
Knowledge-Based Sampling for Subgroup

Discovery

Martin Scholz1

Artificial Intelligence Group
Department of Computer Science

University of Dortmund, Germany,
scholz@ls8.cs.uni-dortmund.de

Abstract. Subgroup discovery aims at finding interesting subsets of a
classified example set that deviates from the overall distribution. The
search is guided by a so-called utility function, trading the size of subsets
(coverage) against their statistical unusualness. By choosing the utility
function accordingly, subgroup discovery is well suited to find interest-
ing rules with much smaller coverage and bias than possible with stan-
dard classifier induction algorithms. Smaller subsets can be considered
local patterns, but this work uses yet another definition: According to
this definition global patterns consist of all patterns reflecting the prior
knowledge available to a learner, including all previously found patterns.
All further unexpected regularities in the data are referred to as local
patterns. To address local pattern mining in this scenario, an exten-
sion of subgroup discovery by the knowledge-based sampling approach
to iterative model refinement is presented. It is a general, cheap way of
incorporating prior probabilistic knowledge in arbitrary form into Data
Mining algorithms addressing supervised learning tasks.

1 Introduction

The discipline of Knowledge Discovery in Databases (KDD) is about finding
useful and novel patterns, hidden in huge amounts of real-world data. A common
problem is that the applied Data Mining techniques primarily find “obvious”
patterns which are already known to domain experts. In this work we distinguish
between global and local patterns, paying special attention to mining the local
ones.

The notion of patterns is central to KDD. This work assumes that for a given
target variable the absence of any pattern is equivalent to its independence of
all the other variables. If prior knowledge is available then the absence of further
patterns means that the prior knowledge models the distribution of the target
variable precisely. In turn, a pattern is defined as a regular deviation from the
independence assumption or given prior model, respectively. Thus, it shows as a
correlation between the given target attribute and the other variables that has
not been reported yet.

As a first idea the reader might want to think of global patterns as those
discovered easily, e.g. because of having a high correlation to the target attribute

2

in a densely populated subset of the instance space. Whether these patterns
reflect prior domain knowledge or are the result of an earlier application of a
Data Mining technique, in any case we might be interested in finding further
patterns. From a technical point of view, the presence of some patterns may
increase necessary efforts to observe others. Given a sample of limited size a
less frequent pattern showing little effect on the target attribute may easily be
considered to be part of another pattern. Due to a lack of significance it may also
be hard to distinguish such patterns from random noise. To this end a specific
sampling technique is proposed, paying special attention to patterns of lower
frequency in subsequent Data Mining iterations.

Defining local patterns is possible based on the learner’s prior knowledge:
deviation from expectation indicates the presence of patterns not yet discovered.
These patterns are referred to as local patterns. For simplicity this work confines
itself to probabilistic rules as the representation language for patterns. Guiding
the discovery of patterns by unexpectedness is close to the idea of subgroup
discovery, a learning task discussed in section 3 after some necessary definitions
are given in section 2. As the main contribution of this work a generic sampling
technique to incorporate prior knowledge into subgroup discovery is presented
in section 4 and empirically evaluated in section 5.

2 Basic Definitions

This section embeds the problem of mining local patterns into a formal Data
Mining framework. The notion of a pattern as used in this work is in-line with the
definition given in [9]: A pattern is characterised as a subset of the instance space
with an anomalously high local density of data points. Local patterns are defined
in terms of a (global) background model. Probabilistic rules, for simplicity always
predicting the value of a boolean target attribute, are considered to be our target
representation language for local patterns. A definition of this formalism is given
in subsection 2.2 after some more basic definitions.

2.1 Instance Space and Distribution

The two learning tasks discussed in this paper are subgroup discovery and clas-
sifier induction. Both tasks are supervised, so the learning step is performed
based on a sample of classified examples. Examples are defined as elements of
an instance space X. Usually the instance space X = A1 × A2 × . . . × Ak is the
Cartesian product of a fixed set of nominal and/or numerical attributes. A set
of examples E ⊂ X can be considered to be the extension of a single table of a
relational database. To simplify formal aspects, X is assumed to be finite in this
work. All results are easily generalised to the case of continuous domains.

Examples are assumed to be sampled i.i.d with respect to a distribution
D : X → [0, 1]. The probability to observe an instance x ∈ X under D is denoted
as Px∼D(x). The probability to observe an instance from a subset W ⊆ X is

3

denoted as PD(W). If the underlying distribution is clear from the context we
omit the subscripts.

Each example is assigned a label from the set Y of all possible labels by
the target function C : X → Y. We assume C to be fixed but unknown to the
learner, whose task is to approximate it in a specified way. This work considers
only supervised learning with a boolean target attribute Y = {0, 1}.

2.2 Probabilistic Rules for Knowledge Representation

Encoding prior knowledge1 is often done using any form of rules. For subgroup
discovery Horn logic rules are the main representation language.

Definition 1. A Horn logic rule consists of a body A, which is a conjunction of
atoms over A1, . . . , Ak, and a head B, predicting a value for the target attribute.
It is notated as A → B. If the body evaluates to true the rule is said to be
applicable, if the head evaluates to true, also, it is called correct.

More generally a rule can be considered as a function h : X → Y, assigning a
prediction to each x ∈ X.

For now we assume any form of prior knowledge to be represented by rules of
this form. In subsection 4.3 we will see that the presented approach can easily be
extended to incorporate any form of prior knowledge predicting the conditional
distribution of the target variable.
Assuming Y = {0, 1}, the following abbreviations are used:

h := {x ∈ X | h(x) = 1} , h := X \ h

Y+ := {x ∈ X | C(x) = 1} , Y− := X \ Y+

Using this notation, the Horn logic rules predicting a boolean target are of the
form (h → Y+) and (h → Y−). Unlike for any strictly logical interpretation,
rules are not expected to match the data exactly. Often it is sufficient if they
point to regularities in the data. The intended semantics of a probabilistic rule
is that the conditional probability P (Y+ | h) (or P (Y− | h)) is higher than the
class prior P (Y+) (or P (Y−)). Probabilistic rules are often annotated by their
corresponding conditional probabilities:

h → Y+ [0.8] :⇔ Px∼D(C(x) = 1 | h(x) = 1) = 0.8

2.3 Performance metrics

As a general task in supervised learning we want to estimate conditional proba-
bilities of target attributes. Different performance metrics help to evaluate how
useful and interesting single rules are. For the notion of interestingness different
1 The term “prior knowledge” will be preferred to “background knowledge”, because

the latter is associated with precise knowledge for inference, while prior knowledge
suggests a more probabilistic view.

4

formalisations have been proposed in the literature (e.g.[22]). In this work inter-
estingness is considered equal to unexpectedness. This subsection collects some
important metrics for rule selection.

The goal when training classifiers is to select a predictive model that separates
positive and negative examples accurately.

Definition 2. For a rule (A → B) the accuracy is defined as

Acc(A → B) := P (A ∩ B) + P (A ∩ B)

Definition 3. The precision of a rule reflects the conditional probability that it
is correct, given that it is applicable:

Prec(A → B) := P (B | A)

Subgroup discovery focuses on rules covering subsets that – compared to the
overall distribution – are biased in the data. The following metric has been
used to measure interest in the domain of frequent itemset mining [4]. In the
supervised context it measures the change in the target attribute’s frequency for
the subset covered by a rule.

Definition 4. For any rule (A → B) the Lift is defined as

Lift(A → B) :=
P (A ∩ B)
P (A)P (B)

=
P (B | A)

P (B)
=

Prec(A → B)
P (B)

The Lift of a rule captures the value of “knowing” the prediction for estimating
the probability of the target attribute. Lift(A → B) = 1 indicates that A and
B are independent events. With Lift(A → B) > 1 the conditional probability
of B given A increases, with Lift(A → B) < 1 it decreases.

During subgroup discovery rules are evaluated by a utility function. A pop-
ular function is the following one, e.g. available in EXPLORA [11]:

Definition 5. The weighted relative accuracy (WRAcc) of a rule (A → B)
multiplies coverage P (A) and bias P (B | A) − P (B):

WRAcc(A → B) := P (A) · (P (B | A) − P (B))

The use of WRAcc as a measure for rule interestingness has been motivated
elaborately in [14]. It is similar to the binomial test function, thus favours sig-
nificant rules, but puts more emphasis on coverage [11]. Many other functions
have been suggested in the literature [24, 11], basically putting more emphasis
on either coverage or bias.

3 Subgroup Discovery

Subgroup discovery aims at finding interesting subsets of the instance space that
deviate from the overall distribution. The search is guided by a utility function

5

that allows to find interesting rules with much smaller coverage and bias than
possible with standard classifier induction algorithms. Subsection 3.1 briefly de-
scribes related work in subgroup discovery. How interesting rules interact, how
to recognise redundant rules, and how to build single predictors from rulesets is
discussed in 3.2. In subsection 3.3 incorporation of prior knowledge as a means
to improve utility and diversity of the discovered rulesets is motivated. Sub-
section 3.4 shows a generic way of addressing subgroup discovery tasks using
classifier induction algorithms.

3.1 Existing Approaches

The goal of subgroup discovery is to find interesting and novel patterns in
datasets. Utility functions formalise a trade-off between the size of the sub-
group and the unusualness in terms of a target attribute’s observed frequency.
There are two different strategies of searching for interesting rules: exhaustive
and heuristic search.

MIDOS [24] and EXPLORA [11] tackle subgroup discovery by exhaustively
evaluating the set of rule candidates. The set of rules are ordered by generality,
which allows to prune large parts of the search space. The advantage of this strat-
egy is that it allows to find the n best subgroups reliably. For the special case of
exception rules similar exhaustive search strategies exists [?]. Finding subgroups
on subsamples of the original data is a straightforward method to speed up the
search process. As shown in [20, 21] most of the utility functions commonly used
for subgroup discovery are well suited to be combined with adaptive sampling.
This sampling technique reads examples sequentially, continuously updating up-
per bounds for the sample errors, based on the data read so far. In this way,
the required sample size allowing to give a probabilistic guarantee of not missing
any of the n best subgroups can be reduced.

Heuristic search strategies are fast, but do not come with any guarantee to
find the most interesting patterns. One recent example implementing a heuristic
search is a variant of CN2. By adapting its evaluation measure for rule candidates
to WRAcc the well known CN2 classifier has been turned into CN2-SD [13]. As
a second modification the iterative cover approach of CN2 has been replaced by
a heuristic weighting scheme. Example weights are either changed by a constant
factor or by an additive term each time the example has been covered by a rule.
In section 4 a new generic weighting scheme is proposed that allows to overcome
some shortcomings of CN2-SD.

For pruning rulesets ROC analysis was suggested in [13]. According to the
false positive and false negative rates all rules are plotted in ROC space [5].
Only rules lying on the convex hull are deemed relevant and may be turned into
a single classifier by weighted majority vote. A major drawback of this filter
is that it systematically discards one of two rules covering disjoint subsets and
having almost the same performance. As soon as one of these rules is superior
in both true positive and false negative rates, the other rule is considered to
be redundant. This is not desirable in descriptive scenarios, as the only rule
covering a specific subset of the instance space should not easily be discarded,

6

nor for predictive settings, as diversity of base classifiers is crucial for reaching
high predictive accuracy [3].

3.2 Combining rules

There are different methods to combine a set of rules predicting the conditional
probability of a target class. The approach put forward in this work is useful for
descriptive and predictive settings, and it can be used to combine arbitrary pre-
dictors, especially rules represented in Horn logic. If the prediction of each rule
is used to define a new attribute, then predictions can be combined by means of
classifier induction techniques. The underlying assumption of Näıve Bayes [10]
is that all attributes are conditionally independent given the class. These classi-
fiers work surprisingly well in practice, often even if the underlying assumption
is known to be violated. When mining rules iteratively, using the sampling tech-
nique proposed in section 4, the conditional independence assumption is not as
unrealistic as one might expect. The reason is that all correlations “reported”
by previously found patterns are “removed” from subsequently constructed sam-
ples.

Let {hi : X → Y | 1 ≤ i ≤ n} denote a set of rules. Then for any given
example x ∈ X, labels y1, . . . , yn ∈ Y, and h1(x) = y1, . . . , hn(x) = yn, the
Näıve Bayes classifier estimates

P (C(x) = y | h1(x) = y1, . . . hn(x) = yn)

=
P (h1(x) = y1, . . . , hn(x) = yn | C(x) = y) · P (C(x) = y)

P (h1(x) = y1, . . . , hn(x) = yn)

≈ P (C(x) = y)
P (h1(x) = y1, . . . hn(x) = yn)

∏
1≤i≤n

P (hi(x) = y | C(x) = y)

=
P (C(x) = y)

∏
i P (hi(x) = yi)

P (h1(x) = y1, . . . , hn(x) = yn)

∏
1≤i≤n

P (C(x) = y | hi(x) = y)
P (C(x) = y)

=
P (C(x) = y)

∏
i P (hi(x) = yi)

P (h1(x) = y1, . . . , hn(x) = yn)

∏
1≤i≤n

Lift((hi(x) = yi) → (C(x) = y))

for each class y ∈ Y. Especially for boolean Y it is easier to consider the ratios

α(x) :=
P (Y+ | h1(x) = y1, . . . , hn(x) = yn)
P (Y− | h1(x) = y1, . . . , hn(x) = yn)

=
P (Y+)
P (Y−)

∏
1≤i≤n

Lift((hi(x) = yi) → Y+)
Lift((hi(x) = yi) → Y−)

, (1)

as most of the terms cancel out, but we can still recalculate

P (Y+ | h1(x) = y1, . . . , hn(x) = yn) =
α(x)

1 + α(x)

7

based on formula (1). So following the conditional independence assumption it
is possible to combine rules to predict class probabilities, just knowing their Lift
and the class priors. It is not necessary to restrict rules to the case in which the
body evaluates to true. Please note that

Lift(h → Y+) > 1 ⇒ Lift(h → Y−) > 1,

but the precisions of both rules may differ. So each rule h → Y+/− should rather
be considered to partition the instance space into h and h, making a prediction
for both subsets. As a consequence any two rules overlap. Thus, for any known
degree of overlap between a rule R1 that is part of the prior knowledge and a rule
candidate R2 under consideration, we have an expectation for Lift(R1) based on
Lift(R2). This expectation reflects the assumption that R2 does not introduce a
Lift of its own, but simply shares a biased subset with R1. If this assumption is
met, then the rule candidate is redundant and should be ranked low. The Lift
of each rule can be expressed relative to prior knowledge, e.g. of preceding rules.
The following equation illustrates this idea for the simplified case of two rules
and the subset h1 ∩ h2 ⊂ X:

Lift((h1, h2) → Y+) =
P (h1, h2 | Y+)

P (h1, h2)
=

P (h1 | Y+) · P (h2 | h1, Y+)
P (h1) · P (h2 | h1)

= Lift(h1 → Y+) · Lift(h2 → (h1, Y+))
Lift(h2 → h1)︸ ︷︷ ︸

=:Lift(h2→Y+|h1)

The term Lift(h2 → Y+ | h1) can be regarded as the relative Lift of the rule
h2 → Y+ with respect to prior knowledge. It replaces Lift(h2 → Y+) when
estimating α(x) in formula (1) given h1 → Y+. Applying the sampling technique
introduced in section 4, rules with high relative performance are favoured. This
usually results in rulesets with low redundancy and high diversity.

3.3 Iterative Subgroup Discovery

A drawback of classical subgroup discovery lies in a lack of expressiveness. Es-
pecially interesting exceptions to rules are hard to be detected using standard
techniques, for mainly two reasons. First of all, due to the syntactical structure
imposed by Horn logic it is often hard to exclude exceptions from rules, although
this would improve the score assigned by the utility function. The syntactical
bias is important, however, because we want the results to be understandable,
and because it is the main reason for diversity within the n best subgroups. With-
out any syntactical restrictions the second best subgroup would usually be the
best one after adding or removing a single example. The syntactical bias might
not be sufficient to avoid sets of similar rules. Redundancy filters are a com-
mon technique to overcome this problem. Overlapping patterns like exceptions
to rules are not found reliably that way. Exceptions could still be represented

8

by separate rules. This fails for the second reason, namely that utility functions
evaluate rules globally. Interactions between rules do not affect their scores.

Formalised prior knowledge like previously found patterns could help to refine
existing utility measures. Two different approaches to exploit prior knowledge in
the scope of subgroup discovery have been suggested so far. The first one is to
prune rules violating a redundancy constraint [11]. This is possible during search,
or as a post-processing step to present only the most interesting rules. With the
ILP system RSD [12] another way of incorporating background knowledge has
been proposed. It uses background knowledge to propositionalise relational data.
For the learning step itself CN2-SD is used.

One of the advantages of the approach presented here is that it allows to turn
any algorithm for training classifiers in the presence of noise into one for subgroup
discovery with utility function WRAcc that can exploit prior knowledge. The
next subsection shows a generic way to transform subgroup discovery tasks into
classifier induction tasks, before a generic way to incorporate prior knowledge
into supervised Data Mining is introduced in section 4.

3.4 Subgroup Discovery by Classifier Induction

This subsection briefly discusses the relation between subgroup discovery with
utility function WRAcc and the task of classifier induction.

The goal of classifier induction is to select a predictive model that separates
positive and negative examples with high predictive accuracy. Many algorithms
and implementation exists for this purpose [17, 23], basically differing in the set
of models (hypothesis space H) and search strategies. Subgroup discovery is also
a supervised learning task. Examples are classified with respect to a “property
of interest”. The overall goal is to find understandable and interesting rules,
which is hard to be formalised. Thus, the process of model selection is guided
by a utility function. In the following definition subgroup discovery is reduced
to finding a single rule, only.

Definition 6. Let H denote the set of models (rules) valid as output and D
denote a distribution function over X. The task of classifier induction is to find

h∗ := maxargh∈H Acc(h).

For a given utility function q : H → IR the task of subgroup discovery is to find

h∗ := maxargh∈H q(h).

For boolean target attributes common classifier induction algorithms do not
benefit from finding rules with a precision below 50%. In contrast, for subgroup
discovery it is sufficient if a class is observed with a frequency that is significantly
higher than in the overall population. In cases of skewed class distributions the
frequency in the covered subset might still be far below 50% for the most inter-
esting rules. Choosing the utility function WRAcc we can transform subgroup
discovery as defined above into classifier induction by a simple sampling tech-
nique to overcome imbalanced class distributions.

9

Definition 7. For D : X → [0, 1], C : X → Y let the stratified random sample
distribution D′ of D (and C) be defined by

Px∼D′(x) :=
Px∼D(x)

|Y | · Pz∼D(C(z) = C(x))
= PD(x)/

{
2PD(Y+), for C(x) = 1
2PD(Y−), for C(x) = 0

D′ is defined by rescaling D so that the class priors are equal.

Theorem 1. For every rule h → Y+ the following equalities hold if D′ is the
stratified random sample distribution of D:

AccD′(h → Y+) = 2WRAccD′(h → Y+) + 1/2

= WRAccD(h → Y+) · 1
2PD(Y+) · PD(Y−)

+ 1/2︸ ︷︷ ︸
irrelevant for ranking rules

Theorem 1 indicates that subgroup discovery tasks with utility function WRAcc
can as well be solved by rule induction algorithms optimising predictive accuracy
after a step of stratified resampling. A proof is given in the appendix. Further
interesting relations between performance metrics are proven in [8].

4 Knowledge-Based Sampling

Before introducing techniques for sampling with respect to prior knowledge the
task is formalised by a set of constraints.

4.1 Constraints for resampling

After a first rough analysis has discovered global patterns we want to prepare a
second iteration of Data Mining to find local patterns. The proposed idea is to
construct samples that do not show the biases underlying previously discovered
patterns, while taking care that all the remaining patterns remain intact.

Practically, for a given rule R : h → Y+ this means to consider a new dis-
tribution D′, as close to the original function D as possible. This is formalised
by the following set of constraints. First of all, we want to remove the bias
corresponding to R. In other words we want h and Y+ to be independent:

PD′(Y+ | h) = PD′(Y+) (2)

Next, we do not want the priors of h and Y+ to change:

PD′(h) = PD(h) (3)
PD′(Y+) = PD(Y+) (4)

10

Finally, within each partition sharing the same class and prediction of R the new
distribution is defined proportionally to the initial one:

PD′(x | h ∩ Y+) = PD(x | h ∩ Y+) (5)
PD′(x | h ∩ Y−) = PD(x | h ∩ Y−) (6)
PD′(x | h ∩ Y+) = PD(x | h ∩ Y+) (7)
PD′(x | h ∩ Y−) = PD(x | h ∩ Y−) (8)

Given a database and a global pattern R we can apply any Data Mining tech-
nique after sampling with respect to D′. This might ease the detection of further
patterns. An advantage of mining the resampled data rather than a dataset with-
out the covered examples shows, if there are further patterns within the covered
subset. These patterns can still be observed after resampling, just rescaled pro-
portionally. This helps to find exceptions to successful rules, as motivated in
subsection 3.3, or patterns overlapping in some other way.

Please note, that a subgroup pattern showing in the new sample may be
interesting relative to the prior knowledge, only. Let

P (Y+ | A) = P (Y+) = 0.5 for a rule A → Y+.

Y is distributed in A just as in the overall population, so this rule would not be
deemed interesting by any reasonable utility function. Now assume that in the
prior knowledge there is a statement about a superset of A:

B → Y+ [0.9] with A ⊂ B.

This rule predicts a higher conditional probability of Y+ given B. In this context
the rule (A → Y+) becomes interesting as an exception to the prior knowledge,
because we would rather expect P (Y+ | A) = P (Y+ | B). The reason is that the
prediction for B ⊂ X is more specific than the general class priors. In general
switching from the initial distribution to the resampled data is a step of applying
prior knowledge by means of sampling. This step allows to find overlapping and
nested patterns sequentially.

4.2 Constructing a new distribution function

In subsection 4.1 the idea of sampling with respect to an altered distribution
function has been presented. Intuitively, prior knowledge and known patterns
are “filtered out”. This subsection proves that the proposed constraints (2) to
(8) induce a unique target distribution.

Definition 8. The lift of an example x ∈ X for a rule (h → Y+) is defined as

Lift(h → Y+, x) :=

Lift(h → Y+), for x ∈ h ∩ Y+

Lift(h → Y−), for x ∈ h ∩ Y−
Lift(h → Y+), for x ∈ h ∩ Y+

Lift(h → Y−), for x ∈ h ∩ Y−

11

Theorem 2. For any initial distribution D and given rule R the probability
distribution D′ is induced uniquely by the constraints (2) to (8) as follows:

PD′(x) := PD(x) · (LiftD(R, x))−1

Proof. The proof is exemplarily shown for the partition (h ∩ Y+), in which the
rule under consideration is both applicable and correct. D′ can be rewritten in
terms of D and Lift(R, x), assuming that the constraints hold:

(∀x ∈ h ∩ Y+) : PD′(x) = PD′(x | h ∩ Y+) · PD′(h ∩ Y+)
= PD(x | h ∩ Y+) · PD′(h) · PD′(Y+)

=
PD(x)

PD(h ∩ Y+)
· PD(h) · PD(Y+)

= PD(x) · (LiftD(h → Y+))−1

The other three partitions can be rewritten analogously. On the other hand, it
can easily be validated that D′ as defined by theorem 2 is in fact a distribution
satisfying constraints (2) to (8):

PD′(h ∩ Y+) = PD(h ∩ Y+) · (LiftD(R, x))−1 = PD(h) · PD(Y+)

and analogously for the other partitions. This directly implies constraints (2)
to (4) by marginalising out. Constraints (5) to (8) are met, because for all four
partitions D′ is defined proportionally to D. This implies that the conditional
probabilities given the partitions are equivalent.

4.3 Weighting examples using prior knowledge

In the last subsection it was discussed how to alter an initial distribution in the
presence of prior knowledge. The goal is to construct samples not reflecting pre-
viously found patterns anymore. This idea stems from boosting classifiers, which
was also first introduced in terms of altering an initial distribution function and
a corresponding sampling technique [18]. The idea of boosting is to repeatedly
apply a “weak” base learner and to combine the predictions. The probabilities
of examples are adjusted in such a way that in later iterations the weak learner
has to focus on the “hard” examples not yet covered sufficiently by the ensemble
of base classifiers.

As a general alternative to resampling it is possible to assign weights to
examples, reflecting a change in the underlying distribution. This method is
common in boosting literature to avoid resampling [6, ?,19]. It can be understood
in terms of importance sampling [15]: The example set is assumed to be drawn
independently from an initial distribution D. Then each example x is assigned
the weight D′(x)/D(x) rather than sampling directly with respect to D′, which
may be infeasible.

12

For subgroup discovery the use of weighted examples may be less appropriate,
as even uniformly distributed subsets may be represented as a single example
with high weight. On the other hand, for given example weights resampling can
easily be performed by a Monte Carlo technique called rejection sampling [15]. A
straight-forward implementation of this technique has successfully been applied
to cost-sensitive learning [25], which is very similar from a technical point of
view. In this subsection a knowledge-based weighting scheme is introduced. It
can replace resampling if all subsequently applied algorithms are capable of using
example weights, and if it meets the requirements of the learning task. In other
cases it can still be used as a basis for rejection sampling.

Theorem 2 defines a new distribution to sample from, given a single rule R as
prior knowledge. The following strategy for weighting examples is more general.
First of all the number of classes |Y| is not restricted to two. As a second
generalisation the prior knowledge θ may be of arbitrary form. It is assumed to
be associated to a function

P̂ (x, y, θ) = P̂ (C(x) = y | x, θ) ≈ P (C(x) = y | x)

estimating probabilities for each 〈x, y〉 ∈ X × Y. Assuming the class priors
P (C(x) = y) to be known for each y ∈ Y and applying the definition of the Lift
the corresponding estimated Lift can easily be computed as

L̂ift(x, θ) :=
P̂ (x, C(x), θ)

Pz∼D(C(z) = C(x))

Given a procedure for sampling examples x ∼ D independently, the following
distribution generalising theorem 2 can be used for weighting each example:

PD′(x) := PD(x) · (L̂ift(x, θ))−1 (9)

To remove prior probabilistic knowledge from a data stream applying formula (9)
it is sufficient to assign each example x from the stream a weight of L̂ift(x, θ)−1,
as the factor D(x) is already accounted for by sampling with respect to D.

5 Experiments

The proposed idea of subgroup discovery utilising all forms of previously dis-
covered patterns has been evaluated on three datasets from the UCI Machine
Learning Library [2] and a sample of the KDD Cup 2004 Quantum Physics
dataset2. For simplicity attributes with missing values have been discarded. All
datasets have boolean target attributes. Further characteristics are listed in ta-
ble 1.

Three subgroup discovery algorithms have been integrated into the learning
environment YALE [16]. For mining subgroup rules from samples the embed-
ded WEKA [23] rule induction algorithm has been applied to stratified samples,
2 http://kodiak.cs.cornell.edu/kddcup/

13

Dataset Examples # Nominal Attr. # Numerical Attr. Minority class

Quantum Physics 10.000 – 71 50.0%

Ionosphere 351 – 34 35.8%

Credit Domain 690 6 9 44.5%

Mushrooms 8.124 22 – 48.2%
Table 1. Datasets used for experimental evaluation.

which is valid due to theorem 1. The algorithm ConjunctiveRule heuristically
selects a single Horn logic rule with high predictive accuracy, which translates
into high WRAcc. It is applied repeatedly by the subgroup discovery algo-
rithms. The knowledge-based sampling algorithm (KBS) applies sampling as pre-
sented in section 4. Rules are combined as discussed in subsection 3.2, similar to
the Näıve Bayes method. KBS is compared to two other reweighting strategies
reported in the subgroup discovery literature [12]. After a positive example e
has been covered by i rules its new weight is computed as

wi(e) :=
1

i + 1
(additive), or wi(e) := γi for given γ ∈ [0, 1] (multiplicative).

Accordingly, two versions of subgroup discovery ruleset induction (SDRI) have
been implemented, which are similar to CN2-SD. The variant that applies Con-
junctiveRule on stratified samples after additive reweighting is referred to as
SDRI+, the one with multiplicative reweighting as SDRI∗. Reweighting is per-
formed iteratively. The class explicitly predicted by a rule is defined to be the
positive one, as fixing one of the classes as positive gave worse experimental re-
sults. The rulesets constructed by SDRI are combined to a single probabilistic
prediction as in CN2-SD: The predicted target class distributions of all appli-
cable rules are averaged.

The goal of subgroup discovery in this setting is to find a small set of (un-
derstandable) rules, giving a good picture of the data. In more formal terms the
probabilistic classifiers built from the rulesets should be accurate. This property
is measured by the area under the ROC curve metric (AUC) [5].

Figure 1 to 4 show how the AUC metric changes with an increasing number
of rules. All values have been estimated by 10fold cross-validation. The default
for the parameter γ of SDRI∗ was set to 0.9 as suggested in [12]. For all but
the mushrooms dataset this value gave best results3. For mushrooms the results
for the better value γ = 0.7 are reported. For a higher value of γ it generally
took more iterations to reach a similar AUC performance, for lower values the
algorithm converged more quickly, but reached worse results.

In all figures the KBS algorithm outperforms SDRI with both reweight-
ing strategies, while none of the SDRI variants is clearly superior to the other
one. In figure 1 all three algorithms manage to find useful rules repeatedly.
SDRI+ performs best for sets of 3 to 6 rules. For larger rulesets KBS is su-
perior. SDRI∗ performs worst. Figure 2 shows the performance for a smaller
3 The parameter was empirically decreased in steps of 0.1 and increased to 0.95.

14

66

68

70

72

74

76

78

5 10 15 20 25

A
U

C

iterations

KBS
SDRI(+)
SDRI(*)

Fig. 1. Quantum Physics Data

88

89

90

91

92

93

94

95

96

1 5 10

A
U

C

iterations

KBS
SDRI(+)
SDRI(*)

Fig. 2. Ionosphere

85.5

86

86.5

87

87.5

88

88.5

89

89.5

90

90.5

1 5 10 15 20 25 30 35

A
U

C

iterations

KBS
SDRI(+)
SDRI(*)

Fig. 3. Credit Domain

94

95

96

97

98

99

100

1 5 10 15

A
U

C

iterations

KBS
SDRI(+)
SDRI(*)

Fig. 4. Mushrooms

dataset. Again KBS performs best, although it overfits after the 3rd iteration.
The SDRI variants reach their maxima later. This delay is even more significant
for the credit domain data, illustrated in figure 3. After iteration 7 the pre-
dictions of KBS remain constant, while the AUC values of the SDRI rulesets
improve non-monotonically and are still significantly worse after 40 iterations.
Finally, in the experiment shown in figure 4 KBS reaches 100% AUC with just
12 rules, while SDRI does not manage to improve over the performance of the
first rule at all. As a further experiment on this dataset AdaBoost has been
run on top of ConjunctiveRule. After 15 iterations it still has an error rate
of about 2.5%.

Table 2 lists the average performance of rulesets. For the ionosphere and
credit domain dataset the number of rules with best performance regarding
AUC was chosen. For the KDD Cup data (Quantum Physics) the number of
rules was set to 15. The ROC filter for rulesets discussed in subsection 3.2 was
applied to both SDRI variants, denoted as RF in table 2. As mentioned in
subsection 4.1 some patterns are interesting relative to prior knowledge, only.
The columns AvgCov and AvgWRAcc in table 2 demonstrate that absolute
values of performance metrics may be misleading regarding how well rules are
suited to predict a target class. AvgCov denotes the average coverage of rules,

15

Dataset Algorithm # Rules AUC AvgCov AvgWRAcc

Ionosphere KBS 3 96.0 (± 3.0) 42.7% 0.121

Ionosphere SDRI+ 7 92.0 (± 7.4) 37.6% 0.120

Ionosphere SDRI+, RF 4 91.7 (± 7.0) 35.3% 0.120

Ionosphere SDRI∗ 6 91.9 (± 7.3) 60.1% 0.123

Ionosphere SDRI∗, RF 3 91.0 (± 6.7) 40.6% 0.119

Credit Domain KBS 7 90.4 (± 3.4) 42.2% 0.057

Credit Domain SDRI+ 31 88.4 (± 4.2) 56.8% 0.156

Credit Domain SDRI+, RF 3 87.0 (± 5.3) 66.9% 0.139

Credit Domain SDRI∗ 27 89.9 (± 4.0) 55.8% 0.164

Credit Domain SDRI∗, RF 2 85.7 (± 5.3) 66.9% 0.139

Quantum Physics KBS 15 76.8 (± 1.2) 38.6% 0.023

Quantum Physics SDRI+ 15 76.0 (± 1.9) 50.5% 0.054

Quantum Physics SDRI+, RF 12 74.3 (± 2.0) 50.0% 0.056

Quantum Physics SDRI∗ 15 74.8 (± 2.1) 42.7% 0.071

Quantum Physics SDRI∗, RF 8 74.2 (± 2.1) 44.7% 0.074
Table 2. Performance values for different subgroup algorithms.

AvgWRAcc the average weighted relative accuracy. Global evaluation rewards
overlapping rules for reporting the same pattern multiple times, while rules cap-
turing smaller patterns not covered by any other rule may perform worse if
evaluated stand-alone. This explains why both the average absolute coverage
and absolute WRAcc of KBS is lower for two of the three datasets than the
corresponding values of SDRI, but the AUC values are still higher. The ROC
filter generally seems to neither improve the AUC score nor the average global
utility function. In most cases it prunes the ruleset at the price of a reduced
performance. Increasing coverage is comparably trivial.

As an overall result the experiments show that knowledge-based sampling
helps to shift the focus of subgroup discovery to yet undiscovered patterns, al-
lowing to find a small number of rules that help to build accurate probabilistic
classifiers. Rulesets with higher average values of utility functions that were not
constructed to maximise diversity turn out to be less accurate.

6 Conclusion

In this work local pattern mining was defined in terms of prior knowledge avail-
able to a learner. Subgroup discovery was identified as a matching learning task,
but the available algorithms do not incorporate previously discovered patterns
and prior domain knowledge into their utility functions. In section 4 a generic
way of incorporating prior knowledge by means of sampling was presented. The
selected samples do no longer reflect the prior knowledge and can be used to mine
further local patterns. Applying the utility function to such a sample means not
to reward rules for overlapping with previously known biased subsets, but to
rank rules by their new own contribution. This helps to focus on rulesets that

16

are almost orthogonal, thus the conditional independence assumption is not as
unrealistic as in general. As a consequence, rules predicting the conditional prob-
abilities of a target attribute can well be combined by the Näıve Bayes strategy.
The simplicity of the reweighting scheme allows to interpret the found patterns
either globally or in their specific context, based on the intuitive Lift measure.
To simplify subgroup discovery it was shown how to address pattern mining with
utility function WRAcc with common rule induction algorithms. The developed
subgroup discovery algorithm has been validated experimentally and shown to
outperform existing reweighting and rule combination strategies in the scope of
subgroup discovery.

References

1. http://kodiak.cs.cornell.edu/kddcup/
2. C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.
3. L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
4. S. Brin, R. Motwani, J. Ullman, and S. Tsur. Dynamic Itemset Counting and

Implication Rules for Market Basket Data. In Proceedings of ACM SIGMOD
Conference on Management of Data (SIGMOD ’97), pages 255–264, 1997.

5. T. Fawcett. ROC Graphs: Notes and Practical Considerations for Researchers,
2004. submitted to Machine Learning.

6. Y. Freund and R. Schapire. A decision–theoretic generalization of on-line learn-
ing and an application to boosting. Journal of Computer and System Sciences,
55(1):119 – 139, 1997.

7. J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical
view of boosting. Technical report, Departement of Statistics, Stanford University,
Stanford, California 94305, July, 23 1998.

8. J. Fürnkranz and P. Flach. An Analysis of Rule Evaluation Metrics. In Proc. of
the 20th International Conference on Machine Learning. Morgan Kaufman, 2003.

9. D. Hand. Pattern detection and discovery. In D. Hand, N. Adams, and R. Bolton,
editors, Pattern Detection and Discovery. Springer, 2002.

10. G. John and P. Langley. Estimating continuous distributions in Bayesian classi-
fiers. In Proc. of the Eleventh Conference on Uncertainty in Artificial Intelligence.
Morgan Kaufmann, 1995.

11. W. Klösgen. Explora: A multipattern and multistrategy discovery assistant. In U.
Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in
Knowledge Discovery and Data Mining, chapter 3. AAAI/MIT Press, 1996.

12. N. Lavrac, F. Zelezny, and P. Flach. RSD: Relational subgroup discovery through
first-order feature construction. In 12th International Conference on Inductive
Logic Programming. Springer, 2002.

13. N. Lavrac, P. Flach, B. Kavsek, and L. Todorovski. Rule Induction for Subgroup
Discovery with CN2-SD. In D. Mladenic M. Bohanec and N. Lavrac, editors, 2nd
Int. Workshop on Integration and Collaboration Aspects of Data Mining, Decision
Support and MetaLearning, August 2002.

14. N. Lavrac, P. Flach, and B. Zupan. Rule Evaluation Measures: A Unifying View.
In 9th International Workshop on Inductive Logic Programming, Lecture Notes in
Computer Science. Springer, 1999.

15. D.J.C. Mackay. Introduction To Monte Carlo Methods. In Learning in Graphical
Models, pages 175–204. 1998.

17

16. I. Mierswa, R. Klinkenberg, S. Fischer, and O. Ritthoff. A Flexible Platform for
Knowledge Discovery Experiments: YALE – Yet Another Learning Environment.
In LLWA 03 - Tagungsband der GI-Workshop-Woche Lernen - Lehren - Wissen -
Adaptivität, 2003.

17. T. M. Mitchell. Machine Learning. McGraw Hill, New York, 1997.
18. R. E. Schapire. The Strength of Weak Learnability. Machine Learning, 5:197–227,

1990.
19. R. E. Schapire and Y. Singer. Improved boosting using confidence-rated predic-

tions. Machine Learning, 37(3):297–336, 1999.
20. T. Scheffer and S. Wrobel. A Sequential Sampling Algorithm for a General Class

of Utility Criteria. In Proceedings of the International Conference on Knowledge
Discovery and Data Mining, 2000.

21. T. Scheffer and S. Wrobel. Finding the Most Interesting Patterns in a Database
Quickly by Using Sequential Sampling. Journal of Machine Learning Research,
3:833–862, 2002.

22. A. Silberschatz and A. Tuzhilin. What makes patterns interesting in knowledge dis-
covery systems. IEEE Transactions on Knowledge and Data Engineering, 8(6):970–
974, dec 1996.

23. I. Witten and E. Frank. Data Mining – Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann, 2000.

24. S. Wrobel. An Algorithm for Multi–relational Discovery of Subgroups. In J. Ko-
morowski and J. Zytkow, editors, Principles of Data Mining and Knowledge Dis-
covery: First European Symposium (PKDD 97), pages 78–87, 1997. Springer.

25. B. Zadrozny, J. Langford, and A. Naoki. Cost–Sensitive Learning by Cost–
Proportionate Example Weighting. In Proceedings of the 2003 IEEE International
Conference on Data Mining (ICDM’03), 2003.

APPENDIX

We repeat the definition of the two tasks, substituting C for Y+ (or Y−) and C
for Y− (or Y+). H denotes a set of valid Horn logic rules with head C.

Classification Find an h ∈ H maximising predictive accuracy:

Acc(h → C) = P (h ∩ C) + P (h ∩ C)

Subgroup Discovery with WRAcc Find an h ∈ H maximising

WRAcc(h → C) = P (h) · (P (C|h) − P (C))

The correctness of the theorem is shown using two lemmas.

Lemma 1. The two tasks are equivalent, if and only if the priors of both class
labels are equal:

P (C) = P (C) = 1/2

Proof. First we rewrite predictive accuracy:

Acc(h → C) = P (h ∩ C) + P (h ∩ C) = P (h ∩ C) +
(
P (h) − P (h ∩ C)

)
= P (h ∩ C) + P (h) − (P (C) − P (h ∩ C)) = 2P (h ∩ C) + P (h) − P (C)
= 2P (C|h)P (h) + 1 − P (h) − P (C) = 2P (h) (P (C|h) − 1/2) + P (C) (10)

18

The order of rules according to this metric does not change if we drop the
constant additive terms P (C) and the constant factor of 2 in formula (10), so

argmaxh∈HAcc(h → C) = argmaxh∈H (P (h) · (P (C|h) − 1/2)))

Obviously the second term is equivalent to WRAcc if and only if P (C) = 1/2.
In this case Acc and WRAcc induce the same ranking of rules.

If the condition of lemma 1 is violated for the original distribution D we can
perform stratified sampling using definition 7:

Px∼D′(x) :=
Px∼D(x)

2Pz∼D(C(z) = C(x))
(11)

Considering a sample from D′ as defined by (11) we expect PD′(h) and PD′(C|h)
to differ from PD(h) and PD(C|h), respectively. As the following lemma states
such samples are nevertheless appropriate for rule selection.

Lemma 2. The order of a ruleset H induced by the WRAcc metric is equivalent
for any two distributions D and D′, as long as formula (11) holds.

Proof. Let us first rewrite PD′(h) in terms of D:

PD′(h) =
PD(h ∩ C)
2PD(C)

+
PD(h ∩ C)
2PD(C)

=
PD(h)

2

(
PD(h ∩ C)

PD(h)PD(C)
+

PD(h ∩ C)
PD(h)PD(C)

)

= PD(h) · 1
2

(
LiftD(h → C) + LiftD(h → C)

)
︸ ︷︷ ︸

=:α

(12)

Having PD′(h) = PD(h) · α allows to reformulate WRAccD′ like this:

WRAccD′(h → C) = PD′(h) · (PD′(C|h) − PD′(C))

= PD′(h) ·
(

PD′(C ∩ h)
PD′(h)

− 1/2
)

= PD(h) · α ·

 PD(C∩h)

2PD(C)

PD(h) · α − 1/2

= PD(h) · α ·
(

1
2

PD(C ∩ h)
PD(C) · PD(h) · α − 1/2

)

=
1
2
PD(h) (LiftD(h → C) − α) (13)

Formula (13) can be simplified by rewriting α, exploiting that

LiftD(h → C) =
1 − PD(C|h)

PD(C)
=

1
PD(C)

− PD(C)
PD(C)

· LiftD(h → C) (14)

After plugging (14) into α we receive

α = 1/2 ·
(
LiftD(h → C) +

1
PD(C)

− PD(C)
PD(C)

· LiftD(h → C)
)

19

= 1/2 ·
((

1 − PD(C)
PD(C)

)
LiftD(h → C) +

1
PD(C)

)

=
1

2PD(C)
· ((PD(C) − PD(C)

)
LiftD(h → C) + 1

)
=

1
2PD(C)

· ((1 − 2PD(C))LiftD(h → C) + 1)

which can now be substituted into (13):

1
2
PD(h) · (LiftD(h → C) − α)

=
1
2
PD(h) ·

(
LiftD(h → C) − (1 − 2PD(C))LiftD(h → C) + 1

2PD(C)

)

=
1
2
PD(h) ·

(
LiftD(h → C)

(
1 − 1 − 2PD(C)

2 − 2PD(C)

)
− 1

2PD(C)

)

=
1
2
PD(h) ·

(
LiftD(h → C)

1
2 − 2PD(C)

− 1
2PD(C)

)

=
1

4PD(C)
· PD(h) · (LiftD(h → C) − 1)

=
1

4PD(C) · PD(C)
· PD(h) · (PD(C|h) − PD(C))

=
1

4PD(C) · PD(C)︸ ︷︷ ︸
irrelevant

·WRAccD(h → C) (15)

The constant factor on the left hand side does not change the ranking of rulesets.
We may drop it and end up with the definition of the WRAcc metric for D,
which completes the proof of lemma 2.

Putting together formulas (15) and (10) we receive

AccD′(h → C) = 2PD′(h) (PD′(C|h) − 1/2) + PD′(C)
= 2PD′(h) (PD′(C|h) − PD′(C)) + 1/2 = 2WRAccD′(h → C) + 1/2

=
1

2PD(C) · PD(C)
· WRAccD(h → C) + 1/2,

which proves theorem 1.

