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Abstract. Obtaining energy spectra of incident particles such as neutrinos or gamma-1

rays is a common challenge in neutrino- and Air-Cherenkov astronomy. Mathemati-2

cally this corresponds to an inverse problem, which is described by the Fredholm inte-3

gral equation of the first kind. Several algorithms for solving inverse problems exist,4

which are, however, somewhat limited. This limitation arises from the limited number5

of input observables and the fact that information on individual events is lost and only6

the unfolded distribution is returned. In this paper we present the Dortmund Spectrum7

Estimation Algorithm (DSEA), which aims at overcoming the aforementioned obsta-8

cles by treating the inverse problem as a multinominal classification task. DSEA is a9

modular and highly flexible algorithm that can easily be tailored to a problem at hand.10

To avoid a potential bias on the class distribution used for the training of the learner,11

DSEA can be applied in an iterative manner using a uniform class-distribution as input.12

1. Introduction13

Solving inverse problems is a common challenge in neutrino- (Aartsen et al. 2015;14

Adrián-Martínez et al. 2013) and imaging Air-Cherenkov astronomy (Albert et al. 2007;15

Aharonian et al. 2006). In both cases the energy spectrum f (x) cannot be accessed di-16

rectly, but has to be inferred from the distribution g(y) of other observables, e.g. energy17

losses of secondary particles. The task is further made difficult by the fact that the pro-18

duction of secondaries, e.g. in a neutrino-nucleon interaction is governed by stochas-19

tical processes. Additional smearing of the observables is introduced by the limited20

acceptance of the detector.21

Mathematically, f (x) and g(y) are connected by the so-called response function22

A(x, y) in the Fredholm integral equation of the first kind. Several algorithms for solving23

inverse problems exist (Milke et al. 2013; D’Agostini 1995, 2010; Höcker & Kartvel-24

ishvili 1996; Feindt 2004), which are, however, somewhat limited, for example in the25

number of input variables or in the sense that only the unfolded distribution is returned26

and the information on individual events is lost.27

This paper presents the Dortmund Spectrum Estimation Algorithm (DSEA), which28

overcomes these limitations by treating the inverse problem as a multinominal classi-29
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fication task. This classification task can then be solved by an arbitrary learning al-30

gorithm. By design DSEA is flexible, highly modular and allows for the use of any31

learning algorithm, as long as it returns the confidences of the individual classes. To32

avoid a potential bias on the class distribution used for the training of the learner, DSEA33

can be used iteratively using a uniform class-distribution as input.34

The paper is organized as follows: Section 2 describes the algorithm itself. Its35

convergence and performance by means of a short simulation study on artificial data36

generated using Gaussian smearing are addressed in Sec. 3. A summary concludes the37

paper in Sec. 4.38

2. Algorithm39

Within DSEA a binned version ~f (x) of the sought after spectrum f (x) is estimated by40

iteratively carrying out following steps:41

1. Discretization: f (x) 7→ ~f (x) = ( f1, ..., fm). (Initalize)42

2. Classifier Training: A dataset (Y,W, F) = {(~y,w, f )1; ...; (~y,w, f )n} of n examples43

is used to train a model M(Y,W, F). Each example consists of h attributes ~y =44

(y1, ..., yh), a weight w and a label f . In the first iteration all weights are initialized45

with wi = 1.46

3. Model Prediction: The model M(Y,W, L) is applied to a set of ñ unlabeled ex-47

amples Ỹ = ( ~̃y1, ..., ~̃yñ), yielding a confidence ci jk = g(M(Y,W, L), ~̃iy) for the i-th48

example to belong to f j.49

4. Spectral Reconstruction: The bin content f̂ j,k of the j-th bin obtained in the k-th50

iteration is estimated as f̂ j,k =
∑ñ

i=1 ci j.51

5. Reweighting: The weights for the training data in the (k + 1)-th iteration are52

updated according to wi,k+1 =
f̂li,k
ñ

. (Continue with step 2).53

In case a Naive Bayes classifier is used, the confidences become ci, j = p( f j|~ai) and54

DSEA has some overlap with D’Agostinis Iterative Bayesian Unfolding (D’Agostini55

1995, 2010), but is different in two important points. Firstly, DSEA estimates the56

p( f j|~ai) on an event-by-event rather than on a bin-by-bin basis. This property is de-57

sirable as events may be reconstructed with similar values in an attribute ai although58

originating from different f j, due to different event topologies. Secondly, DSEA allows59

to use the complete event topology, as the number of input variables is arbitrary, which60

results in an increase of information available in the reconstruction process.61

3. Convergence and Performance62

A Naive Bayes classifier implemented in the data mining toolkit RapidMiner (Mierswa63

et al. 2016) was chosen as a learning algorithm for the studies presented in this paper.64
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(a) Convergence of DSEA for different
amounts of smearing using 105 training
events.
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(b) Convergence of DSEA using medium
smearing evaluated for different numbers
of training events.

The convergence of DSEA was investigated using the convergence criterion from65

(D’Agostini 1995), defined as χ2/m ≤ 1, with χ2 =
∑m

j=1

 f̂ j,k−1 − f̂ j,k√
f̂ j,k−1


2

, where f̂ j,k is66

the content of the j-th bin obtained in the k-th iteration.67

Figure 1a shows the convergence of DSEA for small smearing (orange), medium68

smearing (blue) and strong smearing (green), obtained using 105 events to train and69

5·104 events to test the classifier. A uniform distribution of events was used for training,70

whereas a distribution with a two peak structure was used for testing.71

One finds that the algorithm converges faster, for smaller smearing, which corre-72

sponds to a simpler classification task. For all three levels of smearing considered in73

this paper, however, the convergence criterion (orange dotted line) is met after three to74

five iterations. The structure observed for small smearing in the range between five and75

ten iterations does not affect the overall convergence of DSEA as in this case χ2/m is76

already on the order of 10−3 and the convergence criterion is met after three iterations.77

Figure 1b shows the convergence for medium smearing, evaluated for different78

numbers of training events. One finds that DSEA converges faster for larger numbers79

of input events. The performance criterion (orange dotted line), however, is met after80

four iterations, independent of the number of input events.81

Figure 2a depicts the agreement of the reconstructed spectrum with the underly-82

ing distribution as a function of the number of iterations for three different levels of83

smearing. The Hellinger distance is used to quantify the agreement. The dashed lines84

indicate the agreement achieved by reconstructing the spectrum performing a random85

forest regression with 100 trees on datasets with small- (orange), medium- (blue) and86

strong smearing (green). For the classifier training in DSEA as well as for the random87

forest regression 105 events were randomly selected according to a uniform distribution88

and used as training sample for the learning algorithm.89

One finds that the agreement of the spectra reconstructed using DSEA is signifi-90

cantly better compared to spectra obtained with a random forest regression, in case the91

iteration is stopped after two to ten iterations. For strong smearing the performance of92

the regression exceeds the performance of DSEA after 16 iterations. As already argued93

above, however, three to five iterations are sufficient to reach the convergence criterion.94
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(a) Hellinger distance as a function of the
number of iterations for three levels of
smearing in DSEA. The dashed lines in-
dicate the agreement obtained using a ran-
dom forest regression.
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(b) Spectra obtained for medium smearing
with DSEA and a random forest regression
compared to the true distribution. Error-
bars on the random forest regression result
are omitted for better visibility.

Figure 2b shows the spectra obtained with DSEA terminated after four iterations95

(light blue) and the random forest regression (green) compared to the true distribution96

of examples (orange) for medium smearing. In general, one finds that the spectrum ob-97

tained with DSEA matches the underlying distribution of examples significantly better98

than one obtained using a random forest regression.99

4. Summary100

In this paper we presented the Dortmund Spectrum Estimation Algorithm (DSEA) and101

its performance on artificial data. By treating the inverse problem as a multinominal102

classification task, DSEA overcomes the obstacles generally associated with their solu-103

tion. To avoid a potential bias a uniform distribution of examples was used as input to104

train the classifier, and the algorithm was used iteratively. DSEA was found to converge105

after three to five iterations, depending on the amount smearing. Furthermore, DSEA106

outperformed a random forest regression for all three levels of smearing studied in the107

scope of this paper.108
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