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Abstract. Early water stress recognition is of great relevance in precision plant breeding and production. Hyperspectral
imaging sensors can be a valuable tool for early stress detection with high spatio-temporal resolution. They gather large,
high dimensional data cubes posing a significant challenge to data analysis. Classical supervised learning algorithms
often fail in applied plant sciences due to their need of labelled datasets, which are difficult to obtain. Therefore, new
approaches for unsupervised learning of relevant patterns are needed. We apply for the first time a recent matrix
factorisation technique, simplex volume maximisation (SiVM), to hyperspectral data. It is an unsupervised classification
approach, optimised for fast computation of massive datasets. It allows calculation of how similar each spectrum is to
observed typical spectra. This provides the means to express how likely it is that one plant is suffering from stress. The
method was tested for drought stress, applied to potted barley plants in a controlled rain-out shelter experiment and to
agricultural corn plots subjected to a two factorial field setup altering water and nutrient availability. Both experiments
were conducted on the canopy level. SiVM was significantly better than using a combination of established vegetation
indices. In the corn plots, SiVM clearly separated the different treatments, even though the effects on leaf and canopy
traits were subtle.

Additional keywords: canopy, imaging spectroscopy, matrix factorisation, non-invasive, pattern recognition, plant
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Introduction

Water scarcity is a principle global problem that causes aridity and
serious crop losses in agriculture. The combined effects of climate
change and a growing human population call for attention to
advance research in the understanding of plant adaptation under
drought to improve management practices and breeding
strategies.

The mechanistic basis underlying drought tolerance is
complex as it is contributed by several related traits that are
controlled mostly by polygenic inheritance. Genetic and

biochemical approaches are time consuming and often fail to
fully predict the performance of new lines in the field. In
recent years, phenomic approaches measuring the structural
and functional status of plants, which may overcome the
limited predictability, have been discussed: some authors have
labelled the lack of high throughput phenomic data as the
‘phenomic bottleneck’ (Richards et al. 2010).

In the past years, hyperspectral camera systems have become
affordable and more widely used in plant sciences. In
hyperspectral imaging, radiative properties of plant leaves or
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canopies are measured. Those can be used to determine structural
and physiological traits of vegetation (Malenovský et al. 2009;
Rascher et al. 2010; Ustin and Gamon 2010). For instance,
the spectral reflectance of a leaf is characterised by a low
reflectivity in the visible part of the spectrum (400–700 nm)
because of a strong absorption by photosynthetic pigments,
whereas a high reflectivity in the near infrared (700–1100 nm)
is produced by a high scattering of light by the leaf mesophyll
tissues (Knipling 1970; Rascher et al. 2010). In addition, in the
shortwave infrared part of the spectrum (1100–2500 nm) the
reflectance intensity is affected by the water, cellulose, protein
and lignin content of plant tissues (Rascher et al. 2010). At the
canopy level, spectral reflectance is a combination of leaf and
soil reflectance, canopy structure and illumination geometry.
Despite several laboratory studies that have shown a
relationship between the amount of water in the leaf and the
spectral reflectance in the optical region (Hunt and Rock 1989;
Danson et al. 1992), at canopy level the determination of water
content presents some difficulties, mainly due to the large
reflectance variation among leaves with the same water status
(Cohen 1991), structural changes associated with loss of turgor
(Kimes et al. 1984) or small reflectance differences at different
levels of water stress. However, the biggest issue in estimating
water content at canopy level is the decupling of the
contributions of water content and leaf area index (LAI);
indeed, LAI variability may cancel out water-related features,
thus precluding the retrieval of water content from single
vegetation indices developed for leaf water content estimation.
Better results can be obtained by normalising water indices by
greenness indices (Colombo et al. 2008).

Remote sensing has been used in precision agriculture as a
tool to provide timely information on crop conditions during a
growing season. In the optical domain, the most widely
investigated approach is based on the use of vegetation indices
(VIs) to detect crop conditions (e.g. water and nitrogen status).
Most approaches based on hyperspectral data aim to quantify
plant traits by calculating VIs that quantify specific changes in
plant structure and composition (Jackson and Huete 1991;
Fiorani et al. 2012). Although VIs have been successfully
used to detect advanced stages of crop stress affecting for
example crop biomass (Thenkabail et al. 2000), leaf nitrogen
and chlorophyll content (Tilling et al. 2007; Haboudane et al.
2008) or vegetationmoisture content (Yilmaz et al. 2008), the use
of VIs for early stress detection is challenging. Furthermore,
different crop stresses can affect the spectral bands involved in
VI computation in a similar way, limiting the possibility to use
VIs for this purpose.

Several VIs have been developed for drought stress
detection. Although water status can primarily be observed in
shortwave infrared wavebands, drought also has an effect on the
visible and near infrared range, for instance, on chlorophyll
content and internal structure changes in the leaves due to
wilting. Among many VIs for drought stress detection, the
normalised difference vegetation index (NDVI, Penuelas et al.
1995), photochemical reflectance index (PRI, Gamon et al.
1992), red edge inflection point (REIP, Peñuelas and
Filella 1998) and carotenoid reflectance index (CRI, Gitelson
et al. 2006) arewell established andproven todetect plant drought
stress.

Recently, sun-induced fluorescence has been evaluated as
a novel remote sensing measure to detect changes in the
functional status of photosynthesis because of environmental
constraints (Meroni et al. 2008, 2009a, 2009b). A first test
case showed that diurnal changes with afternoon drought-
induced downregulation of photosynthesis can be detected by
sun-induced fluorescence (Damm et al. 2010). However, tests of
this method have been limited to few studies; consequently, the
potential of this approach has not yet been fully evaluated.

VIs are normally processed using two or three single
wavelengths that are correlated with specific physical traits
such as chlorophyll or water content. However, the complex
physiological effects of drought stress cause changes in the
reflectance in most spectral regions (Aldakheel and Danson
1997; Penuelas et al. 1997). Thus, VIs discard significant
amounts of information available in the observed spectra. In
contrast, taking the full spectrum into account involves the
identification of relevant patterns in huge datasets with a
demanding signal to noise ratio, although Römer et al. (2011)
showed that using the information of the whole reflectance
curve through polynomial approximations and machine
learning can lead to increased classification accuracies at very
early stages of biotic stress. Additionally, for a better
understanding of plant stress reaction, observations with high
spatial and temporal resolution promise new insights. They
enable the calculation of two-, or even three-dimensional stress
dispersion models, which – apart from the better insight into
plant reactions to biotic and abiotic stress –may become valuable
for guided sampling of invasive, molecular measurements at
the right time and the right location.

Both factors pose challenges for computationally fast and
efficient data miningmethods. This, however, is a problem as the
runtime of many data mining algorithms grows quadratically
with the number of samples. As hyperspectral imaging data
could easily grow into several giga- or even terabytes, linear
runtime would be preferable. In addition, supervised
classification needs classes well defined from training samples,
normally taken from the dataset. However, in early stages of
drought stress, symptoms are not yet visible, so detection of
pixels with this information is not straightforward. Hence, data
analysis of hyperspectral images is mainly an unsupervised
task, where knowledge that certain plants have a higher
probability of having pixels with first signs of drought stress is
given, but no knowledge of which specific pixels and therefore
determination of sufficient training samples is very difficult.
Furthermore, most supervised and unsupervised classification
methods result in discrete classes. This does not reflect the nature
of the continuous change between healthy and diseased plant
tissues.

Archetypal analysis as introduced by Cutler and Breiman
(1994) computes low-rank approximations with data vectors
represented as a convex combination of extreme data points,
such as very healthy and very senescent leaves. This allows the
description of how similar an observed sample is to those
extreme values, allowing for an intuitive data interpretation.
This method is similar to the idea of endmember selection
(Bateson et al. 2000; Somers et al. 2011).

Traditionally, archetypal decompositions have been achieved
using methods such as gradient descend, multiplicative updates
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or alternating least-squares procedures, which minimise a given
objective function. However, memory and runtime requirements
of such procedures also scale at least quadratically with the
number of data. A deterministic, more efficient alternative
exists in simplex volume maximisation (SiVM), which
determines latent factors among extreme data vectors in linear
time (Thurau et al. 2010). This is akin to the ideas of endmember
detection and submatrix maximisation (Çivril and Magdon-
Ismail 2009), but is based on principles of distance geometry
(Thurau et al. 2010) and allows for the use of greedy search
strategies.

In this study we tested simplex volume maximisation for
the applicability in plant sciences for the first time. The main
aims of this work were the application of SiVM to hyperspectral
images for the non-invasive quantification of temporal
development of drought stress and the separation of subtle
physiological effects of water and nitrogen availability. We
used two independently designed datasets of hyperspectral
images. First, barley (Hordeum vulgare L.) under controlled
drought conditions within a rainout shelter. Barley was chosen
because, owing to its genetic diversity, it has a large variationwith
respect to drought adaptation (Schulte et al. 2009). Second, corn
(Zea mays L.), was used in the field experiment in order to test
whether the chosen method is applicable to controlled and
field conditions. In addition corn was subject to a two-factorial
treatment (drought and nutrient) and the method was used
completely unsupervised, without any further information
apart from the raw data. Water stress and high temperature are
regarded as severe constraints to corn production even under
conditions where the soil profile is fully recharged at the
beginning of the growing season.

We choose water stress because of its complex effects on
plant traits and tested whether SiVM is suitable for early stress
detection in hyperspectral images. The different experiment
designs were intentionally chosen to demonstrate that the
proposed method can handle completely different conditions.
Hyperspectral images were recorded in the visible to near
infrared spectrum. We focussed on those wavebands as those
cameras are relatively cheap rather than infrared sensors or
even thermography. We note that even though we looked
mainly at water stress and the visible spectrum, the evaluation
method is transferable to other treatments, plants and spectral
ranges.

We aim for a proof-of-concept description if automatically
computed archetypes allow for an easy, explorative data
interpretation, a visualisation of stress dispersion and an early
prediction of water stress symptoms in barley and corn grown in
a greenhouse and in a field respectively. The working
hypothesis of the present work is that SiVM, as a robust
clustering technique, can handle the boundary conditions of
early stress detection in hyperspectral images.

Materials and methods
Plant species and experimental conditions
We selected two sets of hyperspectral imaging data for this
study. The first dataset was barley (Hordeum vulgare L.),
recorded under semi-natural conditions in a rain-out shelter

of the University of Bonn, Germany; the second was corn (Zea
mays L.), investigated under field conditions at an experimental
agricultural site in northern Italy.

Imaging spectroscopy and plant traits in the rain-out
shelter – experimental set-up and data acquisition
for barley under controlled drought conditions
For the controlled water stress in the rain-out shelter, three

barley summer cultivars (Scarlett, Wiebke and Barke) were
chosen. The seeds were sown in 11.5 L pots filled with 17.5 kg
substrate (Terrasoil, Cordel and Sohn, Salm, Germany). In 2010,
the genotype Scarlett was used in two treatments (well watered
and with reduced water) with six pots per treatment. Soil water
potential of reduced-watered plants remained the same as for
well-watered plants for the first 7 days, then decreased for the
following 8 days until it reached 50% of the well-watered plants.
In 2011, the genotypes Wiebke and Barke were used in pot
experiments arranged in a randomised complete block design
with three treatments (well watered, reduced watered and
drought stressed) with four pots per treatment. The drought
stress was induced either by reducing the total amount of
water or by complete water withholding. In both cases the
stress was started at developmental stage BBCH31
(Biologische Bundesanstalt, Bundessortenamt and Chemical
Industry), corresponding to the end of tillering and beginning
of main shoot formation. By irrigation reduction, the soil water
potential of substrate remained at the same level as in well-
watered pots for the first 7 days, then decreased rapidly in the
following 10 days reaching 40% of that of the reduced-watered
plants.

For hyperspectral measurements the plants were transferred
in the laboratory and illumination was provided by six halogen
lamps (400W ECO, OSRAM, Munich, Germany) from a
distance of 1.6m. Hyperspectral images were acquired using
the SOC-700 (Surface Optics Corp., San Diego, CA, USA),
which records images of 640� 640 pixels with a spectral
resolution of ~4 nm with 120 equally distributed bands in the
range between400 and900 nm.The systemwasoperating in push
broom mode and used a rotating mirror to scan the target (for
further details see Rascher et al. 2007). The hyperspectral camera
was mounted at the same level as the lamps in nadir position.
In 2010, images were taken twice per week starting from day 8
of water-stress (resulting in 10 measurements for each plant).
In 2011, images were taken every consecutive day starting at
the second day of watering reduction (a 21-day time series).
Measurements of drought-stressed plants were stopped at
day 10 as it was possible to clearly distinguish them from
well-watered and reduced-watered plants with the naked eye.
Fig. 1 shows some sample spectra for three different stages of
senescence.

Additionally, leaf water potential was determined at midday
on days 1, 5, 9, 14, 17 and 20 after water stress was imposed.
Leaf water potential was measured on one plant stem per plant
using the Scholander pressure chamber (Scholander et al. 1965),
on four plants per treatment grown under the same conditions as
the ones measured with the hyperspectral camera. Soil water
potential was calculated as the percentage of measured water
content comparedwith thewater-saturation point of the substrate.
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The soil moisture was measured using an HOBO weather
station (ONSET, Bourne, MA, USA).

Imaging spectroscopy and plant traits
in the field – experimental set-up and data acquisition
Field data of hyperspectral images were acquired on 22

July 2010 from 4m above a corn canopy grown at the
‘Vittorio Tadini’ experimental farm in Northern Italy (Gariga
di Podenzano, PC, 44�5900000N, 9�4100100E). Corn plants were
grown in combined treatments of two nitrogen fertilisation levels
(0 and 100 kgNha–1 labelled as N0 and N1) and two irrigation
regimes (rain-fed and full irrigation labelled as Irr 0 and Irr 1)
during the growing season. Seedlings were planted on 3 May
2010 in15� 16.5mplots and treatmentswere assigned randomly
and repeated four times. An intensive field campaign was
conducted on 19 and 20 July 2010, 42 days after seeding
during stem elongation (12 leaves fully emerged), with the aim
to measure leaf (i.e. chlorophyll fluorescence, PRI, leaf
chlorophyll content, water content and CO2 assimilation) and
canopy traits (plant height, density and LAI).

Chlorophyll fluorescence measurements were conducted on
the level of single leaves using the miniaturised fluorescence
yield analyser (Mini-PAM, H. Walz, Effeltrich, Germany). The
maximal photochemical efficiency of PSII was measured
during night on 10 leaves per treatment as Fv/Fm= (Fm – Fo)/
Fm where Fm and Fo are, respectively, the maximum and
minimum dark-adapted fluorescence yield when a saturating
light pulse (800ms duration, intensity ~4000mmolm�2 s�1) is
applied. Light-adapted measurements were conducted with a
leaf clip holder (Bilger et al. 1995) on 20 leaves per treatment
three times during the day: at 1030, 1330 and 1630 hours local
solar time, taking care not to change the ambient conditions.
For analyses, the morning measurements were used as they are
closest in time with the time of image recording. The effective
quantumyield of PSIIwas determined asDF/Fm

0 = (Fm
0 –Ft)/Fm

0,
where Fm

0 is the maximum light-adapted fluorescence yield
when a saturating light pulse (as above) was superimposed on
the environmental light (Schreiber and Bilger 1993) and Ft is

fluorescence yield of the light-adapted sample. Apparent rate of
photosynthetic electron transport of PSII (electron transport
rate (ETR)) was calculated as ETR=DF/Fm

0 � PPFD� 0.5�
0.84, where PPFD is incident photosynthetic photon flux
density measured with a miniaturised calibrated quantum
sensor, the factor 0.5 is the fraction of excitation energy
distributed to PSII and 0.84 is the fraction of the incoming
light absorbed by leaves. Further, the non-photochemical
quenching (NPQ) was computed as NPQ= (Fm – Fm

0)/Fm
0

(Bilger and Björkman 1990), where Fm is the average Fm

value of the 10 measurements acquired for each treatment
during the night.

Leaf PRI calculated as (R531 – R570)/(R531 +R570) was
measured with the PlantPen PRI device (Photon Systems
Instruments, Brno, Czech Republic) on 15 leaves (three
measurements per leaf) per treatment at 1030 hours local solar
time. Measurements relative to leaf chlorophyll content were
conducted with a SPAD 502 (Minolta, Tokyo, Japan) leaf
chlorophyll meter on 10 leaves (three measurements per leaf).

LeafCO2 exchangewasmeasured on rain-fed plots (Irr 0)with
an open infrared gas-exchange system (CIRAS-1, PP-Systems,
Stotfold, UK) equipped with a Parkinson leaf chamber
clamped onto single leaves. Measurements were performed at
ambient CO2 concentrations and illumination. Net assimilation
rate (mmolm–2 s–1), stomatal conductance (molm–2 s–1),
transpiration rate (mmolm–2 s–1) and intercellular CO2

(mmolmol–1) were measured three times during the day on
three plants per treatment. Each plant value represents the
average of two leaves.

Finally, in the N1 plots, four leaves per treatments were
collected and enclosed in a sealed plastic bag at 5�C. Leaf
disks having an area of 3.80 cm2 (A) were cut from each leaf
using a cork borer. FW was recorded with an analytical balance,
after which the leaf disks were immersed for 72 h in distilled
water, blotted and weighed (turgid weight, TW). Leaf disks were
then dried at 80�C in an oven, until constant weight (DW)
was reached. Then, leaf equivalent water thickness (EWT) was
calculated as: (FW – DW)/A (g cm–2) and relative water content
(RWC) as: (FW – DW)/(TW – DW) (%).

Wavelength (nm)

(a) (b) (c)

R
ef

le
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n 
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)

Fig. 1. Sample spectra recorded in the 2011 barley experiment with the SOC 700. Shown are a typical green spectrum (a), a bright green spectrum (b) and a
spectrumof ayellow,witheredpixel (c) togetherwith the standarddeviationof the500nearest neighbours (grey). It is clearlyvisible thatmeasurement noise is very
high up to 470 nm and from ~800 nm.
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Furthermore, plant density, plant height and LAI (m2m–2)
were measured in each plot. LAI was computed from
measurements conducted with a sunscan plant canopy analyser
(Delta-T Devices, Cambridge, UK). A single LAI value for each
plot was calculated by averaging 10 samples collected on a
diagonal transect across two crop rows near the plot centre.

The imaging system, consisting in a spectral camera PSV10E
(Spectral Imaging Ltd, Oulu, Finland), which operates in a
linear push broom mode, was moved horizontally using a 1-m
long scanning bar (BiSlide 40, Velmex Inc,. Bloomfield, NY,
USA) and mounted in a boom lift to measure in nadir position
at 4m from top-of-canopy level. At that height the scanned
area was of ~2� 1.5m, with an acquisition time of one image
per minute and a spatial resolution of one mm per pixel. Spectral
measurements were performed on 22 July 2010 between 1000
and 1400 hours local time under cloudless sky in order to avoid
big variations of light conditions. Due to the time factor and
also to the distances within the experiment site, just one plot
per treatment could be measured with hyperspectral images,
however, three images of different areas within each plot were
acquired.

The spectral camera PS V10E is an imaging spectrograph
for the visible/near infrared part of the spectrum (400–1000 nm).
It has a sensitive high speed interlaced CCD detector that
provides spatio-spectral images of 1392� 1040 pixels with a
dynamic range of 12 bits. The spectral resolution is 2.8 nm full
width at half maximum (FWHM) and the spectral sampling
ranges from 0.63 to 5.06 nm. The fore lens (23mm f 2.4)
images a column of data onto a 30mm wide horizontal slit at
the entrance of the spectrometer, obtaining the spatial
information only across a line. Light is then spectrally spread
in the y- axis by a diffraction grating and projected on the
detector. The second spatial dimension is then built by the
sequential recording of line images while the camera moves at
constant speed across the scanning bar, therefore, the resolution
at this dimension is defined by the speed of the scan and the
frequency of image acquisition. In our case, images had a size of
1392� 840 pixels with 1040 spectral bands for each pixel,
resulting in three-dimensional data tensors having 2.4Gb each.
The acquisition was managed by the SpectralDAQ Software
(Specim, Oulo, Finland).

Data pre-processing of hyperspectral cubes

Hyperspectral data from both devices were linearly corrected
by subtracting a dark image in order to remove the instrument
noise. In the case of corn, where the measurements were done
under changing natural light conditions, a new dark image was
acquired each time the integration time was modified to avoid
oversaturation of the sensor. For the barley measurements, a new
dark image was acquired for each image taken.

To calibrate the images, the spectral reflectancewas calculated
for each pixel. For that, the spectrum of a pixel was divided by
the spectrum of the incoming radiation estimated from a white
reference panel that exhibits Lambertian reflectance located in
each scene. In the case of measurements under artificial light, a
99% calibrated reflectance standard (Spectralon, Labsphere Inc.,
NH, USA) was placed close to the plants while under high sun
light conditions (corn), a 20% calibrated reflectance panel

(Zenith Alucore, Sphere Optics GmBh, Uhldingen, Germany)
was used.

Pre-processing of the images from the SOC-700 was
conducted with the HS-Analysis software provided with the
device. In the case of images from the spectral camera PS, the
pre-processing was conducted with ENVI Software (ITT VIS,
Boulder, CO, USA).

Although the SOC-700 measured from 394 to 890 nm, the
wavelengths <470 nm and >750 nm were discarded because
they appeared to be very noisy. The reason for this is most
likely an unstable source of illumination for these frequencies.
Therefore, only the bandwidths from 470 to 750 nmwere used in
the 2010 and 2011 barley experiment.

K-Means (Bishop 2006) was used for the last pre-processing
step. As only the foreground pixels, i.e. the plant itself, is of
interest, a K-Means clustering was done beforehand to remove
background pixels. This is useful as it further reduces the
computational complexity of the task and allows an easier
interpretation of the spectra as most non-biotic spectra were
excluded from the data. The K-Means was calculated for 15
classes. The results were plotted in a false-colour image, were
each colour represented a different class. Those clusters which
only contained background pixels were chosen manually,
whereas clusters which had foreground and background pixels
were kept within the dataset. By this procedure, ~95% of the
background pixels were eliminated. For the field experiment, no
previous background elimination was done.

Vegetation indices for drought stress detection
Among many available VIs for drought stress detection, we
chose four well established indices with which to compare
SiVM. The NDVI (Rouse et al. 1974) is the normalised
difference between the near infrared and visible red
reflectance. It is responsive to changes in chlorophyll content
and changes in the leaves internal structure due to wilting. It is
calculated as (r800�r670)/(r800 +r670) where r denotes the
waveband used. The PRI (Penuelas et al. 1995) is derived
from (r570�r531)/(r570 +r531). Drought causes the PRI-
efficiency relationship to diverge from that of well irrigated
plants, possibly owing to severe canopy wilting and to
increased use of reductant by photorespiration (Gamon et al.
1992). The REIP index (Peñuelas and Filella 1998) is calculated
from 700 + 20 ((r670 +r780)� 2r700)/(r740� r700) and like
NDVI, is indirectly influenced by changes in plant water
status. Finally, the CRI (Gitelson et al. 2006) is by (1/
r510! 552� 1/r560! 570) r760!780.

Unsupervised classification: simplex volume
maximisation

The idea of archetypal analysis is to find typical samples and
express each other data point as a convex combination of these
archetypes. This way, the similarity of a sample to a certain
archetype can be determined and it is possible to track the
process of, for instance, senescence over time when samples
become increasingly similar to a signature of senescent samples
(Fig. 2).

Ifwehave an inputmatrixX2Rm�n,wherem is the number of
features (i.e. wavelengths) and n the number of samples we have

882 Functional Plant Biology C. Römer et al.



to select c columns in X and construct a matrix of archetypal
spectra W2Rm� c. Then we can construct the reconstruction
matrix H2Rc� n such that the Frobenius Norm ||X�HW||
becomes minimal with respect to the condition that all rows in
the reconstruction matrix H sum to one. Now the original data
can be approximated as X�WH. As all rows in H sum to one,
the coefficients in H give a measure of similarity to the
corresponding archetype in W.

The problem then is how to select the archetypal samples inX
for W. It was shown that a good subset of columns maximise
their volume. However, this results in an non-deterministic
polynomial-time (NP) hard problem (Çivril and Magdon-
Ismail 2009), so this method is not applicable for large
hyperspectral datasets. Thurau et al. (2010) developed a
successful greedy algorithm, simplex volume maximisation
(SiVM), which runs linear in time. The idea is to take the first
two samples that are most likely furthest away from each other.
The other points are selected in a way, such that the newly taken
points maximise the volume of the previous selected points and
the new sample (see Fig. 3 for an example). However, doing so
ignores the distribution of the data. Therefore, as a next step,
we subselected the most informative archetypes with respect to
the data distribution, the ones involved in most reconstructions.
This is measured by the entropy H of the Dirichlet spanned by
these selected archetypes. In each iteration the archetype y with
highest gain H(S[{y}) – H(S) is selected, where S is the set of
selected archetypes so far.The resulting signatures are thefinal set
of archetypal spectra used for the following evaluation in ‘Test
Case 1’ below.

Once the archetypes are calculated it is possible to express
each other spectrum as a convex combination of those
archetypes (Fig. 2). The coefficients can be used as a measure
of similarity to a certain archetype and as they are a convex

combination, interpreted as the probability that one signature
belongs to a certain archetype. Thus, the results of SiVM
quantify the contribution of each archetype for every pixel of a
scene.

Results

Test case 1 – controlled rain-out shelter: detection
of temporal drought development in barley

The time course of drought development in the barley plants was
gradual. In 2011, the soil moisture remained constant for the first
7days for reduced-watered plants, slightly decreasedonday8 and
then rapidly decreased for the following days until it reached 40%
of that of the well-watered soil.

Midday leaf water potential measured with the Scholander
pressure chamber showed a strong increase for drought-stressed
plantsbetweenday5andday9after drought stress application, for
reduced-watered plants water potential increased after day 16.
Data of the biomass showed a similar time course.

For the 2011 experiment, plants without anywater supply and
fully watered plants were separable from day 9 by the naked eye,
and differences between plants with reduced water supply and
fullywatered plantswere visible fromday 14 on (estimated by the
team conducting the experiment).

For comparison, the VIs for drought stress detection in the
visible spectrum were calculated and applied to the 2011 dataset
as it had the highest measurement frequency (daily). Thus, the
NDVI, PRI, REIP and CRI green indices were chosen. For each
image, the mean VIs were computed after removal of all
background noise. To see whether reduced-watered plants and
plants with complete water withholding significantly differed
from well-watered plants at a significance level of 5%, all four
indices were evaluated together with a one-sided MANOVA test

Fig. 3. SiVM (simplex volume maximisation) for an instructive two-dimensional example. At first the two points that are
furthest away from each other are chosen. Afterwards, points 3 and 4 were added as they maximise the volume spanned by all
points.

Fig. 2. Any hyperspectral signaturewithin the dataset can be expressed as a convex combination of archetypes. On the left is an
arbitrary spectrum.The coefficients sumup to one andgive ameasure of similarity to the three archetypes chosen for this example:
very healthy leaves (left), leaves already lightly changed by drought stress (middle) and senescent leaves (right).
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(conducted with the statistical toolbox of MatLab, Natick, MA,
USA).

The results are presented in Table 1, which shows that
separation between reduced-watered and fully watered plants
is possible fromday 13 on. This is on the same day or 1 day earlier
than any single VI could achieve with an ANOVA test (data not
shown). Plants without any water supply are clearly identified
onday8, although the test failed for the days 9 and10.Onday11 it
was possible to separate both classes again.

SiVM was then applied to the whole dataset consisting of
all spectra from all plants and time points to calculate the
archetypes. Although subsampling would be possible for faster
computation time, it is recommended to use the whole dataset
for the lowest reconstruction error. The resulting archetypes
from SiVM were visually inspected by an expert to exclude
biologically implausible signatures. Afterwards, 10 bases were
chosen by entropy. The number of chosen bases depends on the
number of clusterswithin the dataset.As this number is unknown,
the number has to be estimated or the outcome of several choices
has to be validated by an expert until a satisfactory result is

achieved. This was possible as the results are existing signatures
within the dataset, which could be intuitively interpreted.
Afterwards, the archetypes were categorised into spectra
already showing first signs of drought stress and spectra
normal for fully-watered plants. Using the coefficients returned
by the SiVM for each spectrum within an image, the probability
that a randomly chosen signature is represented by archetypes
categorised as stressed is calculated.

Figure 4 shows the calculated archetypes of barley that were
manually classified as ‘healthy’ and ‘stressed’ pixels and the
corresponding probabilities that a randomly chosen signature
within the scene can be explained by ‘stressed’ archetypes. In
both experiments (Fig. 4b, c) the probability that a pixel is
more similar to ‘stressed’ signatures increases during the
experimental run for all treatments with the drought-stressed
plants showing the fastest time kinetics. The general increase
of ‘stressed’ pixels is due to the fact that the plants were in their
flowering stadium and increasing leaf senescence is characteristic
for the developmental stage (in 2011 plants were only measured
until stressed plants could clearly be identified by naked eye,
thus, this effect is less visible). However, drought-stressed plants
could significantly (a= 0.05) be separated from well-watered
plants 14 days after start of drought stress application for the
2010 experiment. In 2011, reduced-watered and plants without
any water could both be distinguished from well-watered plants
9 days after stress application (Fig. 4b, c). It is noticeable that in
the 2011 experiment (Fig. 4c) the three treatments showed a
different time course of drought development, which, in
principle, was confirmed by visual inspection; however, SiVM
detected the differences 5 days earlier than visual classification
with the naked eye and 4 days faster than the tested VIs.

Using the coefficientmatrix returned by theSiVMcalculation,
it was then possible to visualise the spatio-temporal dynamics of
drought effects using false colour images. Fig. 5 shows the
results for the three treatments of the 2011 experiment, i.e.
well-watered, reduced-watered and drought-stressed plants.
Results of the SiVM indicate that even for severely stressed
plants, single leaves may be unaffected while other leaves were

Table 1. Results of a one-way MANOVA test
The mean values of four vegetation indices were used for a four dimensional
data matrix. Then we tested if the four dimensional means differ significantly
between plants with reduced-watered and fully watered plants, respectively,

between fully watered plants and plants without any water supply

Day Reduced-watered/
fully watered (P-values)

No water/fully
watered (P-values)

7 0.46 0.68
8 0.58 0.01**
9 0.48 0.09
10 0.22 0.11
11 0.57 0.01**
12 0.34 –

13 0.02* –

14 0.03* –
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Fig. 4. Archetypes and pixel classification of the controlled rainout shelter experiment with drought in barley. (a) Archetypes as selected from the 2010
experimental run with grey signatures being labelled as spectra representing ‘drought-stressed’ pixels and black signatures being labelled as spectra for ‘healthy’
pixels. Dashed grey spectra are typical for background pixels. (b, c) Time course of probability distribution of pixels being classified as ‘drought-stressed’ or
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watered plants from well-watered plants was significant at day 9 (a= 0.05).
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greatly affected by drought stress. Additionally, the SiVM
approach was able to detect the accelerated senescence of
plant-induced pigment degradation. The change in the well-
watered plants is due to the fact that the plants were in their
flowering season. The data suggests that an accelerated
senescence can be observed.

Test case 2 – field experiment: distinguishing
subtle differences of crop traits in the field
by hyperspectral imaging and SiVM

The corn plants grown in the experimental field site under two
different watering regimes and nitrogen availability showed
manifold and greatly interlinked variations in leaf and canopy
traits (see Table 2 for an overview). For instance, effective
quantum efficiency (DF/Fm

0) was significantly increased by
higher irrigation regimes while photosynthetic ETR was
mainly stimulated by nitrogen treatment. On the canopy level,
canopy height was significantly affected by irrigation, whereas
LAI was unaffected. These results show a non-trivial effect of
nitrogen and water availability in plant functional and structural
parameters on various levels, which is in accordance with other
studies.

The challengewhenusingnon-invasive imaging spectroscopy
is to identify special features in the spectral reflectance that are

characteristic for drought stress or nitrogen status in the plant. In
our test case, hyperspectral reflectance cubes taken some meters
above the canopy were of high quality and may show different
canopy density (Fig. 6a), but hyperspectral reflectance signature
of the plants appears very similar and only subtle differences
between the treatments can be depicted (Fig. 6b, c). Water and
nitrogen availability affect leaves differently depending of their
developmental stage or position in the canopy (e.g. Niinemets
2007), so we separated our analyses to sun- and shade-exposed
leaves (Fig. 6b, c respectively).

As a consequence, VIs that rely only on a few wavebands
also failed to separate the treatments. We tested a full suite of
VIs, including theNDVI (Fig. 6d), the PRI (Fig. 6e) and thewater
band index (WBI, Fig. 6f). None of the VIs was able to
significantly separate irrigation and nitrogen treatment. The
PRI, however, showed significant differences when measured
on the leaf level (Table 1), but failed on the canopy scale (Fig. 6e).
However, a multivariate analysis with PRI and NDVIwas able to
identify all four treatments successfully.

Twenty-five archetypes were calculated with the SiVM
algorithm. For further processing, the 10 archetypes (Fig. 7a)
with the highest entropy were selected. Again, the number of
selected archetypes had to be estimated. As environmental
influences as well as the influence on the signatures from
combined treatments is more difficult to interpret as for the
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Fig. 5. Spatio-temporal dynamics of drought stress dispersion in barley as classified bySiVM (simplex volumemaximisation). Visualised are the coefficients of
the SiVM.Adark green colour indicated a high probability that the signature corresponds to a pixel belonging to the healthy archetypes,whereas a dark red colour
indicated a high probability of being associated with the stressed archetype. Images for drought-stressed plants stop at day 10 as plants were only observed until
drought stress was visible to the naked eye.
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barley experiment, data evaluationwas completely unsupervised,
i.e. there was no interpretation of the signatures by any expert.
Hence, evaluation was slightly different.

In order to compute the distances between the matrices, the
reconstructions from the simplex sample space were transformed
into Euclidean space using the alr-approach (Aitichison 1982). In
the transformed space then, any standard multivariate method
can be used, e.g. an estimated multivariate Gaussian distribution.
Afterwards, the distances between the distributions on a simplex
were computed. Similarity wasmeasured with the Bhattacharyya
distance for multivariate Gaussian distributions. The resulting
distancematrix was embedded into a two dimensional space with
IsoMap (Tenenbaum et al. 2000). IsoMap first creates a graph y
connecting each object to k of its neighbours, and then uses
Euclidean distances of paths in the graph for embedding using
multidimensional scaling (Cox andCox1984). The two irrigation
regimes were well separated and there was also a clear
distinction between fully irrigated plants with fertilisation and
without fertilisation. Rain-fed plots were separated with
respect to fertilisation by the algorithm, although the gap was
rather small compared with the distinction between the other
treatments (Fig. 7b).

Discussion

The working hypothesis of this manuscript is that the SiVM
approaches are able to early detect stressed plants using

hyperspectral imaging data. We expected that the results
would enable an intuitive data description and visualisation of
stress dispersion within plants and canopies. For the evaluation
of SiVM, we used two contrasting datasets: the controlled
drought experiments with barely in the rain-out shelter, which
provided a clear time course of drought development; and the
corn field data that had a well designed two factorial
treatment but allowed only one measurement point. Despite
the challenging boundary condition of large data volumes,
unlabelled datasets and the fact that all barley plants had
senescing leaves due to flowering, SiVM was able to track the
temporal development of drought stress in barley 4 days before
symptoms became visible by naked eye and shortly after
reduction in soil moisture and leaf water potential (Figs 4, 5).
For the field experiment, SiVM was able to separate the four
treatments into three clearly separable clusters (Fig. 7). The fact
that rain-fed plots were not separated by SiVM as clearly as
the other treatments irrespective of the nitrogen availability is
noteworthy, but may be reflected in leaf and canopy traits with
water availability being the most limiting factor.

This is the first experimental test-case that used SiVM on
field data. We showed that the algorithm yields robust results
that are supported by measured plant traits. Irrigation and
nitrogen affect plant physiology on various levels: water
stress, for instance, affects photosynthesis on the level of
light and dark reaction and alters functional traits such as
stomatal density and mesophyll conductance (Chaves et al.

Table 2. Functional and structural leaf and canopy traits of the experimental corn plots that were treated with two irrigation
regimes (Irr 0: rain-fed and Irr 1: full irrigation) and two nitrogen levels (N0: 0 kgNha–1 and N1: 100 kgNha–1)

Performing two-way ANOVA, no significant interaction between both factors was detected in all traits, except SPAD (see text for
definitions). Significant differences (a= 0.05)between irrigation levelswithin eachof thenitrogen treatmentsweredetectedusingone-way
ANOVA (for each nitrogen level, different letters indicate significant differences). When the assumptions of normality and variance
homogeneity of the data were not met, Kruskal–Wallis analysis was performed. The following data are presented in the table. Fv/Fm,
potential quantum yield of PSII; DF/Fm

0, effective quantum yield of PSII; ETR, photosynthetic electron transport rate; NPQ, non-
photochemicalquenching;Hmax,maximumheightof canopymeasuredon thefield;SPAD, relativevaluesof leaf chlorophyllmeasuredby
the SPAD meter; PRI, photochemical reflectance index at leaf level obtained with the PlantPen PRI device; Ai, photosynthetic CO2

assimilation rate;Ci, leaf internal CO2 concentration; Ti, leaf transpiration rate;Gi, stomata conductance at water vapour (Ai, Ci, Ti andGi

were measured with CIRAS (PP-System); EWT, water leaf equivalent thickness (obtained for leaf discs of 3, 8 cm2); RWC, relative
water content (obtained for leaf discs of 3, 8 cm2); LAI, leaf area index (measurements obtained by SunScan were acquired along a

transect crossing two consecutive crop rows at approximate the parcel centre

Parameter N0 N1
Irr 0 Irr 1 Irr 0 Irr 1

Fv/Fm 0.83 ± 0.01a 0.82 ± 0.01a 0.83 ± 0.01a 0.82 ± 0.01a
DF/Fm

0 0.37 ± 0.07b 0.43 ± 0.07a 0.35 ± 0.05b 0.40 ± 0.07a
ETR (mmolm–2 s–1) 249 ± 35a 253 ± 38a 251 ± 34a 253± 43a
NPQ 1.92 ± 0.59a 1.45 ± 0.49b 2.09 ± 0.39a 1.59 ± 0.56b
Hmax (m) 1.72 ± 0.05b 1.93 ± 0.07a 1.71 ± 0.11b 1.98 ± 0.12a
Plant density (plantsm–2) 6.80 7.91 7.05 7.44
SPAD (relative unit) 47.8 ± 5.2a 49.4 ± 3.0a 45.9 ± 2.1b 54.1 ± 3.9a
PRI 0.0031 ± 0.0057b 0.0088 ± 0.0063a 0.0217 ± 0.0054b 0.0263 ± 0.0067a
Ai 35.8 ± 3.0b – 41.0 ± 2.5a –

Ci 90 ± 37b – 126 ± 8a –

Ti 3.48 ± 0.84b – 4.74 ± 0.39a –

Gi 261 ± 66b – 363 ± 40a –

EWT (g cm–2) – – 0.012 ± 0.001a 0.014 ± 0.001a
RWC (%) – – 0.925 ± 0.024a 0.959 ± 0.026a
LAI 3.2 2.77 2.59 3.0
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2009). Thus, even under more demanding field conditions
where illumination changes and variability between plots is
inherent, SiVM gave robust results. This is especially vital

because the long-term aim of this study is to develop
methods and sensors able to be of use in applied plant
science, breeding and farming.
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for details) was placed at the top of the canopy level in each scene as reference for spectral reflectance estimation. Sun and shaded leaves surfaceswere selected
manually using ENVI software (see text for details).
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Instead of a labelled dataset, SiVM needed manual input
only when the number of archetypes was selected and (in case
of the barley dataset), which archetypes should be assigned to
which senescence class. This is an enormous reduction of labour
time for the user. In addition, an unsupervised approachmay help
to get new insights, as it lets the data speak for itself and is,
therefore, more objective. In contrast with most other
unsupervised approaches, the calculation of archetypes proved
to be very helpful, as it was easier to interpret and discuss the
results with experts, compared with, for instance, K-Means,
where the resulting cluster means are artificial.

An alternative non-invasive, non-contact sensor for early
stress detection is thermography. Beside its limitations (being
highly sensitive to environmental conditions and thermal
response to plants largely lacks diagnostic potential
(Mahlein et al. 2012)) it is undeniably a fast and reliable
stress detection sensor. The purpose of the present work was
to demonstrate that widely available, cheaper, and well
manageable hyperspectral sensors contain the necessary
information for early drought stress detection. Both sensors
are complementary and suitable for early stress detection.
Sensor fusion may improve the detection ability and
diagnostic potential, although further studies are needed to
investigate this suggestion.

Comparison with VIs was conducted largely for the 2011
barley dataset. Here, four established indices, NDVI, PRI, REIP
and CRI, were applied to the data after background removal
with a one-sided multivariate ANOVA test on a 5% significance
level. Results are presented in Table 1. It shows a clear
separation of reduced-watered from well-watered plants
on day 13. Drought stress detection by SiVM was 4 days
faster. Plants with complete water withholding were detected
by VIs on day 8, which is 1 day faster than SiVM, although VIs
failed for day 9 and 10, whereas SiVM reliably detected drought-
stressed plants from day 9 on.

For the Italy data, PRI was able to detect a difference in
nutrient treatment, but failed at water detection, whereas NDVI

was able to detect drought, but failed for the nutrient treatment.
A combined evaluation with PRI and NDVI was able to
successfully detect all four clusters. As only data from 1 day
was available, determination of which method was faster was
not possible. One advantage of SiVM is that the method
worked completely unsupervised without any previous
assumptions or knowledge about the data, whereas you have
to know what you are looking for to choose the right index for
the task. In addition, it is also possible to modify SiVM to
obtain the most important wavebands for clustering. This
would allow identification of different groups and possible
treatments afterwards. Of course, also an unsupervised, quick
screening for any stress followed by a detailed analysis with
indices would be a possible scenario for a combination of SiVM
with VIs.

To take full advantage of hyperspectral image sensors it is
indispensable to visualise the results (Fig. 5), as this allows
better insights into the temporal and spatial dynamics of stress
development in plants. These are vital for invasive methods, as
they allow for guided sampling and reduce the risk that leaves
taken as samples are not affected by plant stress, as they are
still fully supplied, despite clear stress developments in other
leaves.
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