards exchange the string sections of the two parent
strings on the right hand side of this point. The mutation operator is the sec-
ond variation operator and randomly flips single bits on a specific chromosome
given a predefined mutation probability. This operation is generally necessary
to reintroduce alleles (bit values), which correspond to features in our approach,
that converged to a certain value and thus could never be regained by means
of simple crossover. The process of choosing two individuals from a set of se-
lected individuals and applying the variation operators on them is repeated n/2
times. The whole evolutionary cycle of selection, recombination, and evaluation
proceeds until a given termination criterion is fulfilled.

2.2 Adapted Operators

In the previous section we introduced the main algorithm of a canonical genetic
algorithm. From a machine learning point of view, genetic algorithms can be
seen as a robust search strategy for large hypotheses spaces, where only little

create an initial population
evaluate initial population
repeat
perform selection
perform variable-length crossover
perform mutation
perform feature generation
evaluate population
until termination criterion is fulfilled

Fig. 3. The main algorithm of the modified genetic algorithm

knowledge about the given search space is needed. In order to use genetic algo-
rithms for feature selection and generation, we have to adapt the representation
of the original feature space to the evolutionary setting. In our approach, each
chromosome is interpreted as a binary representation (bit string) of an underly-
ing feature set, i.e. each gene is associated with a particular feature. A gene value
of 71”7 means, that the corresponding feature is selected in the current feature
set, whereas a gene value of ”0” represents a deselected feature. For the purpose
of applying genetic algorithms to the task of adaptive feature space transforma-
tion, we have to partially modify the standard genetic operators crossover and
mutation.

Crossover recombines different individuals, i.e. feature sets, whereas mutation
selects, or deselects single features of a particular individual respectively. The
idea behind the crossover operator is to combine good feature sets to create
even better ones. Since the length of a single individual can vary by adding
new (generated) features, we have to modify the standard crossover operator.
In contrast to the crossover operator, the standard mutation operator can be
adopted without changes. Additionally to the standard genetic operators, we
introduce an operator that, given a particular generator, produces new features
by combining those selected features in a given feature set that agree with the
generator’s type restrictions.

Figure 3 shows the main algorithm of our new approach combining feature
selection and generation by means of a genetic algorithm. We use fitness propor-
tional selection, combined with an elitist strategy. The elitist strategy ensures
that the best individual of a generation remains in the population, i.e. all parents
are replaced by the child population, except for the best individual of the current
generation. The whole evolutionary cycle of selection, variation, feature genera-
tion, and feature set evaluation proceeds, until a given termination criterion is

fulfilled.

Adapted crossover operator

Figure 4 shows an adapted version of the standard one-point crossover used in ge-
netic algorithms that can cope with variable length chromosomes, resulting from

[y][][+ =[5 X[zl vy 7z x|y +2

N v

(Crossover]

/ N

(X[l 2l x+2fly/z]] x= x| y+2] [x][y][=] <~ v]EV]

Fig. 4. Modified crossover operator for the adapted genetic algorithm

the application of a feature generator to individual features on a chromosome.
The two parent individuals prior to the application of the crossover operator
are shown on the top of the figure whereas the two resulting child individuals
appear at the bottom. To use the crossover operator, a corresponding crossover
point (indicated by the thin vertical lines) has to be determined. Subsequently,
the features of the two individuals on the right side of this point are exchanged.

The left parent individual, shown on figure 4, contains the original features z,
y, z and two generated features z+z and y*y, the right parent individual contains
the original features z, y and z as well as three generated features y/z, z*r and
Y+z. 7

Mutation Operator

Figure 5 shows an example for the process of mutating single individuals. In
the setting of feature transformation, mutation of an individual by flipping one
or more bits on the bit string corresponds to the selection (indicated by a gray
shading) or deselection of the respective features (indicated by a white shading).
The top of this figure shows an individual, containing seven features, five of
which are selected. After mutation, feature y which originally was selected is
now deselected and feature z*z which formerly was deselected is now selected.

’xlyl z|x*z|y/z|x*x| y+z‘

[Mutation)

’x|y| z|x*z|y/z|x*x| y+z‘

Fig. 5. Mutation operator for the adapted genetic algorithm

" The shades of gray indicate different substrings on the chromosomes to clarify the
crossover process and should not be mistaken with the shades of gray on figures 5
and 6 that denote the selection and deselection of features in a feature set.

2.3 Type-restricted Feature Generation

Conceptionally, the variation operators crossover and mutation focus the search
for a good feature set on different subspaces of the original feature space, whereas
feature generation enlarges the original space. Given a feature set F, a set
of selected features Fs = {fi,..,fn} C F, and a set of feature generators
G = {g1,..,9x}, we first choose a particular feature generator g; € G for the
generation process. Then, by checking the types of all features in Fg, the com-
patible feature subsets {F.,,..,F,,} C Fs are determined with regard to the
type restrictions of the generator at hand. Finally, the chosen feature generator
g; 1s applied to the set of compatible features (or a subset thereof) and the re-
sulting features W; = g;(F.,) are added to the original feature set F. The set
of compatible features is not limited to original features, but can also contain
compound features that have already been created by a generator. This prop-
erty allows recursive feature generation and thus the construction of arbitrarily
complex features.

Choose feature set n

e
Choose generator @ -

Choose suitable features n

Apply generator ‘
to chosen features

S [2[]

Fig. 6. Feature generation operator used in the combined approach

Figure 6 exemplifies a concrete feature generation process. The top of this
figure shows an individual, containing four original features u, z, y and z, whereas
only u, x and z are currently selected. The next step is to randomly choose a
generator from the predefined set of generators. Feature generators may handle
e.g. boolean, mathematical, transcendental or domain specific functions and op-
erate on individual features as well as on entire feature sets. In this case the ”+”
generator is chosen, which combines two numeric features by simply adding their
feature values. After the generator is determined, the corresponding features, in
this case two numeric features, have to be chosen. Assuming, that u, z and 2
are all numeric features and thus fulfill the given type-restrictions, we randomly
choose z and z. Finally, we append the generated feature z+z to the end of the
bit string, 1.e. add it to the original feature set.

Both, the maximal number of features that may be added to one feature
set in a single step as well as the set of generators that can be used have to

be predetermined by the user. The actual number of created features and the
particular generators are determined stochastically.

An obvious advantage of using type-restricted constructors lies in the limita-
tion of the set of constructible features to a well-formed subset. This restriction
leads to an acceleration of the search for a good representation, by only extending
the search space by useful subspaces.

2.4 Feature Evaluation

To calculate the fitness value of a particular individual, 1.e. of a single feature
set, and thus to determine the quality of this feature set some kind of evaluation
method is required. In order to apply the evaluation method, we have to adapt
the example set to the current feature sets, by removing the values for the
deselected features and adding the values for newly generated features. This
modified example set now serves as the training data for the learning method.
The induced model is applied to the test data to evaluate the fitness of the
given feature set. This evaluation procedure is embedded into two nested cross
validations, where the inner one serves for the determination of the best feature
set and the outer one for its overall validation.

3 Experiments

3.1 Artificial Data

To evaluate the presented approach, we first compared it with a genetic feature
selection wrapper using an artificial data set. ® The target function f was given
by f(a) = a1 + ...+ as, i.e. the sum of five given features, containing three basic
features a1 to as and two constructed features as := a1 * a2 and a5 := as/as.
The performance evaluation was done using two nested cross validations. The
inner cross validation was used to find a good feature set, while the outer cross
validation was used to evaluate the performance of this feature set on an extra
validation set. For both approaches, the parameters for the genetic algorithm
were set to 200 for the number of generations, 30 for the population size, 0.5 for
the crossover probability, 0.2 for the mutation, i.e. feature selection probability,
and 0.5 for the feature generation probability. The induction algorithm we chose
was a regression SVM [27, 25, 24] with complexity C' = 1000 and ¢ = 0.1, using
a dot kernel.

The results presented in Table 1 show that the combined approach clearly
outperformed the genetic feature selection wrapper in cases of missing relevant
features. In cases of different amounts of noise, 1.e. additional irrelevant features
and even in the optimal case where the original feature set was given, this ap-
proach turned out to be superior to the simple selection approach. Furthermore,
in the case where no generated features from the original feature set were given in
advance, the new approach exactly reconstructed these missing features during
the search process.

8 For the experiments, both on real-world and artificial data, the machine learning
environment YALE [23] was used.

Searched feature set

Simple selection
approach

Combined
approach

Original features (=ay, ..,as)

0.0517 (0.0231)

0.0473 (0.0198)

Original features + one random feature 0.0538 (0.0201) 0.0537 (0.0179)
Original features + two random features 0.0592 (0.0242) 0.0571 (0.0215)
Original features + three random features 0.0596 (0. 0230) 0.0586 (0.0236)
Original features - one constructed feature 1.4569 (0.1612) 0.0738 (0.0893)
Original features - two constructed features | 1.4669 (0. 1857) 0.0584 (0.0712)

Table 1. Comparing the performance of a simple feature selection approach using a
genetic algorithm with the combined approach on an artificial data set in terms of the
average absolute error (average relative error in parentheses).

3.2 Real-World Data

This section presents a comparison of the appropriateness of different chains of
feature generation and selection methods for an application problem from chro-
matography. Chromatography is used in chemical industries to separate tem-
perature sensitive substances. A mixture of components is injected for a certain
amount of time into a column, filled with porous particles. Due to the different
adsorption strengths of the substances on the porous particles, the components
have various velocities in the column and reach its end at different times, where
they can be separated. The learning task considered here is to predict the four
characteristic coefficients of a two component mixture given the corresponding
chromatogram time series. Two constants, namely the Henry and Langmuir co-
efficients,; determine the chromatogram of a substance. The data set contains 200
examples with 5000 features each, i. e. with measurements at 2500 equidistant
points of time of the chromatogram time series for each of the two components.
Since the learning task again was a regression problem, we used a regression SVM
throughout the following experiments. The support vector machine was applied,
using a radial-basis kernel with ¥ = 1, C' = 1000, and ¢ = 0.1.° The learning
performance was evaluated in terms of the absolute and relative prediction er-
ror, comparing predicted and real values of the Henry and Langmuir constants.
Based on the structure of the overall learning task, we systematically compared
the performance of different learning chains, comprising feature generation and
selection. The experimental results are shown in Table 2.

In the first experiment, we simply used the original (time series) features to
learn and evaluate an SVM model without any preprocessing steps. The corre-
sponding learning chain, comprising learner, model applier and evaluator, was
enclosed by a four-fold cross validation. Due to noise in the simulated measure-
ments of the original features, this operator chain only yielded a poor prediction
performance. The second chain additionally contained a pre-processing opera-
tor that generated numeric characteristics from the original time series data.
These new features include the position (i.e. points of time) and the value (i.e.

® These parameter values have been determined in preliminary tests.

Applied Henry Langmuir Henry Langmuir |Runtime
operator chain constant constant constant constant (sec.:)
substance 1[substance 1|substance 2|substance 2

Original data 2.2044 21.9080 2.4718 22.3290 31540
(0.6285) | (0.6497) | (0.7046) | (0.6883)

Feature generation 0.5415 17.6390 0.6143 17.7408 5869
(0.1551) | (0.4695) | (0.1671) | (0.4645)

Feature generation &| 0.1541 11.0932 0.2288 11.0196 13086
FS-wrapper (0.0336) | (0.3271) | (0.0349) | (0.5407)

Feature generation &| 0.0872 0.1015 0.0918 0.1010 6852
BE-wrapper (0.0215) | (0.0028) | (0.0238) | (0.0028)

Feature generation &| 0.0733 0.1052 0.0748 0.1015 79927
GA-wrapper (0.0193) | (0.0028) | (0.0232) | (0.0029)

Combined approach 0.0737 0.1015 0.0777 0.1012 44768
(0.0187) | (0.0027) | (0.0199) | (0.0028)

Table 2. Average absolute error for the target values Henry and Langmuir on a two-
substance mixture, tested on different operator chains (average relative error in paren-
theses).

concentration of the substance at the column output) of the maximum of the
chromatogram and the x- and y-coordinates of the two inflection points left and
right of the maximum. Since the sensor readings may be noisy and perhaps
slightly shifted along the time axis among different measurements, an individual
feature in the time series of an example, i.e. the concentration measured at one
particular point of time, is not very reliable. As expected, the construction of
these robust features significantly improved the learning result.

Since it was not obvious, which of the new and which of the original features
were really helpful in solving the learning task, an additional feature selection
step was performed subsequent to the feature generation step to obtain a feature
set well-suited for the given learning task. Different feature selection wrappers,
namely Forward Selection (FS), Backward Elimination (BE) and a Genetic Al-
gorithm (GA) were employed reducing the set of features and increasing the
learning performance in terms of the absolute and relative prediction error. Fi-
nally, we tested our new approach combining feature generation and selection
on the given learning problem, using the same parameter settings as in the case
of the genetic feature selection wrapper. In this setting, feature generation and
selection were not used as subsequent pre-processing steps, but intertwined in
a feature wrapper approach. In the case of the genetic algorithm for feature se-
lection we used 50 generations, a population size of 30 individuals, a mutation
probability of 0.05, a crossover probability of 0.5, fitness proportional selection,
and one-point crossover. The combined approach yielded a similar prediction
performance compared to the feature selection wrapper using a genetic algo-
rithm, but required significantly less runtime.

4 Summary

In this paper, we presented a general framework that connects feature genera-
tion and selection in a combined approach using a modified genetic algorithm
for feature transformation and an inductive learner for the feature evaluation.
To restrict the amount of generated features and thus to accelerate the search
process, we introduced a type-restricted feature generation concept. We showed,
that in cases where the original feature set is inadequate with regard to the given
learning task, one can significantly improve the learning performance by adding
relevant features by means of feature generation and removing irrelevant features
by applying feature selection methods.

Although the learning performance in terms of predictive error and learning
time significantly improved compared to a simple genetic feature selection wrap-
per by incrementally adapting L¢ and Ly, the search process could be further
enhanced by using prior knowledge about the search space. Therefore the open
question remains, how a demand-driven control of the feature generation process,
especially for the case of regression problems, could be realized. In this context,
demand-driven control means to precisely determine specific feature generators
and chose particular features that produce individuals with high fitness values.
Another open question is, to what extent a dynamic interaction of feature gen-
eration and selection in terms of a controlled sequence of different search space
transformations can be realized.

5 Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG), Col-
laborative Research Center on Computational Intelligence (SFB 531) at Univer-
sity of Dortmund.

References

1. D. W. Aha and R. L. Bankert. A comparative evaluation of sequential feature
selection algorithms. In D. Fisher and H.-J. Lenz, editors, Learning from Data,
chapter 4, pages 199-206. Springer, New York, USA, 1996.

2. H. Almuallim and T. G. Dietterich. Learning with many irrelevant features. In
Proceedings of the Ninth National Conference on Artificial Intelligence (AAAI-91),
pages 547-552, Anaheim, CA, USA, 1991. AAAI Press.

3. T. Baeck, D. B. Fogel, and T. Michalewicz. FEvolutionary Computation 1, Basic
Algorithms and Operators. Institute of Physics Publishing, Bristol, UK, 2000.

4. J. Bala, K. A. De Jong, J. Huang, H. Vafaie, and H. Wechsler. Hybrid learning
using genetic algorithms and decision trees for pattern classification. In Proceedings
of the 14th International Joint Conference on Artificial Intelligence (IJCAI-95),
pages 719-724, San Francisco, CA, USA, 1995. Morgan Kaufmann.

5. H. Bensusan and I. Kuscu. Constructive induction using genetic programming.
In Evolutionary Computing and Machine Learning Workshop (ICML-96), Morgan
Kaufmann.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

E. Bloedorn and R. S. Michalski. Data-driven constructive induction. [EFE In-
telligent Systems, 13(2):30-37, 1998. Special Issue on Feature Transformation and
Subset Selection.

A. L. Blum and P. Langley. Selection of relevant features and examples in machine
learning. Artificial Intelligence, 1(2):245-271, 1997.

. E. I. Chang and R. P. Lippmann. Using genetic algorithms to improve pattern

classification performance. In R. P. Lippmann, J. E. Moody, and D. S. Touretzky,
editors, Advances in Neural Information Processing Systems, volume 3, pages 797—
803. Morgan Kaufmann Publishers, Inc., 1991.

. M. Dash and H. Liu. Feature selection for classification. International Journal of

Intelligent Data Analysis, 1(3):131-156, 1997.

A. Freitas. Understanding the crucial role of attribute interaction in data mining.
16(3):177-199, 2001.

D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Reading, MA, USA, 1989.

J. H. Holland. Adaptation in natural and artificial systems. University of Michigan
Press, Ann Arbor, MI, USA, 1975.

G. John, R. Kohavi, and K. Pfleger. Irrelevant features and the subset selection
problem. In Proceedings of the FEleventh International Conference on Machine
Learning (ICML-94), pages 121-129, San Mateo, CA, USA, 1994. Morgan Kauf-
mann.

K. Kira and L. Rendell. The feature selection problem: Traditional methods and
a new algorithm. In Proceedings of the Tenth National Conference on Artificial
Intelligence (AAAI-92), pages 129-134, Menlo Park, CA, USA, 1992. AAAT Press.
R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intel-
ligence Journal, Special Issue on Relevance, 97(1-2):273-324, 1997.

N. Lavrac, D. Gamberger, and P. D. Turney. A relevancy filter for constructive
induction. [EEE Intelligent Systems, 13(2):50-56, 1998.

H. Liu and H. Motoda. Feature Fxtraction, Construction, and Selection: A Data
Mining Perspective. Kluwer, Dordrecht, N1, 1998.

R. S. Michalski. A theory and methodology of inductive learning. In R. S. Michal-
ski, J. G. Carbonell, and T. M. Mitchell, editors, Machine Learning: An Artificial
Intelligence Approach, volume 1, chapter 4, pages 83-134. Morgan Kaufmann, Palo
Alto, CA, USA, 1983.

G. Paliouras. The scalability of machine learning algorithms. Master thesis, De-
partment of Computer Science, University of Manchester, Manchester, UK, 1993.
W. Punch, E. Goodman, P. Hovland, and R. Enbody. Further research on feature
selection and classification using genetic algorithms. In Proceedings of the Fifth
International Conference on Genetic Algorithms, pages 557-564, Palo Alto, CA,
USA, 1993. Morgan Kaufmann.

J. R. Quinlan. C4.5: Programs for Machine Learning. Machine Learning. Morgan
Kaufmann, San Mateo, CA, USA, 1993.

T. Ragg and S. Gutjahr. Neural network optimization by searching guided by
stochastic methods. In Proceedings of the EUFIT’98 Conference, Aachen, 1998.
Mainz Verlag.

O. Ritthoff, R. Klinkenberg, S. Fischer, I. Mierswa, and S. Felske. YALE: Yet
Another Machine Learning Environment. In R. Klinkenberg, S. Riiping, A. Fick,
N. Henze, C. Herzog, R. Molitor, and O. Schroder, editors, LLWA 01 — Tagungs-
band der GI-Workshop- Woche Lernen — Lehren — Wissen — Adaptivitat, Technical
Report No. 763, Department of Computer Science, University of Dortmund, pages
84-92, Dortmund, Germany, October 2001.

24

25.

26.

27.

28.

S. Riiping. mySVM-Manual. Artificial Intelligence Unit, Department of Computer
Science, University of Dortmund, Germany, 2000.
http://www-ai.cs.uni-dortmund.de/SOFTWARE/MYSVM/.

Alex J. Smola and Bernhard Scholkopf. A tutorial on support vector regression.
NeuroCOLT?2 Technical Report NC-TR-98-030, Royal Holloway College, University
of London, UK, 1998.

H. Vafaie and K. A. De Jong. Feature space transformation using genetic al-
gorithms. [EFEE Intelligent System, 13(2):57-65, 1998. Special Issue on Feature
Transformation and Subset Selection.

V. N. Vapnik. Statistical Learning Theory. Wiley, Chichester, United Kingdom,
1998.

J. Yang and V. Honavar. Feature subset selection using a genetic algorithm. In
John R. Koza, Kalyanmoy Deb, Marco Dorigo, David B. Fogel, Max Garzon, Hi-
toshi Iba, and Rick L. Riolo, editors, Genetic Programming 1997: Proceedings of the
Second Annual Conference, pages 380-385, San Mateo, CA, USA, 1997. Morgan
Kaufmann.

