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Abstract

Carrying out a statistical analysis of empirical data the researcher is typically concerned

with the problem of choosing an appropriate statistical technique from a large number of

competing methods. Most of the common statistical software only allows to analyse the

data by applying certain methods that are implemented in this software without giving

any support to the researcher with respect to the adequacy of a method for a particular

data set.

This paper outlines the main features of the computer system CORA which provides a

statistical analysis of strati�ed contingency tables and additionally supports the researcher

at the di�erent steps of this analysis. The support given by the system consists of two

di�erent aspects. On the one hand the help system of CORA contains general information

on the implemented statistical methods which can be obtained on request by the user. On

the other hand an advice tool recommends an adequate statistical method. This advice

depends on the actual empirical case{control data that the user wants to analyse. To

build up the advice tool a set of rules being discovered by machine learning is integrated

into the system CORA. Simulation studies that investigate the �nite{sample behaviour of

estimators serve as knowledge sources for this discovery process.

The presented way of constructing such systems can be seen as a general approach

which is applicable in many �elds of research: with the means of machine learning you can

discover knowledge in simulation studies and then integrate this knowledge into a system

which supports the user by recommendations (guidelines) how to proceed.
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1 Introduction

The aim of epidemiological case{control studies is to investigate possible associations bet-

ween a potential risk factor and a certain disease. Carrying out such a study the numbers

of persons are recorded having the disease or not and being exposed or not. For further

statistical analyses, these four absolute frequencies are usually ordered in a 2�2 table.

A quantifying statistical measure for the investigated association is the so{called odds

ratio. It can be interpreted as the factor by which the risk of disease increases if a person

is exposed to the risk factor of interest. Let us denote the probability for a case being

exposed by p

1

and for a control p

0

. Then, the odds ratio is de�ned as

p

1

(1�p

0

)

p

0

(1�p

1

)

. Typically,

there are additional confounding variables being associated with the risk factor and also

having an inuence on the disease of interest. These confounders have to be controlled

to ensure that the odds ratio reects the only inuence of the risk factor. One possibility

for controlling such confounders consists in a strati�cation of the data according to the

categories of the confounder where a 2�2 table is contructed for each category. If the con-

founder is controlled, i.e. all individual odds ratios are equal (homogeneity), a so{called

common odds ratio  is to be estimated from the data. A great variety of estimators of

the common odds ratio with di�erent statistical properties is available, see e.g.

[

1

]

,

[

2

]

,

[

3

]

,

[

4

]

and

[

5

]

. The behaviour of the estimators heavily depends on the characteristics of

the case{control data to analyse.

The researcher is thus confronted with the problem of choosing an adequate estimator

out of the large pool of competing techniques. To cope with this problem, the computer

system CORA (Combined Odds Ratio Analysis) was developed which assists the rese-

archer in analysing the data. This support is achieved by two system components: an

enlarged hypertext help system and a knowledge{based advice tool. The help system,

which o�ers information about CORA and how to use it, is extended by some general

aspects concerning a strati�ed contingency table analysis as well as the statistical pro-

perties of the implemented estimators and some other statistical methods used in the

analysis. The advice tool suggests an appropriate estimator for the common odds ratio.

This recommendation depends on the characteristics of the underlying case{control data

entered into the system. In contrast, the information given by the help system, although

it is context{sensitive, does not consider the actual characteristics of the data to analyse.

In order to build up the advice tool we have applied machine learning. The �nite{

sample behaviour of statistical methods can be determined by simulation studies, which

are valuable, if an analytical investigation would be too complicated or even impossible.

From the results of these studies, represented in a knowledge base, a characterization of

estimators can be learned. The resulting set of rules then underlies the advice tool.

Knowledge{based techniques have been widely used when developing intelligent stati-

stical software. But most of the statistical expert systems that have been worked out since

the mid 80th fell back to a transfer view of knowledge acquisition. This transfer view is

based on the assumption that with the help of tools | namely expert system shells |

knowledge can be easily carried over from the expert to the system. Almost all of these

systems failed in practice. This false assessment of the knowledge acquisition process may

be one reason for their failure.

In

[

6

]

Morik proposed to focus on modelling the knowledge and has created a di�erent

view of knowledge acquisition. With the help of tools assisting this modelling process
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knowledge can be discovered and revised. Thus it can be made available for knowledge{

based systems (KBS) in a more appropriate way. Hence, KBS can now be developed that

essentially di�er from the �rst generation of expert systems regarding the quality of the

implemented knowledge.

The outline of this paper is as follows. First we describe some basic aspects of the

system CORA: the domain of the system, the expertise required by the user as well as

the overall system architecture of CORA. In the third section we take a closer look at the

advice tool. We present the particular steps of the above mentioned modelling process

needed to build up this tool. Section 4 illustrates the implementation of CORA, that is

the design of the advice tool, which uses the results of the modelling process, the design

of the analysis tool, which involves all statistical procedures to handle the data, and the

help system. Some screendumps are presented to show the layout of the user interface.

In Section 5 we discuss our approach and the lessons learned while developing CORA.

Besides we suggest some main directions for future research to improve and to enlarge our

approach.

2 Some basic features of CORA

In this section we describe the domain of the system CORA. For developing an appro-

priate system it is also necessary to take a look at the potential users and their statistical

knowledge. Finally, we present the overall architecture of the system.

CORA is restricted to a rather small domain, i.e. to the analysis of strati�ed 2�2

contingency tables for the purpose of evaluating case{control studies as outlined in the

indroduction. However, the domain is hard to handle for a researcher, because di�erent

kinds of expertise are required. He/she needs the medical and epidemiological background

to design the study and to collect the data, but additionally statistical knowledge is needed

especially while analysing the data. In practice, the co{operation between physicians or

epidemiologists on the one hand and statisticians on the other hand is often di�cult.

Sometimes physicians totally disclaim the help of statisticians, because they themselves

are equipped with statistical knowledge. But in case this statistical quali�cation is not

su�cient severe problems may arise.

In a contingency table analysis there are various decisions to be made by the researcher.

Here, the choice of an estimator for the common odds ratio is of particular importance.

For this, the researcher should not only know the di�erent types of estimators, but also

their asymptotical and �nite properties. Especially, the latter strongly depends on the

characteristics of the data he/she wants to analyse. If the researcher does not know the

relationships between the characteristics of the data and the properties of the estimators,

unfavourable selections may be the consequence. Here, CORA should assist this selection

process by providing the user with this kind of expertise. We integrated this expertise

into the help system and especially into the advice tool of CORA such that the system

can give a recommendation regarding the choice of an estimator.

As mentioned before, the advice tool contains a set of learned rules. The system

examines the characteristics of the present data and, if possible, �res a suitable rule that

supposes an estimator. That means, there is no complex inference process, but a single

stage decision process: only one rule is applied. We should emphasize that this tool
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has only an advisory capacity, i.e. the user of the system is not restricted to follow the

recommendation of the tool, the �nal selection is the responsibility of the user.

We have developed a uniform user{friendly graphical interface for all components of

CORA. The statistical procedures are also part of the system: they form the analysis tool.

Thus, CORA is not an intelligent interface for an existing statistical software package (a

so{called front{end) but a stand alone system. The lower part of Figure 1 illustrates the

overall system architecture of CORA.

3 Knowledge acquisition: a modelling process

The approach presented here emphasizes the process of modelling the expertise. The

simulation studies as well as the experts themselves serve as knowledge sources for this

process. The acquisition of the expertise is supported by MOBAL (see

[

7

]

). This system

combines knowledge acquisition and machine learning, hence additional knowledge can

be derived. First, we have to build up a model, the knowledge base, which represents

the results of the simulation studies and thus makes them available for MOBAL. From

this model represented in the knowledge base a characterization of the examined point

estimators can be learned. This characterization, consisting of a set of rules, relates the

characteristics of the data to the behaviour of the estimates. The modelling process and

the integration of its results into the system architecture of CORA is depicted in Figure

1. Let us stress that the main goal of using machine learning is not to objectify the

knowledge acquisition process, but it is seen as a chance to discover new knowledge and

thus to improve the knowledge base.

A closer look at the cyclical modelling process reveals di�erent steps. It starts with

outlining a framework for the model. In this framework, the relevant characteristics of

the data, i.e. the parameter constellations, and the criteria for the assessment of the

estimators have to be determined and to be classi�ed. Such a classi�cation is necessary

since it would not be useful to look for rules which are only applicable in very special

situations. After evaluating the model built up so far, possible revisions can be made.

From the classi�ed assessment criteria a suitability of an estimator in a certain para-

meter constellation can be derived. In addition to this suitability, we ascertain a ranking

for each estimator with respect to the assessment criteria. Based on this ranking, it is

possible to state which estimator is best in a given constellation. Thus it can later be re-

commended for a data situation with similar characteristics. According to the suitability

of the estimators, the recommendations can be classi�ed. Such a classi�cation is neces-

sary since there may be for instance data constellations in which even the best estimator

behaves poorly.

The next step of the modelling process concerns the representation of the model. Here,

MOBAL provides a �rst order logic, strictly speaking a function free Horn clause logic.

Thus, the items in the knowledge base are mainly facts and rules, apart from some other

representational structures like rule models (see Section 3.3) as well as sorts and a topology

of predicates (see

[

7

]

). Because the latter two are not relevant for the representation of

our model they are not further discussed.

The steps of the modelling process are described below in more detail.
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Figure 1: Integration of the modelling process into the system architecture of CORA
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3.1 Modelling the domain knowledge

Monte{Carlo studies are carried out to investigate and compare the performance of some

estimators. In the simulation study to be evaluated (see e.g.

[

8

]

), the following six esti-

mators of the common odds ratio have been examined: the Mantel{Haenszel estimator

^

 

MH

, the Woolf estimator

^

 

W

, and corresponding jackknifed versions, that is the jack-

knifed (type I) logarithm of the Mantel{Haenszel estimator J

I

ln(MH)

, the jackknifed (type

I) Woolf estimator J

I

W

, the jackknifed (type II) Mantel{Haenszel estimator J

II

MH

, and the

jackknifed (type II) logarithm of the Mantel{Haenszel estimator J

II

ln(MH)

. For a description

of the di�erent jackknife approaches see for instance

[

9

]

.

For the design of the simulation study values for the involved parameters have to be

�xed such as the number of tables, the number of cases and controls, and the probability

for a control to be exposed. Since we assumed homogeneity, we only have to �x a value

for the common odds ratio. This is of special importance because the di�erence between

this value and the estimate obtained from the simulated data can be used to rank the

estimators.

Each choice for the values of the parameters characterizes a certain constellation. From

these characteristics, others can easily be derived, as for instance the ratio of cases and

controls or the di�erences between the extreme values of the exposure probabilities in a

certain parameter constellation. Note that most of the mentioned characteristics refer

to the single strata. That means for instance there are ten di�erent numbers of cases

in a parameter constellation with ten contingency tables. Thus, the description of the

data characteristics including all tables is very complex. To reduce this complexity, we

calculated averages of the values of the single strata. As additional characteristic, we

calculated the well{known Gini ratio. This measures how balanced the characteristics are

across the strata.

As essential criteria for the assessment of the estimators we calculated the means of

the estimated biases and mean squared errors (MSE) from 1000 simulation runs for each

parameter constellation. The bias measures the deviation of the estimate from the true

parameter value, whereas the MSE can be regarded as a measure for the variability. Based

on the bias and the MSE a ranking of the estimators can be given where these two criteria

have to be combined appropriately. This aspect is addressed in the following section.

3.2 Classi�cation of the data properties and the assessment criteria

The rules to be learned for characterizing the estimators should not be too detailed as for

instance:

IF the true, but unknown common odds ratio is 3.5 and there are 30 cases,

THEN estimator X has a bias of 0.034.

This means, we should use qualitative criteria instead of quantitative measures. This

can be realized by dividing the initial criteria into appropriate categories. Fixing the

bounds of the categories was the most di�cult but also one of the most important tasks

in modelling this domain. The de�nition of the categories is arbitrary, but of course

the chosen categories strongly inuence the rules, which are discovered, as well as the

complexity of the knowledge base.
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With the categories presented in Table 1, the above mentioned rule is subsumed by

the following one:

IF the common odds ratio is moderate and there are many cases,

THEN estimator X has small bias.

The conclusion contained in this rule, however, is not a recommendation. For obtaining

the recommendations, we have to come back to the ranking and to the suitability of

each estimator. The ranking is based on an appropriate combination of the ranks of

an estimator regarding bias and MSE. The suitability is derived by combining the two

categorized criteria bias and MSE. (For clarity, we omit the details of these approaches

for combining bias and MSE.) Then, we rate the ranking with respect to the suitability.

Hence, if estimator Y is placed �rst according to its ranking and if in addition its suitability

is very good (i.e. very small values for bias and MSE), the above rule could be formulated

like as follows:

IF the common odds ratio is moderate and there are many cases,

THEN we recommend estimator Y which is supposed to perform very well for

data with the above characteristics.

3.3 Representation of the model

3.3.1 Knowledge representation in MOBAL

The system MOBAL (cf.

[

7

]

) is an environment for building up, inspecting and changing

a knowledge base. The items in the knowledge base are represented within a restricted

higher{order predicate logic. The domain knowledge consists mainly of

� facts, expressing relations, properties and concept membership of objects. They are

represented as function{free literals without variables:

pred(Term

1

; Term

2

; :::; Term

n

):

� rules, expressing inferential relations between predicates, necessary and su�cient

conditions of concepts, hierarchies of properties. They are represented as Horn clau-

ses in which the premises and the conclusion literal may be negated:

pred

1

(Term

(1)

1

; : : : ; Term

(1)

n

1

) & : : :& pred

m

(Term

(m)

p

1

; : : : ; Term

(m)

p

m

)

! pred

concl

(Term

(concl)

1

; : : : ; Term

(concl)

q

concl

):

By forward chaining, new facts can be inferred from rules.

� rule models (metapredicates), expressing the structure of the rules to be learned. A

rule model is a rule in which predicate variables are used instead of actual predicates

of an application domain. A predicate variable can be instantiated by a predicate

symbol of the same arity. A full instantiated rule model, where all predicate variables

have been replaced by actual predicates, is a rule.

Further, the domain knowledge can include some other items like a topology of predicates

and sorts, which are not considered here in detail.
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number of tables S odds ratio  

small S < 5 exactly 1  = 1

moderate 5 � S < 10 small 1 <  � 2

large 10 � S < 50 moderate 2 <  � 7

very large 50 � S large 7 <  

number of cases CA number of controls CO

small CA � 5 small CO � 5

moderate 5 < CA � 20 moderate 5 < CO � 20

large 20 < CA � 100 large 20 < CO � 100

very large 100 < CA very large 100 < CO

ratio CO/CA R Gini ratio GR

balanced R � 1:25 balanced GR = 0

medium balanced 1:25 < R � 3 medium balanced 1 < GR � 0:5

unbalanced 3 < R unbalanced 0:5 < GR � 1

probability of a P di�erences of the D

control to be probabilities of a

exposed control to be exposed

low P � 0:3 small D � 0:2

centered 0:3 < P � 0:7 large 0:2 < D

high 0:7 < P

bias B MSE M

very small B < 0:005 very small MSE M < 0:01

small 0:005 � B < 0:05 small MSE 0:01 �M < 0:1

moderate 0:05 � B < 0:5 moderate MSE 0:1 �M < 1

large 0:5 � B large MSE 1 �M

Table 1: Categories for the data characteristics and the assessment criteria
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3.3.2 Domain model

The characteristics of the data as well as the assessment of the estimators are represented as

facts. The following example describes the properties of the �rst parameter constellation.

It contains 18 facts with two or three arguments. The third place is necessary for those

data characteristics varying across the strata.

oddsratio(sit_1,1.7).

number_of_strata(sit_1,2).

diff_prob(sit_1,0.1).

gini_ratio_cases(sit_1,1).

gini_ratio_ratio(sit_1,0).

gini_ratio_prob(sit_1,1).

number_of_cases(sit_1,1,20).

number_of_cases(sit_1,2,30).

number_of_controls(sit_1,1,60).

number_of_controls(sit_1,2,90).

prob(sit_1,1,0.2).

prob(sit_1,2,0.3).

ratio_cc(sit_1,1,3).

ratio_cc(sit_1,2,3).

mean_cases(sit_1,25).

mean_controls(sit_1,75).

mean_prob(sit_1,0.25).

mean_ratio(sit_1,3).

oddsratio, number of strata, diff prob, ... are predicates concerning the data

characteristics. The arguments sit 1, sit 2, ... label the parameter constellation of

the simulation study. They are the �rst arguments in all predicates. 1.7, 1.0, 2, ...

are the arguments in the last place. They denote the values for the corresponding data

characteristics, e.g. the common odds ratio or the number of strata. The arguments 1,

2, 3, ... in the second place of the three{place predicates specify to which strata the

corresponding values for the data characteristics belong.

The following four facts characterize the assessment of the estimators. As above the

arguments in �rst place label the parameter constellation. The second place marks the

names of the estimators, e.g. the abbreviation mh for the Mantel{Haenszel and bl for

the Breslow{Liang estimator. The last place marks the values for the mean squared error

(mse) and the bias.

mse(sit_1,mh,1.12436).

mse(sit_1,bl,1.34329).

bias(sit_1,mh,0.54718).

bias(sit_1,bl,0.23197).

For all data characteristics and both assessment criteria, the classi�cation into catego-

ries is then achieved by rules like the following one:
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number_of_strata(S,NS) & gt(NS,4) & le(NS,10) -->

moderate_number_of_strata(S).

The above mentioned ranking and the assessed suitabilities are derived and represented

by similar rules. For further information concerning these rules see

[

10

]

.

If we know the recommendations and the categorized suitabilities then we can assess

the recommendations according to the suitabilities with rules like the following ones:

recommendation(S,E) & good_suitability(S,E) --> good_recommendation(S,E).

recommendation(S,E) & bad_suitability(S,E) --> bad_recommendation(S,E).

3.4 Learning the recommendation rules

3.4.1 RDT

The rule discorvery tool RDT (see

[

11

]

), which is included in MOBAL, helps the user to

�nd regularities in facts. It is a model{based learning algorithm that induces rules from

facts. New facts can be derived using the learned rules. The necessary input to RDT

are facts and rule models (metapredicates). RDT de�nes a hypothesis subspace that is

actually searched via a set of explicitly spelled out hypothesis templates, the rule models.

Thus the hypothesis space consists of the set of all possible instantiations of rule models

with domain predicates. For e�ciently searching in this hypothesis space a generalization

relation on the set of rule models is de�ned by suitably extending the �{subsumption for

clauses (see

[

12

]

) or the generalized �{subsumption (see

[

13

]

), respectively. According to

Buntine, a clause C �{subsumes a clause C

0

(C �

�

C

0

), if the more general clause C can

be converted to the clause C

0

by repeatedly turning variables to constants or other terms,

adding atoms to the body, or partially evaluating the body of C by resolving some clauses

in the background knowledge.

This leads to the following de�nition of the generality relationship �

RS

between rule

models:

A rule model R is more general than R

0

(R �

RS

), i� there exists a substi-

tution � applied to term variables, and a substitution � applied to predicate

variables that does not unify di�erent predicate variables such that R�� � R

0

.

The substitution � turns term variables to constants or other terms and the

substitution � renames or instantiates the predicate variables.

RDT searches this partial ordering top{down from the most general to the more speci�c

hypotheses. Hypotheses are computed by instantiating the predicate variables of the rule

models with predicate symbols. Then, these hypotheses are tested. There are three

possible results for this test:

1. the hypothesis is too general, i.e. it covers too many negative or unknown instances,

2. the hypothesis is accepted, or

3. the hypothesis is too special, i.e. it covers too few positive instances.
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A breadth �rst search strategy is used and those hypotheses that have already been ac-

cepted or pruned as too special are remembered to avoid exploring their specializations.

The specializations of the former, i.e. accepted hypotheses, are disregarded because they

are redundant, the specialisations of the latter are pruned because they never can be

con�rmed. Only in the case of a hypothesis being too general, the search is continued.

The premises of a rule model are incrementally instantiated. An order of the premises

allows to further prune the search of hypotheses also within a single rule model. This

order must take into account the bindings of the variables of the rule model. Based on

the connection of a variable to the conclusion, a measure for the distance of this variable

from the conclusion is de�ned. This measure is then used to determine the premise order.

The connection of a variable X to the conclusion via the relation chain rc(X) is de�ned

as follows:

A variable X occurring in the conclusion of a rule model is connected via the

empty relation chain (rc(X) = ;).

A variable X

i

(1 � i � n) occurring in a premise R(X

1

; X

2

; : : : ; X

n

) is connec-

ted via the relation chain rc(X

i

) = R � rc(X

j

), i� a variable X

j

(1 � j � n)

n; i 6= j of R(X

1

; X

2

; : : : ; X

n

) is connected via the relation chain rc(X

j

).

A variable can have more than one relation chain, but a rule model which contains an

unconnected variable is not allowed. The distance of a variable X , denoted by �(X), is

then de�ned as the length of the minimal relation chain connecting it to the conclusion.

Thus the order of premises can be de�ned as follows:

P �

P

P

0

; i� min(f�(X)jXoccurring inPg) � min(f�(X)jXoccurring inP

0

g).

While instantiating the premises of the rule schema with respect to this order we instantiate

P before P

0

, if P �

P

P

0

. Then we can test all partially instantiated hypotheses in the same

way as we test the fully instantiated rule model, if we drop the uninstantiated premises.

The threshold for too few instances and thus for pruning the search is computed from

a user{speci�ed acceptance criterion. Several primitives for this criterion are de�ned

as the cardinalities of: pos(H) the positive instances of a hypothesis H, neg(H) the

negative instances of H, pred(H) the unknown, i.e. neither provable true nor provable

false instances of the conclusion which will be predicted by H, total(H) the total instances

of H, unc(H) the instances of the conclusion which are uncovered by H, and concl(H) all

instances of the conclusion. The acceptance criterion is a logical expression of conjunctions

and disjunctions of arithmetical comparisons (i.e. =; <;�;�; >) involving arithmetical

expressions (i.e. +;�; �; =) built from numbers and the above primitives, for example:

pos(H) > 4 & neg(H) < 1 & unc(H) < (0.9*total(H)).

For all specializations of a hypothesis H the numbers of positive, negative, and predicted

instances are smaller than those numbers for the hypothesis H itself, whereas the number

of uncovered instances grows. The number of instances of the conclusion does not change

while specializing H. Using these relations among the primitives, a pruning criterion is

derived from the acceptance criterion. It only prunes hypotheses which cannot be accepted.

Further e�ectiveness of the algorithm RDT comes from the use of a many sorted logic

and a topology of predicates (see

[

7

]

).
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3.4.2 The learning task and its results

Here, the goal of learning is to gain a characterization of the estimators concerning the

categorized data characteristics. From now on, we only consider those data characteristics

that do not vary across the di�erent strata. The remaining nine data characteristics are

classi�ed in a total number of 22 categories. The goal predicates to learn about are the four

classi�ed (assessed) recommendations and additionally the unassessed recommendation.

We carried out further learning steps with some di�erent predicates, e.g. those for the

suitabilities, see

[

10

]

. To de�ne the hypothesis space for learning, RDT needs suitable

metapredicates. We used the following ones:

MP1(S,P1,R): S(Est) & P1(Sit) --> R(Sit,Est).

MP2(S,P1,P2,R): S(Est) & P1(Sit) & P2(Sit) --> R(Sit,Est).

MP3(S,P1,P2,P3,R): S(Est) & P1(Sit) & P2(Sit) & P3(Sit) --> R(Sit,Est).

MP4(S,P1,P2,P3,P4,R): S(Est) & P1(Sit) & P2(Sit) & P3(Sit) & P4(Sit)

--> R(Sit,Est).

While learning, S(Est) is instantiated with predicates that determine the variable Est

in the conclusion, e.g. mantel haenszel(Est). Using the �rst metapredicate we search

for data characteristics where a single property is su�cient to recommend an estimator.

In the next steps we search for combinations of two, three and four characteristics.

In the presented knowledge base, we do not want to infer new facts from the learned

rules. Hence, we consider two acceptance criteria. The �rst one does not allow predicted

facts at all, where the second one allows a maximum number of 0.1*total for the predicted

facts. The main results of the learning step are summarized in Table 2.

3.4.3 Selecting a rule set

The goal now is to select a rule set from the learned rules, which is then integrated into

the KBS. As criterium for this selection, we mainly consider the redundancy in the rule

set. Frequently, di�erent rules cover the same data constellations. The following example

illustrates this:

We consider two rules:

1. mantel haenszel(mh) & oddsratio=1(S) & large cases(S)

& large strata(S) ! medium recommendation(S,mh).

2. mantel haenszel(mh) & oddsratio=1(S) & large cases(S)

& balanced gini ratio cases(S) ! medium recommendation(S,mh).

These two rules only di�er from each other in the last premise. Both rules cover

the �rst six parameter constellations of the simulation study. The reason for

this is that there is a relation between the data characteristics small strata

and balanced gini ratio cases in the simulation study at issue. This rela-

tion is �xed in the simulation design: in situations with few strata, the number

of cases is always uniformly distributed over the strata.

Because of relations like this, redundant rules have been learned. Without going into

detail we would like to mention that our choice of only one rule out of the set of redundant

rules is based on certain data characteristics (see

[

10

]

).
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Goal predicates MP AC Results / Remarks

all MP1 all no learned rules

very good recommendation MP2 pos>0.9*total no learned rules

pos=total

good recommendation MP2 pos=total one learned rule

time for learning: 3343 seconds

rule for J

II

MH

medium recommendation MP2 pos>0.9*total no learned rule

pos=total

bad recommendation MP2 pos>0.9*total no learned rule

pos=total

recommendation MP2 pos=total eight learned rules

time for learning: 7137 seconds

rules for J

II

MH

recommendation MP2 pos>0.9*total 10 rules

time for learning: 8452 seconds

rules for J

II

MH

very good recommendation MP3 pos>0.9*total no learned rules

pos=total

good recommendation MP3 pos=total nine learned rules

time for learning: 30044 seconds

rules for J

II

MH

good recommendation MP3 pos>0.9*total 18 learned rules

time for learning: 31223 seconds

rules for J

II

MH

medium recommendation MP3 pos=total 24 learned rules

time for learning: 32678 seconds

rules for JK

II

MH

bad recommendation MP3 pos=total one learned rule

time for learning: 29452 seconds

rule for

^

 

MH

very good recommendation MP4 pos=total no learned rules

good recommendation MP4 pos=total c. 80 rules

rules for JK

II

MH

and JK

I

W

medium recommendation MP4 pos=total c. 100 rules

learning process failed

a

bad recommendation MP4 pos=total 12 rules

rules for

^

 

MH

a

The learning process was stopped after one week.

Table 2: Results obtained from the process of learning
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For the second metapredicate the following �ve rules are selected:

unbalanced ratio CoCa(S) & large strata(S)

! good recommendation(S,jk)

small oddsratio(S) & unbalanced ratio CoCa(S)

! recommendation(S,jk)

small prob(S) & small strata(S)

! recommendation(S,jk)

gini ratio CoCa balanced(S) & oddsratio exactly one(S)

! recommendation(S,jk)

gini prob unbalanced & small oddsratio(S)

! recommendation(S,jk)

We selected six rules for the third metapredicate:

oddsratio exactly one(S) & large cases(S) & small strata

! moderate recommendation(S,jk)

small oddsratio(S) & large cases(S) & small strata

! moderate recommendation(S,jk)

moderate strata(S) & oddsratio exactly one(S) & large cases(S)

! good recommendation(S,jk)

large strata(S) & oddsratio exactly one(S) & large cases(S)

! good recommendation(S,jk)

small strata(S) & oddsratio exactly one(S) & very large cases(S)

! good recommendation(S,jk)

gini cases medium balanced(S) & large difference prob(S) & large oddsratio(S)

! bad recommendation(S,mh)

Finally, there are seven rules which lead to a recommendation of an estimator based

on a combination of four data characteristics.

large strata(S) & small oddsratio(S) & large cases(S)

& small prob(S) ! good recommendation(S,jk)

moderate strata(S) & small oddsratio(S) & small prob(S)

& large cases(S) ! moderate recommendation(S,jk)

moderate strata(S) & moderate oddsratio(S) & small prob(S)

& large cases(S) ! moderate recommendation(S,jk)
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moderate strata(S) & small oddsratio(S) & small prob(S)

& very large cases(S) ! good recommendation(S,jk)

large strata(S) & large oddsratio(S) & large cases(S)

& centered prob(S) ! bad recommendation(S,mh)

large strata(S) & small oddsratio(S) & large cases(S)

large difference prob(S) ! good recommendation(S,w jk)

large strata(S) & large oddsratio(S) & large cases(S)

small prob(S) ! recommendation(S,jk ii)

Using the traces for the learning process for metapredicate MP4 and with the help of

the experts, we proposed some possible rules, entered them into the system MOBAL and

investigated how many new facts were predicated by this rule. Thus, the following rules

were discovered and accepted:

small strata(s) & large oddsratio(S) & very large cases(S)

& centered prob(S) & small difference prob(S) ! good recommendation(S,jk)

large strata(S) & large oddsratio(s) & very large cases(S)

& centered prob(S) & small difference prob(S) ! moderate recommendation(S,jk)

small strata(s) & large oddsratio(S) & large cases(S)

& unbalanced ratio CoCa(S) & large difference prob(S)

! bad recommendation(S,w jk)

moderate strata(s) & centered prob(S) & small difference prob(S)

& large oddsratio(S) & large cases(S) ! bad recommendation(S,jk ii)

small strata(S) & large oddsratio(S) & large cases(S)

medium balanced ratio CoCa(S) & unknown(small prob(S))

! bad recommendation(S,woolf)

The four rules listed above do not predict any new facts in the represented knowledge

base. Additionally, we discovered a rule with six premises. This rule also does not predict

a new fact:

small strata(S) & large oddsratio(S) & large cases(S)

& unbalanced ratio CoCa(S) & small difference prob(S) & centered prob(S)

! bad recommendation(S,bl)

3.4.4 Evaluating the rule set

With the help of MOBALs Rule Restructuring Tool (RRT) (see

[

14

]

) we have evaluated

the selected rule set. In Table 3, the results of the evaluation of the selected rule set
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Completeness 40%

Correctness 93%

Redundancy no

Number of premises 3.6

Number of variables 1

Number of constants 1

Covered instances 4

Table 3: Results of the evaluation

according to the criteria completeness, correctness, redundancy, the rule lenght, and the

number of covered instances are depicted.

3.4.5 Integration of the selected rules into the KBS

To develop the advice tool, we integrate the selected rules into the KBS. The advice tool

then analyses the actual case{control data with respect to their characteristics and selects a

rule whose premises are covered by these ascertained characteristics. This rule recommends

an appropriate estimator for the common odds ratio. For e�ciently encoding the rules, we

have to determine an order for querying the data characteristics. Additionally, we have

to �x an order for the rules, because there are data constellations, where more than one

rule could �re. If there are many of such data situations, it would be recommendable to

revise the rule set. The reason why those rules have been learned is that the simulation

study does not cover all combinations of characteristics that will occur in practice. The

former order is achieved by considering the frequencies of the data characteristics. The

most frequent characteristic, that means the value of the odds ratio, is questioned �rst.

For every category of this data characteristic the frequencies of the remaining properties

are determined and so on. The latter order (of the rules) is determined by considering

the number of positive examples for the rules. Figure 4 depicts a cutout of the resulting

decision tree(s). We search for an applicable rule (a recommendation) top down in the

left tree. If we cannot �nd any rule in this tree, we start searching in the tree on the right

hand side.

4 Design

CORA is a Windows application. The user interface is composed of forms that are created

with the tool Delphi (see

[

15

]

). Delphi simpli�ed the implementation of the graphical

interface and additionally allowed to encode the expertise and all statistical procedures.

In the following sections we give a short description of the design of the advice and

the analysis tool as well as of the help system.

4.1 Design of the advice tool

The advice tool gives a recommendation of an estimator for the common odds ratio. This

recommendation is based on two data sets, the data to be analysed and the data of the
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Table 4: Cutout of the resulting decision tree(s)

pilot study, where the pilot study could be an external study being carried out in advance

or a random sample drawn from the original data set of size 10 %, for instance. The data

of the pilot study is only used for deriving the recommendation and should not be used

for further analyses. To give this recommendation, three steps are necessary:

� the investigation of the two data sets,

� the classi�cation of the investigated characteristics of the data and

� the choice of an appropriate rule out of the set of rules integrated in CORA.

All these steps are within the scope of the system, that means, there are procedures

to calculate the values of the data characteristics, procedures for their classi�cation, and

a procedure that implements the decision tree in form of production rules by using nested

if{then{statements. Every if{statement corresponds to a premise of a rule that examines a

classi�ed data characteristics. The corresponding then statement represents the conclusion

of the production rules.

While implementing this decision tree the order for the rules mentioned in Section

3.4.5 has to be taken into account. Then, the search for an appropriate rule stops as soon

as the most preferable one has �red.

The interface for the advice tool consists of a three{sided form. On the �rst page (see

Figure 2) the proposed point estimator and a possible bias correction as well as information

about the degree of suitability of the estimator and the number of the rule by which this

recommendation is derived are presented.
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Figure 2: First page of the form for the recommendation

The second page (see Figure 3) shows the characteristics of the data that the user

wants to analyse, namely the number of tables, the mean number of cases, the balance of

the number of cases, the mean ratio of cases and controls, and the balance of this ratio.

Both, the exact values and the classi�ed characteristics are shown.

The characteristics of the pilot data are �nally listed on the third page: the estimated

common odds ratio, the mean probability for a control being exposed and its balance as

well as the di�erences between the extreme probabilities.

For all these characteristics the exact values and their categorized versions are presen-

ted. The characteristics occurring as premises in the applied rule are checked. Thus, all

information from the production rules is transparent for the user. Further information,

e.g. the coverage of the applied rule, is so far not represented on the form.

4.2 Design of the analysis tool

As mentioned before, CORA is not only an intelligent interface, but includes also the

used statistical procedures: there are two methods to stratify the data, �ve procedures for

analysing homogeneity and independence of risk factor and disease as well as the above

mentioned methods to estimate the common odds ratio. Additionally, the user has the

possibility to get a general view of the data. The form that is depicted in Figure 4 shows the

data as strati�ed 2�2 contingency tables. Repeated calls of this form allow to view several

tables simultaneously. The second page of this form shows the corresponding estimates for

the individual odds ratios, their estimated variances, and the con�dence intervals. Two

other forms show listings of all zero cells that are in the set of data and all individual odds

ratios. There are two additional forms where defaults regarding the statistical methods

can be set.
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Figure 3: Second page of the form for the recommendation

Figure 4: Form for the contingency tables
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Figure 5: Form for the estimation of the common odds ratio
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4.3 Design of the help system

The help system was created using the Windows help compiler. There are two di�erent

kinds of topics: on the one hand there are the statistical and epidemiological topics and

on the other hand the user can get information about CORA and instructions how to use

it. Especially, the use of the advice tool and its foundations are explained in this help

system.

Every form of CORA contains a help button that allows to jump to a help topic that

describes all its components. From there, it is possible to reach the relevant statistical

topics.

The system also addresses users with limited statistical experience. Hence, the steps

and basic concepts concerning a strati�ed contingency table analysis are explained. The

statistical procedures are described and their �nite and asymptotic properties are stated.

Thus, these help topics complete the recommendations given by the advice tool.

5 Discussion

Two di�erent aspects were important when developing CORA. On the one hand we ana-

lysed Monte{Carlo studies by using AI techniques for obtaining rules to be implemented

in CORA. And on the other hand these rules for recommending a certain estimator in a

given data situation and the complete system of support formed the essential part of our

statistical analysis system.

In spite of e�ciency problems due to the MOBAL system, past experience has shown

that with the use of AI techniques we are able to improve the evaluation of Monte{

Carlo studies by more speci�c results. This improvement is not only achieved by machine

leraning but also by modelling the knowledge and by examining existing rules with the

help of MOBAL.

While working with MOBAL, the domain expert is able to recognize his/her own way

of evaluating Monte{Carlo studies and thus can follow the steps of modelling the expertise.

An important bene�t from using machine learning is that also more extensive studies

can be analysed without much additional e�ort. For an evaluation with conventional tech-

niques the present Monte{Carlo study with its 240 investigated parameter constellations

is already very complex. Thus more extensive studies cannot be carefully analysed with

reasonable e�ort. But especially enlarged studies would be important to improve the qua-

lity of the rule set and hence to lead to rules that cover a wider range of potential data

situations. Moreover, the modelling of these Monte{Carlo studies has revealed the im-

portance to further examine especially situations with a poor behaviour of the estimators.

This would enable the system to give \negative recommendations" that means warnings

which estimator the user should avoid analysing the given data.

In addition, the expertise should be completed by rules based on asymptotical proper-

ties of the estimators and on characteristics resulting from the calculation of the estimators

and thus being independent of the data structure. Within the scope of this approach it is

quite simple to enlarge the rule set according to these aspects.

Other possible expansions of the underlying statistical expertise concern the fact that

CORA only supports the decision process of the user with respect to the choice of an

appropriate point estimator of the common odds ratio. The presented approach can,
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however, also be applied to support other choices of statistical methods that have to be

made by the user during the analysis, e.g. concerning an appropriate test of homogeneity

of the individual odds ratios or a test of independence of risk factor and disease.

In addition to these points, future work should provide such systems with better me-

thods for graphical representation of data, which would increase the insight into the data.

Of course, the system could further be extended with respect to a support of the user

not only when analysing the data, but also when planning the study and collecting the

data.
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