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Abstract. In a supervised learning scenario, we learn a mapping from
input to output values, based on labeled examples. Can we learn such a
mapping also from groups of unlabeled observations, only knowing, for
each group, the proportion of observations with a particular label? Solu-
tions have real world applications. Here, we consider groups of steel sticks
as samples in quality control. Since the steel sticks cannot be marked in-
dividually, for each group of sticks it is only known how many sticks of
high (low) quality it contains. We want to predict the achieved quality
for each stick before it reaches the final production station and quality
control, in order to save resources. We define the problem of learning
from label proportions and present a solution based on clustering. Our
method empirically shows a better prediction performance than recent
approaches based on probabilistic SVMs, Kernel k-Means or conditional
exponential models.

1 Introduction

Consider a steel factory where charges of steel sticks are processed sequentially
at several production stations. The quality of sticks is assessed at the end of
the process. For each stick though, we are given sensor measurements and other
parameters during its being processed. Based on this information, we want to
predict the quality of individual sticks as early as possible, before they reach the
final production station and quality control. This saves resources, because sticks
that can no longer reach the desired quality can be locked out. The steel sticks
cannot be marked and tracked. Therefore, the available quality information is
not related to single sticks, but charges of sticks. For each charge, we know how
many sticks had a certain type of error (quality). We want to learn a prediction
function from the sensor measurements of the process and the error type counts
of charges. The learned model is used to predict the error type for individual
sticks at intermediate production stations.

We generalize this learning problem. It deviates from that of supervised learn-
ing, where we learn from individually labeled training examples. It is different
from semi-supervised learning [5], where we are given at least some labeled ex-
amples. Since we have some label information, it is not strictly unsupervised
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learning. Multiple instance learning [23] is a special case, because the bags of
examples are either labeled positive or negative, where we have proportions of
labels for each charge.

In this paper, we contribute a clustering approach for the problem which has
the following properties:

– It empirically shows good prediction performance.
– Learning has linear running time in the number of observations.
– Its prediction models are fast to apply.
– It can handle the case of multiple classes.
– It can handle additional labeled observations, if they exist.
– It can weight the relevance of features.
– It is independent of a certain clustering method.

To the best of our knowledge, no other method exists yet which shares all of
these properties.

The paper is structured as follows. Section 2 formally defines the learning
task and accompanying error measures. We analyze best and worst case from a
Bayesian perspective. Section 3 presents a new method for learning from label
proportions, LLP. In Sect. 4, we compare the prediction performance and run-
time of LLP with other existing methods. In Sect. 5, we shortly discuss related
work and conclude.

2 Learning from Label Proportions

In the following, we will first define the task of learning from label proportions.
Then, we introduce accompanying measures for evaluating the performance of
learners and discuss the problem of model selection. In the last subsection, we
explore best and worse case by analyzing the problem from a Bayesian perspec-
tive.

2.1 The Learning Task

The task of learning from label proportions can be defined as follows.

Definition 1 (Learning from label proportions). Let X be an instance
space composed of a set of features X1 × . . . × Xm and Y = {y1, . . . , yl} be a
set of categorical class labels. Let P (X,Y ) be an unknown joint distribution of
observations and their class label. Given is a sample of unlabeled observations
U = {x1, . . . , xn} ⊂ X, drawn i.i.d. from P , partitioned into h disjunct groups
G1, . . . , Gh. Further given are the proportions πij ∈ [0, 1] of label yj in group Gi,
for each group and label. Based on this information, we seek a function (model)
g : X → Y that predicts y ∈ Y for observations x ∈ X drawn i.i.d. from P , such
that the expected error

ErrP = E[L(Y, g(X))] (1)
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G1 = {(x1, 1), (x3, 1), (x7, 0)}
G2 = {(x2, 0), (x4, 0), (x5, 1), (x6, 1)}
G3 = {(x8, 0), (x9, 0)}

Labeled examples (unknown)

SampleU(known)

G1 = {x1, x3, x7}
G2 = {x2, x4, x5, x6}
G3 = {x8, x9}

Π =



0.33 0.67
0.50 0.50
1.00 0.00




Label proportions (known)

y1 y2

η

|G1| = 3
|G2| = 4
|G3| = 2

Y = {0, 1}

n = 9

0.56 0.44
h = 3
l = 2

Fig. 1: Example for a given label proportion matrix Π

for a loss function L(Y, g) is minimized. The loss penalizes the deviation
between the known and predicted label value for an individual observation x.

The main difference to a supervised learning scenario is that the labels of
individual observations are unknown or hidden, i.e., there is no set of labeled
training instances (xi, yi) ∈ X × Y .

The label proportions πij can be conveniently written as a h × l matrix
Π = (πij), where the values in a row Πi,· = (πi1, . . . , πil) sum up to one. (see
Fig. 1). The proportion of label yj over sample U can be calculated from Π:

η(Π, yj) = 1
n

h∑
i=1
|Gi| · πij (2)

By multiplication of πij with its respective group size |Gi|, one gets the
frequency counts µij of observations with label yj ∈ Y in group Gi.

2.2 Training and Test Error

In a supervised learning scenario, a learner can adjust its current hypothesis
based on the average loss on the training set. In contrast, when learning from
label proportions, one can only measure how well the given proportions are
matched. Applying the learned model g(X) to all xi ∈ U , the resulting label
proportions can be calculated, i.e., in each group one counts the number of
observations xi with g(xi) = yj for each label yj ∈ Y and divides the counts by
the size of their respective group. This leads to a new matrix Γg, containing the
model-based label proportions:

Γg = (γgij), γgij = 1
|Gi|

∑
x∈Gi

I(g(x), yj), I =
{

1 : g(x) = yj
0 : g(x) 6= yj

(3)

Similarly to defining a loss function for individual observations, it is now
possible to define a loss function for individual matrix entries, for example by
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the squared error (πij − γgij)2. The total deviance between Π and Γg can then
be defined as the average squared error over all matrix entries:

ErrMSE(Π,Γg) = 1
hl

h∑
i=1

l∑
j=1

(πij − γgij)
2 (4)

Calculating ErrMSE for a function g(X) on sample U might be seen as
an analogon to the training error in supervised learning. However, the loss in
ErrMSE uses aggregated label information, although by Definition 1, we re-
ally need to minimize the loss over individual observations. The mismatch be-
tween the two measures can lead to problems, because many labelings of U can
minimize ErrMSE . For example, when randomly sampling µij many observa-
tions from Gi and assigning them label yj , the model-based label proportions
will always match exactly the given proportions. Hence, labelings that minimize
ErrMSE don’t necessarily minimize the average loss over individual observations,
already on sample U . Therefore, obtaining a good estimate of ErrP is difficult.
In supervised learning, one may select the model which has the lowest average
loss over one or several test sets. But without labels for individual observations
in the test set, only knowing its label proportions, a low ErrMSE on the test set
is no reliable indicator for a good model. As for the training error, many different
labelings can lead to the same label proportions, but only a few labelings will
minimize ErrP . However, if given a labeled test set, it is possible to evaluate
different models as in the supervised case.

For the experiments in Sect. 4, the error between Π and Γg wasn’t measured
by ErrMSE , but by ErrΠ , a combination of two different error measures:

ErrΠ(Γg) =
√
Errweight(Π,Γg) · Errprior(Π,Γg) with (5)

Errweight(Π,Γg) = 1
hl

h∑
i=1

l∑
j=1

η(Π, yj)
|Gi|
n

(πij − γgij)
2 and (6)

Errprior(Π,Γg) = 1
l

l∑
j=1

(η(Π, yj)− η(Γg, yj))2 (7)

Errweight weights the squared error of individual matrix entries by their rel-
ative group and class size. Errprior catches situations where two hypotheses g1
and g2 are indistinguishable from each other, because the total error sum over
all matrix entries is the same. In such cases, they may be distinguished by their
column differences, as calculated by η.

If in addition to the label proportions, the labels c1, . . . , ct of individual
observations T = {a1, . . . , at} ⊆ U are given, error criterion (5) can be easily
extended by including the average loss ErrT over these training examples:

ErrΠ =
√
Errweight · Errprior · ErrT with ErrT = 1

t

t∑
i=1

L(ci, g(ai)) (8)
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2.3 Best and Worst Case from a Bayesian Perspective

From a Bayesian perspective, a good model can be obtained by estimating
the conditional class density P (Y |X). Applying Bayes theorem, one recognizes
that P (Y |X) may also be estimated from other unknown densities—the class-
conditional density P (X|Y ) and the class prior density P (Y ):

P (Y |X) = P (X|Y )P (Y )
P (X) (9)

P (X) doesn’t need to be estimated, since it can be calculated from P (X|Y )
and P (Y ). When learning from label proportions, the class prior P (yj) for label
yj can be estimated as η(Π, yj), the proportion of yj over sample U . However,
finding a good estimate for P (X|Y ) depends on the distribution of observations
over the given groups and the form of matrix Π.

In the best case, each group Gi only contains observations from a single class
and at least l groups contain observations from different classes. If πij = 1
appears in a row, all observations in the group must have the same label, which
can be assigned to all group members. We then are in a familiar supervised
learning scenario and can choose from many well-known classifiers for training.

However, without further knowledge about the distribution of observations
over the groups, the best we can assume is a uniform distribution. Here, in the
worst case, all πij are equal. Then, if we interpret πij as an estimate for the
class prior P (yj |Gi) of group Gi, it equals the estimated class prior P (yj). Since
each observation has the same probability of being sampled into group Gi, and
we assumed all priors to be equal, we can only guess the correct label with
probability 1/l. In general, if the number of groups remains constant, P (yj |Gi)
will approximate P (yj) for large sample sizes n. This can be seen if we imagine
each group Gi to be an independent data set with observations sampled from
the same distribution P (X,Y ).

For cases where all P (yj) are different, a better performance can be achieved
than in the worst case. One can at least predict the majority class. The question
is if one can get any better. Except for the best case, the estimation of P (X|Y )
is difficult, because observations with the same label are spread over all groups.
The LLP algorithm, introduced in the next section, is based on the idea that
observations sharing the same label might also have similar feature values.

3 Learning from Label Proportions by Clustering

The k-Nearest-Neighbour classifier predicts the majority label of k known ob-
servations closest to a given search point. It is presupposed that observations
lying close together in local regions of the input space also share the same class
label. If we could somehow identify these local groups of observations, which is
the problem of cluster analysis, the only problem left was to assign the correct
labels to the clusters.
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Definition 2 (Cluster analysis). Given a sample U of n unlabeled observa-
tions x1, . . . , xn and a measure d : X × X → R+ for the dissimilarity of ob-
servations, the aim of cluster analysis is to determine a set C = {C1, . . . , Ck}
(clustering) of subsets Ci ⊂ U (clusters), such that observations within the same
cluster are more similar to each other than those in different clusters, as mea-
sured by a quality function q : 22X → R+.

Many algorithms have been developed for solving this task. We focus on those
returning disjunct clusters, like the well-known k-Means algorithm [16], which
was also used for the experiments in Sect. 4. Given a clustering, it must be found
out which cluster best represents which class. The problem is solved by assigning
each cluster a label such that ErrΠ (5) is minimized (see Sect. 3.3).

In how far similar observations share the same class label not only depends
on P (X,Y ), but also on the chosen similarity measure. According to Hastie
et al. [13], the relevance of features can have an enormous influence on the cluster-
ing results. Therefore, the similarity measure should respect weights wf ∈ [0, 1]
for each feature, as given by a vector w = (w1, . . . , wm). In unsupervised learn-
ing, such weights are usually specified by a domain expert. Here, the relevance
weights can be approximated automatically (see Sect. 3.2), based on criterion
ErrΠ . In the next section, the accompanying optimization problem is stated.
Then, the LLP algorithm for solving it is described.

3.1 Optimization Problem

Let the vector λC = (λ1, . . . , λk) with λj ∈ Y represent a labeling for a clustering
C = {C1, . . . , Ck}. Let mλC : U → Y be a mapping that returns for a given
observation x ∈ Ci the label λi. Given a clustering C, we are searching for a
labeling λC of the clusters that minimizes the error (5) between the model-based
label proportions ΓmλC

and the known label proportions:

min
λC

ErrΠ(ΓmλC
) (10)

Let qw be a function which is able to assess the quality of a clustering based
on a similarity measure that respects feature weights. We are searching for a
clustering which maximizes qw and whose labeling most minimizes ErrΠ , for all
possible weight vectors w. This optimization problem can be stated as follows:

min
w

ErrΠ(Γmλ∗C
), λ∗C = argmin

λC∗
ErrΠ(ΓmλC∗

), C∗ = argmax
C

qw(C) (11)

3.2 The LLP Algorithm

The LLP algorithm solves problem (11) by an evolutionary strategy. For each
weight vector w, the sub-optimization problem of maximizing qw is solved by an
inner clustering algorithm, where the particular qw depends on the algorithm.
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Algorithm 1 The LLP algorithm.
Input: Label proportion matrix Π, sample U , groups G = {G1, . . . , Gh},
labels Y = {y1, . . . , yl}, clustering algorithm clusterer, labeling algorithm labeler,
parameters maxgen, psize, mutvar, crossprob, tournsize

Output: Clustering C, labeling λC, weight vector w
best_fit := −∞; generation := 0
Randomly initialize a population P of psize normalized weight vectors
while generation < maxgen do

for w ∈ P do
C := clusterer( U , w )
(λC , ErrΠ) := labeler( C, G, Π, Y )
if best_fit < −ErrΠ then
best_fit := −ErrΠ ; best_C := C; best_λC := λC ; best_w := w

end if
end for
generation := generation+ 1
if generation < maxgen then
Pcopy := P
Gaussian mutation of all individual weights in Pcopy with variance mutvar
Pchildren := Uniform crossover on P ∪ Pcopy with probability crossprob
P := Tournament selection with size tournsize on P ∪ Pcopy ∪ Pchildren

end if
end while
return best_C, best_λC , best_w

The only prerequisite for the clusterer is that it returns disjunct clusters and
respects different feature weights. The sub-optimization problem (10) is inde-
pendent from the clusterer and currently can be solved by two different labeling
heuristics introduced in Sect. 3.3. Using an evolutionary strategy as a wrapper
has the advantage that it is not necessary to integrate criterion ErrΠ into the
optimization problem of the inner clustering algorithm. For example, we already
have run LLP successfully with Kernel k-Means [10], DBSCAN [12] and PRO-
CLUS [1], without modification. Moreover, LLP can be used with different error
measures, for instance with criterion (8) that can respect individually labeled
examples.

LLP (see Alg. 1) takes a clustering algorithm clusterer and a labeling al-
gorithm labeler as parameters, in addition to Π, U , G1, . . . , Gh and Y , which
are related to the label proportions learning task. LLP then approximates the
optimal weight vector w and returns w, the related clustering C and labels λC
for the clusters.

The evolutionary strategy starts with a random population P of normalized
weight vectors, wi ∈ [0, 1]. For each individual in P , the clustering algorithm
clusterer is called. The clusters are labeled according to the given labeling al-
gorithm labeler and the fitness is evaluated by criterion ErrΠ . If the fitness is
higher than the best fitness seen so far, the newly found clustering, labeling
and weight vector are memorized as the new best ones. In each generation, the
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Algorithm 2 The greedy labeling algorithm.
Input: Clustering C = {C1, . . . , Ck}, groups G = {G1, . . . , Gh},
label proportion matrix Π, labels Y = {y1, . . . , yl}

Output: Labeling λC = (λ1, . . . , λk)
Initialize components of λC with y1;
for i := 1 to k do

lowest_error := 0; best_label := y1;
for j := 1 to l do
λC [i] := yj ;
Γm := count_labels( G, C, λC );
current_error := ErrΠ(Γm);
if current_error < lowest_error then

lowest_error := current_error;
best_label := yj ;

end if
end for
λC [i] := best_label;

end for
return λC

weight values in a copy of P are mutated by a Gaussian distribution and, with
a certain probability, exchanged with P by a crossover operator. Then, the in-
dividuals take part in a tournament and only the best ones are kept in the next
generation. This process is repeated until the maximum number of generations
as specified by the user is reached.

3.3 Labeling Heuristics

The following two labeling algorithms solve the sub-optimization problem (10)
heuristically.

Greedy Labeling As shown in Alg.2, in the initial step, all clusters get label y1.
Then, consecutively for each cluster, we calculate Γm for all labels and memorize
the label that most reduces ErrΠ(Γm). The strategy has runtime k · l.

Exhaustive Labeling Since k can be restricted to a small number and l = 2 for
a binary classification problem, trying lk possible labelings for a clustering C is
no problem. In our experiments (see section 4), good solutions often were found
for k ≤ 6. For each labeling, we need to calculate ErrΠ , which takes linear time
in the number of observations n. The calculations only involve basic operations
like count, addition, multiplication and division (see (5)).

3.4 Run-Time Analysis

The user-specified parametersmaxgen, psize and tournsize are constants. They
do not depend on the number of observations n and limit the number of iterations
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to be constant. As discussed in Sect. 3.3, the asymptotic run-time of the heuristic
labeling strategies is linear in n, as k and l are constants and the evaluation of
(5) takes linear time. The asymptotic run-time of LLP will otherwise depend on
the used cluster algorithm. For example, if we allow for approximate solutions
and limit the number of iteration steps, k-Means has linear run-time. Hence,
LLP has linear run-time.

3.5 Generating a Prediction Model

The LLP algorithm returns labeled clusters of sample U . It is then possible to
assign labels to individual observations xi ∈ U withmλC . To predict the labels of
new observations, the clustering must be transformed into a prediction model.
The way to do this depends on the used clustering algorithm. In the case of
k-Means, one can simply assign new observations to their closest cluster mean
and predict the corresponding cluster label. A big advantage of the cluster mean
model is that it is usually very small, as k � n, and therefore fast to apply.
Another option for getting a prediction model is to train a classifier like Naïve
Bayes [14] or a Support Vector Machine [22] in a subsequent step, based on the
now labeled observations. However, this increases the training time.

4 Experiments

We have compared the LLP algorithm to three state-of-the-art methods for
learning from label proportions: The Mean Map method [19], Inverse Calibra-
tion (Invcal) [21] and AOC Kernel k-Means (AOC-KK) [6]. For a further dis-
cussion of these methods, see Sect. 5. LLP has been implemented in Java. As
inner clustering algorithm, we have used Fast k-Means [11], which is a variant
of k-Means utilizing the triangle inequality for faster distance calculations. As
distance measure, we have used the weighted Euclidean distance. We have im-
plemented AOC-KK using a combination of Java and Matlab. For Mean Map
and Invcal, we used R scripts provided by the author of Invcal [21].

4.1 Prediction Performance Experiments

The prediction performance (accuracy) of LLP, AOC-KK, Invcal and Mean Map
has been assessed on the eight UCI [3] data sets shown in Table 1. We have
mapped each possible value of a nominal feature to a binary numerical feature
with values 0 or 1. Numerical features were normalized to the [0, 1] interval.
Table 1 shows the number of features m after this preprocessing step.

In each single experiment, the accuracy has been assessed by a 10-fold cross-
validation. For learning from label proportions, we have partitioned the training
set of a particular fold into groups of size σ, by uniform sampling of observations.
We tried several group sizes σ: 2, 4, 8, 16, 32, 64 and 128 (with the last group
smaller than σ, if necessary). The label proportions were calculated and the
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Table 1: UCI data sets used for the experiments.
Dataset n m Dataset n m

credita 690 42 sonar 208 60
vote 435 16 diabetes 768 8
colic 368 60 breast cancer 286 38
ionosphere 351 34 heartc 303 22

individual labels removed. In each fold, the accuracy of the learned prediction
model has been calculated on a labeled test set.

The kernel methods Mean Map, Invcal and AOC-KK have been tested with
the linear kernel, polynomial kernels of degree 2 and 3 and radial basis kernels
(γ = 0.01, 0.1 and 1.0). LLP has been tested with both labeling heuristics (see
Sect. 3.3), for cluster sizes k ∈ [2, 12]. As parameters for the evolutionary strat-
egy, we used maxgen = 10, psize = 25, mutvar = 1.0, crossprob = 0.3 and
tournsize = 0.25. By running LLP with k-Means, we get a prediction model
consisting of cluster means. The same is true for AOC-KK. However, the clus-
ter methods also assign labels to each observation in sample U , allowing for
a subsequent training of other classifiers. Based on the clustering results, we
have trained models for Naïve Bayes [14], kNN [2], Decision Trees [20], Random
Forests [4], and the SVM [22] with linear and radial basis kernel. The model
parameters have been optimized by a grid or evolutionary search.

The combination of all datasets, group sizes, classifiers, their variants and
parameters results in a total of 13.216 experiments: 672 for Mean Map and
Invcal, 2.688 for AOC-KK and 9.856 for LLP. For group sizes 16, 32, 64 and
128 on the datasets colic and sonar, and for group size 128 on credita, we
conducted additional experiments with LLP for maxgen = 5 and psize = 100.
In some cases, we got a better prediction accuracy. All experiments took about
three weeks. They were run in parallel on up to six machines with an AMD
Dual-Core or Quad-Core Opteron 2220 processor and a maximum of 4 GB main
memory.

4.2 Prediction Performance Results

Figure 2 contains plots of the highest achieved accuracies for all data sets and
group sizes, based on the best performing models of LLP, AOC-KK, Invcal and
MeanMap, over all conducted experiments. LLP shows a higher accuracy than
Invcal for many group sizes on the data sets credita, vote, colic, sonar and
breast cancer. On credita, vote, ionosphere, sonar and diabetes, the
variance of accuracy between group sizes is smaller for LLP in comparison to the
other methods. Mean Map performs worse than LLP and Invcal in many cases.
The performance of AOC-KK varies, depending on the data set. It shows good
performance on breast cancer and heartc, but not on the others. Except
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Fig. 2: Highest accuracies for all data sets and group sizes, over all 13.216 runs
of LLP, AOC-KK, Invcal and MeanMap (plus the additional runs of LLP with
maxgen = 5 and psize = 100). Some values for Mean Map and group size 128
are missing in the plots, due to an error in the R script.
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Table 2: Average ranks of classifiers by group size, and their difference to LLP’s
rank, based on the best models for each data set and group size. Positive differ-
ence values indicate a better performance of LLP. Highest ranks and significant
differences (higher than CD) at the 10%-level are marked in bold.

σ 2 4 8 16 32 64 128
Average Ranks

LLP 2.500 1.875 1.500 1.875 1.625 1.375 1.375
AOC-KK 2.000 2.750 3.000 2.875 2.625 2.375 2.000
Invcal 2.000 1.875 2.375 2.125 2.125 2.275 2.625
Mean Map 3.500 3.500 3.125 3.125 3.625 3.875 -

Differences, CD<128=1.4317, CD128=0.98
AOC-KK -0.500 0.875 1.500 1.000 1.000 1.000 0.625
Invcal -0.500 0.000 0.875 0.250 0.500 1.000 1.250
Mean Map 1.000 1.625 1.625 1.250 2.000 2.500 -

for the breast cancer and vote data set and a few other accuracy values, the
overall accuracy of all methods decreases with a larger group size.

4.3 Statistical Significance

For the comparison of multiple classifiers over multiple data sets, Demsar [9]
proposes the Friedman test, which is a non-parametric equivalent of ANOVA.
We use the adjusted version, with a test statistic distributed according to the
F-distribution (see [9]). The test ranks the classifiers for each data set separately.
Under the null-hypothesis, the average ranks of the classifiers should be equal. In
case of a critical difference, the null-hypothesis can be rejected. The test yielded
significant differences for all group sizes. One can then proceed with a post-hoc
test. We have decided for the two-tailed Bonferroni-Dunn test (again, see [9]),
which is for comparing a single classifier (here, LLP) to all others.

Table 2 shows the average ranks of the compared classifiers and their dif-
ference to LLP’s rank. Each rank was calculated based on the best performing
models (including the standard classifiers), over all conducted experiments. The
table also shows the critical difference (CD) values for the Bonferroni-Dunn test.
The CD for σ = 128 is different, because Mean Map was not included in the
comparison, due to missing values. LLP has the highest rank in six cases, for
σ > 2. At the 10%-level, LLP is significantly better than AOC-KK for σ = 8,
better than Invcal for σ = 128 and better than Mean Map for σ = 4, 8, 32 and
64. In all other cases, LLP performs equivalently.

The ranks in Table 3 are based on different models than those in Table 2.
For LLP and AOC-KK, we have only included the best performing cluster mean
models. We have compared them to the best performing models of Invcal and
Mean Map, i.e. to different kernels. The cluster mean models perform signifi-
cantly better than Mean Map for σ = 64 and better than Invcal for σ = 128. In
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Table 3: Average ranks of classifiers by group size, and their difference to LLP’s
rank. Ranks are based on the best performing models of Invcal and Mean Map
and the best performing cluster mean models of LLP and AOC-KK. Positive
difference values indicate a better performance of LLP. Highest ranks and sig-
nificant differences (higher than CD) at the 10%-level are marked in bold.

σ 2 4 8 16 32 64 128
Average Ranks

LLP 2.375 2.375 2.000 2.250 2.250 1.750 1.375
AOC-KK 3.750 3.250 3.125 2.875 2.875 2.375 2.125
Invcal 2.125 1.625 2.125 1.750 1.625 2.000 2.500
Mean Map 2.750 2.750 2.750 3.125 3.250 3.875 -

Differences, CD<128=1.4317, CD128=0.98
AOC-KK 1.375 0.875 1.125 0.625 0.625 0.625 0.750
Invcal -1.000 -0.750 0.125 -0.500 -0.625 0.250 1.125
Mean Map 0.125 0.375 0.750 0.875 1.000 2.125 -

all other cases, they show an equivalent prediction performance, but are faster
to train and apply, as discussed in Sects. 3.4 and 4.4. In the same way, we have
separately compared the exhaustive and greedy labeling strategies to the best
performing models of all other classifiers. The exhaustive strategy performed bet-
ter, in the sense that it showed more significant differences to the other methods.

Concerning the performance and significance of the standard classifiers, which
were trained based on the LLP and AOC-KK cluster models, Decision Trees
performed significantly better than Invcal for σ = 128, better than Mean Map
for σ = 64 and better than AOC-KK for σ = 4 and 32. Naive Bayes, k-NN
and Random Forests had a performance similar to the cluster mean models.
The linear SVM and the SVM with radial basis kernels showed no significant
differences to Invcal, MeanMap or AOC-KK.

4.4 Run-Time Comparison

For an empirical run-time comparison of LLP, Invcal, Mean Map and AOC-
KK, we have generated random data for a two Gaussian mixture classification
problem (10.000 observations and 10 features, with values normalized to [0, 1]).
Then, the average run-time for training and the accuracy of the classifiers over
10 folds of a cross-validation has been assessed for different samples of the data,
with varying sizes (see Fig. 3). The group size for learning from label proportions
has been σ = 16 for all runs. A radial basis kernel with γ = 0.1 has been used for
the kernel methods. LLP has been run with the exhaustive labeling strategy and
Fast k-Means (k = 6), with parameters maxgen = 3, psize = 25, mutvar = 1.0,
crossprob = 0.3 and tournsize = 0.25 for the evolutionary optimization. Both
LLP and AOC-KK used the cluster mean model for prediction.

LLP shows a high prediction performance for all sample sizes. Moreover,
LLP has the lowest run-time. However, since the methods are implemented in
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Fig. 3: Average run-time and accuracy of 10-fold cross-validations with LLP,
Invcal, Mean Map and AOC-KK on several samples of random data. The data
was generated for a two Gaussian mixture classification problem (n = 10000,
m = 10, feature values normalized to [0, 1]).

different programming languages (Java, Matlab, R), one should not compare the
absolute times, but the slope of the curves. The curve of LLP’s run-time is a
straight line, while the other curves indicate a polynomial run-time.

5 Related Work

The problem of learning from label proportions has gained attention in the ma-
chine learning community, only recently. Musicant et al. [18] formally defined the
problem of learning from aggregate values for regression and classification tasks.
They modified well-known methods like k-NN [2], backpropagation neural net-
works [17] and the linear SVM [22] to respect the given label proportions. Their
experimental results focus on regression tasks, while we are mainly interested in
classification.

Quadrianto et al. [19] have proposed the Mean Map method which estimates
the conditional class probability P (Y |X, θ) by conditional exponential models,
using a feature map Φ(X,Y ) and a normalization function g:

P (Y |X, θ) = exp( 〈Φ(X,Y ), θ〉 − g(θ|X) ) (12)

The parameter θ is estimated by solving a convex maximization problem for
the conditional log-likelihood logP (Y |X, θ). This depends on the unknown la-
bels only in terms of the empirical mean µXY , which they approximate by the
observation means for each group and its given label proportions. They compare
Mean Map to kernel density estimation, discriminative sorting, and MCMC [15].
Mean Map outperformed the related techniques. For this reason, we have com-
pared LLP only to Mean Map. Although LLP and Mean Map can both handle
multi class problems, for easier comparison with Inverse Calibration, we have
restricted our experiments to binary classification problems. During training,
Mean Map needs to solve a general convex optimization problem. In contrast,
LLP’s worst-case training time is linear in n for the cluster mean models. As was
shown in Sect. 4, these models achieved equivalent accuracy. Moreover, over all
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trained models, LLP’s accuracy has been significantly higher than Mean Map’s
for several group sizes.

Rueping [21] proposes the inverse calibration method. The author converts
the regression SVM (SVR) into a probabilistic classifier by applying a scaling
function σ to the outputs y = f(x), such that σ(y) is a good estimate for
p = P (y = 1|x). Since no individual estimates p for each observation x are
given, it is only required that f predicts y = σ−1(p) well on average. This is
equivalent to approximating the given label proportions well. The constraints are
integrated as auxiliary conditions into the standard SVR optimization problem.
LLP outperformed the inverse calibration for σ = 128, also with the cluster mean
models. It achieved equivalent results on smaller group sizes, but in shorter time.

For a semi-supervised learning case, Dara et al. [7] cluster the data first with
SOMs and then label the clusters. However, they have labeled observations,
which we do not. Demiriz et al. [8] adapt the k-Means optimization problem
to respect labeled data. Again, this is a semi-supervised setting, with labeled
observations. The idea is similar though to the AOC Kernel k-Means algorithm
by Chen et al. [6], who integrate the loss function (4) into the optimization
problem of Kernel k-Means clustering [10]. In comparison to AOC-KK, LLP has
achieved significantly better accuracy for σ = 8 over all conducted experiments.
For σ > 2, LLP had a higher average rank than AOC-KK. LLP needs only
linear training time, while in contrast, AOC-KK solves a quadratic optimization
problem in each iteration step of Kernel k-Means.

6 Conclusions and Future Work
We have presented a new approach for learning from label proportions, the
LLP algorithm. With k-Means as the clustering algorithm, LLP has only linear
worst-case training time and its cluster mean models are small and fast to apply.
In comparison to state-of-the-art methods, which need more training time, the
cluster mean models have shown significantly better or equivalent prediction ac-
curacy. By training other classifiers on the labeled clusters, the highest achieved
accuracy of LLP was significantly different in even more cases, and LLP had the
highest average rank for all σ > 2. In the future, we want to evaluate LLP’s
performance on data from the steel factory, as mentioned in the introduction.
Moreover, it would be interesting to assess LLP’s prediction performance with
multi class problems and additional labeled observations. Another direction is
to use different clustering algorithms with LLP and compare their performance.
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